
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Computer Science Faculty Publications Computer Science

11-2000

The Computational Complexity of N-K Fitness Functions The Computational Complexity of N-K Fitness Functions

Alden H. Wright
University of Montana, Missoula

Richard K. Thompson
University of Montana, Missoula

Jian Zhang

Follow this and additional works at: https://scholarworks.umt.edu/cs_pubs

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
A. H. Wright, R. K. Thompson and Jian Zhang, "The computational complexity of N-K fitness functions," in
IEEE Transactions on Evolutionary Computation, vol. 4, no. 4, pp. 373-379, Nov 2000.

This Article is brought to you for free and open access by the Computer Science at ScholarWorks at University of
Montana. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator
of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/cs_pubs
https://scholarworks.umt.edu/computer_science
https://scholarworks.umt.edu/cs_pubs?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umt.edu%2Fcs_pubs%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
mailto:scholarworks@mso.umt.edu

The Computational Complexity of N-K Fitness Functions

Alden H. Wright Richard K. Thompson Jian Zhang
alden.wright@umontana.edu dick.thompson@umontana.edu

Department of Computer Science
The University of Montana
Missoula, MT 59812-1008 1

ABSTRACT

N-K fitness landscapes have been widely used as examples and test functions in the field
of evolutionary computation. Thus, the computational complexity of these landscapes as
optimization problems is of interest. We investigate the computational complexity of the
problem of optimizing the N-K fitness functions and related fitness functions. We give an
algorithm to optimize adjacent-model N-K fitness functions which is polynomial in N . We
show that the decision problem corresponding to optimizing random-model N-K fitness func-
tions is NP-complete for K > 1 and is polynomial for K = 1. If the restriction that the ith
component function depends on the ith bit is removed, then the problem is NP-complete even
for K = 1. We also give a polynomial-time approximation algorithm for the arbitrary-model
N-K optimization problem.

1 Introduction

Kauffman [1] introduced a class of stochastically defined fitness landscapes over bit strings called the N-K
landscapes. These have a parameter K that can be tuned to adjust the “ruggedness” of the landscapes.
When K = 0, the landscapes are linear, and when K = N−1 (where N is number of bits) the landscapes
are random.

Many evolutionary computation papers make reference to these landscapes either as examples or as test
functions. Thus, it is of interest to know the computational complexity of the corresponding optimization
problems.

An N-K function is the sum of N functions, where each summand function depends on K + 1 of the N
bits of the bit string. There are two variations of the N-K model. In the adjacent model, the summand
function fi depends on bit i and on K adjacent bits. In the random model, fi depends on bit i and K
other chosen randomly bits. Kauffman [1] and Weinberger [2] show that these two variations have very
similar statistical properties. For example, the correlation of the fitness values of adjacent bit strings is
almost the same.

We show that the two variations have quite different computational complexities.

In Kauffman’s definition, the values of the summand functions are chosen randomly from a uniform
distribution. The bit dependencies for the random model N-K functions are chosen randomly. In our

1IEEE Transactions Evolutionary Computation, Vol. 4, 2000, pp. 373-379

1

complexity analysis, we assume that these choices are made arbitrarily. In other words, our class of N-K
functions includes any function that can result from some random choice in Kauffman’s definition of the
N-K functions. In view of this, we describe the random model of N-K landscapes as arbitrary rather than
random.

Some of our results also apply to N-K landscapes over higher arity alphabets. See section 2 for more
details.

To summarize our results:

1. We give a dynamic programming algorithm that optimizes the class of adjacent N-K fitness land-
scapes. The algorithm is polynomial in N and exponential in K.

2. We give a polynomial algorithm for the class of arbitrary N-K fitness landscapes with K = 1.

3. We show that the class of arbitrary N-K fitness landscapes for K ≥ 2 is NP-complete.

4. We show that the class of arbitrary N-K fitness landscapes for K ≥ 1, where the component function
fi is not required to depend on bit (or symbol) i, is NP-complete.

5. We show that there is a polynomial-time ε-approximation algorithm for the class of arbitrary N-K
fitness landscapes with ε = 1− (1/2)K .

Results 1 – 4 are from [3] while result 5 is from [4], both previously unpublished theses. Weinberger [2]
independently discovered results 1 and 3.

2 Formalization

We give a formal description of our extensions to the class of N-K fitness functions.

Let Σ denote a (finite) alphabet and R≥0 denote the nonnegative reals. To specify an N-K fitness function
f : ΣN → R≥0 with f =

∑N−1
i=0 fi, we must specify the positions that influence each term fi, and we

must specify the fi functions.

We specify the positions through projection functions pi, where each pi is a mapping from ΣN to Σki .
Each pi is defined by a cardinality ki subset of {0, 1, . . . , N − 1}. For example, if ki = 3 and if p2 is
defined by the subset {1, 3, 6}, then p2 is defined by p2(a0, a1, . . . , aN−1) = (a1, a3, a6).

For the adjacent model, we choose the subset of {0, 1, . . . , N−1} that defines pi to be {i, i+1, . . . , i+K},
where the indices are taken modN . For the arbitrary model, the subset that defines pi is chosen
arbitrarily. Sometimes we may specify that i is in the subset that defines pi. Then we assume that the
component functions fi map ΣK+1 into R≥0. Then f is written more precisely as

f =

N−1∑
i=0

fi ◦ pi,

where the domain of each fi is ΣK+1. When it is clear from the context, we will omit the projection
functions.

2

The input to the optimization problem consists of the subsets defining the pi and a set of tables defining
the fi.

3 Polynomial Algorithms

3.1 The K = 1 adjacent case

We demonstrate a polynomial dynamic programming algorithm to find the optimum fitness of the adjacent
model. We start with an algorithm for the K = 1 case.

The idea of the algorithm is to reduce the problem of size N to a problem of size N − 1 by defining a
fitness function f ′ : ΣN−1 −→ R≥0. The function f ′ is defined as

f ′ =
N−2∑
i=0

f ′i ,

where f ′i = fi for 0 ≤ i < N − 2, and

f ′N−2(aN−2, a0) = max{fN−2(aN−2, b) + fN−1(b, a0) : b ∈ Σ}.

Theorem 3.1 Under the definition of f ′ given above,

max{f ′(a′) : a′ ∈ ΣN−1} = max{f(a) : a ∈ ΣN}.

Proof. Define p : ΣN −→ ΣN−1 by p(a0, . . . , aN−2, aN−1) = (a0, . . . , aN−2). Then for any a ∈ ΣN ,

f(a)− f ′(p(a)) = fN−2(aN−2, aN−1) + fN−1(aN−1, a0)− f ′N−2(aN−2, a0).

Since

f ′N−2(aN−2, a0) = max{fN−2(aN−2, b) + fN−1(b, a0) : b ∈ ΣN}
≥ fN−2(aN−2, aN−1) + fN−1(aN−1, a0),

we have

f(a) ≤ f ′(p(a)). (1)

Let c′ ∈ ΣN−1 be such that f ′(c′) = max{f ′(a′) : a′ ∈ ΣN−1}. Then

f ′N−2(c′N−2, c
′
0) = max{fN−2(c′N−2, b) + fN−1(b, c′0) : b ∈ Σ}.

Choose cN−1 ∈ Σ to achieve this maximum, and let ci = c′i for i < N − 1 so that c′ = p(c), and

f ′N−2(c′N−2, c
′
0) = fN−2(cN−2, cN−1) + fN−1(cN−1, c0),

3

which implies that f(c) = f ′(p(c)) = f ′(c′). This, along with equation (1), implies the statement of the
theorem. �

If we know the string c′ ∈ ΣN−1 that maximizes f ′, and if we know the element b ∈ Σ that realizes the
maximum in the definition of f ′N−2, then we can construct the element c ∈ ΣN which maximizes f . It is
not hard to see that if c′ = (c0, c1, . . . , cN−2), then c = (c0, c1, . . . , cN−2, b).

We can now write the above in the form of an algorithm. We assume that the tables that define the
components of the given fitness function f are given in the form of a 3-dimensional array F [0..N−1,Σ,Σ].
In other words, the function fi : Σ2 −→ R≥0 is given by fi(a, b) = F [i, a, b]. The algorithm repeatedly
applies the process of Theorem 3.1 to reduce the problem to a problem of size N = 2. The solution of the
N = 2 problem is found by direct search, and then a solution to the original problem is reconstructed.
The F array is used as temporary storage by the algorithm, so the original contents of F are destroyed.
At the end of the ith stage, F [0..i− 2,Σ,Σ] contains the definition of the current component functions,
and F [i− 1..N,Σ,Σ] contains the elements of Σ that realize the maximum in the definition of f ′ above.
For example, if F [N − 1, a, c] = d, then fN−2(a, d) + fN−1(d, c) = max{fN−2(a, b) + fN−1(b, c) : b ∈ Σ}.

4

Optimize(F)
/// Assumes that K = 1.
/// The given array F [0..N − 1,Σ,Σ] which defines the fitness function, is destroyed.
/// v[Σ,Σ] and u[Σ,Σ] are temporary arrays.
/// Reduce the problem size to N = 2.

for n from N − 1 downto 2 do
for a ∈ Σ do

for c ∈ Σ do
Choose bmax so that

F [n− 1, i, bmax] + F [n, bmax, k] = max{F [n− 1, a, b] + F [n, b, c] : b ∈ Σ}
v[a, c]← bmax

u[a, c]← F [n− 1, i, bmax] + F [n, bmax, k]
for a ∈ Σ do

for c ∈ Σ do
F [n− 1, a, c]← u[a, c]
F [n, a, c]← v[a, c]

/// Problem size is now N = 2. Find the max fitness string for N = 2
Choose amax and cmax so that

F [0, amax, cmax] + F [1, cmax, amax] = max{F [0, a, c] + F [1, c, a] : a ∈ Σ, c ∈ Σ}

/// Construct an optimal string S for the whole problem.
S[0]← imax

S[1]← kmax

for i from 2 to N − 1 do
S[i]← F [i, S[i− 1], S[0]]

return S

Algorithm 1

Clearly, the time complexity of this algorithm is Θ(N |Σ|3) if we assume that binary operations on real
numbers (such as addition and maximizaton) require O(1) time.

The space required is that required for the arrays F , u, and v. Thus the space used is O(N |Σ|2) on the
assumption that every real number used in the algorithm can be stored in O(1) space.

3.2 The K > 1 adjacent case

First, suppose that N is divisible by K. Then we can view a string of length N over Σ as a string of length
N/K over alphabet ΣK . Any component function fi that depends on at most K+1 positions of the string
over Σ will depend on at most 2 positions of the string over alphabet ΣK . If we let f̃i =

∑Ki+K−1
j=Ki fi,

then f̃i depends on only symbols ãi and ãi+1 of the string over the alphabet ΣK . Then we can apply the
Algorithm 1 of the previous section to achieve an algorithm of complexity Θ(N |Σ|3K).

If N is not divisible by K, let Q = bN/Kc and r = N mod K. We view a string of length N over
Σ as a string of symbols ã0ã1 . . . ãQ , where ã0 ∈ ΣK , ã1 ∈ Σr, and ã2, . . . , ãQ ∈ ΣK . We can write

f =
∑Q

i=0 f̃i where each f̃i depends on ãi and ãi+1, except for f̃0 that depends on ã0, ã1, and ã2. We

5

apply Algorithm 1 of the previous section to reduce the problem to a problem over a string of length
2K + r over Σ, or a string of length 3 over ΣK × Σr × ΣK . Note that Algorithm 1 does not work with
component function f̃0 because it is dependent on three variables. Each major iteration of the first part
of Algorithm 1 takes Θ(|Σ|3K |) steps. We solve the reduced problem by enumerating all solutions, which
takes |Σ|2K+r ∈ O(|Σ|3K) steps. This gives the following theorem:

Theorem 3.2 Let f be an adjacent-model N-K fitness function over the alphabet Σ. Then a string
corresponding to the optimal fitness value can be found in time Θ((Q + 1)|Σ|3K), where Q = bN/Kc
(assuming that real-number operations can be done in O(1) time).

Corollary 3.3 Let C > 0 be a constant, and consider the family of adjacent-model N-K fitness functions
over the alphabet Σ such that K ≤ C logN . There is a polynomial algorithm to find the optimal string
for this family of fitness functions.

Proof. The time complexity of the algorithm of Theorem 3.2 is O(N |Σ|3C logN) = O(N3C log |Σ|+1). �

3.3 A K = 1 arbitrary case

In this section we show that for K = 1 and the arbitrary model where component function fi of f depends
on position i of the string, then there is a polynomial algorithm to optimize f .

We define a graph whose vertices are the integers from 0 to N − 1, and whose edges are the terms fi.
The edge fi connects the vertices of the set of indices corresponding to the projection pi. In other words,
the edge fi connects the indices corresponding to those components of the string on which fi depends.
Note the graph corresponding to a K = 1 adjacent-model N-K fitness function is a simple cycle through
all the vertices.

Let us rearrange the indices {0, 1, . . . , n−1} so that the indices corresponding to the connected components
of G are adjacent. Thus, we assume that the vertices {n0 = 0, 1, . . . , n1 − 1} correspond to the first
connected component of G, the vertices {n1, n1 + 1, . . . , n2 − 1} correspond to the second, etc. Then let

gj =

nj+1−1∑
i=nj

fi,

where gj depends only on the components nj , . . . nj+1− 1, so the gj can be optimized independently, and
the sum of the optimal values for the gj is the optimal value for f . Further, the optimal string for f is
the concatenation of the optimal strings for the gj .

Theorem 3.4 Let f be an N-K fitness function with K = 1, where each fi depends on position i of the
string and one other position. Then there is a polynomial algorithm to optimize f .

Proof. Our assumption is that the edge fi must be incident on vertex i. Thus, every component of the
graph has the same number of edges as vertices, and every component of the graph has exactly one cycle.

6

If a component of the graph G consists of a cycle, then we can apply Theorem 3.1 and use Algorithm 1.

If a component of G is not a cycle, then there must be some vertex of degree 1. We show how the function
f can be replaced by a function f ′ which does not depend on this string position, and which has the
same optimum.

Without loss of generality, we assume that index N − 1 corresponds to a vertex of G of degree 1. Then
fN−1 is the only term of f that depends on this position of the string. Without loss of generality, we can
also assume that the other position of the string on which fN−1 depends is N − 2.

Let
f ′N−2(aN−1, aN−2) = fN−2(aN−2, aN−1) + max{fN−1(aN−2, c) : c ∈ Σ}.

Clearly, if a0 . . . aN−2aN−1 is optimal for f , then a0 . . . aN−2 is optimal for f ′. �

4 NP-Completeness

In this section we show that when the restriction that fi depends on position i of the string is removed,
then the K = 1 arbitrary-model optimization problem is NP-complete. We now assume that the function
f maps into the nonnegative integers rather than the nonnegative reals.

Theorem 4.1 The problem of optimizing an N-K fitness function f =
∑
fi with K = 1 and no restric-

tions on the dependence of the fi on string positions is NP-complete.

Proof. To show NP-completeness, we must show that a solution to the corresponding decision problem
can be checked in polynomial time, and that some problem known to be NP-complete can be transformed
to our problem. The decision problem corresponding to the problem of maximizing f is: Given a fixed
natural number k, decide if there exists a string a ∈ ΣN such that f(a) ≥ k. Since f can be computed
in polynomial time, a solution can be checked in polynomial time.

The known NP-complete problem that will be reduced to our problem is the MAXIMUM 2-SAT problem
(abreviated as 2-MAXSAT) [5]: Given a Boolean formula in conjunctive normal form (CNF) with two
literals per clause, the problem is to maximize the number of true clauses. A 2-CNF formula is a
conjunction of clauses of the form ui ∨uj , where ui and uj are literals, where a literal is either a Boolean
variable or a negation of a Boolean variable.

Given a 2-CNF formula defined by (B,C), where B is a set of Boolean variables and

C = {ci = uj ∨ uk, where uj = j or j, j ∈ B},

we will construct a corresponding N-K fitness function f over the B so that the value of f is equal to the
number of true clauses in C. Let N = max(|B|, |C|). To each i ∈ B we associate a string position i. If
N > |B|, then the symbols in positions j : |B| ≤ j < N will not affect the value of f .

To each ci = uj ∨ uk ∈ C we associate a term fi of f where fi depends string positions j and k. Let a
string position value of 1 correspond to a true value of the corresponding Boolean variable, and a value

7

of 0 correspond to false. Then define

fi =

{
0 if ci is false;
1 if ci is true.

for i < |C|, and fi = 0 for |C| ≤ i < N .

For example, if ci = u2 ∨ u4, then fi will depend on string positions 2 and 4, and the values of fi are
given by

a2 a4 fi
0 0 1
0 1 0
1 0 1
1 1 1

Then given a setting of B, the value of f is clearly equal to the number of true clauses in C. �

Under Kauffman’s model, fi was required to depend on string position i. If K = 2 and this is the only
restriction on the dependence of fi, then clearly Theorem 4.1 shows that optimizing such an f (with
integer values) is an NP-complete problem. Weinberger [2] independently discovered this result.

5 A polynomial-time approximation algorithm

5.1 Definitions

For this section, we assume a binary alphabet.

Although all NP-complete problems share non-polynomial worst-case complexity (unless P = NP), they
have little else in common. When seen from almost any other perspective, they have interesting diversity.
In this paper, we want to consider approximation algorithms for optimization of the arbitrary model N-K
functions. We will accomplish this by studying the problem against several complexity classes [6].

Definition 5.1 [6] Suppose that A is an optimization problem. This means that for each instance x
we have a set F (x) of feasible solutions, and for each solution s ∈ F (x) we have a positive integer cost
c(s) (we use the term cost and notation c(s) even in the case of maximization problems). The optimal
cost is OPT (x) = mins∈F (x)c(s) (or maxs∈F (x)c(s), if A is a maximization problem). Let M be an
algorithm which, given any instance x, returns a feasible solution M(x) ∈ F (x). We say that M is an
ε-approximation algorithm, where ε > 0, if for all x we have

|c(M(x))−OPT (x)|
max{OPT (x), c(M(x))}

≤ ε.

Intuitively, a heuristic is ε-approximate if the “relative error” of the solution found is at most ε. For a
maximization problem, an ε-approximate algorithm returns solutions that are never smaller than 1 − ε
times the optimum. For a minimization problem, the solutions returned are never more than (1 − ε)−1

times the optimum. Evidently, the ε here is used to measure how far away the approximate solution is
from the optimum.

8

For each optimization problem, A, we shall be interested in determining the smallest ε for which there
is a polynomial-time ε-approximation algorithm for A. Sometimes no such ε exists, but there are also
approximation algorithms that achieve arbitrarily small error ratios.

Definition 5.2 The approximation threshold of A is the greatest lower bound of all ε > 0 such that there
is a polynomial-time ε-approximation algorithm for A.

The approximation threshold of an optimization problem can be anywhere between zero (arbitrarily close
approximation is possible) and one (essentially no approximation is possible) (see [6]). Of course, any
optimization problem that has a polynomial-time algorithm has approximation threshold zero.

Let NKOPT denote the arbitrary model N-K optimization problem. For a given value of K, let K-
NKOPT denote the N-K optimization problem for that value of K. K-NKOPT is best described in
terms of the K-MAXGSAT problem. This is a generalization of the K-MAXSAT problem. In the K-
MAXGSAT problem, we are given a set of Boolean expressions in N variables, where each expression is
a function of at most K of the variables. The Boolean expressions can be any function of their variables.
(In the K-MAXSAT problem, the Boolean expressions must be disjunctions of literals.)

5.2 The Approximation Algorithm

In this section, we give an approximation algorithm for the K-NKOPT problem.

There are N bits in the input string. Since each bit could only be 0 or 1, there are 2N possible bit
assignments. If we calculate the value of the N-K fitness function corresponding to each assignment,
what is the average of these values?

We will denote the set of all N -bit strings as S, the average value of a function f on the set S as AV G(fS),
and the average value of fi ◦ pi on the set S as AV G(fSi).

From the definition of N-K fitness function, we have

f =
N−1∑
i=1

fi.

Therefore, we have

AV G(fS) =

N−1∑
i=0

AV G(fSi).

To calculate AV G(fS), we have to remember that each function fi depends on exactly K + 1 bits of the
string. Therefore, if we identify the K+ 1-bit strings with the integers from 0 to 2K+1−1, there are only
2K+1 different values,

fi[j] for j = 0, 1, . . . , 2K+1 − 1,

for each function. Then we have

9

AV G(fSi) =
1

2K+1
×

2K+1−1∑
j=0

fi[j].

Let mi be the maximum value of fi. Since the sum of a sequence of nonnegative numbers is always
greater than its maximum, we have

2K+1−1∑
j=0

fi[j] ≥ mi.

We may thus obtain a lower bound for AV G(fSi):

AV G(fSi) ≥ 1

2K+1
×mi.

Let the optimal value of f be MAX, then it is obvious that
∑N−1

i=0 mi ≥MAX, and we have the following
conclusion:

Lemma 5.3 The average value of the N-K fitness function satisfies

AV G(fS) ≥ 1

2K+1
×MAX.

Using the result above, we will try to reduce the size of the string set to 1 without reducing the average
value of the N-K fitness function corresponding to the set; this will allow us to find an approximate
solution for the N-K fitness optimization problem.

Suppose that we set bit 0 to 1 in all string assignments; then we have a set S1 of string assignments
which only involves bit 1 through bit N − 1, and we can again calculate the average value AV G(fS1) of
the N-K fitness function for this set of string assignments. Similarly if we set bit 0 to 0, then we have a
set S0 of string assignments. Let the average of f for this set be AV G(fS0). Since sets S0 and S1 have
the same size, now it is very easy to see that

AV G(fS) =
1

2
(AV G(fS1) +AV G(fS0)).

This equation shows that, if we set bit 0 to 0 when AV G(fS1) < AV G(fS0) and 1 otherwise and we
replace S by S0 in the first case (S1 in the second), then we end up with a string set with average value
at least as large as the original AV G(fS).

We can continue like this, always splitting the string into two subsets and assigning to the next bit the
value that maximizes the average function value on the resulting string set. In the end, all bits have been
assigned values. However, since our average value never decreases in the process and the last set we have

10

will only have one member left, we know that the value of the N-K fitness function corresponding to the
final string (since now we have only one string in the set, it is the same as the average value of the set
now) is at least as large as

1

2K+1
×MAX.

These remarks suggest the following algorithm for approximating a solution for the N-K fitness optimiza-
tion problem.

11

N-K OPTIM(S)
/// s is the approximately optimal string.
/// S is initialized to the set of all N -bit strings
/// and evolves as the bits of S are assigned;
/// eventually, S = {s}.

for i from 0 to N − 1 do
S0← subset of S where the ith bit is 0
M0← average of f over S0
S1← subset of S where the ith bit is 1
M1← average of f over S1
if M0 > M1 then
s[i]← 0
S ← S0

else
s[i]← 1
S ← S1

/// The approximately optimal string is now in s
return s

Algorithm 2

12

Notice that inside the “for” loop, each step needs to calculate at most 2K+1×N values (each fi depends
on at most K + 1 bits). Therefore, the complexity of the algorithm is

N × 2K+1 ×N = N2 × 2K+1,

which is a polynomial in N .

Now we have an approximation threshold for the algorithm:

Theorem 5.4 The approximation threshold for the algorithm with K ≥ 2 is at most 1− 1
2K+1 .

Proof. The approximation threshold for the algorithm is at most

MAX − 1
2K+1 ×MAX

MAX
= 1− 1

2K+1
.

�

In fact, the string given by this algorithm is no more than average, but nothing more than that is
guaranteed. To our knowledge, there are no known better approximation thresholds for the (K + 1)-
MAXGSAT problem.

5.3 A lower bound on the approximation complexity

Definition 5.5 A polynomial-time approximation scheme (PTAS) for an optimization problem A is an
algorithm which, for each ε > 0 and instance of A, returns a solution with a relative error of at most ε
in time which is bounded by a polynomial (depending on ε) of |x|. [6]

In other words, if the problem has a PTAS, then no matter how small ε is, we can find a polynomial-time
ε-approximation algorithm for A with approximation threshold ε. There are NP-complete problems, such
as KNAPSACK, which have polynomial time approximation schemes.

We will show that the K-NKOPT problem for K ≥ 2 is MAXSNP-hard. This shows that this problem
does not have a PTAS unless P = NP.

Definition 5.6 Let A, B be two optimization problems. We say that A L-reduces (for linearly-reduces)
to B if there are two polynomial time computable functions R and S and constants α and β such that:

• Given any instance a of A, function R produces an instance b of B such that the cost of the optimum
solution of b, OPT (b) is at most α ·OPT (a).

• Given any solution y of b, function S produces a solution x of a such that |cost(x) − OPT (a)| ≤
β|cost(y)−OPT (b)|.

13

It is not hard to show that the composition of two L-reductions is an L-reduction.

It is also not hard to show that if problem A L-reduces to problem B and B can be approximated in
polynomial time with a relative error ε, then A can be approximated with relative error αβε. In particular,
if B has a polynomial-time approximation scheme, then so does A.

Lemma 5.7 The 2-MAXSAT problem L-reduces to the problem of optimizing an N-K fitness function
f =

∑
fi with K = 1 and no restrictions on the dependence of the fi on string position i.

Proof. We claim that the reduction of Theorem 4.1 is an L-reduction. The proof of Theorem 4.1 shows
how to define the function R from instances of 2-MAXSAT to instances of the N-K problem. Since this
function preserves cost, it is trivially an L-reduction. �

The class MAXSNP is a class of optimization problems defined in [7] and in [6]. A problem is MAXSNP-
hard if every problem in MAXSNP can be L-reduced to it. A problem is MAXSNP-complete if it is in
MAXSNP and if it is MAXSNP-hard. The problems 2-MAXSAT, 3-MAXSAT, and MAXSAT are all
MAXSNP-complete.

To show that a problem is MAXSNP-hard, it suffices to show that some MAXSNP-complete problem
L-reduces to it.

We will use the following powerful theorem which is due to [8] and is also proved in [6].

Theorem 5.8 Unless P=NP, MAXSNP-hard problems do not have polynomial-time approximation schemes.

Theorem 5.9 The K-NKOPT problem for K ≥ 2 is MAXSNP-hard. Thus, unless P = NP, K-NKOPT
does not have a polynomial time approximation scheme.

Proof. The K-NKOPT problem for K ≥ 2 includes the arbitrary model N-K optimization problem
for K = 1 without the restriction on the dependence of the fi on string position i. Lemma 5.7 shows
that the MAXSNP-complete 2-MAXSAT problem L-reduces to the unrestricted arbitrary model N-K
optimization problem for K = 1, so the N-K problem is MAXSNP-hard. Theorem 5.8 shows that the
N-K problem does not have a PTAS. �

If P 6= NP, then there are three classes of approximation difficulty for NP-hard problems (from easy to
hard):

1. Problems with a PTAS. These problems can be approximated arbitrarily closely with a polynomial
time approximation algorithm. KNAPSACK is in this class. [6]

2. Problems without a PTAS but with an approximation threshold between 0 and 1. We have just
shown that the K-NKOPT problem for K ≥ 2 is in this category.

3. Problems with an approximation threshold of 1. INDEPENDENT SET and CLIQUE are in this
class. [6]

14

6 Conclusion

Our versions of the N-K fitness landscapes generalize Kauffman’s N-K fitness landscapes by allowing
arbitrary component functions rather than stochastically defined component functions. We have given
an algorithm for optimizing the adjacent-model N-K landscapes which is polynomial in N . This implies
that if K ∈ O(logN), then the problem of optimizing adjacent-model landscapes is of polynomial time
complexity. The problem of optimizing arbitrary-model N-K landscapes where the ith component func-
tion is not required to depend on string component i is NP-complete for K ≥ 1. (More precisely, the
corresponding decision problem is NP-complete.)

From another point of view, the dependency of the component functions of the fitness function on the
positions of the domain string is defined by a graph if K = 1 (or a hypergraph if K > 1). For K = 1, if
each connected component of this graph contains a single cycle, the optimization problem is polynomial
in N . If we remove the restriction that the ith component function depends on the ith symbol, then
even with K = 1, the above graph can be any graph, and the problem is NP-complete. For K > 1 the
arbitrary model N-K optimization problem is NP-complete.

In terms of approximation algorithms, the arbitrary model N-K optimization problem is similar to the
MAXGSAT (generalized MAXSAT) problem. There is a polynomial-time approximation algorithm, but
the guaranteed approximation is not very good. Unless P=NP, there is no polynomial-time approximation
scheme for this problem.

Kauffman [1] compared the adjacent-model and random-model N-K landscapes empirically using hill-
climbing. He compared the mean fitness of local optima under the two models and found very little
difference. He also compared mean walk lengths to local optima and again found very little difference.
Weinberger [2] computed formulas for the correlation between strings of Hamming distance d under both
models. For the random-model landscape, he obtained:

R(d) = 1− d(k + 1)

N
+
d(d− 1)k(k + 2)

2N2
+O

((
dk

N

)3
)

and for the adjacent-model landscape, he obtained:

R(d) = 1− d(k + 1)

N
+
d(d− 1)k(k + 1)

2N2
+O

((
dk

N

)3
)
.

These are clearly very close. Thus, statistically the adjacent and random model N-K landscapes are very
close, at least relative to a Hamming-distance topology.

Relative to a crossover topology, we might expect different results. The component functions fi can be
considered as “building blocks” and when K is small relative to N , one-point or two-point crossover
preserves most of the values of the fi from one parent or the other on adjacent-model fitness functions,
but does not on random-model fitness functions.

The results of Kauffman and Weinberger [2] make the results of this paper seem somewhat surprising.
It may be that the “algorithmically hard” problems are a statistically small subset of the random-model
N-K fitness landscapes.

15

References

[1] S. A. Kauffman, The Origins of Order. New York: Oxford University Press, 1993.

[2] E. D. Weinberger, “NP completeness of kauffman’s N-k model, a tuneable rugged fitness landscape,”
Tech. Rep. 96-02-003, Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 USA, 1996.
http://www.santafe.edu/sfi/publications/96wplist.html.

[3] R. K. Thompson, “Fitness landscapes investigated,” Master’s thesis, University of Montana, Mansfield
Library, Missoula, MT, 59812, 1995.

[4] J. Zhang, “NK fitness functions,” Master’s thesis, University of Montana, Mansfield Library, Missoula,
MT, 59812, 1997.

[5] M. R. Garey and D. S. Johnson, Computers and Intractibility. San Francisco: W. H. Freeman and
Company, 1979.

[6] C. Papadimitriou, Computational Complexity. Reading, MA: Addison-Wesley, 1994.

[7] C. Papadimitriou and M. Yannakakis, “Optimization, approximation, and complexity classes,” in
Proceedings of the 20th ACM Symposium on the Theory of Computing, (New York), pp. 299–334,
ACM, 1988.

[8] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification and hardness of
approximation problems,” in Proceedings 33rd IEEE Symposium on the Foundations of Computer
Science, pp. 14–23, IEEE, 1992.

16

	The Computational Complexity of N-K Fitness Functions
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1464880957.pdf.VuNn3

