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THE COMPUTATIONAL COMPLEXITY OF PROVABILITY
IN SYSTEMS OF MODAL PROPOSITIONAL LOGIC*

RICHARD E. LADNER"

Abstract. The computational complexity of the provability problem in systems of modal proposi-
tional logic is investigated. Every problem computable in polynomial space is log space reducible to the
provability problem in any modal system betweenK and $4. In particular, the provability problem in
K, T, and $4 are log space complete in polynomial space. The nonprovability problem in $5 is log space
complete in nondeterministic polynomial time.
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Introduction. We investigate the computational complexity of deciding
whether or not a modal propositional formula is provable in certain systems of
modal propositional logic, including K, T, $4, and $5. In terms to be defined later
we show (using a suggestion of S. K. Thomason) that if S is a modal system
between K and $4, then every problem computable in polynomial space is log
space reducible to the provability problem in S. We then show that there are
polynomial space bounded algorithms for deciding if a formula is provable in any
one of K, T, and $4. This implies that the provability problem for each of systems
K, T, and $4 is log space complete in polynomial space. We also obtain upper and
lower bounds on the space complexity of the provability problem in each of the
systems K, T, and $4.

We show that the nonprovability problem for $5 is log space complete in
nondeterministic polynomial time. Hence the provability problem in $5 and the
provability problem in the classical propositional calculus have the same complex-
ity modulo polynomial time.

All our proofs depend heavily on the semantic models for modal systems
developed by Kripke [6].

As evidence that modal logic has some applications in Computer Science, we
point to the work of V. R. Pratt and R. Moore [8], who have developed a system of
modal logic as a basis for proving correctness and termination of programs. We
briefly explain their application. Assume we have some underlying programming
language and some underlying assertion language. For each program p define a
new syntactic object [p] which is understood to be a modal operator. We can now
form new assertions of the form [p]A where A is an arbitrary assertion. The
intuitive meaning of [p]A is that "if p terminates, then A holds." The fact that p
alvays terminates can be expressed by the assertion (p)true (where
(p)A de--[p]--A). The Hoare formula A {p} B is equivalent to the formula
A D [p]B. An advantage of this modal system over the Hoare system is that more
complicated assertions about programs are possible. For instance one can express
the fact that "if a program p terminates with A true, then subsequently the
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program q can terminate with B being true" by the assertion "[p](A (q}B)".
If is a finite alphabet, then define* to be the set of all finite words from

letters in E and A to be the empty word and E+= E*-{A}. If x, y E*, then Ixl
denotes the length of x, xy denotes x concatenated to y/and x denotes x
concatenated to itself n times (x=A, xk=x X

k-1 for k_->l). Let N=
{0, 1, 2, .}. If n -> 1, then log n is defined to be [log2 n] and log 0 0.

1. Modal logic. We define formulas so that they are words in a finite
alphabet. A variable is a member ofVAR- {0, 1}*$. A Booleanformula is either
a variable or has the form (A ^ B) or ---A where A and B are Boolean formulas.
The set of Boolean formulas, denoted by BF, is a subset of AB*F where AaF--
{, $, 0, 1, ^, ---, (,)}. A modalformula is either a variable or has the form (A ^ B),---A, or i-]A where A and B are modal formulas. The set of modal formulas,
denoted by MF, is a subset of A*F where AaF- ABFU {[-1}. A formula of the form
[-IA is read "necessarily A". Another modal operator, , is defined byA
---fi---A and can be read as "possibly". Technically and the standard logical
operators ^, , do not appear in modal formulas, but for convenience they do
appear in modal text. We also may drop parentheses from formulas to improve
readability.

We will systematically use ^, v, as both logical symbols and as the Boolean
operations on { T, F} they represent.

Let PC (for propositional calculus) be some complete set of axioms for the
valid Boolean formulas where the rules of inference are substitution and modus
ponens. A modal system is a set of modal formulas. If S is a modal system, then
define the provability relation, -s, inductively as follows.

(i) sa if a PCU S,
(ii) b-sA’ ifsA and A’ is the result of substituting uniformly in A a modal

formula for a propositional variable (Rule of Substitution),
(iii) sB if b-sA and -sA B (Modus Ponens),
(iv) -s[A if b-sA (Rule of Necessity),
(v) k-s is the smallest relation satisfying (i)-(iv).

If -sA, then we say that A is provable in S and we define S-PROVABLE
{A MF" t-sA}.

There are at least four important modal systems, K, T, $4, and $5 which are
defined by

K {a(x = = z Y)},

T=K U {FIX X},
$4 TU {IX [IV1X},
$5 $4 O{OX 0OX},

(X and Y are specific members of VAR.)
The reader unfamiliar with modal logic can appeal to Hughes and

Cresswell [4].
Very useful semantic models for many modal systems were discovered by

Kripke [6]. In particular, there are such semantics for the four systems K, T, $4,
and $5. In the remainder of this section the facts we state are either due to Kripke
[6] or are attributed to him.



MODAL PROPOSITIONAL LOGIC 469

A model structure is a triple (W, R, V) where W is a set, R is a binary relation
on W, and V is a mapping from VAR W into {T, F}. The set W is a set of
"possible worlds", R determines which worlds are "accessible" from other
worlds, and V determines what is true in each of the worlds. Given a model
structure (W, R, V) the mapping V can be extended to MF W inductively as
follows:

V(A ^B, w)= T iff V(A, w)= T and V(B, w)= T,

V(--.A, w)= T iff V(A, w)= F,

V([-1A, w)= T iff for all w’ W, if wRw’, then V(A, w’)= T.

Define (W, R, V) to be a K-model if it is a model structure and to be a (i)
T-model, (ii) S4-model, (iii) S5-model if R is respectively (i) reflexive, (ii)
reflexive and transitive, (iii) reflexive, transitive and symmetric.

Let S {K, T, $4, $5}. Define a modal formula A to be S-satisfiable if there
is an S-model (W, R, V) and a world w e W such that V(A, w)= T. Let S-
SATISFIABLE {A MF:A is S-satisfiable}. Define A to be S-valid if -A is
not S-satisfiable. Let S-VALID {A MF :A is S-valid}. The crucial fact we use
later is:

FACT 1.1 (Kripke). For all S {K, T, $4, $5} S-VALID S-PROVABLE.
The modal degree of a formula is defined inductively: the modal degee of a

variable is 0; degree of ---A degree of A; degree of A ^ B max{degree of A,
degree of B}; and degree of V1A 1 + degree of A.

2. Computational complexity. We adopt the Turing machine model of
computation to measure time and space complexity. The reader may refer to
Hopcroft and Ullman [3, Chap. 10] for background.

To be specific, our Turing machines will have three tapes" a two-way
read-only input tape, one-way write-only output tape, and a two-way read-write
work tape. Associated with such a machine are finite alphabets" (input
alphabet), A (output alphabet), and F (work tape alphabet); also a finite set of
states O, a start state q0 and a transition function

t" O X F- 2r(AU{x})x{R’L}.

Given a state, a symbol being read on the input tape, a symbol being read on the
work tape, the machine does one of a finite number of "moves" each of which
consists of going to a new state, writing a symbol on the work tape, outputting
either a symbol or A and moving the input tape and work tape heads. As defined,
our Turing machines are nondeterministic. A Turing machine is deterministic if the
cardinality of 6 (q, r, -) =< 1 for each triple (q, tr, -) O x E F.

Given an input x E*,a computation of T on input x is a finite sequence of
configurations of the Turing machine which begins in the starting configuration
(the machine is in state q0, input tape contains x with the input head on the first
letter of x, and the other tapes empty), each other configuration follows from the
previous one via the transition rule, and ends in a configuration from which no
configuration can follow. A Turing machine T runs in time t N N if for each n
and each x Z* such that Ix[ n every computation of T on input x has length
<-t(n). A Turing machine Truns inspace s: N- Nif for each n and eachx Z* of
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length n at most s(n) distinct tape cells on the work tape are scanned in each
computation of T on input x.

A set L
_
* is computable in nondeterministic time (space) r if there is a

Turing machine T that runs in time (space) r such that for all x *, x L iff there
is a computation of T on input x such that T outputs some symbol during that
computation. A setL is computable in time (space) r if in the above definition the
Turing machine is deterministic. A function f:Z*- A* is computable in time
(space) r if there is a deterministic Turing machine T that runs in time (space) r
such that for all x E*, when T halts on input x the machine has outputted the
string f(x ).

We define NP-TIME (NP-SPACE) to be the class of sets L such that there is
a polynomial p such that L is computable in nondeterministic time (space) p.
Similarly P-TIME (P-SPACE) is the class of setsL such that there is a polynomial
p such that L is computable in time (space) p. A result of Savitch [9] implies P-
SPACE =NP-SPACE. There is the obvious containment relationship P-
TIME

_
NP-TIME

___
P-SPACE. It is open whether or not either containment is

proper.
If s: N-,N, then define (N)SPACE(s(n)) the class of sets computable in

(nondeterministic) space s. We don’t define the analogous time complexity classes
for the same reason that we don’t bother with multiple work tapes; the methods
we use cannot be used to distinguish polynomial time complexity up to the degree
of the polynomial.

Given sets L* and MA* we say that L is log space reducible to M
(L <-og M) if there is a function f:* - A* such that f is computable in space log
and for all x 6E*, x eL ifff(x)M. We sometimes say L--<ogM via f. The
relation -<log is reflexive and transitive (cf. Stockmeyer and Meyer [12] or Jones
[5]).

Let 6e be a class of sets. A set L is log space complete in 5 if L oW and for all
M 6, M <--og L. Cook [2] implicitly showed the existence of log space complete
sets in NP-TIME while Stockmeyer and Meyer [12] showed the existence of log
space complete sets in P-SPACE.

There is a well known relationship between complete problems and open
problems concerning P-TIME, NP-TIME, and P-SPACE.

FACT 2.1. IfL is log space complete in NP-TIME,then L P-TIME if and
only ifP-TIME NP-TIME.

FACT 2.2. IfL is log space complete in P-SPACE, then
(i) L 6 P-TIME if and only ifP-TIME P-SPACE,
(ii) L 6 NP-TIME if and only ifNP-TIME P-SPACE.
If l:NN and f: Z*A* then f is length l(n) bounded if for all xZ*,

If(x)l <--/(Ix I). The following fact due to Stockmeyer and Meyer [12] and Jones [5]
is helpful later in establishing lower bounds.

FACT 2.3 (Stockmeyer and Meyer, and Jones). IfA ----<logB via f where f is
length l(n) bounded, then A is in (N)SPACE(s(l(n))+logn) should B be in
(N)SPACE(s(n)).

Let Aov Av I_J {/, ::1}. A quantified Booleanformula (QBF) is a member of
Av of the form OXO_zXz" Q,X,A(X,..., X,) where O {’, q},X
VAR for 1 =< =< n and A (Xa, , X,) BF whose variables are contained in
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Xl, .,X The propositional variables range over { T, F} so that ifA QBF, then
the value of A is either T or F.

Define
B,,, {A QBF’A T},

B1 {A QBF f3 (EIVAR)*BF"A T}.
The set B, is the set of all valid quantified Boolean formulas, while B1 is

essentially the set of all satisfiable Boolean formulas.
Stockmeyer and Meyer [12] have shown
FACT 2.4 (Stockmeyer and Meyer). B,, is log space complete in P-SPACE.
A more precise delineation of B, is given in Stockmeyer 11 ].
FACT 2.5 (Stockmeyer). Let d be an integer >-1. IfA NSPACE(nU), then

there is a function f and a constant a > 0 such thatA <-log B, via f and f is length
an2 log n bounded.

Whenwe investigate the complexity of $5 we will need a result of Cook [2].
FACT 2.6 (Cook). B is log space complete in NP-TIME.
Because of the transitivity of <-log we can show that every problem comput-

able in polynomial space is log space reducible to, say, L if we can show that B,, is
log space reducible to L. In what follows we use B,, as a cornerstone in analyzing
the space complexity of modal systems between K and $4.

One useful fact that we use later is:
FACT 2.7. If Bo, <-logA viaa length l(n) boundedfunction, then B,o <-logA via

a length l(n + 5) bounded function.
Proof Letf be such that B., <-logA via]’ andf is length l(n) bounded. There

is a g such that B., <-log [,, via g and g is length n + 5 bounded. Let x e ACBF and let
n Ix[. It can be determined in space log n whether or not x QBF. Ifx QBF,
then define g(x)= (=1$)$. If x QBF then define g(x)= QIXI"’"
where x QIX1 Q,,X,,A,A BF, V =1 and =! ’V’. Clearly, x e B,, if and only
if g(x)B.,. Now, B., is log space reducible via f.g which is length l(n +5)
bounded. Q.E.D.

3. Log space reduction of Bo, to modal systems between K and $4. We say
that a modal system S is between Sa and $2 if SI-PROVABLE_cS-
PROVABLE

_
S2-PROVABLE. In this section we prove the following.

THEOREM 3.1. If S is between K and $4, then B,, is log space reducible to
S-PROVABLE.

Proof. The crux of the proof is to show that given any quantified Boolean
formula A, a modal formula B can be constructed (using only logarithmic space)
with the properties: (i) A B,, implies B S4-SATISFIABLE and (ii) B K-
SATISFIABLE implies A B,o.

In light of Fact 2.7, the following claim yields the theorem.
CLAIM. A B., if and only ifB S-PROVABLE.
If A e B.,, then by (i) B e S4-SATISFIABLE and hence ------B e S4-

SATISFIABLE. By the definition of S4-VALID, ---B S4-VALID. By Fact 1.1,
---B S4-PROVABLE. Since S-PROVABLE

__
S4-PROVABLE, thenB S-

PROVABLE. On the other hand if ---B S-PROVABLE, then because K-
PROVABLE c_ S-PROVABLE, then ---B K-PROVABLE. Again using Fact
1.1, B K-SATISFIABLE, which in turn implies by (ii) that A B,,.
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Let A (IX1 O,,X,,A’(X1, ", X,,) QBF where Oi {V, ::!} andX/
VAR for l<=i<-m, and A’(Xa,...,X,,)6BF. Let Yo,’",Y,, and
Z1, , Zl+og,, be new variables an for 0 <- <=mand 1 <_- <= 1 + log m define
/3ij if the ]th bit of written as a binary number of length 1 + log rn is 1 and

fl a otherwise.
Define B to be the conjunction of the following formulas"

(1)

(2)

(3)

(4)

(5) [](m)(y/z) (O(y/+1AX/+I) A O(Y/+1A -’--X/+l)))

(6) [-](m)(Y = A’),

for 0 <_- <_-- m,

for 0< --< m,

if Oi+ and 0 --<_ < m,

where [-I(")D D ^ VID ^ [-]2D ^. ^
The intuitive meaning of (")D is that in any model structure (W, R, V),

V([’](mD, w) T if and only if D is true in any world reachable from w in steps
where 0 =< =< m.

The idea behind the formula B is to "simulate" the quantifiers of A. The
variables Y are used to set up levels corresponding to the levels of quantification
in A. The formula Y is true in each world on level i. If the ith quantifier of A is
universal, then (5) guarantees a splitting for each of the two possibilities for X. At
the final level, m, A’ must be true. We begin by showing (i) mentioned earlier.

A B, implies B S4-SATISFIABLE. Suppose A B,,; then B is satisfied
in the S4-model, (WA, RA, VA). The set of worlds is a finite subset of {0, 1}*
defined inductively by

(a) a
(b) if w WA and wl < m, then

(bl) w0 and w i WA if and only if O+l V,
(b2) wOe Wa if and only if

(e) WA is the smallest set satisfying (a) and (b).
The members of WA form a tree with respect to extension. The tree is binary

branching at level if O+1 V and is unary branching if O+1 =1. The accessibility
relation RA is defined by

XRa y itt X is a prefix of y.

Clearly RA is reflexive and transitive. Finally we define VA inductively on the
length of w in such a way that

(a’) if [w[ i, then VA (’Yb W)--- T
(b’) if Iw01 [w 11 and Qi V, then VA (X, wO) VA (X, w 1),
(c’) if [wl >], then VA (X, w) VA (X., w’) where w’ is the prefix of w of

length i- 1,
(d’) if [w I=i, then Oi+lX+" Q,,,X,,A’(VA(X1, w),. .., VA(X, W),

Xi+l, ,Xm)-- T.
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Assume (a’)-(d’) hold for all numbers <i. Let Iwl i. Set VA (Z., w)= T if
/3q=A, VA(Z’, w)=F if /3q =’, VA(Y’, w)=F if ]i, and VA(Y, w)= T. If
1 _<-f < i, then set VA (X., w)= VA (X., w’) where w’ is the prefix of w of length
i-1. If j > i, then set VA (Xi, w)= T.

If i=0, then (a’)-(c’) hold by definition and (d’) holds because A 6B,.
Assume then that >0; then all that remains is the value of VA (X, w).

If Qi=’, then set VA(X, W)= T if the last letter of w is 1 and set
Va (Xi, w) F otherwise.

If Q El, then set VA(X, W)= V where Q+IX//I QmXmA’(VA(X1, w),
", VA (Xi- 1, w), V, Xi/l," ", Xm T. Such a V { T, F} exists because of the

induction hypothesis.
It is straightforward to check that the induction hypothesis holds at i.
To establish that B S4-SATISFIABLE, we show that VA(B,A) T.

Clauses (1) through (5) in the definition of B hold by the construction of VA.
Clause (6) holds because by (a’) if [w < m, then VA(Ym, w)--F and by (d’) if

Iwl- m, then VA (A’, w)= T.
As an example of the preceding proof consider the formula ’qXI::IX2(X1

X2). This formula is true and its modal companion B is satisfied in the S4-model
graphically displayed in Fig. 1.

A
Yo(2) Z,(1) X,

Z2(1) X2
Y,(I)
Y2(1)I

II

T F

Z2(1) ZI(1) X2
Y,(5) Y,(5) Yo(1)

X(5) Y2(1)
IX1(511

00 10

T F E T F

Z1(1)1Z:(1) Z,(1) Z2(1)
Y2(3)1 Yo(1) Y2(3) Yo(1)

Y(1) X1(4) Y(1)
X,(4) X2(6)
X2(6)

T--variables that must be true.
F--variables that must be false.
E--variables that can have either value.
The number in parentheses indicates the clause orb thatforces the value
of the variable.
The arrows represent the Hasse diagram of the accessibility relation.

FIG 1. S4-modelsatisfyingB associated with VXI:]X2(X 22)
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B e K-SATISFIABLE implies A e B,,. Suppose that B is K-satisfiable in a
model structure (W, R, V). We define a mapping, o-, of Wa into W inductively as
follows.

(a") Choose or(A) such that V(B, r(A))= T,
(b") if Iw{ > 0 then choose o-(w) W such that r(w’) R or(w) where w’ is

the prefix of w of length i- 1 and
1. v(n(m-i)(gl.-]lZ A’’" A j(l+logm)Zl+logm), o-(w)) T for 0<

j _-< rn (by clause (1) of B),
2. V(Y, tr(w)) r (by clause (3) of B),
3. v(n(m-i)(Y (C)Y+l),o’(w)) rfor0<_-j<m (byclause (3)orB),
4. g(O(m-i)(g] D((X/. D0(m)x]) ^ (--.X/. D0(m)"X/-))), O’(W)) r for

0 </" <-rn (by clause (4) of B),
5. V(0(’-’)(Y D((Y.+I AN+I)^ O(Y+I ^ --’X+I))), tr(w))= T if

Qj+I =V and O<-_.i<m (by clause (5) of B),
6. V(0("-i(Y,, D A’), tr(w)) T (by clause (6) of B),
7.-either V(0(’-i)X, tr(w))= r or V(0("-i)---X, tr(w))= T for ] <_-i

(by the induction hypothesis for/" < and by 2 and 4 above for/" i),
8. V(X., tr(w)) V(X., tr(w’)) if] < and w’ is the prefix of w of length

i-1 (by 7 above),
9. V(X/, tr(w))= T if Qi V and w ends in 1 (by 2 and 5 above),

10. V(X/, tr(w))= F if Qi V and w ends in 0 (by 2 and 5 above).
We leave it to the reader to convince himself that such a mapping exists

because B is K-satisfiable.
We may show by induction on rn- that if [w i, then

li+lX/+l O,,X,,A’(V(X1, o’(w)), V(X, or(w)), X+, X,) T.

If Iwl=m then V(Y,,o’(w))= T and V(Y,,A’,o(w))= T. Thus
V(A’, o-(w))= T, which implies the equality for m- 0.

Let ]w[ i-1. It is straightforward to show that 8, 9, 10 above and the
induction hypothesis imply the equality for w.

It remains to be shown that B can be constructed in logarithmic space given
A. Technically speaking, we should be considering a mapping from ABF to A*F,
but it takes only space log n to check that a member of ABv is a member of QBF,
so that we can essentially ignore non-well formed formulas. The ability to count
the number of quantifiers inA is really all that is necessary in order to construct B.
This amounts to a log n space bound. We leave the details to the reader. Q.E.D.

We originally just showed that B,, was log space reducible to each of T and
$4. Subsequently S. K. Thomason showed us how to extend the proof to obtain
the result for all systems between K and $4.

4. Space lower bounds for provability in K, T, and $4. We begin by trying to
find the most efficient log space reductions of g,, to each of K, T, and $4.

LEMMA 4.1. For each S {K, T, $4} there is a function fs such that B., --<log S-
PROVABLE via where fs is length l(n) bounded and

(i) S K implies/(n)= O(n/log2 n),
(ii) $ T implies/(n)= O(n/log n),
(iii) $ $4 implies l(n)= O(n log n).
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Proof. Let A Q1X1 Q,X,A’ where A’ BF and let n [A 1. Without
loss of generality we can assume thatX # iS where # is the ith binary string
in the ordering h, 0, 1, 00, 01, 10, 11,000,. . It is important to notice that
Ixl_-<2 +log i. If the Z’s and Y’s are chosen as follows, Y =#(m + i)$ for
1 _-< _-< m, andZ # (2m + i)$ where 1 -<_ -<_ 1 + log m then [YI -<- 1 + log m and
]Z[-< 2 + log m. Note that rn O(n/log n).

Technically speaking, in Theorem 3.1 we reduced B,, to the complement of
S-PROVABLE. By Fact 2.7 there is no loss (except for constant factors) in using
the length bound of the reduction of B,, to the complement of S-PROVABLE as
the length bound of the reduction of B,o to S-PROVABLE itself.

Case (i). S K. To begin with we more efficiently encode [3(’)D as D ^[q(D ^ [-I(D ^... (D ^ [-1D))...) so that O(mlDI). Another improve-
ment is to factor q(") out using the rule ](")(C ^ D)=q()C ^ (")D. Notice also
that [Y =/IZ ^’" ^/(l+log,)Zl+log,[- O(1og m). From this we can see that
(4)" and (6) dominate the length of B with lengths O(m 3 log m) and O(mn)
respectively. We have that IB[ is O(n3/log2 n),

Case (ii). S= T. We may replace ](" with just [3 m. Again (4) and (6)
dominate with lengths O(m 2) and O(n) respectively. Hence IBI is O(nZ/log n).

Case (iii). We replace fit’) with simply ft. In this case (1) and (6) dominate
with lengths O(m log m) and O(n) respectively. Hence [BI is
O(n log n). Q.E.D.

In the spirit of Stockmeyer 11 we use the lemma to show lower bounds on
the space complexity of provability in K, 7", and $4.

THEOREM 4.2. IfS {K, T, $4} and S-PROVABLE NSPACE(s(n)), then
there is a constant c > 0 such that

(i) S K implies s(n)> c(n/log n)1/6 for infinitely many n,
(ii) S T implies s(n)> cn 1/4 for infinitely many n,
(iii) S $4 implies s(n)> c(n/log2 n)1/ for infinitely many n.

Proof. We begin with a proof of (i) which parallels almost exactly a proof of
Stockmeyer [11, Cor. 6.6]. Suppose to the contrary that K-PROVABLEe
NSPACE(s(n )) where for all c >0, s(n)<=c(n/log4 n)1/6 for all but finitely many
n. We may assume that s is a nondecreasing function.

By the hierarchy theorem of Seiferas, Fischer and Meyer [10], we can
conclude that there is a set A e NSPACE(n) such that for all s’ if lim, (s’(n +
1)/n)=0, then AC:NSPACE(s’(n)). By Fact 2.5 A <--logB via a length
O(n 2 log n) bounded function. By Lemma 4.1, B,, log K-PROVABLE via a

length O(n3/logn) bounded function. Hence A _-<log K-PROVABLE via
.a length O(n 6 log n) bounded function. By Fact 2.3, A
NSPACE(s(an61ogn)+logn) for some constant a>0. For all c>0
s(an61ogn)<=cn for all but finitely many n, contradicting the fact that
A NSPACE(s’(n))if lim, (s’(n + 1)/n)= 0.

The proofs of (ii) and (iii) are analogous if we use the facts that if A e
NSPACE(n), then A--<log T-PROVABLE via a length O(n 4) bounded
function and A <-ogS4-PROVABLE via a length O(n21ogn) bounded
function. O.E.D.

5. Space upper bounds for provability in K, T, and $4. In this section we
show that for S {K, T, $4}, S-PROVABLE P-SPACE. In essence we actually
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show that S-SATISFIABLE P-SPACE. This may be surprising to some since
there are modal formulas A, of length O(n log (n) loglog (n)) with the property
that A, S4-SATISFIABLE and if (W, R, V) is an $4-model of A,, then the
cardinality of W is -2. What allows us to compute S SATISFIABLE in
polynomial space is the fact that if A is S-SATISFIABLE, then it is in a tree-like
model structure, with each branch of only polynomial length. Hence the structure
can be constructed one branch at a time.

THEOREM 5.1. For S {K, T, $4}, S-PROVABLE 6 P-SPACE.
Proof. The algorithms that we will give are simply reformulations of the

corresponding algorithms of Kripke [6] in such a way to optimize the space used.
We do not necessarily give the most efficient algorithms, because we wish to
present algorithms that are both understandable and run in polynomial spa,cez

We begin with a procedure K-WORLD which has parameters (, , -, ),
where each parameter is a finite set of modal formulas; the value of K-WORLD
(-, , if,) is true if there is a K-model (W, R, V) and a w W such that

V( A A^ A---A^ UA ^ A [3A, w)= T,
A 57 A 5 A A e S,

otherwise its value is galse. More intuitively, K-WORLD(-, , -,) is true if
there is a world w in which all the formulas of - are true, all the formulas of are
false, in each world accessible from w each member of - is true, and for each
member, B, of there is a world accessible from w where B is false.
procedure K-WORLD(-, , , )"
begin

it U YgVAR then
begin

1. choose A -U-VAR;
2. itA -B andA -then return K-WORLD(--{A},,U {B}, if-, );
3. iiA ---B andA then returnK-WORLD(-U {B}, -{A}, -, );
4. it A B ^ C and A - then return K-WORLD((-U {B, C})-{A}, ,
5. ii A B ^ C and A 6 then return K-WORLD(-, (U{B})-{A }, -,

) v K-WORLD(-, (U{C})-{At, -, );
6. itA [-1B andA 6 -then returnK-WORLD(--{A },, - t.J {B}, );
7. if A =[3B and A - then return K-WORLD(T, F-{A}, -, oU{B})

end;
if -U

_
VAR then

begin
8. it - then return false;
9. if-= then return/K-WORLD(-, (B, , )

end
end

(Note. The conjunction over the empty set is defined to be true.)
On line 1 we say "choose A 6 -U -VAR". We do not intend this as a

nondeterministic step; it is just that it does not matter in what specific order the
lists - and 0% are maintained.
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The proof that K-WORLD works is essentially the same as that for Kripke’s
corresponding algorithm [6]. We can now give an algorithm for testing whether or
not a modal formula A K-PROVABLE.

Test forA K-PROVABLE.

begin
read A;
v ----K-WORLD({---A}, , , );

The value of v determines ifA is K-provable. This of course exploits the fact that
A K-PROVABLE if and only if --A K-SATISFIABLE.

We now examine the space complexity of this algorithm. The recursive
nature of the algorithm is implemented on a Turing m.achine by simulating a stack.
At each level of recursion the members of 3, , -, are just sets of subformulas
of ---A so that their values an be indicated by using "pointers" to ---A.

To implement the pointers, copy the original formula onto the stack and
place a mark on the major connective of each subformula pointed to. There are
four types of marks, one for each of the four subsets. The storage at each level of
recursion is O(n). We will also show that the numbers of levels of recursion is
O(n) so that the total space used is O(n 2).

If is a finite set of formulas then define I el; Y.A:I.A[ We show by
induction on n [3-[ + / 121+ that K-WORLD(3-, o, ,) has at most
2n + 1 levels of recursion. Assume the result for all numbers <n. Let the first
recursive call of K-WORLD(3-, , if-,) be to (3-’, ’, 3-," ’). If 3-U: ,
then by a case-by-case analysis I ’1 + I ’1 + I -’1 + < n. If -U=, then we
must be at line 9 of the program, so that’, which reduces us to the case
-’U’ . Hence every two levels of recursion reduces I -I / / / by
at least 1. Thus K-WORLD({---A}, , , ) has recursion depth -<21A[+ 1.

We now argue that T-PROVABLE SPACE(n3). Only slight modifications
of the procedure K-WORLD are necessary to produce the analogous procedure
T-WORLD.

(T- 1) Replace all K’s with T’s.
(T-2) Replace line 6 with

"if A B and A 3- then return T-WORLD((TU{B})-{A}, ,
If Y is a set of modal formulas then define deg(6)= max{modal degree of

C" C e 6e}. In this case the storage at each level of recursion remains O(n) but the
recursion depth is O(n2). This can be seen by noticing that there can be at most
O(n) successive recursive calls all with flU VAR; and if -’, ’ and -","are the values of - and on successive calls with -UVAR, then
deg(-" U "’) < deg(-’ U ’). Since the degree of any set of subformulas of ---A is
_-<n, then there can be at most O(n 2) levels of recursion. The total space is O(n 3).

More elaborate changes to T-WORLD are necessary to obtain an analogous
procedure S4-WORLD. We need the ability to check if the current world is
exactly the same as a prior world. To do this we introduce a new parameter
which is a sequence {(-1, B1), (-2, B2)," ", (-/, Bg)} where ’1 ’2 C’" " "k
are sets of modal formulas and B1,’’ ",B are modal formulas. The value of



478 RICHARD E. LADNER

S4-WORLD(-, , -, ,) is true if there is an S4-model (W, R, V) and a
sequence of words Wl, ", Wk, W in Wwith the properties: (a) Wi/l is accessible
from wi and w is accessible from wk; (b) V(/Ae-iA ^ --B, w.)= T for each i;
and (c) V(AAey-A ^/k,. --A ^ AAe. [3A ^AAe .--[3A, w) T.

For clarity we give the entire algorithm for S4-WORLD. The major changes
are in lines 6 and 9.
procedure S4-WORLD(-, , -, , );
begin

if -U VAR then
begin

1. choose A -LJ-VAR;
2. iiA =-B andA e - lhen return S4-WORLD(--{A},U {B}, 2, ,

);
3. iiA =-B andA e hen remm S4-WORLD(-U {B}, -{A}, 2, ,

);
4. ffA B ^ C andA 6 W then return S4-WORLD((-U {B, C})-{A },,
5. iiA B ^ C andA e then return S4-WORLD(-,(U {B})-{A}, if,, ’)v S4-WORLD(-, (U{C})-{A}, , , ’);
6. if A=F1B and A- then return S4-WORLD((-U{B})-{A}, ,

-U{B}, ’, );
7. irA =fiB andA then return S4-WORLD(-, -{A}, -, U{B},

end;
if -U VAR then

begin
8. if -t # then return false;
9. if- and # then return/B,(#,B)Ze S4-WORLD(ff, {B},-, ,. (if, B));

return true
end

end
(Note that . (, B) is the sequence extended with (-, B) and the

conjunction over the empty set defined to be true.)
Test forA S4-PROVABLE.

begin
read A
v <--S4-WORLD({A}, , , , );

end

The value of v determines if A is S4-provable. We leave the verification of the
algorithm to the reader.

Let n IA I. In order to improve the space complexity of the algorithm we
should let be a global stack. If ’-{(’-I, B1) (-2, B2),..., (-k, Bk)} then
31_ 3-2_’"_ 3"k

_
subformulas of A. Since no repetitions can occur in the

sequence, then k -< n 2. Hence O(n 3) storage suffices for S. What remains is an
analysis of the number of levels of recursion in S4-WORLD. Since is now a
global stack, then O(n) is all that is needed at each level of recursion. As before
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there can be at most O(n) successive recursive calls all with -UgVAR.
Further, because the cardinality of is bounded by O(n2) there can be at most
O(n 2) depth of recursive calls withUr_ VAR. Thus the recursion depth is
O(n3). Total space is bounded by O(n4). Q.E.D.

To summarize the specific space bounds we give this corollary to the proof of
Theorem 5.1.

COROLrAR 5.2. K-PROVABLE SPACE(n2), T-PROVABLE
SPACE(n 3), and S4-PROVABLE SPACE(n4).

We do not claim that these bounds are best possible, but they do guarantee
that these problems are computable in polynomial space.

COROLLARY 5.3. For S {K, T, $4}, S-PROVABLE is log space complete in
P-SPACE.

6. The complexity oi provability in $5. The provability problem in S5 seems
to be easier than that for the systems we have considered so far. For example, in T,
K and $4 we can construct satisfiable formulas which are only satisfiable in
exponential size model structures. This phenomenon does not happen for S5-
satisfiability Hence we can only show that S5-SATISFIABLE is log space
complete in NP-TIME.

LEMMA 6.1. I]’A S5-SATISFIABLE has m modal connectives, then A is

S5-satisfiable in an S5-model with <-m + 1 worlds.
PROOF. Let A be satisfied in an S5-model (W, R, V). We may assume that

uR v for all u, v W. We construct a mapping r from all instances of subformulas
of A into W in such a way that A is S5-satisfied in
(Range(o-), R IRange(o-), VIRange(r)) and the cardinality of Range(r) _-<m + 1.

The function r is defined inductively on the instances of subformulas of A.
(i) Choose r(A) e w such that V(A, r(A)) T,
(ii) r(C)= o’(B) if B -C,
(iii) o’(C) r(D) o’(B) if B C ^ D,(iv) r(C) r(B) if B [IC and V(B, r(B)) T,
(v) ifB [C and V(B, r(B)) F, then choose o-(C) e W in such a way that

V(C, r(C)) F.
Clearly the cardinality of Range(w)m / 1. Let W Range(w) and let R’

and V be respectivelyR and V restricted to W. We may show inductively that for
each instance of a subformula B of A, V(B, or(B))= W(B, or(B)). Q.E.D.

THEOREM 6.2. SS-SATISFIABLE is log spce complete in NP-TIME.
Proof. Trivially BI is log space reducible to SS-SATISFIABLE,

X 3XA B if and only if A SS-SATISFIABLE.
It remains to show that SS-SATISFIABLE NP-TIME. LetA MF and let

[A n. ByLemma 6.1 A SS-SATISFIABLE if and only if there is an SS-model
(W, R, V) with the cardinality of W n / 1 and a w W such that V(A, w) T.
Such a modl can be "guessed" nondeterministically and checked in polynomial
time. Q.E.D.

7. Conclusion. It would be interesting to determine cut off points between
$4 and $5 where the complexity of satisfiability changes from complete in
P-SPACE to complete in NP-TIME. We conjecture that S4.3-SATISFIABLE is
log space complete in NP-TIME.
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Another interesting area is the complexity of provability or validity in
intuitionistic propositional logic (IC). J. Cherniavsky 1 claimed that the nonvalid
formulas in IC can be determined in NP-TIME. He has since informed us of
mistakes in his proof. We conjecture that provability in IC is log space complete in
P-SPACE. There is a very simple reduction of IC to $4 given by McKinsey and
Tarski [7]. Define - inductively:

(i) -(A)=A if A is a variable,
(ii) -(A ^ B) -(A) ^ ’(B),
(iii) ’(a D B) [:](-(a) -(B)),
(iv) ’(---a) [-I -(a).

Now, A is IC-provable if and only if -(A) is S4-provable. Thus IC-
PROVABLE e P-SPACE. All that remains is to show that B, or some other
complete set is log space reducible to IC-PROVABLE.

Acknowledgments. We appreciate the suggestions of S. K. Thomason in
obtaining the results of 3. Also we are indebted to J. Cherniavsky in providing
helpful ideas that we used in our algorithms for K, T, and $4.

Note added in proof. M. J. Fischer has suggested a new construction which
improves the bounds of 4. For example S K implies /(n)= O(n2/log n) in
Lemma 4.1.
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