University of Montana
ScholarWorks at University of Montana

The Computational Complexity of N-K Fitness Functions

Alden H. Wright
University of Montana, Missoula
Richard K. Thompson
University of Montana, Missoula
Jian Zhang

Follow this and additional works at: https://scholarworks.umt.edu/cs_pubs
Part of the Computer Sciences Commons
Let us know how access to this document benefits you.

Recommended Citation

A. H. Wright, R. K. Thompson and Jian Zhang, "The computational complexity of N-K fitness functions," in IEEE Transactions on Evolutionary Computation, vol. 4, no. 4, pp. 373-379, Nov 2000.

This Article is brought to you for free and open access by the Computer Science at ScholarWorks at University of Montana. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

The Computational Complexity of N-K Fitness Functions

Alden H. Wright
alden.wright@umontana.edu

Richard K. Thompson
dick.thompson@umontana.edu
Department of Computer Science
The University of Montana
Missoula, MT 59812-1008 ${ }^{1}$

Abstract

N-K fitness landscapes have been widely used as examples and test functions in the field of evolutionary computation. Thus, the computational complexity of these landscapes as optimization problems is of interest. We investigate the computational complexity of the problem of optimizing the N-K fitness functions and related fitness functions. We give an algorithm to optimize adjacent-model $\mathrm{N}-\mathrm{K}$ fitness functions which is polynomial in N. We show that the decision problem corresponding to optimizing random-model N-K fitness functions is NP-complete for $K>1$ and is polynomial for $K=1$. If the restriction that the i th component function depends on the i th bit is removed, then the problem is NP-complete even for $K=1$. We also give a polynomial-time approximation algorithm for the arbitrary-model N -K optimization problem.

1 Introduction

Kauffman [1] introduced a class of stochastically defined fitness landscapes over bit strings called the N-K landscapes. These have a parameter K that can be tuned to adjust the "ruggedness" of the landscapes. When $K=0$, the landscapes are linear, and when $K=N-1$ (where N is number of bits) the landscapes are random.

Many evolutionary computation papers make reference to these landscapes either as examples or as test functions. Thus, it is of interest to know the computational complexity of the corresponding optimization problems.

An N-K function is the sum of N functions, where each summand function depends on $K+1$ of the N bits of the bit string. There are two variations of the N-K model. In the adjacent model, the summand function f_{i} depends on bit i and on K adjacent bits. In the random model, f_{i} depends on bit i and K other chosen randomly bits. Kauffman [1] and Weinberger [2] show that these two variations have very similar statistical properties. For example, the correlation of the fitness values of adjacent bit strings is almost the same.

We show that the two variations have quite different computational complexities.
In Kauffman's definition, the values of the summand functions are chosen randomly from a uniform distribution. The bit dependencies for the random model N-K functions are chosen randomly. In our

[^0]complexity analysis, we assume that these choices are made arbitrarily. In other words, our class of N-K functions includes any function that can result from some random choice in Kauffman's definition of the $\mathrm{N}-\mathrm{K}$ functions. In view of this, we describe the random model of N-K landscapes as arbitrary rather than random.

Some of our results also apply to N-K landscapes over higher arity alphabets. See section 2 for more details.

To summarize our results:

1. We give a dynamic programming algorithm that optimizes the class of adjacent N-K fitness landscapes. The algorithm is polynomial in N and exponential in K.
2. We give a polynomial algorithm for the class of arbitrary N -K fitness landscapes with $K=1$.
3. We show that the class of arbitrary N-K fitness landscapes for $K \geq 2$ is NP-complete.
4. We show that the class of arbitrary $\mathrm{N}-\mathrm{K}$ fitness landscapes for $K \geq 1$, where the component function f_{i} is not required to depend on bit (or symbol) i, is NP-complete.
5. We show that there is a polynomial-time ϵ-approximation algorithm for the class of arbitrary $\mathrm{N}-\mathrm{K}$ fitness landscapes with $\epsilon=1-(1 / 2)^{K}$.

Results $1-4$ are from [3] while result 5 is from [4], both previously unpublished theses. Weinberger [2] independently discovered results 1 and 3 .

2 Formalization

We give a formal description of our extensions to the class of N-K fitness functions.
Let Σ denote a (finite) alphabet and $R^{\geq 0}$ denote the nonnegative reals. To specify an $\mathrm{N}-\mathrm{K}$ fitness function $f: \Sigma^{N} \rightarrow R^{\geq 0}$ with $f=\sum_{i=0}^{N-1} f_{i}$, we must specify the positions that influence each term f_{i}, and we must specify the f_{i} functions.

We specify the positions through projection functions p_{i}, where each p_{i} is a mapping from Σ^{N} to $\Sigma^{k_{i}}$. Each p_{i} is defined by a cardinality k_{i} subset of $\{0,1, \ldots, N-1\}$. For example, if $k_{i}=3$ and if p_{2} is defined by the subset $\{1,3,6\}$, then p_{2} is defined by $p_{2}\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)=\left(a_{1}, a_{3}, a_{6}\right)$.

For the adjacent model, we choose the subset of $\{0,1, \ldots, N-1\}$ that defines p_{i} to be $\{i, i+1, \ldots, i+K\}$, where the indices are taken $\bmod N$. For the arbitrary model, the subset that defines p_{i} is chosen arbitrarily. Sometimes we may specify that i is in the subset that defines p_{i}. Then we assume that the component functions f_{i} map Σ^{K+1} into $R^{\geq 0}$. Then f is written more precisely as

$$
f=\sum_{i=0}^{N-1} f_{i} \circ p_{i},
$$

where the domain of each f_{i} is Σ^{K+1}. When it is clear from the context, we will omit the projection functions.

The input to the optimization problem consists of the subsets defining the p_{i} and a set of tables defining the f_{i}.

3 Polynomial Algorithms

3.1 The $K=1$ adjacent case

We demonstrate a polynomial dynamic programming algorithm to find the optimum fitness of the adjacent model. We start with an algorithm for the $K=1$ case.

The idea of the algorithm is to reduce the problem of size N to a problem of size $N-1$ by defining a fitness function $f^{\prime}: \Sigma^{N-1} \longrightarrow R^{\geq 0}$. The function f^{\prime} is defined as

$$
f^{\prime}=\sum_{i=0}^{N-2} f_{i}^{\prime}
$$

where $f_{i}^{\prime}=f_{i}$ for $0 \leq i<N-2$, and

$$
f_{N-2}^{\prime}\left(a_{N-2}, a_{0}\right)=\max \left\{f_{N-2}\left(a_{N-2}, b\right)+f_{N-1}\left(b, a_{0}\right): b \in \Sigma\right\}
$$

Theorem 3.1 Under the definition of f^{\prime} given above,

$$
\max \left\{f^{\prime}\left(\mathbf{a}^{\prime}\right): \mathbf{a}^{\prime} \in \Sigma^{N-1}\right\}=\max \left\{f(\mathbf{a}): \mathbf{a} \in \Sigma^{N}\right\}
$$

Proof. Define $p: \Sigma^{N} \longrightarrow \Sigma^{N-1}$ by $p\left(a_{0}, \ldots, a_{N-2}, a_{N-1}\right)=\left(a_{0}, \ldots, a_{N-2}\right)$. Then for any $\mathbf{a} \in \Sigma^{N}$,

$$
f(\mathbf{a})-f^{\prime}(p(\mathbf{a}))=f_{N-2}\left(a_{N-2}, a_{N-1}\right)+f_{N-1}\left(a_{N-1}, a_{0}\right)-f_{N-2}^{\prime}\left(a_{N-2}, a_{0}\right)
$$

Since

$$
\begin{aligned}
f_{N-2}^{\prime}\left(a_{N-2}, a_{0}\right) & =\max \left\{f_{N-2}\left(a_{N-2}, b\right)+f_{N-1}\left(b, a_{0}\right): b \in \Sigma^{N}\right\} \\
& \geq f_{N-2}\left(a_{N-2}, a_{N-1}\right)+f_{N-1}\left(a_{N-1}, a_{0}\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
f(\mathbf{a}) \leq f^{\prime}(p(\mathbf{a})) \tag{1}
\end{equation*}
$$

Let $\mathbf{c}^{\prime} \in \Sigma^{N-1}$ be such that $f^{\prime}\left(\mathbf{c}^{\prime}\right)=\max \left\{f^{\prime}\left(\mathbf{a}^{\prime}\right): \mathbf{a}^{\prime} \in \Sigma^{N-1}\right\}$. Then

$$
f_{N-2}^{\prime}\left(c_{N-2}^{\prime}, c_{0}^{\prime}\right)=\max \left\{f_{N-2}\left(c_{N-2}^{\prime}, b\right)+f_{N-1}\left(b, c_{0}^{\prime}\right): b \in \Sigma\right\}
$$

Choose $c_{N-1} \in \Sigma$ to achieve this maximum, and let $c_{i}=c_{i}^{\prime}$ for $i<N-1$ so that $\mathbf{c}^{\prime}=p(\mathbf{c})$, and

$$
f_{N-2}^{\prime}\left(c_{N-2}^{\prime}, c_{0}^{\prime}\right)=f_{N-2}\left(c_{N-2}, c_{N-1}\right)+f_{N-1}\left(c_{N-1}, c_{0}\right)
$$

which implies that $f(\mathbf{c})=f^{\prime}(p(\mathbf{c}))=f^{\prime}\left(\mathbf{c}^{\prime}\right)$. This, along with equation (1), implies the statement of the theorem.

If we know the string $\mathbf{c}^{\prime} \in \Sigma^{N-1}$ that maximizes f^{\prime}, and if we know the element $b \in \Sigma$ that realizes the maximum in the definition of f_{N-2}^{\prime}, then we can construct the element $\mathbf{c} \in \Sigma^{N}$ which maximizes f. It is not hard to see that if $\mathbf{c}^{\prime}=\left(c_{0}, c_{1}, \ldots, c_{N-2}\right)$, then $\mathbf{c}=\left(c_{0}, c_{1}, \ldots, c_{N-2}, b\right)$.

We can now write the above in the form of an algorithm. We assume that the tables that define the components of the given fitness function f are given in the form of a 3 -dimensional array $F[0 . . N-1, \Sigma, \Sigma]$. In other words, the function $f_{i}: \Sigma^{2} \longrightarrow R^{\geq 0}$ is given by $f_{i}(a, b)=F[i, a, b]$. The algorithm repeatedly applies the process of Theorem 3.1 to reduce the problem to a problem of size $N=2$. The solution of the $N=2$ problem is found by direct search, and then a solution to the original problem is reconstructed. The F array is used as temporary storage by the algorithm, so the original contents of F are destroyed. At the end of the i th stage, $F[0 . . i-2, \Sigma, \Sigma]$ contains the definition of the current component functions, and $F[i-1 . . N, \Sigma, \Sigma]$ contains the elements of Σ that realize the maximum in the definition of f^{\prime} above. For example, if $F[N-1, a, c]=d$, then $f_{N-2}(a, d)+f_{N-1}(d, c)=\max \left\{f_{N-2}(a, b)+f_{N-1}(b, c): b \in \Sigma\right\}$.

Optimize (F)

/// Assumes that $K=1$.
/// The given array $F[0 . . N-1, \Sigma, \Sigma]$ which defines the fitness function, is destroyed.
$/ / / v[\Sigma, \Sigma]$ and $u[\Sigma, \Sigma]$ are temporary arrays.
/// Reduce the problem size to $N=2$.

for n from $N-1$ downto 2 do
 for $a \in \Sigma$ do

for $c \in \Sigma$ do

Choose $b_{\max }$ so that

$$
F\left[n-1, i, b_{\max }\right]+F\left[n, b_{\max }, k\right]=\max \{F[n-1, a, b]+F[n, b, c]: b \in \Sigma\}
$$

$v[a, c] \leftarrow b_{\max }$ $u[a, c] \leftarrow F\left[n-1, i, b_{\max }\right]+F\left[n, b_{\max }, k\right]$
for $a \in \Sigma$ do
for $c \in \Sigma$ do
$F[n-1, a, c] \leftarrow u[a, c]$
$F[n, a, c] \leftarrow v[a, c]$
/// Problem size is now $N=2$. Find the max fitness string for $N=2$
Choose $a_{\max }$ and $c_{\max }$ so that

$$
F\left[0, a_{\max }, c_{\max }\right]+F\left[1, c_{\max }, a_{\max }\right]=\max \{F[0, a, c]+F[1, c, a]: a \in \Sigma, c \in \Sigma\}
$$

/// Construct an optimal string S for the whole problem.

$$
\begin{aligned}
& S[0] \leftarrow i_{\text {max }} \\
& S[1] \leftarrow k_{\max } \\
& \text { for } i \text { from } 2 \text { to } N-1 \text { do } \\
& \quad S[i] \leftarrow F[i, S[i-1], S[0]]
\end{aligned}
$$

return S

Algorithm 1

Clearly, the time complexity of this algorithm is $\Theta\left(N|\Sigma|^{3}\right)$ if we assume that binary operations on real numbers (such as addition and maximizaton) require $O(1)$ time.

The space required is that required for the arrays F, u, and v. Thus the space used is $O\left(N|\Sigma|^{2}\right)$ on the assumption that every real number used in the algorithm can be stored in $O(1)$ space.

3.2 The $K>1$ adjacent case

First, suppose that N is divisible by K. Then we can view a string of length N over Σ as a string of length N / K over alphabet Σ^{K}. Any component function f_{i} that depends on at most $K+1$ positions of the string over $\Sigma_{\tilde{f}}$ will depend on at most 2 positions of the string over alphabet Σ^{K}. If we let $\widetilde{f}_{i}=\sum_{j=K i}^{K i+K-1} f_{i}$, then \widetilde{f}_{i} depends on only symbols \widetilde{a}_{i} and \widetilde{a}_{i+1} of the string over the alphabet Σ^{K}. Then we can apply the Algorithm 1 of the previous section to achieve an algorithm of complexity $\Theta\left(N|\Sigma|{ }^{3 K}\right)$.

If N is not divisible by K, let $Q=\lfloor N / K\rfloor$ and $r=N \bmod K$. We view a string of length N over Σ as a string of symbols $\widetilde{a}_{0} \widetilde{a}_{1} \ldots \widetilde{a}_{Q}$, where $\widetilde{a}_{0} \in \Sigma^{K}, \widetilde{a}_{1} \in \Sigma^{r}$, and $\widetilde{a}_{2}, \ldots, \widetilde{a}_{Q} \in \Sigma^{K}$. We can write $f=\sum_{i=0}^{Q} \widetilde{f}_{i}$ where each \widetilde{f}_{i} depends on \widetilde{a}_{i} and \widetilde{a}_{i+1}, except for \widetilde{f}_{0} that depends on $\widetilde{a}_{0}, \widetilde{a}_{1}$, and \widetilde{a}_{2}. We
apply Algorithm 1 of the previous section to reduce the problem to a problem over a string of length $2 K+r$ over Σ, or a string of length 3 over $\Sigma^{K} \times \Sigma^{r} \times \Sigma^{K}$. Note that Algorithm 1 does not work with component function \widetilde{f}_{0} because it is dependent on three variables. Each major iteration of the first part of Algorithm 1 takes $\Theta\left(|\Sigma|^{3 K} \mid\right)$ steps. We solve the reduced problem by enumerating all solutions, which takes $|\Sigma|^{2 K+r} \in O\left(|\Sigma|^{3 K}\right)$ steps. This gives the following theorem:

Theorem 3.2 Let f be an adjacent-model $N-K$ fitness function over the alphabet Σ. Then a string corresponding to the optimal fitness value can be found in time $\Theta\left((Q+1)|\Sigma|^{3 K}\right)$, where $Q=\lfloor N / K\rfloor$ (assuming that real-number operations can be done in $O(1)$ time).

Corollary 3.3 Let $C>0$ be a constant, and consider the family of adjacent-model N - K fitness functions over the alphabet Σ such that $K \leq C \log N$. There is a polynomial algorithm to find the optimal string for this family of fitness functions.

Proof. The time complexity of the algorithm of Theorem 3.2 is $O\left(N|\Sigma|^{3 C \log N}\right)=O\left(N^{3 C \log |\Sigma|+1}\right)$.

3.3 A $K=1$ arbitrary case

In this section we show that for $K=1$ and the arbitrary model where component function f_{i} of f depends on position i of the string, then there is a polynomial algorithm to optimize f.

We define a graph whose vertices are the integers from 0 to $N-1$, and whose edges are the terms f_{i}. The edge f_{i} connects the vertices of the set of indices corresponding to the projection p_{i}. In other words, the edge f_{i} connects the indices corresponding to those components of the string on which f_{i} depends. Note the graph corresponding to a $K=1$ adjacent-model $\mathrm{N}-\mathrm{K}$ fitness function is a simple cycle through all the vertices.

Let us rearrange the indices $\{0,1, \ldots, n-1\}$ so that the indices corresponding to the connected components of G are adjacent. Thus, we assume that the vertices $\left\{n_{0}=0,1, \ldots, n_{1}-1\right\}$ correspond to the first connected component of G, the vertices $\left\{n_{1}, n_{1}+1, \ldots, n_{2}-1\right\}$ correspond to the second, etc. Then let

$$
g_{j}=\sum_{i=n_{j}}^{n_{j+1}-1} f_{i}
$$

where g_{j} depends only on the components $n_{j}, \ldots n_{j+1}-1$, so the g_{j} can be optimized independently, and the sum of the optimal values for the g_{j} is the optimal value for f. Further, the optimal string for f is the concatenation of the optimal strings for the g_{j}.

Theorem 3.4 Let f be an N-K fitness function with $K=1$, where each f_{i} depends on position i of the string and one other position. Then there is a polynomial algorithm to optimize f.

Proof. Our assumption is that the edge f_{i} must be incident on vertex i. Thus, every component of the graph has the same number of edges as vertices, and every component of the graph has exactly one cycle.

If a component of the graph G consists of a cycle, then we can apply Theorem 3.1 and use Algorithm 1.
If a component of G is not a cycle, then there must be some vertex of degree 1 . We show how the function f can be replaced by a function f^{\prime} which does not depend on this string position, and which has the same optimum.

Without loss of generality, we assume that index $N-1$ corresponds to a vertex of G of degree 1 . Then f_{N-1} is the only term of f that depends on this position of the string. Without loss of generality, we can also assume that the other position of the string on which f_{N-1} depends is $N-2$.

Let

$$
f_{N-2}^{\prime}\left(a_{N-1}, a_{N-2}\right)=f_{N-2}\left(a_{N-2}, a_{N-1}\right)+\max \left\{f_{N-1}\left(a_{N-2}, c\right): c \in \Sigma\right\}
$$

Clearly, if $a_{0} \ldots a_{N-2} a_{N-1}$ is optimal for f, then $a_{0} \ldots a_{N-2}$ is optimal for f^{\prime}.

4 NP-Completeness

In this section we show that when the restriction that f_{i} depends on position i of the string is removed, then the $K=1$ arbitrary-model optimization problem is NP-complete. We now assume that the function f maps into the nonnegative integers rather than the nonnegative reals.

Theorem 4.1 The problem of optimizing an N - K fitness function $f=\sum f_{i}$ with $K=1$ and no restrictions on the dependence of the f_{i} on string positions is NP-complete.

Proof. To show NP-completeness, we must show that a solution to the corresponding decision problem can be checked in polynomial time, and that some problem known to be NP-complete can be transformed to our problem. The decision problem corresponding to the problem of maximizing f is: Given a fixed natural number k, decide if there exists a string $\mathbf{a} \in \Sigma^{N}$ such that $f(\mathbf{a}) \geq k$. Since f can be computed in polynomial time, a solution can be checked in polynomial time.

The known NP-complete problem that will be reduced to our problem is the MAXIMUM 2-SAT problem (abreviated as 2-MAXSAT) [5]: Given a Boolean formula in conjunctive normal form (CNF) with two literals per clause, the problem is to maximize the number of true clauses. A 2-CNF formula is a conjunction of clauses of the form $u_{i} \vee u_{j}$, where u_{i} and u_{j} are literals, where a literal is either a Boolean variable or a negation of a Boolean variable.

Given a 2-CNF formula defined by (B, C), where B is a set of Boolean variables and

$$
C=\left\{c_{i}=u_{j} \vee u_{k}, \text { where } u_{j}=j \text { or } \bar{j}, j \in B\right\}
$$

we will construct a corresponding N -K fitness function f over the B so that the value of f is equal to the number of true clauses in C. Let $N=\max (|B|,|C|)$. To each $i \in B$ we associate a string position i. If $N>|B|$, then the symbols in positions $j:|B| \leq j<N$ will not affect the value of f.

To each $c_{i}=u_{j} \vee u_{k} \in C$ we associate a term f_{i} of f where f_{i} depends string positions j and k. Let a string position value of 1 correspond to a true value of the corresponding Boolean variable, and a value
of 0 correspond to false. Then define

$$
f_{i}= \begin{cases}0 & \text { if } c_{i} \text { is false } \\ 1 & \text { if } c_{i} \text { is true. }\end{cases}
$$

for $i<|C|$, and $f_{i}=0$ for $|C| \leq i<N$.
For example, if $c_{i}=u_{2} \vee \bar{u}_{4}$, then f_{i} will depend on string positions 2 and 4 , and the values of f_{i} are given by

a_{2}	a_{4}	f_{i}
0	0	1
0	1	0
1	0	1
1	1	1

Then given a setting of B, the value of f is clearly equal to the number of true clauses in C.
Under Kauffman's model, f_{i} was required to depend on string position i. If $K=2$ and this is the only restriction on the dependence of f_{i}, then clearly Theorem 4.1 shows that optimizing such an f (with integer values) is an NP-complete problem. Weinberger [2] independently discovered this result.

5 A polynomial-time approximation algorithm

5.1 Definitions

For this section, we assume a binary alphabet.
Although all NP-complete problems share non-polynomial worst-case complexity (unless $P=N P$), they have little else in common. When seen from almost any other perspective, they have interesting diversity. In this paper, we want to consider approximation algorithms for optimization of the arbitrary model N-K functions. We will accomplish this by studying the problem against several complexity classes [6].

Definition 5.1 [6] Suppose that A is an optimization problem. This means that for each instance x we have a set $F(x)$ of feasible solutions, and for each solution $s \in F(x)$ we have a positive integer cost $c(s)$ (we use the term cost and notation $c(s)$ even in the case of maximization problems). The optimal cost is $O P T(x)=\min _{s \in F(x)} c(s)$ (or $\max _{s \in F(x)} c(s)$, if A is a maximization problem). Let M be an algorithm which, given any instance x, returns a feasible solution $M(x) \in F(x)$. We say that M is an ϵ-approximation algorithm, where $\epsilon>0$, if for all x we have

$$
\frac{|c(M(x))-O P T(x)|}{\max \{O P T(x), c(M(x))\}} \leq \epsilon .
$$

Intuitively, a heuristic is ϵ-approximate if the "relative error" of the solution found is at most ϵ. For a maximization problem, an ϵ-approximate algorithm returns solutions that are never smaller than $1-\epsilon$ times the optimum. For a minimization problem, the solutions returned are never more than $(1-\epsilon)^{-1}$ times the optimum. Evidently, the ϵ here is used to measure how far away the approximate solution is from the optimum.

For each optimization problem, A, we shall be interested in determining the smallest ϵ for which there is a polynomial-time ϵ-approximation algorithm for A. Sometimes no such ϵ exists, but there are also approximation algorithms that achieve arbitrarily small error ratios.

Definition 5.2 The approximation threshold of A is the greatest lower bound of all $\epsilon>0$ such that there is a polynomial-time ϵ-approximation algorithm for A.

The approximation threshold of an optimization problem can be anywhere between zero (arbitrarily close approximation is possible) and one (essentially no approximation is possible) (see [6]). Of course, any optimization problem that has a polynomial-time algorithm has approximation threshold zero.

Let NKOPT denote the arbitrary model N-K optimization problem. For a given value of K, let K NKOPT denote the N-K optimization problem for that value of $K . K$-NKOPT is best described in terms of the K-MAXGSAT problem. This is a generalization of the K-MAXSAT problem. In the K MAXGSAT problem, we are given a set of Boolean expressions in N variables, where each expression is a function of at most K of the variables. The Boolean expressions can be any function of their variables. (In the K-MAXSAT problem, the Boolean expressions must be disjunctions of literals.)

5.2 The Approximation Algorithm

In this section, we give an approximation algorithm for the K-NKOPT problem.
There are N bits in the input string. Since each bit could only be 0 or 1 , there are 2^{N} possible bit assignments. If we calculate the value of the $\mathrm{N}-\mathrm{K}$ fitness function corresponding to each assignment, what is the average of these values?

We will denote the set of all N-bit strings as S, the average value of a function f on the set S as $A V G\left(f^{S}\right)$, and the average value of $f_{i} \circ p_{i}$ on the set S as $A V G\left(f_{i}^{S}\right)$.

From the definition of N-K fitness function, we have

$$
f=\sum_{i=1}^{N-1} f_{i}
$$

Therefore, we have

$$
A V G\left(f^{S}\right)=\sum_{i=0}^{N-1} A V G\left(f_{i}^{S}\right)
$$

To calculate $A V G\left(f^{S}\right)$, we have to remember that each function f_{i} depends on exactly $K+1$ bits of the string. Therefore, if we identify the $K+1$-bit strings with the integers from 0 to $2^{K+1}-1$, there are only 2^{K+1} different values,

$$
f_{i}[j] \text { for } j=0,1, \ldots, 2^{K+1}-1
$$

for each function. Then we have

$$
A V G\left(f_{i}^{S}\right)=\frac{1}{2^{K+1}} \times \sum_{j=0}^{2^{K+1}-1} f_{i}[j]
$$

Let m_{i} be the maximum value of f_{i}. Since the sum of a sequence of nonnegative numbers is always greater than its maximum, we have

$$
\sum_{j=0}^{2^{K+1}-1} f_{i}[j] \geq m_{i}
$$

We may thus obtain a lower bound for $A V G\left(f_{i}^{S}\right)$:

$$
A V G\left(f_{i}^{S}\right) \geq \frac{1}{2^{K+1}} \times m_{i}
$$

Let the optimal value of f be $M A X$, then it is obvious that $\sum_{i=0}^{N-1} m_{i} \geq M A X$, and we have the following conclusion:

Lemma 5.3 The average value of the N - K fitness function satisfies

$$
A V G\left(f^{S}\right) \geq \frac{1}{2^{K+1}} \times M A X
$$

Using the result above, we will try to reduce the size of the string set to 1 without reducing the average value of the $\mathrm{N}-\mathrm{K}$ fitness function corresponding to the set; this will allow us to find an approximate solution for the N-K fitness optimization problem.

Suppose that we set bit 0 to 1 in all string assignments; then we have a set $S 1$ of string assignments which only involves bit 1 through bit $N-1$, and we can again calculate the average value $A V G\left(f^{S 1}\right)$ of the $\mathrm{N}-\mathrm{K}$ fitness function for this set of string assignments. Similarly if we set bit 0 to 0 , then we have a set $S 0$ of string assignments. Let the average of f for this set be $A V G\left(f^{S 0}\right)$. Since sets $S 0$ and $S 1$ have the same size, now it is very easy to see that

$$
A V G\left(f^{S}\right)=\frac{1}{2}\left(A V G\left(f^{S 1}\right)+A V G\left(f^{S 0}\right)\right)
$$

This equation shows that, if we set bit 0 to 0 when $A V G\left(f^{S 1}\right)<A V G\left(f^{S 0}\right)$ and 1 otherwise and we replace S by $S 0$ in the first case ($S 1$ in the second), then we end up with a string set with average value at least as large as the original $A V G\left(f^{S}\right)$.

We can continue like this, always splitting the string into two subsets and assigning to the next bit the value that maximizes the average function value on the resulting string set. In the end, all bits have been assigned values. However, since our average value never decreases in the process and the last set we have
will only have one member left, we know that the value of the $\mathrm{N}-\mathrm{K}$ fitness function corresponding to the final string (since now we have only one string in the set, it is the same as the average value of the set now) is at least as large as

$$
\frac{1}{2^{K+1}} \times M A X
$$

These remarks suggest the following algorithm for approximating a solution for the N-K fitness optimization problem.

```
N-K_OPTIM(S)
/// s is the approximately optimal string.
/// S is initialized to the set of all N-bit strings
/// and evolves as the bits of S are assigned;
/// eventually, S={s}.
    for i from 0 to N-1 do
        S0\leftarrow subset of S where the ith bit is 0
        M0}\leftarrow\mathrm{ average of f over S0
        S1\leftarrow subset of S where the ith bit is 1
        M1 \leftarrow average of f over S1
        if M0>M1 then
            s[i]}\leftarrow
            S\leftarrowS0
        else
            s[i]\leftarrow1
            S\leftarrowS1
/// The approximately optimal string is now in s
    return s
```

Algorithm 2

Notice that inside the "for" loop, each step needs to calculate at most $2^{K+1} \times N$ values (each f_{i} depends on at most $K+1$ bits). Therefore, the complexity of the algorithm is

$$
N \times 2^{K+1} \times N=N^{2} \times 2^{K+1}
$$

which is a polynomial in N.
Now we have an approximation threshold for the algorithm:

Theorem 5.4 The approximation threshold for the algorithm with $K \geq 2$ is at most $1-\frac{1}{2^{K+1}}$.

Proof. The approximation threshold for the algorithm is at most

$$
\frac{M A X-\frac{1}{2^{K+1}} \times M A X}{M A X}=1-\frac{1}{2^{K+1}}
$$

In fact, the string given by this algorithm is no more than average, but nothing more than that is guaranteed. To our knowledge, there are no known better approximation thresholds for the $(K+1)$ $M A X G S A T$ problem.

5.3 A lower bound on the approximation complexity

Definition 5.5 A polynomial-time approximation scheme (PTAS) for an optimization problem A is an algorithm which, for each $\epsilon>0$ and instance of A, returns a solution with a relative error of at most ϵ in time which is bounded by a polynomial (depending on ϵ) of $|x|$. [6]

In other words, if the problem has a PTAS, then no matter how small ϵ is, we can find a polynomial-time ϵ-approximation algorithm for A with approximation threshold ϵ. There are NP-complete problems, such as KNAPSACK, which have polynomial time approximation schemes.

We will show that the K-NKOPT problem for $K \geq 2$ is MAXSNP-hard. This shows that this problem does not have a PTAS unless $\mathrm{P}=\mathrm{NP}$.

Definition 5.6 Let A, B be two optimization problems. We say that A L-reduces (for linearly-reduces) to B if there are two polynomial time computable functions R and S and constants α and β such that:

- Given any instance a of A, function R produces an instance b of B such that the cost of the optimum solution of $b, O P T(b)$ is at most $\alpha \cdot \operatorname{OPT}(a)$.
- Given any solution y of b, function S produces a solution x of a such that $|\operatorname{cost}(x)-O P T(a)| \leq$ $\beta|\operatorname{cost}(y)-O P T(b)|$.

It is not hard to show that the composition of two L-reductions is an L-reduction.
It is also not hard to show that if problem A L-reduces to problem B and B can be approximated in polynomial time with a relative error ϵ, then A can be approximated with relative error $\alpha \beta \epsilon$. In particular, if B has a polynomial-time approximation scheme, then so does A.

Lemma 5.7 The 2-MAXSAT problem L-reduces to the problem of optimizing an N-K fitness function $f=\sum f_{i}$ with $K=1$ and no restrictions on the dependence of the f_{i} on string position i.

Proof. We claim that the reduction of Theorem 4.1 is an L-reduction. The proof of Theorem 4.1 shows how to define the function R from instances of 2-MAXSAT to instances of the N-K problem. Since this function preserves cost, it is trivially an L-reduction.

The class MAXSNP is a class of optimization problems defined in [7] and in [6]. A problem is MAXSNPhard if every problem in MAXSNP can be L-reduced to it. A problem is MAXSNP-complete if it is in MAXSNP and if it is MAXSNP-hard. The problems 2-MAXSAT, 3-MAXSAT, and MAXSAT are all MAXSNP-complete.

To show that a problem is MAXSNP-hard, it suffices to show that some MAXSNP-complete problem L-reduces to it.

We will use the following powerful theorem which is due to [8] and is also proved in [6].

Theorem 5.8 Unless $P=N P$, MAXSNP-hard problems do not have polynomial-time approximation schemes.

Theorem 5.9 The K-NKOPT problem for $K \geq 2$ is MAXSNP-hard. Thus, unless $P=N P$, K-NKOPT does not have a polynomial time approximation scheme.

Proof. The K-NKOPT problem for $K \geq 2$ includes the arbitrary model N-K optimization problem for $K=1$ without the restriction on the dependence of the f_{i} on string position i. Lemma 5.7 shows that the MAXSNP-complete 2-MAXSAT problem L-reduces to the unrestricted arbitrary model N-K optimization problem for $K=1$, so the N-K problem is MAXSNP-hard. Theorem 5.8 shows that the $\mathrm{N}-\mathrm{K}$ problem does not have a PTAS.

If $\mathrm{P} \neq \mathrm{NP}$, then there are three classes of approximation difficulty for NP-hard problems (from easy to hard):

1. Problems with a PTAS. These problems can be approximated arbitrarily closely with a polynomial time approximation algorithm. KNAPSACK is in this class. [6]
2. Problems without a PTAS but with an approximation threshold between 0 and 1 . We have just shown that the K-NKOPT problem for $K \geq 2$ is in this category.
3. Problems with an approximation threshold of 1. INDEPENDENT SET and CLIQUE are in this class. [6]

6 Conclusion

Our versions of the N-K fitness landscapes generalize Kauffman's N-K fitness landscapes by allowing arbitrary component functions rather than stochastically defined component functions. We have given an algorithm for optimizing the adjacent-model N-K landscapes which is polynomial in N. This implies that if $K \in O(\log N)$, then the problem of optimizing adjacent-model landscapes is of polynomial time complexity. The problem of optimizing arbitrary-model N-K landscapes where the i th component function is not required to depend on string component i is NP-complete for $K \geq 1$. (More precisely, the corresponding decision problem is NP-complete.)

From another point of view, the dependency of the component functions of the fitness function on the positions of the domain string is defined by a graph if $K=1$ (or a hypergraph if $K>1$). For $K=1$, if each connected component of this graph contains a single cycle, the optimization problem is polynomial in N. If we remove the restriction that the i th component function depends on the i th symbol, then even with $K=1$, the above graph can be any graph, and the problem is NP-complete. For $K>1$ the arbitrary model $\mathrm{N}-\mathrm{K}$ optimization problem is NP-complete.

In terms of approximation algorithms, the arbitrary model N -K optimization problem is similar to the MAXGSAT (generalized MAXSAT) problem. There is a polynomial-time approximation algorithm, but the guaranteed approximation is not very good. Unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial-time approximation scheme for this problem.

Kauffman [1] compared the adjacent-model and random-model N-K landscapes empirically using hillclimbing. He compared the mean fitness of local optima under the two models and found very little difference. He also compared mean walk lengths to local optima and again found very little difference. Weinberger [2] computed formulas for the correlation between strings of Hamming distance d under both models. For the random-model landscape, he obtained:

$$
R(d)=1-\frac{d(k+1)}{N}+\frac{d(d-1) k(k+2)}{2 N^{2}}+O\left(\left(\frac{d k}{N}\right)^{3}\right)
$$

and for the adjacent-model landscape, he obtained:

$$
R(d)=1-\frac{d(k+1)}{N}+\frac{d(d-1) k(k+1)}{2 N^{2}}+O\left(\left(\frac{d k}{N}\right)^{3}\right)
$$

These are clearly very close. Thus, statistically the adjacent and random model N-K landscapes are very close, at least relative to a Hamming-distance topology.

Relative to a crossover topology, we might expect different results. The component functions f_{i} can be considered as "building blocks" and when K is small relative to N, one-point or two-point crossover preserves most of the values of the f_{i} from one parent or the other on adjacent-model fitness functions, but does not on random-model fitness functions.

The results of Kauffman and Weinberger [2] make the results of this paper seem somewhat surprising. It may be that the "algorithmically hard" problems are a statistically small subset of the random-model $\mathrm{N}-\mathrm{K}$ fitness landscapes.

References

[1] S. A. Kauffman, The Origins of Order. New York: Oxford University Press, 1993.
[2] E. D. Weinberger, "NP completeness of kauffman's N-k model, a tuneable rugged fitness landscape," Tech. Rep. 96-02-003, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 USA, 1996. http://www.santafe.edu/sfi/publications/ $96 \mathrm{wplist} . \mathrm{html}$.
[3] R. K. Thompson, "Fitness landscapes investigated," Master's thesis, University of Montana, Mansfield Library, Missoula, MT, 59812, 1995.
[4] J. Zhang, "NK fitness functions," Master's thesis, University of Montana, Mansfield Library, Missoula, MT, 59812, 1997.
[5] M. R. Garey and D. S. Johnson, Computers and Intractibility. San Francisco: W. H. Freeman and Company, 1979.
[6] C. Papadimitriou, Computational Complexity. Reading, MA: Addison-Wesley, 1994.
[7] C. Papadimitriou and M. Yannakakis, "Optimization, approximation, and complexity classes," in Proceedings of the 20th ACM Symposium on the Theory of Computing, (New York), pp. 299-334, ACM, 1988.
[8] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, "Proof verification and hardness of approximation problems," in Proceedings 33rd IEEE Symposium on the Foundations of Computer Science, pp. 14-23, IEEE, 1992.

[^0]: ${ }^{1}$ IEEE Transactions Evolutionary Computation, Vol. 4, 2000, pp. 373-379

