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Abstract

We examine the computational complexity of testing and �nding small plans in proba-

bilistic planning domains with both at and propositional representations. The complexity

of plan evaluation and existence varies with the plan type sought; we examine totally

ordered plans, acyclic plans, and looping plans, and partially ordered plans under three

natural de�nitions of plan value. We show that problems of interest are complete for a

variety of complexity classes: PL, P, NP, co-NP, PP, NPPP, co-NPPP, and PSPACE. In

the process of proving that certain planning problems are complete for NPPP, we introduce

a new basic NPPP-complete problem, E-Majsat, which generalizes the standard Boolean

satis�ability problem to computations involving probabilistic quantities; our results suggest

that the development of good heuristics for E-Majsat could be important for the creation

of e�cient algorithms for a wide variety of problems.

1. Introduction

Recent work in arti�cial-intelligence planning has addressed the problem of �nding e�ec-
tive plans in domains in which operators have probabilistic e�ects (Drummond & Bresina,
1990; Mansell, 1993; Draper, Hanks, & Weld, 1994; Koenig & Simmons, 1994; Goldman &
Boddy, 1994; Kushmerick, Hanks, & Weld, 1995; Boutilier, Dearden, & Goldszmidt, 1995;
Dearden & Boutilier, 1997; Kaelbling, Littman, & Cassandra, 1998; Boutilier, Dean, &
Hanks, 1998). Here, an \e�ective" or \successful" plan is one that reaches a goal state
with su�cient probability. In probabilistic propositional planning , operators are speci�ed
in a Bayes network or an extended STRIPS-like notation, and the planner seeks a recipe
for choosing operators to achieve a goal con�guration with some user-speci�ed probability.
This problem is closely related to that of solving a Markov decision process (Puterman,
1994) when it is expressed in a compact representation.

In previous work (Goldsmith, Lusena, & Mundhenk, 1996; Littman, 1997a), we exam-
ined the complexity of determining whether an e�ective plan exists for completely observable
domains; the problem is EXP-complete in its general form and PSPACE-complete when lim-
ited to polynomial-depth plans. (A polynomial-depth, or polynomial-horizon, plan is one
that takes at most a polynomial number of actions before terminating.) For these results,
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plans are permitted to be arbitrarily large objects|there is no restriction that a valid plan
need have any sort of compact (polynomial-size) representation.

Because they place no restrictions on the size of valid plans, these earlier results are not
directly applicable to the problem of �nding valid plans. It is possible, for example, that for
a given planning domain, the only valid plans require exponential space (and exponential
time) to write down. Knowing whether or not such plans exist is simply not very important
because they are intractable to express.

In the present paper, we consider the complexity of a more practical and realistic
problem|that of determining whether or not a plan exists in a given restricted form and of a
given restricted size. The plans we consider take several possible forms that have been used
in previous planning work: totally ordered plans, partially ordered plans, (totally ordered)
conditional plans, and (totally order) looping plans. In all cases, we limit our attention to
plans that can be expressed in size bounded by a polynomial in the size of the speci�cation
of the problem. This way, once we determine that a plan exists, we can use this information
to try to write it down in a reasonable amount of time and space.

In the deterministic planning literature, several authors have addressed the computa-
tional complexity of determining whether a valid plan exists, of determining whether a plan
exists of a given cost, and of �nding the valid plans themselves under a variety of assump-
tions (Chapman, 1987; Bylander, 1994; Erol, Nau, & Subrahmanian, 1995; B�ackstr�om,
1995; B�ackstr�om & Nebel, 1995). These results provide lower bounds (hardness results) for
analogous probabilistic planning problems since deterministic planning is a special case. In
deterministic planning, optimal plans can be represented by a simple sequence of operators
(a totally ordered plan). In probabilistic planning, a good conditional plan will often per-
form better than any totally ordered (unconditional) plan; therefore, we need to consider
the complexity of the planning process for a richer set of plan structures.

For ease of discussion, we only explicitly describe the case of planning in completely
observable domains. This means that the state of the world is known at all times during
plan execution, in spite of the uncertainty of state transitions. We know that the state of the
system is su�cient information for choosing actions optimally (Puterman, 1994), however,
representing such a universal plan is often impractical in propositional domains in which
the size of the state space is exponential in the size of the domain representation. For this
reason, we consider other types of plan structures based on simple �nite-state machines.
Because the type of plans we consider do not necessarily use the full state of the system to
make every decision, our results carry over to partially observable domains, although we do
not explore this fact in detail in the present work.

The computational problems we look at are complete for a variety of complexity classes
ranging from PL (probabilistic logspace) to PSPACE. Two results are deserving of special
mention because they concern problems closely related to ones being actively addressed
by arti�cial-intelligence researchers; �rst, the problem of evaluating a totally ordered plan
in a compactly represented planning domain is PP-complete.1 A compactly represented

1. The class PP is closely related to the somewhat more familiar #P; Toda (1991) showed that P#P = PPP.
Roughly speaking, this means that #P and PP are equally powerful when used as oracles. The counting
class #P has already been recognized by the arti�cial-intelligence community as an important complexity
class in computations involving probabilistic quantities, such as belief-network inference (Roth, 1996).
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planning domain is one that is described by a two-stage temporal Bayes network (Boutilier
et al., 1998) or similar notation.

Second, the problem of determining whether a valid totally ordered plan exists for a
compactly represented planning domain is NPPP-complete. Whereas the class NP can be
thought of as the set of problems solvable by guessing the answer and checking it in polyno-
mial time, the class NPPP can be thought of as the set of problems solvable by guessing the
answer and checking it using a probabilistic polynomial-time (PP) computation. It is likely
that NPPP characterizes many problems of interest in the area of uncertainty in arti�cial
intelligence; this paper and earlier work (Goldsmith et al., 1996; Mundhenk, Goldsmith, &
Allender, 1997a; Mundhenk, Goldsmith, Lusena, & Allender, 1997b) give initial evidence
of this.

1.1 Planning-Domain Representations

A probabilistic planning domain M = hS; s0;A; t;Gi is characterized by a �nite set of states
S, an initial state s0 2 S, a �nite set of operators or actions A, and a set of goal states
G � S. The application of an action a in a state s results in a probabilistic transition
to a new state s0 according to the probability transition function t, where t(s; a; s0) is the
probability that state s0 is reached from state s when action a is taken. The objective is to
choose actions, one after another, to move from the initial state s0 to one of the goal states
with probability above some threshold �.2 The state of the system is known at all times
(fully observable) and so can be used to choose the action to apply.

We are concerned with two main representations for planning domains: at represen-
tations, which enumerate states explicitly, and propositional representations (sometimes
called compact, structured, or factored representations), which view states as assignments
to a set of Boolean state variables or propositions. Propositional representations can rep-
resent many domains exponentially more compactly than can at representations.

In the at representation, the transition function t is represented by a collection of
jSj � jSj matrices,3 one for each action. In the propositional representation, this type of
jSj � jSj matrix would be huge, so the transition function must be expressed another way.
In the probabilistic planning literature, two popular representations for propositional plan-
ning domains are probabilistic state-space operators (PSOs) (Kushmerick et al., 1995) and
two-stage temporal Bayes networks (2TBNs) (Boutilier et al., 1995). Although these repre-
sentations di�er in the type of planning domains they can express naturally (Boutilier et al.,
1998), they are computationally equivalent; a planning domain expressed in one represen-
tation can be converted in polynomial time to an equivalent planning domain expressed in
the other with at most a polynomial increase in representation size (Littman, 1997a).

In this work, we focus on a propositional representation called the sequential-e�ects-
tree representation (ST) (Littman, 1997a), which is a syntactic variant of 2TBNs with
conditional probability tables represented as trees (Boutilier et al., 1995, 1998). This rep-
resentation is equivalent to 2TBNs and PSOs and simpli�es the presentation of our results.

2. It is also possible to formulate the objective as one of maximizing expected total discounted re-
ward (Boutilier et al., 1995), but the two formulations are essentially polynomially equivalent (Con-
don, 1992). The only di�culty is that compactly represented domains may require discount factors
exponentially close to one for this equivalence to hold. This is discussed further in Section 5.

3. We assume that the number of bits used to represent the individual probability values isn't too large.
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In ST, the e�ect of each action on each proposition is represented as a separate decision
tree. For a given action a, the set of decision trees for the di�erent propositions is ordered,
so the decision tree for one proposition can refer to both the new and old values of previ-
ous propositions; this allows ST to represent any probability distribution. The leaves of a
decision tree describe how the associated proposition changes as a function of the state and
action, perhaps probabilistically. Section 1.2 gives a simple example of this representation.

As in other propositional representations, the states in the set of goal states G are not
explicitly enumerated in ST. Instead, we de�ne a goal set , which is a set of propositions
such that any state in which all the goal-set propositions are true is considered a goal state.
The set of actions A is explicitly enumerated in ST, just as it is in the at representation.

The ST representation of a planning domain M = hS; s0;A; t;Gi can be de�ned more
formally as M = hP; I;A;T; G i (we use blackboard-bold font to stand for an ST represen-
tation on a domain). Here, P is a �nite set of distinct propositions. The set of states S is
the power set of P; the propositions in s 2 S are said to be \true" in s. The set I� P is
the initial state. The set G is the goal set, so the set of goal states G is the set of states s
such that G � s.

The transition function t is represented by a function T, which maps each action in
A to an ordered sequence of jPj binary decision trees. Each of these decision trees has a
distinct label proposition, decision propositions at the nodes (optionally labeled with the
su�x \:new"), and probabilities at the leaves. The ith decision tree T(a)i for action a
de�nes the transition probabilities t(s; a; s0) as follows. For the ith decision tree, let pi be
its label proposition. De�ne �i to be the value of the leaf node found by traversing decision
tree T(a)i, taking the left branch if the decision proposition is in s (or s0 if the decision
proposition has the \:new" su�x) and the right branch otherwise. Finally, we let

t(s; a; s0) =
Y
i

�
�i; if pi 2 s0,
1� �i; otherwise.

(1)

This de�nition of t constitutes a well-de�ned probability distribution over s0 for each a and
s.

To insure the validity of the representation, we only allow \p:new" to appear as a
decision proposition in T(a)i if p is the label proposition for some decision tree T(a)j for
j < i. For this reason, the order of the decision trees in T(a) is signi�cant. To put this
another way, a proposition only has a new value after this new value has been de�ned by
some decision tree.

The complexity results we derive for ST apply also to PSOs, 2TBNs, and all other com-
putationally equivalent representations. They also hold for the \succinct representation,"
a propositional representation popular in the complexity-theory literature, which captures
the set of transition matrices as a function, most commonly represented by a Boolean circuit
that computes that function. ST can straightforwardly be represented as a Boolean circuit,
and, in the proof of Theorem 6, we show how to represent particular Boolean circuits in
ST. Thus, although we have not shown that the succinct representation is formally equiv-
alent to ST, the two representations are closely related; the proofs we give for ST need to
be changed only slightly to work for the succinct representation (Goldsmith, Littman, &
Mundhenk, 1997a, 1997b; Mundhenk et al., 1997b). Our results require that we restrict
the succinct representation to generate transition probabilities with at most a polynomial
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number of bits; the results may be di�erent for other circuit-based representations that can
represent probabilities with an exponential number of bits (Mundhenk et al., 1997a).

1.2 Example Domain

To help make these domain-representation ideas more concrete, we present the following
simple probabilistic planning domain based on the problem of building a sand castle at the
beach. There are a total of four states in the domain, described by combinations of two
Boolean propositions,moat and castle (propositions appear in boldface). The proposition
moat signi�es that a moat has been dug in the sand, and the proposition castle signi�es
that the castle has been built. In the initial state, both moat and castle are false, and the
goal set is fcastleg.

There are two actions: dig-moat and erect-castle (actions appear in sans serif). Figure 1
illustrates these actions in ST. Executing dig-moat when moat is false causes moat to
become true with probability 1=2; if moat is already true, dig-moat leaves it unchanged.
The castle proposition in not a�ected. The dig-moat action is depicted in the left half of
Figure 1.

The second action is erect-castle, which appears in the right half of Figure 1. The decision
trees are numbered to allow sequential dependencies between their e�ects to be expressed.
The �rst decision tree is for castle, which does not change value if it is already true when
erect-castle is executed. Otherwise, the probability that it becomes true is dependent on
whether moat is true; the castle is built with probability 1=2 if moat is true and only
probability 1=4 if it is not. The idea here is that building a moat �rst protects the castle
from being destroyed prematurely by the ocean waves.

The second decision tree is for the proposition moat. Because erect-castle cannot make
moat become true, there is no e�ect when moat is false. On the other hand, if the moat
exists, it may collapse as a result of trying to erect the castle. The label castle:new in the
diagram refers to the value of the castle proposition after the �rst decision tree is evaluated.
If the castle was already built when erect-castle was selected, the moat remains built with
probability 3=4. If the castle had not been built, but erect-castle successfully builds it,moat

remains true. Finally, if erect-castle fails to make castle true, moat becomes false with
probability 1=2 and everything is destroyed.

Note that given an ST representation of a domain, we can perform a number of useful
operations e�ciently. First, given a state s and action a, we can generate a next state s0 with
the proper probabilities. This is accomplished by calculating the value of the propositions
of s0 one at a time in the order given in the representation of a, ipping coins with the
probabilities given in the leaves of the decision trees. Second, given a state s, action a,
and state s0, we can compute t(s; a; s0), the probability that state s0 is reached from state s
when action a is taken, via Equation 1.

1.3 Plan Types and Representations

We consider four classes of plans for probabilistic domains. Totally ordered plans are the
most basic type, being a �nite sequence of actions that must be executed in order; this
type of plan ignores the state of the system. Acyclic plans generalize totally ordered plans
to include conditional execution of actions. Partially ordered plans are a di�erent way of
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Figure 1: Sequential-e�ects-tree (ST) representation for the sand-castle domain

generalizing totally ordered plans in which the precise sequence is left exible (McAllester
& Rosenblitt, 1991). Looping plans generalize acyclic plans to the case in which plan steps
can be repeated (Smith & Williamson, 1995; Lin & Dean, 1995). This type of plan is also
referred to as a plan graph or policy graph (Kaelbling et al., 1998).

In the following sections, we prove computational complexity results concerning each
of these plan types. The remainder of this section provides formal de�nitions of the plan
types, illustrated in Figure 2 with examples for the sand-castle domain.

In its most general form, a plan (or policy, controller or transducer) is a program that
outputs actions and takes as input information about the outcome of these actions. In this
work, we consider only a particularly restricted �nite-state-controller-based plan represen-
tation.

A plan P for a planning domain M = hS; s0;A; t;Gi can be represented by a structure
(V; v0; E; �; �) consisting of a directed (multi) graph (V;E) with initial node v0 2 V , a
labeling � : V ! A of plan nodes|called plan steps|to domain actions, and a labeling
of edges with state sets � : E ! P(S) such that for every v 2 V with outgoing edges,S

v02V :(v;v0)2E �(v; v0) = S and �(v; v1) \ �(v; v2) = ; for all v1; v2 2 V , v1 6= v2. Some plan
steps have no outgoing edges at all|these are the terminal steps. Actions for terminal
steps are not executed. Note that the function � can be represented in a direct manner for
at domains, but for propositional domains, a more compact representation is needed. We
assume that for propositional domains, edge labels are given as conjunctions of literals.

The behavior of plan P in domainM is as follows. The initial time step is t = 0. At time
step t � 0, the domain is in state st and the plan is at step vt (s0 is de�ned by the planning
domain, v0 by the plan). Action �(vt) is executed, resulting in a transition to domain state
st+1 with probability t(st; �(vt); st+1). Plan step vt+1 is chosen so that st+1 2 �(vt; vt+1);
the function � tells the plan where to \go" next. At this point, the time-step index t is
incremented and the process repeats. This continues until a terminal step is reached in the
plan.

One can understand the behavior of domain M under plan P in several di�erent ways.
The possible sequences of states of M can be viewed as a tree: each node of the tree at
depth t is a state reachable from the initial state at time step t. Alternatively, one can view
the state of M at time step t under plan P as a probability distribution over S. At time
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step 0, with probability 1 the process is in state s0. The probability that M is in state s0

at time step t+1, Pr(s0; t+1), is the sum of the probabilities of all length t+1 paths from
s0 to s0, i.e.,

X
s0;s1;s2;:::;st;st+1=s0

tY
j=1

t(sj; aj ; sj+1);

where aj is the action selected by plan P at time j given the observed sequence of state
transitions s0; : : : ; sj . This view is useful in some of the later proofs.

Next, we formalize the probability that domain M reaches a goal state under plan P .
We need to introduce several notions. A \legal" sequence of states and steps applied is
called a trajectory , i.e., for M and P this is a sequence � = h(si; vi)i

k
i=0 of pairs with

� t(si; �(vi); si+1) > 0 for 0 � i � k � 1,

� si+1 2 �(vi; vi+1) for 0 � i � k � 1, and

� v0; : : : ; vk�1 are not terminal steps.

A goal trajectory is a trajectory that ends in a goal state of M , sk 2 G. Note that
each goal trajectory is �nite. Thus, we can calculate the probability of a goal trajectory
� = h(si; vi)i

k
i=0 as Pr(�) =

Qk�1
i=0 t(si; �(vi); si+1), given that sk 2 G. The probability that

M reaches a goal state under plan P is the sum of the probabilities of goal trajectories for
M ,

Pr(M reaches a goal state under P ) :=
X

� goal trajectory

Pr(�);

we call this the value of the plan.

We characterize a plan P = (V; v0; E; �; �) on the basis of the size and structure of its
underlying graph (V;E). If the graph (V;E) contains no cycles, we call it an acyclic plan,
otherwise it is a looping plan. It follows that an acyclic plan has a terminal step, and that
a terminal step will be reached after no more than jV j actions are taken; such plans can
only be used for �nite-horizon control. A totally ordered plan (sometimes called a \linear
plan" or a \straight line" plan) is an acyclic plan with no more than one outgoing edge for
each node in V . Such a plan is a simple path.

In this work, we also consider partially ordered plans (sometimes called \nonlinear"
plans) that express an entire family of totally ordered plans. In this representation, the steps
of the plan are given as a partial order (speci�ed, for example, as a directed acyclic graph).
This partial order represents a set of totally ordered plans: all totally ordered sequences of
plan steps consistent with the partial order that consist of all steps of the partially ordered
plan. Each of these totally ordered plans has a value, and these values need not all be the
same. As such, we have a choice in de�ning the value for a partially ordered plan. In this
work, we consider the optimistic, pessimistic, and average interpretations. Let 
(P ) be the
set of totally ordered sequences consistent with partial order plan P . Under the optimistic
interpretation,

The value of P := max
p2
(P )

Pr(M reaches a goal state under p):
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Under the pessimistic interpretation,

The value of P := min
p2
(P )

Pr(M reaches a goal state under p):

Under the average interpretation,

The value of P :=
1

j
(P )j

X
p2
(P )

Pr(M reaches a goal state under p):

To illustrate these notions, Figure 2 gives plans of each type for the sand-castle domain
described earlier. Initial nodes are marked an incoming arrow, and terminal steps are
represented as �lled circles. The 3-step totally ordered plan in Figure 2(a) successfully
builds a sand castle with probability 0:4375. An acyclic plan is given in Figure 2(b), which
succeeds with probability 0:46875 and executes dig-moat an average of 1:75 times. Note
that it succeeds more often and with fewer actions on average than the totally ordered plan
in Figure 2(a).

Figure 2(c) illustrates a partially ordered plan for the sand-castle domain. While this
plan bears a super�cial resemblance to the acyclic plan in Figure 2(b), it has a di�erent
interpretation. In particular, the plan in Figure 2(c) represents a set of totally ordered plans
with �ve (non-terminal) plan steps (3 dig-moat steps and 2 erect-castle steps). In contrast
to the solid arrows in Figure 2(b), which indicate ow of control, the dashed arrows in
Figure 2(c) represent ordering constraints: each erect-castle step must be preceded by at
least two dig-moat steps, for example.

Although there are

�
5
2

�
= 10 distinct ways of arranging the �ve plan steps in Fig-

ure 2(c) into a totally ordered plan, only two distinct totally ordered plans are consistent
with the ordering constraints:

dig-moat ! dig-moat ! dig-moat ! erect-castle ! erect-castle ! �

(success probability 0:65625) and

dig-moat ! dig-moat ! erect-castle ! dig-moat ! erect-castle ! �

(success probability 0:671875). Thus, the optimistic success probability of this partially
ordered plan is 0:671875, the pessimistic 0:65625. Note that the pessimistic interpreta-
tion is closely related to the standard interpretation in deterministic partial order plan-
ning (McAllester & Rosenblitt, 1991), in which a partially ordered plan is considered suc-
cessful only if all its consistent totally ordered plans are successful. The average success
probability is 0:6614583, here, because there are 4 orderings that yield the poorer plan
described above, and 2 that yield the better one.

The looping plan in Figure 2(d) does not terminate until it succeeds in building a sand
castle, which it will do with probability 1:0 eventually. Of course, not all looping plans
succeed with probability 1; the totally ordered plan in Figure 2(a) and the acyclic plan in
Figure 2(b) are special cases of such looping plans, for instance.

We de�ne jP j the size of a plan P to be the number of steps it contains. We de�ne jM j
the size of a domain M to be the sum of the number of actions and states for a at domain
and the sum of the sizes of the ST decision trees for a propositional domain.
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erect-castledig-moat dig-moat

(a) A totally ordered plan.

dig-moat erect-castledig-moat dig-moat

(b) An acyclic (conditional) plan.

not(moat)

dig-moat

(c) A partially ordered plan.

erect-castledig-moat

erect-castledig-moat

erect-castledig-moat

(d) A looping plan.

moat moat

not(moat)
not(moat)

moat

moat and not(castle)

not(moat) and not(castle)

castle

Figure 2: Example plans for the sand-castle domain

We consider the following decision problems. The plan-evaluation problem asks, given
a domain M , a plan P of size jP j � jM j, and threshold �, whether its value is greater than
�, i.e., whether

Pr(M reaches a goal state under P ) > �:

Note that the condition that jP j � jM j is just a technical one|we simply want to use jM j
to represent the size of the problem. Given an instance in which jP j is larger than jM j, we
simply imagine \padding out" jM j to make it larger. The important thing is that we are
considering plans that are roughly the size of the description of the domain, and not the
size of the number of states (which might be considerably larger).

The plan-existence problem asks, given domainM , threshold �, and size bound z � jM j,
whether there exists a plan P of size z with value greater than �. Note that because we
bound the size of the target plan, the complexity of plan generation is no more than that of
plan existence; the technique of self-reduction can be used to construct a valid plan using
polynomially many calls to an oracle for the decision problem.

Each of these decision problems has a di�erent version for each type of domain (at
and propositional) and each type of plan category (looping, acyclic, totally ordered, and
partially ordered under each of the three interpretations). We address all of these problems
in the succeeding sections.

1.4 Complexity Classes

For de�nitions of complexity classes, reductions, and standard results from complexity
theory, we refer the reader to Papadimitriou (1994).

Briey, we are looking only at the complexity of decision problems (those with yes/no
answers). The class P consists of problems that can be decided in polynomial time; that is,
given an instance of the problem, there is a program for deciding whether the answer is yes
or no that runs in polynomial time. The class NP contains the problems with polynomial-
time checkable polynomial-size certi�cates: for any given instance and certi�cate, it can be
checked in time polynomial in the size of the instance whether the certi�cate proves that
the instance is in the NP set. This means that, if the answer to the instance is \yes," this
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can be shown in polynomial time given the right key. The class co-NP is the opposite|if
the answer is \no," this can be shown in polynomial time given the right key.

A problem X is C-hard for some complexity class C if every problem in C can be reduced
to it; to put it another way, a fast algorithm for X can be used as a subroutine to solve any
problem in C quickly. A problem is C-complete if it is both C-hard and in C; these are the
hardest problems in the class.

In the interest of being complete, we next give more detailed descriptions of the less
familiar probabilistic and counting complexity classes we use in this work.

The class #L (�Alvarez & Jenner, 1993) is the class of functions f such that, for some
nondeterministic logarithmically space-bounded machine N , the number of accepting paths
of N on x equals f(x). The class #P is de�ned analogously as the class of functions f
such that, for some nondeterministic polynomial-time-bounded machine N , the number of
accepting paths of N on x equals f(x). Typical complete problems are computing the
determinant for #L and computing the permanent for #P.

A function f is de�ned to be in GapL if it is the di�erence f = g� h of #L functions g
and h. While #L functions have nonnegative integer values by de�nition, GapL functions
may have negative integer values (for example, if g always returns zero).

Probabilistic logspace (Gill, 1977), PL, is the class of sets A for which there exists a
nondeterministic logarithmically space-bounded machine N such that x 2 A if and only if
the number of accepting paths of N on x is greater than its number of rejecting paths. In
the original de�nition of PL, there is no time bound on computations; Borodin, Cook, and
Pippenger (1983) later showed PL � P. Jung (1985) proved that any set computable in
probabilistic logspace is computable in probabilistic logspace where the PL machine has a
simultaneous polynomial-time bound. In apparent contrast to P-complete sets, sets in PL
are decidable using very fast parallel computations (Borodin et al., 1983).

Probabilistic polynomial time, PP, is de�ned analogously. A classic PP-complete prob-
lem is Majsat: given a Boolean formula in conjunctive normal form (CNF), does the
majority of assignments satisfy it? According to Balc�azar, D��az, and Gabarr�o (1990), the
PP-completeness of Majsat was shown in a combination of results from Gill (1977) and
Simon (1975).

For polynomial-space-bounded computations, PSPACE equals probabilistic PSPACE,
and #PSPACE is the same as the class of polynomial-space-computable functions (Ladner,
1989).

Note that L, NL, #L, PL and GapL are to logarithmic space what P, NP, #P, PP, and
GapP are to polynomial time. Also, the notion of completeness we use in this paper relies
on many-one reductions. In the case of PL, the reduction functions are logarithmic space;
in the case of NP and above, they are polynomial time.

For any complexity classes C and C0 the class CC0

consists of those sets that are C-Turing
reducible to sets in C0, i.e., sets that can be accepted with resource bounds speci�ed by C,
using some problem in C0 as a subroutine (oracle) with instantaneous output. For any class
C � PSPACE, it is the case that NPC � PSPACE, and therefore NPPSPACE = PSPACE.

The primary oracle-de�ned class we consider is NPPP. It equals the \�NPm " closure of
PP (Tor�an, 1991), which can be seen as the closure of PP under polynomial-time disjunc-
tive reducibility with an exponential number of queries (each of the queries computable in
polynomial time from its index in the list of queries). To simplify our completeness results
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for this class, we introduce a decision problem we call E-Majsat (\exists" Majsat), which
generalizes the standard NP-complete satis�ability problem and the PP-complete Majsat.
An E-Majsat instance is de�ned by a CNF Boolean formula � on n Boolean variables
x1; : : : ; xn and a number k between 1 and n. The task is to decide whether there is an
initial partial assignment to variables x1; : : : ; xk so that the majority of assignments that
extend that partial assignment satis�es �. We prove that this problem is NPPP-complete
in the Appendix.

The complexity classes we consider satisfy the following containment properties and
relations to other well-known classes:

L � NL � PL � P �
NP

co-NP
� PP �

NPPP

co-NPPP
� PSPACE � EXP:

Because P is properly contained in EXP, EXP-complete problems are provably intractable;
the other classes may equal P, although that is not generally believed to be the case.

Several other observations are worth making here. It is also known that PH � NPPP,
where PH represents the polynomial hierarchy. In a crude sense, PH is close to PSPACE,
and, thus, our NPPP{completeness results place important problems close to PSPACE.
However, some early empirical results (Littman, 1997b) show that random problem in-
stances from PP have similar properties to random problem instances from NP, suggesting
that PP might be close enough to NP for NP-type heuristics to be e�ective.

1.5 Results Summary

Tables 1 and 2 summarize our results, which are explained in more detail in later sections.
The general avor of our main results and techniques can be conveyed as follows. To

show that a plan-evaluation problem is in a particular complexity class C, we take the
cross product of the steps of the plan and the states of the domain and then look at the
complexity of evaluating the absorption probability of the resulting Markov chain (i.e., the
directed graph with probability-labeled edges). The complexity of the corresponding plan-
existence problem is then bounded by NPC , because the problem can be solved by guessing
the correct plan non-deterministically and then evaluating it; in many cases, it is NPC-
complete. The appropriate complexity class C depends primarily on the representation of
the cross-product Markov chain.

Exceptions to this basic pattern are the results for partially ordered plans in Section 4.
These appear to require a distinct set of techniques.

It is also worth noting that, although propositional domains can be exponentially more
compact than at domains, the computational complexity of solving problems in propo-
sitional domains is not always exponentially greater; in one instance, evaluating partially
ordered plans under the average interpretation, the complexity is actually the same for at
and propositional domains!

We also prove results concerning plan evaluation and existence for compactly represented
plans (PP-complete and NPPP-complete, Corollary 5), plan existence of \large enough"
looping plans in at domains (P-complete, Theorem 7), plan evaluation and existence
for looping plans in deterministic propositional domains (PSPACE-complete, Theorems 8
and 9), and plan existence for polynomial-size looping plans in partially observable domains
(NP-complete, Section 5.1).
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Plan Type Plan Evaluation Plan Existence Reference

unrestricted | P-complete P & T (1987)
polynomial-depth | P-complete P & T (1987)
looping PL-complete NP-complete Section 3
acyclic PL-complete NP-complete Section 2
totally ordered PL-complete NP-complete Section 2
partially ordered, optimistic NP-complete NP-complete Section 4
partially ordered, average PP-complete NP-complete Section 4
partially ordered, pessimistic co-NP-complete NP-complete Section 4

Table 1: Complexity results for at representations (P & T (1987) is Papadimitriou and
Tsitsiklis (1987))

Plan Type Plan Evaluation Plan Existence Reference

unrestricted | EXP-complete Littman (1997a)
polynomial-depth | PSPACE-complete Littman (1997a)
looping PSPACE-complete PSPACE-complete Section 3

acyclic PP-complete NPPP-complete Section 2

totally ordered PP-complete NPPP-complete Section 2

partially ordered, optimistic NPPP-complete NPPP-complete Section 4

partially ordered, average PP-complete NPPP-complete Section 4

partially ordered, pessimistic co-NPPP-complete NPPP-complete Section 4

Table 2: Complexity results for propositional representations
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2. Acyclic Plans

In this section, we treat the complexity of generating and evaluating acyclic and totally
ordered plans.

Theorem 1 The plan-evaluation problem for acyclic and totally ordered plans in at do-
mains is PL-complete.

Proof: First, we show PL-hardness for totally ordered plans. Jung (1985) proved that a
set A is in PL if and only if there exists a logarithmically space-bounded and polynomially
time-bounded nondeterministic Turing machine N with the following property: For every
input x, machine N must have at least half of its computations on input x be accepting
if and only if x is in A. The machine N can be transformed into a probabilistic Turing
machine R such that for each input x, the probability that R(x) accepts x equals the
fraction of computations of N(x) that accepted. Given R, a planning domain M can be
described as follows. The state set of M is the set of con�gurations of R on input x. Note
that a con�guration consists of the contents of the logarithmically space-bounded tape, the
state, the location of the read/write heads, and one symbol each from the input and output
tapes. Thus, a con�guration can be represented with logarithmically many bits, and there
are only polynomially many such con�gurations. The state-transition probabilities of M
under the unique action a are the con�guration transition probabilities of R. All states
obtained from accepting con�gurations are goal states. The totally ordered plan consists
of a \step counter" for R on input x, and each of its plan steps takes the only action a.
The probability that the planning domain under this plan reaches a goal state is exactly
the probability that R(x) reaches an accepting con�guration. Thus, evaluating this totally
ordered plan is PL-hard.

Since totally ordered plans are acyclic plans, this also proves PL-hardness of the plan-
evaluation problem for acyclic plans.

Next, we show that the plan-evaluation problem is in PL for acyclic plans. Let M =
hS; s0;A; t;Gi be a planning domain, let P = hV; v0; E; �; �i be an acyclic plan, and let
threshold � be given. We show how our question, whether the probability that M under P
reaches a goal state with probability greater than �, can be equivalently transformed into
the question of whether a GapL function is greater than 0. The transformation can be done
in logarithmic space. As shown by Allender and Ogihara (1996), it follows that our question
is in PL.

At �rst, we construct a Markov chain C from M and P , which simulates the execution
or \evaluation" of M under P . Note that a Markov chain can be seen as a probabilistic
domain with only one action in its set of actions. Since there is no choice of actions, we do
not mention them in this construction. The state space of C is S � V , the initial state is
(s0; v0), the set of goal states is G � V , and the transition probabilities tC for C are

tC((s; v); (s
0; v0)) =

8<
:

t(s; �(v); s0); if s0 2 �(v; v0);
1; if v is a terminal step node, and (s; v) = (s0; v0);
0; otherwise.

Let m be the number of plan steps of P (i.e., jV j, the number of nodes in the graph
representing P ). Since states of C that contain a terminal step of P are sinks in C, it follows
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that

Pr(M reaches a goal state under P ) = Pr(C reaches a goal state in exactly m steps):

Let

pC(s;m) := Pr(C reaches a goal state in exactly m steps from initial state s):

Then, pC((s0; v0);m) is the probability we want to calculate. The standard inductive de�-
nition of pC used to evaluate plans by dynamic programming is

pC(s; 0) =

�
1; if s is a goal state of C,
0; otherwise,

pC(s; k + 1) =
X

s02S�V

tC(s; s
0) � pC(s

0; k); 0 � k � m� 1:

Let h be the maximum length of the representation of a state-transition probability tC .
Then, for

ph(s; 0) =

�
1; if s is a goal state of C,
0; otherwise,

ph(s; k + 1) =
X

s02S�V

2h � tC(s; s
0) � ph(s

0; k); 0 � k � m� 1;

it follows that pC((s0; v0);m) = ph((s0; v0);m) �2�hm. Note that ph((s0; v0);m) is an integer
value. Therefore, pC((s0; v0);m) > � if and only if ph((s0; v0);m) � b2hm�c > 0. In order
to show that pC((s0; v0);m) > � is decidable in PL, it su�ces to show that ph((s0; v0);m)
is in GapL. Therefore, we \unwind" the inductive de�nition of ph. Let T be the integer
matrix obtained from tC with T(s;s0) = tC(s; s

0) � 2h. We introduce the integer-valued T to
show that ph can be composed from GapL functions using compositions under which GapL
is closed; as tC is not integer valued, it cannot be used to show this. We can write

ph(s;m) =
X

s02S�V

(Tm)(s;s0) � ph(s
0; 0):

We argue that ph is in GapL. Each entry T(s;s0) is logspace computable from the do-
main M and plan P . Therefore, the powers of the matrix are in GapL, as shown by
Vinay (1991). Because GapL is closed under multiplication and summation of polynomially
many summands, it follows that ph 2 GapL. Finally, we use closure properties of GapL
from Allender and Ogihara (1996); since GapL is closed under subtraction, it follows that
the plan-evaluation for acyclic plans is in PL.

Because totally ordered plans are acyclic plans, the plan-evaluation problem for totally
ordered plans is also in PL.

The technique of forming a Markov chain by taking the cross product of a domain and
a plan will be useful later. Plan-existence problems require a di�erent set of techniques.

Theorem 2 The plan-existence problem for acyclic and totally ordered plans in at do-
mains is NP-complete.

14
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Proof: First, we show containment in NP. Given a planning domain M , a threshold �,
and a size bound z � jM j, guess a plan of the correct form of size at most z and accept if
and only ifM reaches a goal state with probability greater than � under this plan. Note that
checking whether a plan has the correct form can be done in polynomial time. Because the
plan-evaluation problem is in PL (Theorem 1), it follows that the plan-existence problem
is in NP (i.e., it is in NPPL = NP).

To show the NP-hardness of the plan-existence problem, we give a reduction from the
NP-complete satis�ability problem for Boolean formulae in conjunctive normal form. We
construct a planning domain that evaluates a Boolean formula with n variables, where a
(n + 2)-step plan describes an assignment of values to the variables. In the �rst step, a
clause is chosen randomly. At step i + 1, the planning domain \checks" whether the plan
satis�es the appearance of variable i in that clause. If so, the clause is marked as satis�ed.
After n + 1 steps, if no literal was satis�ed in that clause, then no goal state is reached
through this clause, otherwise, a transition is made to the goal state. Therefore, the goal
state will be reached with probability 1 (greater than 1� 1=m) if and only if all clauses are
satis�ed|the plan describes a satisfying assignment.

We formally de�ne the reduction, which is similar to one presented by Papadimitriou
and Tsitsiklis (1987). Let � be a CNF formula with n variables x1; : : : ; xn and m clauses
C1; : : : ; Cm. Let the sign of an appearance of a variable in a clause be �1 if the variable is
negated, and 1 otherwise. De�ne the planning domain M(�) = hS; s0;A; t;Gi where

S = fsat(i; j);unsat(i; j) j 1 � i � n+ 1; 1 � j � mg [ fs0; sacc; srejg;
A = fassign(i; b) j 1 � i � n; b 2 f�1; 1gg [ fstart; endg;
G = fsaccg;

t(s; a; s0) =

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1
m
; if s = s0; a = start; s0 = unsat(1; j); 1 � j � m;

1; if s = s0; a 6= start; s0 = srej;
1; if s = unsat(i; j); a = assign(i; b); s0 = sat(i+ 1; j); i � n;

xi appears in Cj with sign b;
1; if s = unsat(i; j); a = assign(i; b); s0 = unsat(i+ 1; j); i � n;

xi does not appear in Cj with sign b;
1; if s = unsat(i; j); a = assign(i0; b) or a = start or a = end;

s0 = srej; i
0 6= i � n; b 2 f�1; 1g;

1; if s = unsat(n+ 1; j); s0 = srej;
1; if s = sat(i; j); a = assign(i; b); s0 = sat(i+ 1; j); i � n;
1; if s = sat(i; j); a = assign(i0; b) or a = start or a = end;

s0 = srej; i
0 6= i � n;

1; if s = sat(n+ 1; j); a = end; s0 = sacc;
1; if s = sat(n+ 1; j); a 6= end; s0 = srej;
1; if s = s0 = srej or s = s0 = sacc;
0; otherwise.

The meaning of the states in this domain is as follows. When the domain is in state
sat(i; j) for 1 � i � n, 1 � j � m, it means the formula has been satis�ed, and we are
currently checking variable i in clause j. State sat(n+ 1; j) for all 1 � j � m means that
we've �nished verifying clause j and it was satis�ed. The meanings are similar for the
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unsat(1; 1)

unsat(4; 1)

unsat(3; 1)

unsat(2; 1)sat(2; 1)

sat(3; 1)

sat(4; 1)

s0

unsat(1; 2)

unsat(4; 2)

unsat(3; 2)

unsat(2; 2)sat(2; 2)

sat(3; 2)

sat(4; 2)

srej

start start

assign(1; 1) assign(1;�1) assign(1; 1)

assign(2; x)

assign(3; x)

assign(2;�1)
assign(2; x)

assign(3; x) assign(3; 1)
assign(3;�1)

end end endend

assign(1;�1)

sacc

assign(2; 1)

1=21=2

Figure 3: A domain generated from the Boolean formula (x1 _ :x2) ^ (:x1 _ x3)

\unsat" states. Of course, s0 is the initial state and sacc and srej are the accepting and
rejecting states, respectively.

The actions in this domain are start and end, which mark the beginning and end of the
assignment, and assign(i; b) for 1 � i � n, b 2 f�1; 1g, which assign the truth value b to
variable i. Figure 3 gives the domain generated by this reduction from a simple Boolean
formula. By the description of the reduction, M(�) can be computed from � in time
polynomial in j�j.

By construction, M(�) under z = (n + 2)-step plan P can only reach goal state sacc if
P has the form

start ! assign(1; b1) ! assign(2; b2) ! � � � ! assign(n; bn) ! end ! �:

P reaches sacc with probability 1 if and only if b1; : : : ; bn is a satisfying assignment for the
n variables in �. This shows that Boolean satis�ability polynomial-time reduces to the
plan-existence problem for totally ordered and acyclic plans, showing that it is NP-hard.

Note that if we bound the plan depth (horizon) instead of the plan size, the plan-
existence problem for acyclic plans in at domains is P-complete (Goldsmith et al., 1997a;
Papadimitriou & Tsitsiklis, 1987). Limiting the plan size makes the problem more di�cult
because it is possible to force the planner to take the same action from di�erent states;
�guring out how to do this without sacri�cing plan quality is very challenging.

In propositional domains, plan evaluation is harder because of the large number of states.

Theorem 3 The plan-evaluation problem for acyclic and totally ordered plans in proposi-
tional domains is PP-complete.

Proof: To show PP-hardness for totally ordered plans, we give a reduction from the
PP-complete problem Majsat: given a CNF Boolean formula �, does the majority of
assignments satisfy it?
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xa1:new

1: xi

T F

T F

...

n+m+1: satisfied

clause1:new

T F

clause2:new

T F

clausem:new

T F

...

evaluate

1/2 T

2: xi

1/2 T

n: xi

1/2 T

n+1: clause1

xb1:new
1 T

1 T xc1:new
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...
xam:new

T F
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0 T

0 T

0 T1 T

done

T F

0 T

n+m+2: done

1 T

xd1:new

T F

1 T0 T

Figure 4: Sequential-e�ects-tree representation for evaluate

Given �, we construct a planning domain M (�) and a 1-step plan such that the plan
achieves the goal with probability greater than � = 1=2 if and only if the majority of
assignments satis�es �. The planning domain M (�) consists of a single action evaluate,
which is also the 1-step plan to be evaluated. There are n+m + 2 propositions in M (�);
x1 through xn, which correspond to the n variables of �; clause1 through clausem, which
correspond to the m clauses of �; satis�ed, which is also the sole element of the goal set;
and done, which insures that evaluate is only executed once (this is important when this
domain is used later in Theorem 4 to show the complexity of plan existence). In the initial
state, all propositions are false.

The evaluate action generates a random assignment to the variables of �, evaluates the
clauses (clausei is true if any of the literals in the ith clause is true), and evaluates the entire
formula (satis�ed is true if all the clauses are true). Figure 4 gives an ST representation
of evaluate, in which xai ; xbi ; : : : represent the variables in clause i.

By construction, � is inMajsat if and only if M (�) reaches a goal state with probability
greater than � = 1=2 under the plan consisting of the single action evaluate.

We next show membership in PP for acyclic plans. We do this by showing that a
planning domain M and an acyclic plan P induce a computation tree consisting of all
paths through M under P . Evaluating this computation tree can be accomplished by a PP
machine.

Let b be a bound on the number of bits used to specify probabilities in the leaves of the
decision trees representing M .4 Consider a computation tree de�ned as follows. It has root
labeled hs0; v0i. If, in the planning domain M , the probability of reaching state s0 from s

4. We represent numbers in polynomial-precision binary representation. In principle, this could introduce
round-o� errors if planning problems are speci�ed in some other form.
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given action �(v) is equal to �, then hs; �(v)i will have � � 2b children labeled hs0; �(v; s0)i.
Each of the identically labeled child nodes is independent but is de�ned identically to the
others. Thus, the number of paths with a given set of labels corresponds to the probability
of that trajectory through the domain and plan multiplied by (2b)h, where h is the depth
of the plan.

The number of accepting computations is, therefore, more than � � (2b)h if and only if
the probability of achieving the goal is more than �. Note that b is inherent in the planning
domain, rather than in h. A PP machine accepts if more than half of the �nal states are
accepting, so if � 6= 1=2, it will be necessary to pad the computation tree by introducing
\dummy" branches that accept or reject in the right proportions.

The plan-existence problem is essentially equivalent to guessing and evaluating a valid
plan.

Theorem 4 The plan-existence problem for acyclic and totally ordered plans in proposi-
tional domains is NPPP-complete.

Proof: Containment in NPPP for both totally ordered and for acyclic plans follows from
the fact that a polynomial-size plan can be guessed in polynomial time and checked in PP
(Theorem 3).

Hardness for NPPP for both totally ordered and acyclic plans can be shown using a
reduction from E-Majsat, shown NPPP-hard in the Appendix. The reduction echoes the
one used in the PP-hardness argument in the proof of Theorem 3.

Given a CNF Boolean formula � with variables x1; : : : ; xn, and a number k, we construct
a planning domain M (�; k) such that a plan exists that can reach the goal with probability
greater than � = 1=2 if and only if there is an assignment to the variables x1; : : : ; xk such
that the majority of assignments to the remaining variables satis�es �. The planning domain
M (�; k) consists of the action evaluate from Theorem 3 and one action, set-xi, for each of
the �rst k variables. Just as in the proof of Theorem 3, there are n+m+2 propositions in
M (�; k), all initially false: x1 through xn, which correspond to the n variables of �; clause1
through clausem, which correspond to the m clauses of �; satis�ed; and done, which
insures that evaluate is only executed once. The goal set contains satis�ed and done.

For 1 � i � k, action set-xi makes proposition xi true. Analogously to Theorem 3, the
evaluate action generates a random assignment to the remaining variables of �, evaluates
the clauses (clausei is true if any of the literals in the clause is true), and evaluates the
entire formula (satis�ed is true if all the clauses are true), and sets done to true. If done
is true, no further action can make satis�ed true.

If the pair �; k is in E-Majsat, then there exists an assignment b1 : : : bk to the �rst k
variables of � such that the majority of assignments to the rest of the variables satis�es �.
Therefore, the plan applying steps set-xi for all i with bi = 1 followed by an evaluate action
reaches a goal state with probability greater than � = 1=2.

Conversely, assume M (�; k) under totally ordered plan P reaches a goal state with
probability greater than 1=2. Since the evaluate action is the only action setting done to
true, and since no action reaches the goal once done is set to true, we can assume without
loss of generality that P consists of a sequence of steps set-xi that ends with evaluate. By
construction, the assignment to x1; : : : ; xk assigning 1 exactly to those variables set by P
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is an assignment under which the majority of the assignments to the rest of the variables
satis�es �, and therefore �; k is in E-Majsat.

Since every totally ordered plan is acyclic, the same hardness holds for acyclic plans.

In the above results, we consider both at and compactly represented (propositional)
planning domains but only at plans. Compactly represented plans are also quite useful.

A compact acyclic plan is an acyclic plan in which the names of the plan steps
are encoded by a set of propositional variables and the step-transition function
� between plan steps is represented by a set of decision trees, just as in ST. We
require that the plan has depth polynomial in the size of the representation,
even though the total number of steps in the plan might be exponential due to
the logarithmic succinctness of the encodings.

Because the plan-domain cross-product technique used in the proof of Theorem 3 gen-
eralizes to compact acyclic plans, the same complexity results apply. This also holds true
for a probabilistic acyclic plan, which is an acyclic plan that can make random transitions
between plan steps (i.e., the step-transition function � is stochastic). These insights can be
combined to yield the following corollary of Theorems 3 and 4.

Corollary 5 The plan-evaluation problem for compact probabilistic acyclic plans in propo-
sitional domains is PP-complete and the plan-existence problem for compact probabilistic
acyclic plans in propositional domains is NPPP-complete.

We mention probabilistic plans here for two reasons. First, the behavior of some plan-
ning structures (such as partially ordered plan evaluation under the average interpretation,
discussed in Section 4) can be thought of as generating probabilistic plans. Second, there
are many instances in which simple probabilistic plans perform nearly as well as much larger
and more complicated deterministic plans; this notion is often exploited in the �eld of ran-
domized algorithms. Work by Platzman (1981) (described by Lovejoy, 1991) shows how the
idea of randomized plans can come in handy for planning in partially observable domains.

3. Looping Plans

Looping plans can be applied to in�nite-horizon control. The complexity of plan existence
and plan evaluation in at domains (Theorems 1 and 2) does not depend on the presence
or absence of loops in the plan.

Theorem 6 The plan-evaluation problem for looping plans in at domains is PL-complete.

Proof: Given a domain M and a looping plan P , we can construct a product Markov
chain C as in the proof of Theorem 1. As in the proof of Theorem 6 of Allender and
Ogihara (1996), this chain can be constructed such that it has exactly one accepting and
exactly one rejecting state; both of these states are absorbing. The probability that M
reaches a goal state under P equals the probability that C reaches its accepting state if
started in its initial state, which is the product of the initial states of M and P . In the
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proof of Theorem 6 of Allender and Ogihara (1996), it is shown that the construction of
the Markov chain and the computation of whether it reaches its �nal state with probability
greater than � can be performed in PL.

PL-hardness is implied by Theorem 1, since acyclic plans are a special case of looping
plans.

Theorem 7 The plan-existence problem for looping plans in at domains is NP-complete
in general, but P-complete if the size of the desired plan is at least the size of the state or
action space (i.e., z � min(jSj; jAj)).

Proof sketch: NP-completeness follows from the proof of Theorem 2; containment and
hardness still hold if plans are permitted to be looping.

However, this is only true if we are forced to specify a plan whose size is small with
respect to the size of the domain. If our looping plan is allowed to have a number of states
that is at least as large as the number of states or actions in the domain, the problem can
be solved in polynomial time.

It is known that for Markov decision processes such as these the maximum probability
of reaching a goal state equals the maximum probability of reaching a goal state under
any in�nite-horizon stationary policy , where a stationary policy is a mapping from states
to actions that is used repeatedly to choose actions at each time step. It is known that
such an optimal stationary policy can be computed in polynomial time via linear pro-
gramming (Condon, 1992). Any stationary policy for a domain M = hS; s0;A;G; ti can be
written as a looping plan, although, of course, not all looping plans correspond to stationary
policies.

We show that for any �xed stationary policy p : S ! A, there are two simple ways a
looping plan P = (V; v0; E; �; �) can be represented. First, let V = A, v0 = p(s0), �(v) = v,
and �(v; v0) = fs 2 S j p(s) = v0g. It follows that whenever M reaches state s, then the
action applied according to the looping plan is the same as according to P .

Second, let V = S, v0 = s0, �(v) = p(v), and �(v; v0) = fv0g. It follows that whenever
M reaches state s, the plan will be at the node corresponding to that state and, therefore,
the appropriate action for that state will be applied by the looping plan. Therefore, the
maximum probability of reaching a goal state can be obtained by either of these looping
plans.

Since the best stationary policy can be computed in polynomial time, the best looping
plan can be computed in polynomial time, too. P-hardness follows from a theorem of
Papadimitriou and Tsitsiklis (1987).

In propositional domains, the complexity of plan existence and plan evaluation of looping
plans is quite di�erent from the acyclic case. Looping plan evaluation is very hard.

Theorem 8 The plan-evaluation problem for looping plans in both deterministic and stochas-
tic propositional domains is PSPACE-complete.

Proof: Recall that the plan-evaluation problem for at domains is in PL (Theorem 1).
For a planning domain with cn states and a representation of size n, a looping plan can
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be evaluated in probabilistic space O(log(cn)) (Theorem 6), which is to say probabilistic
space polynomial in the size of the input. This follows because the ST representation of
the domain can be used to compute entries of the transition function t in polynomial space.
Since probabilistic PSPACE equals PSPACE, this shows that the plan-evaluation problem
for looping plans in stochastic propositional domains is in PSPACE.

It remains to show PSPACE-hardness for deterministic propositional domains. Let N
be a deterministic polynomial-space-bounded Turing machine. The moment-to-moment
computation state (con�guration) of N can be expressed as a polynomial-length bit string
that encodes the contents of the Turing machine's tape, the location of the read/write head,
the state of N 's �nite-state controller, and whether or not the machine is in an accepting
state.

For any input x, we describe how to construct in polynomial time a deterministic plan-
ning domain M (x) and a single-action looping plan that reaches a goal state of M (x) if and
only x is accepted by Turing machine N .

Given a description ofN and x, one can, in time polynomial in the size of the descriptions
of N and x, produce a description of a Turing machine T that computes the transition
function for N . In other words, T on input c, a con�guration of N , outputs the next
con�guration of N . (In fact, T can even check whether c is a valid con�guration in the
computation of N(x) by simulating that computation.) By an argument similar to that
used in Cook's theorem, T can be modeled by a polynomial-size circuit. This circuit takes
as input the bit string describing the current con�guration of N and outputs the next
con�guration.

Next, we argue that the computation of this circuit can be expressed by an action com-

pute in ST representation. There is one proposition in M (x) for each bit in the con�guration,
plus one for each gate of the circuit. The three standard gates, \and," \or," and \not" are
all easily represented as decision trees. By ordering the decision trees in compute accord-
ing to a topological sort of the gates of the circuit, a single compute action can compute
precisely the same output as the circuit. Figure 5 illustrates this conversion for a simple
circuit, which gives the form of the \not" (i1), \and" (i2), and \or" (i3) gates.

We can now describe the complete reduction. The planning domain M (x) consists of
the single action compute and the set of propositions described in the previous paragraph.
The initial state is the initial con�guration of the Turing machine N , and the goal set is the
proposition corresponding to whether or not the con�guration is an accepting state for N .

Because all transitions are deterministic and only one action can be chosen, it follows
that the goal state is reached with probability 1 (greater than 1=2, for example) under
the plan that repeatedly chooses compute until an accepting state is reached if and only if
polynomial-space machine N on input x accepts.

A similar argument shows that looping plan existence is not actually any harder than
looping plan evaluation.

Theorem 9 The plan-existence problem for looping plans in both deterministic and stochas-
tic propositional domains is PSPACE-complete.
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Figure 5: A circuit and its representation as a sequential-e�ects tree

Proof: Hardness for PSPACE follows from the same construction as in the proof of
Theorem 8: either the one-step looping plan is successful, or it is not. No other plan yields
a better result.

Recall that we are only interested in determining whether there is a plan of size z, where
z is bounded by the size of the domain, that reaches the goal with a given probability. The
problem is in PSPACE because the plan can be guessed in polynomial time and checked in
PSPACE (Theorem 8). Because NPPSPACE = PSPACE, the result follows.

As we mentioned earlier, the unrestricted in�nite-horizon plan-existence problem is
EXP-complete (Littman, 1997a); this shows the problem of determining unrestricted plan
existence is EXP-hard only because some domains require plans that are larger than polynomial-
size looping plans.

Because Theorem 9 shows PSPACE-completeness for determining plan existence in de-
terministic domains, it is closely related to the PSPACE-completeness result of Bylan-
der (1994). The main di�erence between the two results is that our theorem applies to
more compact plans (polynomial instead of exponential) with more complex operator de-
scriptions (conditional e�ects instead of preconditions with add and delete lists) that can
include loops. Also, as the proofs above show, PSPACE-hardness is retained even in plan-
ning domains with only one action, so it is the looping that makes looping plans hard to
work with.

4. Partially Ordered Plans

Partially ordered plans are a popular representation because they allow planning algorithms
to defer a precise commitment to the ordering of plan steps until it becomes necessary in

22



Complexity of Probabilistic Planning

the planning process. A k-step partially ordered plan corresponds to a set of k-step totally
ordered plans|all those that are consistent with the given partial order. The evaluation of
a partially ordered plan can be de�ned to be the evaluation of the best, worst, or average
member of the set of consistent totally ordered plans; these are the optimistic, pessimistic,
and average interpretations, respectively.

The plan-evaluation problem for partially ordered plans is di�erent from that of totally
ordered plans. This is because a single partial order can encode all totally ordered plans.
Hence, evaluating a partially ordered plan involves �guring out the best (in case of optimistic
interpretation) or the worst (for pessimistic interpretation) member, or the average (for
average interpretation) of this combinatorial set.

Theorem 10 The plan-evaluation problem for partially ordered plans in at domains is
NP-complete under the optimistic interpretation.

Proof sketch: Membership in NP follows from the fact that we can guess any totally
ordered plan consistent with the given partial order and accept if and only if the domain
reaches a goal state with probability more than �. Remember that this evaluation can be
performed in PL (Theorem 1), and therefore deterministically in polynomial time.

The hardness proof is a variation of the construction used in Theorem 2. The partially-
ordered plan to evaluate has the form given in Figure 6; the consistent total orders are of
the form

start ! assign(1; b1)! assign(1;�b1)! assign(2; b2)! assign(2;�b2)!

� � � ! assign(n; bn)! assign(n;�bn)! end ! �;

where bi is either 1 or �1. Each of the possible plans can be interpreted as an assignment
to n Boolean variables by ignoring every second assignment action. The construction in
Theorem 2 shows how to turn a CNF formula � into a planning domain M(�), and it
can easily be modi�ed to ignore every second action. Thus, the best totally ordered plan
consistent with the given partially ordered plan reaches the goal with probability 1 if and
only if it reaches the goal with probability greater than 1� 2�m if and only if it satis�es all
clauses of � if and only if � is satis�able.

Theorem 11 The plan-evaluation problem for partially ordered plans in at domains is
co-NP-complete under the pessimistic interpretation.

Proof sketch: Both the proof of membership in co-NP and the proof of hardness are
very similar to the proof of Theorem 10. We show a reduction from the co-NP-complete set
Sat of unsatis�able formulae in CNF. The plan to evaluate has the form given in Figure 6
and is interpreted as above. As in the proof of Theorem 2, we construct a planning domain
M 0(�), but we take G = fsrejg as goal states, where the state srej is reached with probability
greater than 0 if and only if the assignment does not satisfy one of the clauses of formula �.
A formula is unsatis�able if and only if under every assignment at least one of the clauses
is not satis�ed. Therefore, the probability that M 0(�) reaches a goal state under a given
totally ordered plan is greater than 0 if and only if the plan corresponds to an unsatisfying
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Figure 6: A partially ordered plan that can be hard to evaluate

assignment. Finally, the minimum of that probability over all consistent partially ordered
plans is greater than 0 if and only if � is unsatis�able.

Theorem 12 The plan-evaluation problem for partially ordered plans in at domains is
PP-complete under the average interpretation.

Proof: Under the average interpretation, we must decide whether the average evaluation
over all consistent totally ordered plans is greater than threshold �. This can be decided in
PP by guessing uniformly a totally ordered plan and checking its consistency with the given
partially ordered plan in polynomial time. If the guessed totally ordered plan is consistent,
it can be evaluated in polynomial time (Theorem 1) and accepted or rejected as appropriate.
If the guessed plan is inconsistent, the computation accepts with probability � and rejects
with probability 1 � �, leaving the average over the consistent orderings unchanged with
respect to the threshold �.

The PP-hardness is shown by a reduction from the PP-complete Majsat. Let � be a
formula in CNF. We show how to construct a domain M(�) and a partially ordered plan
P (�) such that � 2Majsat if and only if the average performance of M(�) under a totally
ordered plan consistent with P (�) is greater than 1=2.

Let � consist of the m clauses C1; : : : ; Cm, which contain n variables x1; : : : ; xn. Domain
M(�) = hS; s0;A; t;Gi has actions

A = fassign(i; b) j i 2 f1; : : : ; ng; b 2 f�1; 1gg [ fstart; check; endg:

Action assign(i; b) will be interpreted as \assign sign b to xi." The partially ordered plan
P (�) has plan steps

V = f�(i; b; h) j i 2 f1; : : : ; ng; b 2 f�1; 1g; h 2 f1; : : : ;mgg [ fstart; check; endg

and mapping � : V ! A with

�(�) = � for � 2 fstart; check; endg, and �(�(i; b; h)) = assign(i; b):
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The order E requires that a consistent plan has start as the �rst and end as the last step.
The steps in between are arbitrarily ordered. More formally,

E = f(start; q) j q 2 V � fstart; endgg [ f(q; end) j q 2 V � fstart; endgg:

Now, we de�ne how the domain M(�) acts on a given totally ordered plan P consistent
with P (�). Domain M(�) consists of the cross product of the following polynomial-size
deterministic domains Ms and M�, to which a �nal probabilistic transition will be added.

Before we describeMs andM� precisely, here are their intuitive de�nitions. The domain
Ms is satis�ed by plans that have the form of an assignment to the n Boolean variables with
the restriction that the assignment is repeated m times (for easy checking). The domain
M� is satis�ed by plans that correspond to satisfying assignments. The composite of these
two domains is only satis�ed by plans that correspond to satisfying assignments. We will
now de�ne these domains formally.

First, Ms checks whether the totally ordered plan matches the regular expression

start (assign(1; 0)mjassign(1; 1)m)

� � � (assign(n; 0)mjassign(n; 1)m)

check ((assign(1; 0)jassign(1; 1)) � � � (assign(n; 0)jassign(n; 1)))m:

Note that the m here is a constant. Let \good" be the state reached by Ms if the plan
matches that expression. Otherwise, the state reached is \bad". To clarify, the actions be-
fore check are there simply to \use up" the extra steps not used in specifying the assignment
in the partially ordered plan.

Next, M� checks whether the sequence of actions following the check action satis�es
the clauses of � in the following sense. Let a1 � � � ak be this sequence. M� interprets each
subsequence a1+(j�1)n � � � an+(j�1)n with al+(j�1)m = assign(x; bl) as assignment b1; : : : ; bn
to the variables x1; : : : ; xn, and checks whether this assignment satis�es clause Cj . If all
single clauses are satis�ed in this way, then M� reaches state \satis�ed".

Note that Ms and M� are de�ned so that they do not deal with the �nal end action.
M(�) consists of the product domain of Ms and M� with the transitions for action end

as follows. If M is in state (bad; q) for any state q of M�, then action end lets M go
probabilistically to state \accept" or to state \reject", with probability 1=2 each; if M is
in state (good; satis�ed), the M under action end goes to state \accept" (with probability
1); otherwise, M under action end goes to state reject (with probability 1). The set of goal
states of M consists of the only state \accept".

We analyze the behavior of M(�) under any plan P consistent with P (�). If Ms under
P reaches state \bad", then M(�) under P reaches a goal state with probability 1=2. Now,
consider a plan P under which Ms reaches the state \good"|called a good plan. Then
P matches the above regular expression. Therefore, for every i 2 f1; : : : ;mg there exists
bi 2 f�1; 1g such that all steps s(i; bi; h) are between start and check. Thus, all steps
between check and end are

s(1; 1 � i1; 1) � � � s(n; 1� in; 1)s(1; 1 � i1; 2) � � � s(n; 1� in;m)

Consequently, the sequence of actions de�ned by the labeling of these plan steps are

(assign(1; i1)assign(2; i2) � � � assign(n; in))
m:
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This means, thatM� checks whether all clauses of � are satis�ed by the assignment i1 � � � in,
i.e., M� checks whether i1 � � � in satis�es �. Therefore, M(�) accepts under plan P with
probability 1, if the plan represents a satisfying assignment, and with probability 0 other-
wise.

Note that each assignment corresponds to exactly one good plan. Therefore, the average
over all good plans that M(�) accepts equals the fraction of satisfying assignments of �.
Since M(�) accepts under \bad" plans with probability 1=2, this yields that the average
over all plans consistent with P (�) of the acceptance probabilities of M(�) is greater than
1=2 if and only if � 2 Majsat.

The complexity of the plan-existence problem for partially ordered plans is identical to
that for totally ordered plans.

Theorem 13 The plan-existence problem for partially ordered plans in at domains is NP-
complete under the pessimistic, optimistic and average interpretations. The plan-existence
problem for partially ordered plans in propositional domains is NPPP-complete under the
pessimistic, optimistic and average interpretations.

Proof: First, note that a totally ordered plan is a special type of partially ordered plan
and its evaluation is unchanged under the pessimistic, optimistic, or average interpretation.
In particular, because there is only one ordering consistent with a given totally ordered
plan, the best, worst, and average orderings are all the same. Therefore, if there exists a
totally ordered plan with value greater than �, then there is a partially ordered plan with
value greater than � (the same plan), under all three interpretations.

Conversely, if there is a partially ordered plan with value greater than � under any of
the three interpretations, then there is a totally ordered plan with value greater than �.
This is because the value of the best, worst, and average ordering of a partially ordered
plan is always a lower bound on the value of the best consistent totally ordered plan.

Given this strong equivalence, the complexity of plan existence for partially ordered
plans is a direct corollary of Theorems 2 and 4.

The pattern for partially ordered plan evaluation in at domains is that the average
interpretation is no easier to decide than either the optimistic or pessimistic interpretations.
In propositional domains, the pattern is the opposite: the average interpretation is no harder
to decide than either the optimistic or pessimistic interpretations.

Theorem 14 The plan-evaluation problem for partially ordered plans in propositional do-
mains is NPPP-complete under the optimistic interpretation, co-NPPP-complete under the
pessimistic interpretation, and PP-complete under the average interpretation.

Proof sketch: For the optimistic interpretation, membership in NPPP follows from the
fact that we can guess a single su�ciently good consistent total order and evaluate it in
PP (Theorem 3). Hardness for NPPP can be shown using a straightforward reduction from
E-Majsat (as in the proof of Theorem 4).

For the pessimistic interpretation, membership in co-NPPP follows from the fact that we
can guess the worst consistent total order and evaluate it in PP (Theorem 3). Hardness for
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co-NPPP can be shown by reducing to it the co-NPPP version of E-Majsat (E-Majsat);
the proof is a simple adaptation of the techniques used, for example, in Theorem 4 above.

For the average interpretation, the problem can be shown to be in PP by combining
the argument in the proof of Theorem 12 showing how to average over consistent totally
ordered plans with the argument in the proof of Theorem 3 showing how to evaluate a
plan in a propositional domain in PP. Alternatively, we could express the evaluation of a
partially ordered plan under the average interpretation as a compact probabilistic acyclic
plan; Corollary 5 states that such plans can be evaluated in PP. PP-hardness follows directly
from Theorem 3, because totally ordered plans are a special case of partially ordered plans
and evaluating totally ordered plans is PP-hard.

5. Applications

To help illustrate the utility of our results, this section cites several planners from the
literature and analyzes the computational complexity of the problems they attack. We do
not give detailed explanations of the planners themselves; for this, we refer the reader to
the original papers. We focus on three planning systems: witness (Brown University),
buridan (University of Washington), and treeplan (University of British Columbia). In
the process of making connections to these planners, we also describe how our work relates to
the discounted-reward criterion, partial observability, other domain representations, partial
order conditional planning, policy-based planning, and approximate planning.

5.1 Witness

The witness algorithm (Cassandra, Kaelbling, & Littman, 1994; Kaelbling et al., 1998)
solves at partially observable Markov decision processes using a dynamic-programming ap-
proach. The basic algorithm �nds optimal unrestricted solutions to �nite-horizon problems.
Papadimitriou and Tsitsiklis (1987) showed that the plan-existence problem for polynomial-
horizon partially observable Markov decision processes is PSPACE-complete.

As an extension to their �nite-horizon algorithm, Kaelbling et al. (1998) sketch a method
for �nding optimal looping plans for some domains. Although this is not presented as a
formal algorithm, it is not unreasonable to say that the pure form of the problem that this
extended version of witness attacks is one of �nding a valid polynomial-size looping plan
for a partially observable domain. The similarities between this problem and that described
in Section 3 are that the domains are at and that the plans are identical in form. The
apparent di�erences are that witness optimizes a reward function instead of probability
of goal satisfaction and that witness works in partially observable domains whereas our
results are de�ned in terms of completely observable domains. Both of these apparent
di�erences are insigni�cant, however, from a computational complexity point of view.

First, witness attempts to maximize the expected total discounted reward over an
in�nite horizon (sometimes called optimizing a time-separable value function). As argued
by Condon (1992), any problem de�ned in terms of a sum of discounted rewards can be
recast as one of goal satisfaction. The argument proceeds roughly as follows. Let 0 <  < 1
be the discount factor and R(s; a) be the immediate reward received for taking action a in
state s.
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De�ne

R0(s; a) =
R(s; a)�mins0;a0 R(s0; a0)

maxs0;a0 R(s0; a0)�mins0;a0 R(s0; a0)
:

From this, we have that 0 � R0(s; a) � 1 for all s and a and that the value of any plan with
respect to the revised reward function is a simple linear transformation of its true value.
Now, we introduce an auxiliary state g to be the goal state and create a new transition
function t0 such that t0(s; a; g) = (1�)R0(s; a) and t0(s; a; s0) = (1�(1�)R0(s; a))t(s; a; s0)
for s0 6= g; t0 is a well-de�ned transition function and the probability of goal satisfaction for
any plan under transition function t0 is precisely the same as the expected total discounted
reward under reward function R0 and transition function t. Thus, any problem stated as
one of optimizing the expected total of discounted immediate rewards can be turned into an
equivalent problem of optimizing goal satisfaction with only a slight change to the transition
function and one additional state. This means there is no fundamental computational
complexity di�erence between these two di�erent types of planning objectives.

The second apparent di�erence between the problem solved by the extended witness

algorithm and that described in Section 3 is that of partial versus complete observability.
In fact, our results do address partial observability, albeit indirectly. In our formulation of
the plan-existence problem, plans are constrained to make no conditional branches (in the
totally ordered and partially ordered cases), or to branch only on distinctions made by the
step-transition function � (in the acyclic and looping cases); these two choices correspond
to unobservable and partially observable domains, respectively. In a partially observable
domain, the plan-existence problem becomes one of �nding a valid polynomial-size �nite-
state controller subject to the given observability constraints. Nothing in our complexity
proofs depends on the presence or absence of additional observability constraints. Therefore,
it is a direct corollary of Theorem 2 that the plan-existence problem for polynomial-horizon
plans in unobservable domains is NP-complete (Papadimitriou & Tsitsiklis, 1987) and of
Theorem 7 that the plan-existence problem for polynomial-size looping plans in partially
observable domains is NP-complete (this is a new result).

It is interesting to note that the computational complexity of searching for size-bounded
plans in partially observable domains is generally substantially less than that of solving the
corresponding unconstrained partially observable Markov decision process. For example,
we found that the plan-existence problem for acyclic plans in propositional domains is
NPPP-complete (Theorem 4). The corresponding unconstrained problem is that of deter-
mining the existence of a history-dependent policy for a polynomial-horizon, compactly
represented partially observable Markov decision process, which is EXPSPACE-complete
(Theorem 4.15 of Goldsmith et al., 1996, or Theorem 6.8 of Mundhenk et al., 1997b). The
gap here is enormous: EXPSPACE is to EXP what PSPACE is to P, and EXP is already
provably intractable in the worst case. In contrast to EXPSPACE-complete problems, it is
conceivable that good heuristics for NPPP-complete problems can be created by extensions
of recent advances in heuristics for NP-complete problems. Therefore, there is some hope
of devising e�ective planning algorithms by building on the observations in this paper and
searching for optimal size-bounded plans instead of optimal unrestricted plans; in fact, re-
cent planners for both propositional domains (Majercik & Littman, 1998a, 1998b) and at
domains (Hansen, 1998) are motivated by these results.
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Domain Type Horizon Type Size-Bounded Plan Unrestricted Plan

at polynomial NP-complete PSPACE-complete

propositional polynomial NPPP-complete EXPSPACE-complete
at in�nite NP-complete undecidable
propositional in�nite PSPACE-complete undecidable

Table 3: Complexity results for plan existence in partially observable domains

Table 3 summarizes complexity results for planning in partially observable domains.
The results for size-bounded plans are corollaries of Theorems 2, 4, 7, and 9 of this pa-
per. The results for unrestricted plans are due to Papadimitriou and Tsitsiklis (1987)
(at, polynomial), Goldsmith et al. (1996) (propositional, polynomial), and Hanks (1996)
(in�nite-horizon). This last result is derived by noting the isomorphism of the in�nite-
horizon problem to the emptiness problem for probabilistic �nite-state automata, which is
undecidable (Rabin, 1963).

5.2 Buridan

The buridan planner (Kushmerick et al., 1995) �nds partially ordered plans for proposi-
tional domains in the PSO representation. There are two identi�able di�erences between
the problem solved by buridan and the problem analyzed in Section 4: the representation
of planning problems and the fact that buridan is not restricted to �nd polynomial-size
plans. We address each of these di�erences below.

Although, on the surface, PSO is di�erent from ST, either can be converted into the
other in polynomial time with at most a polynomial increase in domain size. In particular,
the e�ect of an action in PSO is represented by a single decision tree consisting of proposition
nodes (like ST) and random nodes (easily simulated in ST using auxiliary propositions).
At the leaves are a list of propositions that become true and another list of propositions
that become false should that leaf be reached. This type of correlated e�ect is also easily
represented in ST using the chain rule of probability theory to decompose the probability
distribution into separate probabilities for each proposition and careful use of the \:new"
su�x. Thus, any PSO domain can be converted to a similar size ST domain quickly.

Similarly, a domain in ST can be converted to PSO with at most a polynomial expansion.
This conversion is too complex to sketch here, but follows from the proof of equivalence be-
tween ST and a simpli�ed representation called IF (Littman, 1997a). Given the polynomial
equivalence between ST and PSO, any complexity results for ST carry over to PSO.5

The results described in this paper concern planning problems in which a bound is given
on the size of the plan sought. Although Kushmerick et al. (1995) do not explicitly describe
their planner as one that prefers small plans to large plans, the design of the planner as
one that searches through the space of plans makes the notion of plan size central to the
algorithm. Indeed, the public-domain buridan implementation uses plan size as part of a
best-�rst search procedure for identifying a su�ciently successful plan. This means that, all
other things being equal, shorter plans will be found before larger plans. Furthermore, to
assure termination, the planner only considers a �xed number of plans before halting, thus

5. To be more precise, this is true for complexity classes closed under log-space reductions.
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putting a limit indirectly on the maximum allowable plan size. So, although buridan does
not attempt to solve precisely the same problem that we considered, it is fair to say that the
problem we consider is an idealization of the problem attacked by buridan. Regardless,
our lower bounds on complexity apply to buridan.

Kushmerick et al. (1995) looked at generating su�ciently successful plans under both
the optimistic interpretation and the pessimistic interpretation. They also explicitly ex-
amined the plan-evaluation problem for partially ordered plans under both interpretations.
Therefore, Theorems 13 and 14 apply to buridan.

The more sophisticated c-buridan planner (Draper et al., 1994) extends buridan to
plan in partially observable domains and to produce plans with conditional execution. The
results of our work also shed light on the computational complexity of the problem addressed
by c-buridan. Draper et al. (1994) devised a representation for partially ordered acyclic
(conditional) plans. In this representation, each plan step generates an observation label as
a function of the probabilistic outcome of the step. Each step also has an associated set of
context labels dictating the circumstances under which that step must be executed. A plan
step is executed only if its context labels are consistent with the observation labels produced
in earlier steps. In its totally ordered form, this type of plan can be expressed as a compact
acyclic plan; Corollary 5 can be used to show that the plan-evaluation and plan-existence
problems for a totally ordered version of c-buridan's conditional plan representation in
propositional domains are PP-complete and NPPP-complete, respectively.

In our results above, we consider evaluating and searching for plans that are partially
ordered and plans that have conditional execution, but not both at once. Nonetheless, the
same sorts of techniques presented in this paper can be applied to analyzing the problems
attacked by c-buridan. For example, consider the plan-existence problem for c-buridan's
partially ordered conditional plans under the optimistic interpretation. This problem asks
whether there is a partially ordered conditional plan that has some total order that reaches
the goal with su�cient probability. This is equivalent to asking whether there is a totally
ordered conditional plan that reaches the goal with su�cient probability. Therefore, the
problem is NPPP-complete, by the argument in the previous paragraph.

In spite of many super�cial di�erences between the problems analyzed in this paper and
those studied by the creators of the buridan planners, our results are quite relevant to
understanding their work.

5.3 Treeplan

A family of planners have been designed that generate a decision-tree-based representation
of stationary policies (mappings from state to action) (Boutilier et al., 1995; Boutilier &
Poole, 1996; Boutilier & Dearden, 1996) in probabilistic propositional domains; we refer
to these planners collectively as the treeplan planners. Once again, these planners solve
problems that are not identical to the problems addressed in this paper but are closely
related.

The planner described by Boutilier et al. (1995) �nds solutions that maximize expected
total discounted reward in compactly represented Markov decision processes (the domain
representation used is expressively equivalent to ST). As mentioned earlier, the di�erence
between maximizing goal satisfaction and maximizing expected total discounted reward is a
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super�cial one, so the problem addressed by this planner is EXP-complete (Littman, 1997a).
Although the policies used by Boutilier et al. (1995) appears quite dissimilar from the �nite-
state controllers described in our work, policies can be converted to a type of similarly
sized compact looping plan (an extension of the type of plan described in Corollary 5).
The conversion from stationary policies to looping plans is as described in the proof of
Theorem 7, except that the resulting plans are represented compactly.

In later work, Boutilier and Dearden (1996) show how it is possible to limit the size
of the representation of the policy in treeplan and still obtain approximately optimal
performance. This is necessary because, in general, the size of decision trees needed to
represent the optimal policies can be exponentially large. By keeping the decision trees
from getting too large, the resulting planner becomes subject to an extension of Theorem 9
and, therefore, attacks a PSPACE-complete problem.

One emphasis of Boutilier and Dearden (1996) is on �nding approximately optimal
solutions, with the hope that doing so is easier than �nding optimal solutions. We do
not explore the worst-case complexity of approximation in this paper, although Lusena,
Goldsmith, and Mundhenk (1998) have produced some strong negative results in this area.
A related issue is one of using simulation (random sampling) to �nd approximately optimal
solutions to probabilistic planning problems. Some empirical successes have been obtained
with the related approach of reinforcement learning (Tesauro, 1994; Crites & Barto, 1996),
but, once again, the worst-case complexity of probabilistic planning is not known to be any
lower for approximation by simulation.

6. Conclusions

In this paper, we explored the computational complexity of plan evaluation and plan ex-
istence in probabilistic domains. We found that, in compactly represented propositional
domains, restricting the size and form of the policies under consideration reduced the
computational complexity of plan existence from EXP-complete for unrestricted plans to
PSPACE-complete for polynomial-size looping plans and NPPP-complete for polynomial-
size acyclic plans. In contrast, in at domains, restricting the form of the policies under
consideration increased the computational complexity of plan existence from P-complete
for unrestricted plans to NP-complete for totally ordered plans; this is because a plan that
is smaller than the domain in which it operates is often unable to exploit important Markov
properties of the domain. We were able to characterize precisely the complexity of all
problems we examined with regard to the current state of knowledge in complexity theory.

Several problems we studied turned out to be NPPP-complete. The class NPPP promises
to be very useful to researchers in uncertainty in arti�cial intelligence because it captures
the type of problems resulting from choosing (\guessing") a solution and then evaluating its
probabilistic behavior. This is precisely the type of problem faced by planning algorithms in
probabilistic domains, and captures important problems in other domains as well, such as
constructing explanations in belief networks and designing robust communication networks.
We provide a new conceptually simple NPPP-complete problem, E-Majsat, that may be
useful in further explorations in this direction.

The basic structure of our results is that if plan evaluation is complete for some class C,
then plan existence is typically NPC-complete. This same basic structure holds in determin-

31



Littman, Goldsmith & Mundhenk

istic domains: evaluating a totally ordered plan in a propositional domain is P-complete (for
su�ciently powerful domain representations) and determining the existence of a polynomial-
size totally ordered plan is NPP = NP-complete.

From a pragmatic standpoint, the intuition that searching for small plans is more ef-
�cient than searching for arbitrary size plans suggests that exact dynamic-programming
algorithms, which are so successful in at domains, may not be as e�ective in propositional
domains; they do not focus their e�orts on the set of small plans. Algorithm-development
energy, therefore, might fruitfully be spent devising heuristics for problems in the class NPPP

as this class captures the essence of searching for small plans in probabilistic domains|some
early results in this direction are appearing (Majercik & Littman, 1998a, 1998b). Complex-
ity theorists have only recently begun to explore classes such as NPPP that lie between the
polynomial hierarchy and PSPACE and algorithm designers have come to these classes even
more recently. As this paper marks the beginning of our exploration of this class of prob-
lems, much work is still to be done in probing algorithmic implications, but it is our hope
that heuristics for NPPP could lead to powerful methods for solving a range of important
uncertainty-sensitive combinatorial problems.
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Appendix A. Complexity of E-Majsat

The E-Majsat problem is: given a pair (�; k) consisting of a Boolean formula � of n
variables x1; : : : ; xn and a number 1 � k � n, is there an assignment to the �rst k variables
x1; : : : ; xk such that the majority of assignments to the remaining n�k variables xk+1; : : : ; xn
satis�es �?

For k = n, this is precisely Boolean satis�ability, a classic NP-complete problem. This
is because we are asking whether there exists an assignment to all the variables that makes
� true. For k = 0, E-Majsat is precisely Majsat, a well-known PP-complete problem.
This is because we are asking whether the majority of all total assignments makes � true.

Deciding an instance of E-Majsat for intermediate values of k has a di�erent character.
It involves both an NP-type calculation to pick a good setting for the �rst k variables and a
PP-type calculation to see if the majority of assignments to the remaining variables makes
� true. This is akin to searching for a good answer (plan, schedule, coloring, belief network
explanation, etc.) in a combinatorial space when \good" is determined by a computation
over probabilistic quantities. This is just the type of computation described by the class
NPPP, and we show next that E-Majsat is NPPP-complete.

Theorem 15 E-Majsat is NPPP-complete.
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Proof: Membership in NPPP follows directly from de�nitions. To show completeness of
E-Majsat, we �rst observe (Tor�an, 1991) that NPPP is the �NPm -closure of the PP-complete
set Majsat. Thus, any NPPP computation can be modeled by a nondeterministic machine
N that, on each possible computation, �rst guesses a sequence s of bits that controls its
nondeterministic moves, deterministically performs some computation on input x and s,
and then writes down a formula qx;s with variables in z1; : : : ; zl as a query to Majsat.
Finally, N(x) with oracle Majsat accepts if and only if for some s, qx;s 2Majsat.

Given any input x, like in Cook's Theorem, we can construct a formula �x with variables
y1; : : : ; yk and z1; : : : ; zl such that for every assignment a1; : : : ; ak; b1; : : : ; bl it holds that
�x(a1; : : : ; ak; b1; : : : ; bl) = qx;a1���ak(b1; : : : ; bl). Thus, (�x; k) 2 E-Majsat if and only if for
some assignment s to y1; : : : ; yk, qx;s 2Majsat if and only if N(x) accepts.
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