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Abstract. We present a bounded probability algorithm for the computation of the
Chow forms of the equidimensional components of an algebraic variety. In particular,
this gives an alternative procedure for the effective equidimensional decomposition
of the variety, since each equidimensional component is characterized by its Chow
form.

The expected complexity of the algorithm is polynomial in the size and the geo-
metric degree of the input equation system defining the variety. Hence it improves (or
meets in some special cases) the complexity of all previous algorithms for computing
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Chow forms. In addition to this, we clarify the probability and uniformity aspects,
which constitutes a further contribution of the paper.

The algorithm is based on elimination theory techniques, in line with the geometric
resolution algorithm due to M. Giusti, J. Heintz, L. M. Pardo, and their collaborators.
In fact, ours can be considered as an extension of their algorithm for zero-dimensional
systems to the case of positive-dimensional varieties. The key element for dealing
with positive-dimensional varieties is a new Poisson-type product formula. This
formula allows us to compute the Chow form of an equidimensional variety from a
suitable zero-dimensional fiber.

As an application, we obtain an algorithm to compute a subclass of sparse resul-
tants, whose complexity is polynomial in the dimension and the volume of the input
set of exponents. As another application, we derive an algorithm for the computation
of the (unique) solution of a generic overdetermined polynomial equation system.
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Introduction

The Chow form of an equidimensional quasiprojective variety is one of the basic
objects of algebraic geometry and plays a central role in elimination theory, from
both the theoretical and practical points of view.

Let V ⊂ Pn be an equidimensional quasiprojective variety of dimension r
and degree D defined over Q. Its Chow form FV is a polynomial with ratio-
nal coefficients—unique up to a scalar factor—which characterizes the set of
overdetermined linear systems over the projective closure V . More precisely, let
U0, . . . ,Ur denote r + 1 sets of n + 1 variables each, and set Li := Ui0 x0 +
· · · + Uin xn for the linear form associated to the set Ui for 0 ≤ i ≤ r . Then
FV ∈ Q[U0, . . . ,Ur ] is the unique—up to a scalar factor—squarefree polynomial
such that

FV (u0, . . . , ur ) = 0 ⇔ V ∩ {L0(u0, x) = 0, . . . , Lr (ur , x) = 0} �= ∅
for u0, . . . , ur ∈ Cn+1. This is a multihomogeneous polynomial of degree D in
each group of variables Ui . Thus we can directly read the dimension and the degree
of V from FV . In case V is closed in Pn , its Chow form completely characterizes
it, and it is possible to derive a complete set of equations for V from FV .

The main result of this work is that the computation of the Chow forms of all
the equidimensional components of a quasiprojective variety defined by means of
a given set of polynomials has a polynomial complexity in terms of the number
of variables, the degree, and also the length and the geometric degree of the input
system. The result is based on a new Poisson-type product formula for computing
Chow forms of equidimensional varieties from zero-dimensional fibers.

The complexity of all known general algorithms in algebraic geometry is (at
least) exponential in the worst case when the considered input parameters are
just the number of variables and the degree of the input system, and there is
strong evidence that this exponential behavior is unavoidable (see [35] and [12]).
However, it has been observed that there are many particular instances which are
much more tractable than the general case. This has motivated the introduction of
parameters associated to the input system that identify these particular cases, and
the design of algorithms whose performance is correlated to these parameters.

In this spirit, the straight-line program (slp for short) encoding of polynomials
was introduced in the polynomial equation solving framework as an alternative
data structure (see, e.g., [24], [29], [28]) and its length is now considered to be
a meaningful parameter measuring the input (see Subsection 1.2 below for the
definition of these notions and [55], [33], [8] for a broader background).

Soon afterward, the notion of geometric degree of the input polynomial system
appeared naturally as another useful parameter classifying tractable problems. For
a system of homogeneous polynomials f1, . . . , fs, g ∈ Q[x0, . . . , xn], the geo-
metric degree δ( f1, . . . , fs; g) is defined as the maximum degree of the quasipro-
jective varieties V (q1, . . . , qi )\V (g), 1 ≤ i ≤ n + 1, successively defined by
generic linear combinations q1, . . . , qn+1 of the input polynomials (multiplied by
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suitable monomials in order to match their degrees); we refer to Subsection 3.4
below for the details. This is always bounded by the Bézout number dn , where
d := maxi deg fi ; however, there are many significant situations in which the ge-
ometric degree is much smaller than this upper bound (see [44, Section 4] for a
particular example or [43, Proposition 2.12] for an analysis of the sparse case).

In [27] and [23], J. Heintz, M. Giusti, L. M. Pardo, and their collaborators
succeeded in classifying the tractability of polynomial equation solving in the
zero-dimensional case in terms of the length, and the geometric degree of the
input system. They presented an algorithm, the geometric resolution algorithm,
whose complexity is polynomial in the number of variables, the degree, the length,
and the geometric degree of the input system. Their algorithm (its structure and the
tools they applied) represents a milestone in symbolic resolution of polynomial
equation systems, and a lot of work has been done afterward to improve it, make
it implementable, and extend it to other situations (see, e.g., [30], [36]). Our main
theorem can be seen as a general extension of their result to arbitrary varieties:

Theorem 1. Let f1, . . . , fs, g ∈ Q[x0, . . . , xn] be homogeneous polynomials
of degree bounded by d encoded by straight-line programs of length bounded by
L . Set V := V ( f1, . . . , fs)\V (g) ⊂ Pn for the quasiprojective variety { f1 =
0, . . . , fs = 0, g �= 0} and let V = V0 ∪ · · · ∪ Vn be its minimal equidimensional
decomposition. Set δ := δ( f1, . . . , fs; g) for the geometric degree of the input
polynomial system.

Then there is a bounded probability algorithm which computes (slp’s for) the
Chow forms FV0 , . . . ,FVn within (expected) complexity s(nd δ)O(1)L . Its worst-
case complexity is s(ndn)O(1)L .

Let us make precise the formal setting for our computations. The basis of our
algorithms is the model of bounded error probability Blum–Shub–Smale (BSS
for short) machine over Q: our algorithms are probabilistic BSS machines that
manipulate slp’s. A probabilistic BSS machine is the algebraic analogue of the
classical notion of a probabilistic Turing machine, in which the bit operations are
replaced by the arithmetic operations {+,−, ·, /} ofQ. It enables us to implement
uniform procedures while “programming” using the basic operations of Q. This
model is well suited to control the algebraic complexity—that is, the number of
arithmetic operations—performed by the algorithm.

By bounded error probability we mean that the error probability of the machine
is uniformly bounded from above by 1

4 . For us, the natural notion of complexity in
this framework is then the expectation of the complexity seen as a random variable,
and not its worst case. The choice of the constant 1

4 as error probability is not
restrictive: for any given N ∈ N we can easily modify our machine (by running
it O(log N ) times) so that the final error probability is bounded by 1/N (see
Proposition 1.5 and Corollary 1.6 below). We refer to Subsection 1.2 for a detailed
description and discussion of the data structure and computational model. We
consider that the error probability analysis developed here is another contribution
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of the paper, since the previous papers on the subject are often imprecise in this
respect.

We note that in our situation, the dense encoding of polynomials does not admit
a polynomial time algorithm: if V is an equidimensional variety of dimension r
defined as the zero set of a family of polynomials of degrees bounded by d , its
Chow formFV is a polynomial of degree (r+1) deg V in (r+1)(n+1) variables.
So the dense encoding of FV (i.e., the vector of its coefficients) has(

(r + 1)(n + 1)+ (r + 1) deg V

(r + 1)(n + 1)

)
≥ (deg V )(r+1)(n+1)

((r + 1)(n + 1))!

entries, and hence it is not polynomial in deg V (which in the worst case equals
dn−r ). In fact, Corollary 2.11 below shows that in the above situation the slp
encoding of FV has length L(FV ) = (nd deg V )O(1)L .

For the problem of computing Chow forms, our algorithm fundamentally im-
proves the complexity of the algorithms in [41], [9], and [25] (which use dense
encoding of polynomials) and in [51] (which uses the slp representation for the
output). The only previous algorithm for the task whose complexity is in some
cases comparable to ours is the one by G. Jeronimo, S. Puddu, and J. Sabia [37],
which computes (an slp representation of) the Chow form of the component of
maximal dimension of an algebraic variety within complexity (sdn)O(1). Here,
we not only compute the Chow forms of all of the equidimensional components,
but we also replace the Bézout number dn by dδ, where δ denotes the geometric
degree.

Our algorithm also provides an effective geometric equidimensional decom-
position, since each equidimensional component is characterized by its Chow
form. Moreover, we can easily derive equations or a geometric resolution of each
equidimensional component from its Chow form (see Corollary 3.3 below). The
complexity of our algorithm meets or improves those of most of the previous
equidimensional decomposition algorithms: [13], [25], and [20] (which use dense
encoding of polynomials) and [38] and [46] (which use slp encoding). Its struc-
ture is similar to the one due to G. Jeronimo and J. Sabia [38]—which computes
equations for each equidimensional component—and to G. Lecerf’s algorithm in
[46]—which computes a geometric resolution of each equidimensional compo-
nent. In fact, ours can be seen as a unification of these algorithms. Besides, we
improve the complexity of [38] by replacing the quantity dn by the geometric
degree δ and with respect to [46], we improve the error probability estimate.

It is worth mentioning here the most recent equidimensional decomposition
algorithm by G. Lecerf ([48], see also [47]), which improves the previous ones in
several aspects. For instance, unlike his, our algorithm and the previous ones require
a preprocessing of the input polynomials by taking generic linear combinations.
This preprocessing may spoil the (potential) good behavior of the input and it also
prevents the algorithm from being incremental. However, his algorithm still lacks
an adequate error probability analysis.
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On the other hand, it is by no means obvious how to obtain the Chow form from
a geometric resolution within an admissible complexity. The difficulty lies in the
fact that the involved morphism is not finite but just dominant (see Remark 2.7).
In this paper, we exhibit a deterministic algorithm based on a new Poisson-type
formula, which performs this task within complexity (snd deg V )O(1)L (Main
Lemma 2.3). This is the key element in our algorithm and, probably, the main
technical contribution of the present work. It might be interesting to remark that
using Main Lemma 2.3 as a post-treatment to the output of the algorithm in [46]
would have led to an algorithm for computing Chow forms with similar complexity
results but a worse error probability estimate.

As a first application of our algorithm, we compute a particular class of sparse
resultants. The sparse resultant ResA—the basic object of sparse elimination
theory—has been extensively applied as a tool for the resolution of polynomial
equation systems (see, e.g., [57], [52], [21]); we refer to Subsection 4.1.2 for its
precise definition. Several effective procedures were proposed to compute it (see,
e.g., [57], [10], [11]). Recently, C. D’Andrea has obtained an explicit determi-
nantal formula which extends Macaulay’s formula to the sparse case [17]. From
the algorithmic point of view, the basic point of sparse elimination theory is that
computations should be substantially faster when the input polynomials are sparse
(in the sense that their Newton polytopes are restricted). Basically, the parameters
which control the sparsity are the number of variables n and the normalized volume
Vol(A) of the convex hull of the set A of exponents. None of the previous algo-
rithms computing sparse resultants is completely satisfactory, as their predicted
complexity is exponential in all or some of these parameters (see [11, Corollary
12.8]).

We show that the computation of ResA in case A ⊂ (N0)
n and A contains

0, e1, . . . , en—the vertices of the standard simplex of Rn—is an instance of our
main algorithm (see Subsection 4.1.2). We thus obtain:

Corollary 2. Let A ⊂ (N0)
n be a finite set which contains {0, e1, . . . , en}.

Then there is a bounded probability algorithm which computes (an slp for) the
A-resultant ResA within (expected) complexity (n Vol(A))O(1). Its worst-case
complexity is (ndn)O(1), where d := max{|α| ; α ∈ A}.

Hence our result represents a significant improvement in the theoretical com-
plexity of computing theA-resultant as we show it is polynomial in n and Vol(A).
We remark that to achieve this result, we had to abandon all matrix formulations.
In fact, this polynomial behavior of the complexity is out of reach of the known
matrix formulations, as in all of them the involved matrices have an exponential
size. It would be desirable to extend this algorithm in order to compute a general
mixed resultant. This point will be the subject of our future research.

As another application, we compute the unique solution of a generic overdeter-
mined system over an equidimensional variety V ⊂ Pn:
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Set r := dim V . Let u = (u0, . . . , ur ) ∈ (Cn+1)r+1 and set �i := Li (ui , x) =
ui0 x0 + · · · + uin xn for 0 ≤ i ≤ r . The set of coefficients u such that the linear
forms �0, . . . , �r have at least a common root in V contains a nonempty open
subset for which there is exactly one common root. It turns out that the coordinates
of the unique solution ξ(u) are rational functions of u, and can be easily computed
using the Chow formFV . We can successfully apply our algorithm to this situation
(see Section 4.2 for the details).

Finally, let us mention a very recent new application of our algorithm: C. Blanco,
G. Jeronimo, and P. Solernó apply it for the computation of a set of generators of
the ideal of a smooth equidimensional affine variety [4].

Now we briefly sketch our algorithm. The main structure follows that of the
geometric resolution algorithm in [27, 23].
In a first step, we prepare the input data: We take n+1 random linear combinations
of the input polynomials so that—with high probability—these new polynomials
define the same variety V and behave properly with respect to the dimensions and
radicality of certain ideals they successively define. We also take a random change
of variables to ensure good conditions for the considered projections. After this
preparatory step, we compute recursively the Chow forms of the components of
a non-minimal equidimensional decomposition of V . For 0 ≤ r ≤ n − 1, the
algorithm deals with an equidimensional subvariety W ′

r of the variety defined by
the first n − r polynomials.

The recursive step is as follows: From a geometric resolution of a zero-dimen-
sional fiber of W ′

r+1, we compute the Chow form of the variety obtained by inter-
secting W ′

r+1 with the set of zeros of the next polynomial. From this Chow form,
we obtain the Chow form of an equidimensional variety of dimension r which is
a subset of V and contains the equidimensional component of dimension r of V
together with a geometric resolution of the zero-dimensional fiber of W ′

r that is
needed for the next recursive step. The recursion yields the Chow forms of the
components of a nonminimal equidimensional decomposition of V . The required
minimality of the equidimensional decomposition (that is, the condition that no
irreducible component of Vr is included in Vr ′ for r �= r ′) imposes a third step in
which we remove the spurious components.

Finally, a word with respect to practical implementations: there is a Magma
package called Kronecker written by G. Lecerf (see [45]) which implements—with
remarkable success—the geometric resolution algorithm. As we already said, our
algorithm is closely related to this one, and so it seems possible that a deforested
version of it (in the spirit of [30] or [36]) might lead to an implementation using
this package as support.

The outline of the paper is the following: In Section 1 we recall the definition
and basic properties of the Chow form, and we make precise the data structure
and the computational model we will use. We also describe some basic subrou-
tines that we need in the sequel, and we estimate their complexities. In Section
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2 we present a deterministic algorithm for the computation of the Chow form
of an equidimensional variety from a particular zero-dimensional fiber, provided
some genericity conditions are fulfilled. In Section 3 we describe the algorithm
underlying Theorem 1, and we estimate its complexity. First we establish the re-
lationship between geometric resolutions and Chow forms, and then we present
subroutines for computing Chow forms of intersections and of components out-
side hypersurfaces. Combined with the algorithm in Section 2, this yields the
desired algorithm. In Section 4 we apply the main algorithm to the computa-
tion of sparse resultants, and to the resolution of generic overdetermined equation
systems.

1. Preliminaries

Throughout this paper Q denotes the field of rational numbers, Z the ring of
rational integers, R the field of real numbers, and C the field of complex numbers.
We denote by N the set of positive rational integers, and we also denote by N0 the
set of nonnegative integers.

We denote by An and Pn the n-dimensional affine space and projective space
over C, respectively, equipped with the Zarisky topology definable over C. A
quasiprojective variety V is an open set of a closed projective (not necessarily
irreducible) variety (we refer to [54, Section I.4] for a complete exposition of this
notion). We denote by V ⊂ Pn the projective closure of V , that is, the minimal
closed projective variety which contains it. Rational maps between quasiprojective
varieties are indicated by ���.

If f1, . . . , fs are polynomials in Q[x0, . . . , xn], V ( f1, . . . , fs) will denote the
set of common zeros of f1, . . . , fs in Pn . This notation will also be used in the
affine case. Let V be a quasiprojective variety and let g ∈ Q[x0, . . . , xn] be a
homogeneous polynomial. Then we denote by Vg the basic open set V \V (g)
of V .

We adopt the usual notion of degree of an irreducible projective variety. The
degree of an arbitrary projective variety is here the sum of the degrees of its
irreducible components. If the variety is quasiprojective, its degree is defined as
the degree of its projective closure.

We only consider polynomials and rational functions with coefficients inQ and
varieties defined by polynomials with coefficients inQ unless otherwise explicitly
stated. The determinant of a square matrix M is denoted by |M |.

1.1. The Chow Form of a Quasiprojective Variety

We gather in this subsection some definitions and basic facts about Chow forms.
For a more detailed account we refer to [54, Section I.6.5], [22, Chapter 3], and
[16].
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First we define the notion of Chow form of an equidimensional quasiprojective
variety:

Let V ⊂ Pn be an equidimensional quasiprojective variety of dimension r . For
i = 0, . . . , r let Ui = (Ui0,Ui1, . . . ,Uin) be a group of n + 1 variables and set
U := (U0, . . . ,Un). Then set

Li := Ui0 x0 + · · · +Uin xn ∈ Q[U ][x]

for the associated generic linear form, where x denotes the group of variables
(x0, . . . , xn). Let


V = {(u0, . . . , ur ; ξ) ∈ (Pn)r+1 × Pn ; ξ ∈ V,

L0(u0, ξ) = 0, . . . , Lr (ur , ξ) = 0} ⊂ (Pn)r+1 × Pn

be the incidence variety of these linear forms in V , and let π : (Pn)r+1 × Pn →
(Pn)r+1 be the projection (u, ξ) �→ u.

Lemma 1.1. Under the previous assumptions and notations, π(
V ) = π(
V ).

Proof. Let V = ⋃
C C be the irreducible decomposition of V . From the def-

inition above we deduce that 
V = ⋃
C 
C and so π(
V ) =

⋃
C π(
C).

We also have that V = ⋃
C C is the irreducible decomposition of V . Then

π(
V ) =
⋃

C π(
C) and so, without loss of generality, we can assume that
V is irreducible.

The map 
V → V defined by (u, ξ) �→ ξ makes 
V a fiber bundle over V
with fiber (Pn−1)r+1. Then 
V is an irreducible variety of codimension n+ 1, and
the same is true for 
V . As 
V is a closed set, 
V ⊂ 
V . These are irreducible
projective varieties of the same dimension and, therefore, they are equal. The fact
that π is a closed map implies that π(
V ) = π(
V ).

Then π(
V ) ⊂ (Pn)r+1 is a closed hypersurface [54, p. 66]. We define a Chow
form of V as any squarefree defining equationFV ∈ Q[U0, . . . ,Ur ] of the Zariski
closure π(
V ) ⊂ (Pn)r+1. Note that the Chow form of an equidimensional vari-
ety is uniquely determined up to a scalar factor. We extend this to dimension −1
defining a Chow form of the empty variety as any nonzero constant in Q. This
definition extends the usual notion of Chow form of closed projective equidimen-
sional varieties. In fact, Lemma 1.1 states that a Chow form of an equidimensional
quasiprojective variety is a Chow form of its projective closure.

From this definition, we see that any Chow form of V characterizes the sets of
overdetermined linear systems over the variety V which intersect it: for u0, . . . , ur

∈ Cn+1 we have

FV (u0, . . . , ur ) = 0 ⇔ V ∩ {L0(u0, x) = 0} ∩ · · · ∩ {Lr (ur , x) = 0} �= ∅.
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A Chow form FV is a multihomogeneous polynomial of degree deg V in each
group of variables Ui (0 ≤ i ≤ r). The variety V is uniquely determined by a
Chow form of V [54, p. 66]. Moreover, it is possible to derive equations for the
variety V from a Chow form of V [22, Chapter 3, Corollary 2.6].

In case V is irreducible, FV is an irreducible polynomial and, in the general
case, a Chow form of V is the product of Chow forms of its irreducible components.

Following [43] we avoid the indeterminacy ofFV by fixing one of its coefficients
under the following assumption on the equidimensional quasiprojective variety V :

Assumption 1.2. If dim V = 0, we assume V ⊂ {x0 �= 0}. If dim V = r > 0, we
assume that the projection πV : V ��� Pr defined by x �→ (x0 : · · · : xr ) verifies
#π−1

V ((1 : 0 : · · · : 0)) = deg V .

This assumption implies that V ∩{x1 = 0}∩· · ·∩{xr = 0} is a zero-dimensional
variety lying in the affine chart {x0 �= 0}. In particular, V has no components
contained in the hyperplane {x0 = 0}. We also note that, in case V is a closed affine
variety, the hypothesis #(V ∩ {x1 = 0} ∩ · · · ∩ {xr = 0}) = deg V implies that
the map πV : V → Ar defined by x �→ (x1, . . . , xr ) is finite; that is, the variables
x1, . . . , xr are in Noether normal position with respect to V [43, Lemma 2.14].

Set ei for the (i+1)-vector of the canonical basis ofQn+1 and D := deg V . Then,
under Assumption 1.2, FV (e0, . . . , er )—that is, the coefficient of the monomial
U D

0 0 · · ·U D
r r —is nonzero. Then we define the (normalized) Chow form ChV of V

by fixing the choice of FV through the condition

ChV (e0, . . . , er ) = 1.

Note that if V satisfies Assumption 1.2, then each of its irreducible components
also does. Therefore, the normalized Chow form of V equals the product of the
normalized Chow forms of its irreducible components. The normalized Chow form
of the empty variety equals the polynomial 1.

Here are some examples of Chow forms:

• In case dim V = 0 we have

FV (U0) =
∏
ξ∈V

L0(U0, ξ) ∈ Q[U0].

Furthermore, if V satisfies Assumption 1.2, ChV is equal to the above ex-
pression provided we choose homogeneous coordinates of the type ξ := (1 :
ξ ′) ∈ Pn for each point in V .

• In case V is a hypersurface of degree d, then V = V (F) ⊂ Pn where
F ∈ Q[x0, . . . , xn] is a squarefree homogeneous polynomial of degree d .
We consider the n × (n + 1)-matrix M := (Ui j ) 1≤i≤n

0≤ j≤n
, and, for 0 ≤ j =≤ n,

we set Mj for the maximal minor obtained by deleting its ( j + 1) column.
Then

FV = F(M0,−M1, . . . , (−1)n Mn) ∈ Q[U0, . . . ,Un].
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In this case, Assumption 1.2 is equivalent to the fact that f := F(1, 0, . . . , 0,
t) is a squarefree polynomial of degree d in t . Therefore, ChV is equal to the
above expression if we choose F such that the coefficient of the monomial
xd

n is 1.
• The sparse resultant provides an important family of examples: let A =
{α0, . . . , αN } ⊂ Zn be a finite set of integer vectors, such that the differences
of elements in A generate Zn . Consider the map

ϕA: (C∗)n → PN , ξ �→ (ξα0 : · · · : ξαN ).

This is always well defined as ξi �= 0 (1 ≤ i ≤ n) for all ξ ∈ (C∗)n . The
Zariski closure of the image of this map XA := ϕA((C∗)n) ⊂ PN is the toric
variety associated to the set A. This is an irreducible variety of dimension n
and degree Vol(A) (the normalized volume of the convex hull of A).

The A-resultant equals the Chow form of this variety [22, Chapter 8,
Proposition 2.1], that is,

FXA = ResA .

We refer to [22] and to [15, Chapter 7] for a broader background on sparse
resultants and toric varieties.

1.2. Data and Algorithm Structure

First we specify our data structure:
The objects we deal with are polynomials with rational coefficients. The data
structure we adopt to represent them concretely is the straight-line program (slp
for short) encoding. The input, output, and intermediate objects computed by our
algorithms are polynomials codified through slp’s. We emphasize the fact that in
the present work the crucial feature of slp’s is their role as data structures, rather
than the more traditional functional role as programs without branchings for the
evaluation of polynomials at given points. For the standard terminology of slp’s,
see [8, Definition 4.2]. In this paper all slp’s are defined overQ, without divisions
and expecting the variables x1, . . . , xn as input.

For completeness we restate the definition in our particular case:

Let n ∈ N. We denote by {+,−, ·} the addition, substraction, and multiplication
in theQ-algebraQ[x1, . . . , xn]. We consider apart the addition and multiplication
by scalars, that is, for λ ∈ Q and f ∈ Q[x1, . . . , xn] we set λa( f ) := f + λ

and λm( f ) := λ · f . We denote by Qa and Qm the set of all scalar additions and
multiplications for λ ∈ Q, respectively.

We set�n := Qa∪Qm∪{+,−, ·} and denote by ar(ω) the arity of an operation
ω ∈ �n: that is, 1 if it is a scalar operation and 2 if it is a binary one.

A straight-line program γ (over Q and expecting x1, . . . , xn as input) is a
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sequence γ := (γ1, . . . , γL) of instructions

γi =
{
(ωi ; ki1) if ar(ωi ) = 1,
(ωi ; ki1, ki2) if ar(ωi ) = 2,

where each ωi ∈ �n is an operation and for every j , ki j ∈ Z satisfies −n + 1 ≤
ki j ≤ i−1 and represents a choice of a previous index. The number of instructions
L in γ is called the length of γ and is denoted by L(γ ). This is, in the standard
terminology, the complexity induced by the cost function which charges 1 to each
operation in �n (see [8, Definition 4.7]).

Given an slp γ = (γ1, . . . , γL), its result sequence ( f−n+1, . . . , fL) is classi-
cally defined as

f−n+1 := x1, . . . , f0 := xn and for 1 ≤ i ≤ L ,

fi :=
{
ωi ( fki1) if ar(ωi ) = 1,
ωi ( fki1 , fki2) if ar(ωi ) = 2.

Here we make a slight modification of this terminology. According to the data
structure role played by slp’s we consider only the final result of the slp γ , that
is, the final polynomial fL ∈ Q[x1, . . . , xn]. We call it the result of γ . Here is
the precise definition: Let �Q[x1, . . . , xn] denote the set of slp’s overQ expecting
x1, . . . , xn as input. Then there is a well-defined surjective function

Eval: �Q[x1, . . . , xn] → Q[x1, . . . , xn], γ �→ fL where L := L(γ ).

In this way each slp defines precisely one polynomial (and not a finite set). We
say that γ ∈ �Q[x1, . . . , xn] encodes f ∈ Q[x1, . . . , xn] if f is the result of γ .
Given a polynomial f ∈ Q[x1, . . . , xn] we define its length L( f ) as the minimal
length of an slp which encodes f . (We always have deg f ≤ 2L( f ).) For a finite
set P ⊂ Q[x1, . . . , xn] we define naively its length as L(P) :=∑ f ∈P L( f ).

From the dense representation
∑

α aα xα of a polynomial f ∈ Q[x1, . . . , xn] we
obtain an slp for f in a straightforward manner. First, it is easy to show inductively
that for any r ∈ N, there is an slp of length bounded by

(n + r
r
)

whose result
sequence is the set of all monomials xα of degree |α| ≤ r . This is due to the fact
that once one has a list of all such monic monomials of degree bounded by r − 1,

each one of the
(n + r − 1

r
)

homogeneous monic monomials of degree r is simply
obtained from one of the list multiplying by a single variable. Now set d := deg f .
We multiply all monic monomials of degree bounded by d by their coefficients

and add them up, that is, we add 2

(
n + d

d

)
instructions to the slp, in order to

obtain an slp which encodes f . Hence

L( f ) ≤ 3

(
n + d

d

)
≤ 3 (d + 1)n.

We call this particular slp the dense slp of f . The previous computation shows
that in all cases, the length L( f ) of a polynomial f of degree d is linearly bounded
by its number of monomials.
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We can operate with the data structure slp, extending directly the operations
in �n: for instance, for ∗ ∈ {+,−, ·}, given two slp’s γ, δ ∈ �Q[x1, . . . , xn] we
obtain the new slp

γ ∗ δ := ∗(γ, δ) := (γ1, . . . , γL(γ ), δ1, . . . , δL(δ), (∗; L(γ ), L(γ )+ L(δ))),

where the choice of previous indexes for δ are suitably modified. This slp obviously
encodes the ∗ of the two polynomials encoded by γ and δ, and its length is
L(γ )+ L(δ)+ 1.

More generally, for γ ∈ �Q[y1, . . . , ym] and δ1, . . . , δm ∈ �Q[x1, . . . , xn], we
can define the composition slp γ ◦ δ := γ ◦ (δ1, . . . , δm) ∈ �Q[x1, . . . , xn]. We
have

L(γ ◦ δ) = L(δ1)+ · · · + L(δm)+ L(γ ).

This operation is compatible with the map Eval, that is, Eval(γ ◦δ) = Eval(γ )◦
Eval(δ). Hence for f ∈ Q[y1, . . . , ym] and g1, . . . , gm ∈ Q[x1, . . . , xn] we have
that L( f (g1, . . . , gm)) ≤ L(g1)+ · · · + L(gm)+ L( f ).

Now we specify the computational model that produces and manipulates our data
structure: it is the Blum–Shub–Smale (BSS for short) machine over Q, which
captures the informal notion of uniform algorithm overR. We refer to [5, Chapters
3 and 4] for the definition, terminology, and basic properties. However, there are
again some slight modifications in our definition (restrictions on the operations—
only over rational numbers—and the branches—only equality of numbers to zero),
and we restate it for purpose of completeness:

We recall that a BSS machineMoverQhas five types of nodes: input, computation,
branch, shift, and output. Set

Q∞ :=
⊔
n≥0

Qn

for the disjoint union of the n-dimensional spaces Qn , that is, the natural space to
represent problem instances of arbitrarily large dimension. For a ∈ Q� −Q�−1 ⊂
Q∞ we call � the size of a, and we denote it by size(a).

On the other hand, let

Q∞ :=
⊕
m∈Z

Q

be the bi-infinite direct sum space over Q. The elements b ∈ Q∞ are of the form

b := (. . . , b−2, b−1, b0 . b1, b2, . . .),

where bi = 0 for |i | � 0. The dot between b0 and b1 is a distinguished marker
which enables one to visualize the position of the coordinates of b.
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Now we define the computation nodes. There are of two types, operations
between entries of b or scalar operations: For each ω ∈ {+,−, ·, /} and i, j, k ∈ N
there is a map

Q∞ → Q∞, b �→ (. . . , bk−2, bk−1, ω(bi , bj ), bk+1, . . .),

(observe that unlike in the case of our data structure, here we also allow divisions).
A division will be performed only after a branch node, in case the divisor is known
to be nonzero. Also for each λ ∈ Qa ∪ Qm and i, k ∈ N there is in an analogous
way a map

Q∞ → Q∞, b �→ (. . . , bk−2, bk−1, λ
a(bi ), bk+1, . . .)

or b �→ (. . . , bk−2, bk−1, λ
m(bi ), bk+1, . . .).

The only branch node we allow is the one which checks the equality b1 = 0.
In other words, its associated map is Q∞ → Q, b �→ b1. The shift nodes are
of two types: shifting to the left or to the right, associated with the two maps
Q∞ → Q∞, b �→ σl(b)i = bi+1, or σr (b)i = bi−1.

The machineM over Q is a finite connected directed graph containing these
five types of nodes (input, computation, branch, shift, and output). The space
Q∞ is both the input space IM and the output space OM, and Q∞ is the state
space SM , that is, the “working” space of the machine. The dimension KM of the
machineM is the maximum dimension of the computation maps, which, under
our assumptions, coincides with the maximum of the natural numbers i, j , and
k involved in the computations. We are interested in the algebraic complexity of
these machines. We assume that the cost of each computation, branch, and shift
node is 1. Hence the complexity CM(a) of the machineM on an input a is just the
number of computation, branch and shift nodes of the graph, from input to output.

Observe that any slp γ ∈ �Q[x1, . . . , xn] is an example of a (finite-dimensional)
BSS machine Mγ without branches or shift nodes for computing f := Eval(γ ) ∈
Q[x1, . . . , xn] at any input point a ∈ Qn . The dimension of this machine is n+L(γ )
and its complexity is L(γ ).

Given � ∈ N we consider the complexity CM(�) of the machine on inputs of
size bounded by �, that is,

CM(�) := sup{CM(a); size(a) ≤ �}.
Since, in particular,M does arithmetic operations in Q at unit cost, this com-

putational model is a natural algebraic analogue of the notion of a Turing machine.
It provides a basis for the implementation of uniform procedures. The only differ-
ence with the Turing model is that one replaces bit operations by arithmetic ones.
Moreover, since all the involved computations are done over the rational field,
the machine M can be effectively transformed into a classical Turing machine.
However, our complexity counting does not provide any reasonable control on the
complexity of the resulting Turing machine.

Shift nodes can be regarded as the management done by the machine M to
execute the arithmetic operations and comparisons. In the sequel, we describe
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our algorithms as informal computer programs, that means that we just count
the arithmetic operations and comparisons but not the shifts. The complexity of a
formal BSS machine is polynomial in the complexity of the corresponding informal
description (see [5, Section 4.4]) and so our results remain valid for the BSS model
as described above.

As we have already anticipated, our algorithms are BSS machines that ma-
nipulate slp’s. A machine M receives as input a finite family of slp’s γ ∈
�Q[x1, . . . , xn]M and gives back a finite family of slp’sM(γ ) ∈ �Q[y1, . . . , ym]M ′

.
A finite family of slp’s γ ∈ �Q[x1, . . . , xn]M can be easily codified as an input

element in IM = Q∞, in fact, γ can be identified with a vector in QM+3 L(γ ) in
the following way:

The first coordinate is for the dimension n, that is, the number of variables. Then
each instruction of the first slp γ1 is codified as a triple: we enumerate the operations
in �n with numbers from 2 to 6, 2 and 3 corresponding to the operations inQa and
Qm, and 4 to 6 to +,−, and ·. For operations in Qa ∪ Qm we write the operation
number in the first coordinate, the corresponding coefficient in the second one,
and the position to which it applies in the third one. The binary operations are
codified in a similar way, by writing first the operation number, and then the
position of the two elements to which it applies. The positions are numbered from
1− n to L(γ ) according to the definition of the result sequence. For instance the
vector (2, (3, 5,−1), (4, 0, 1), (6, 2, 2)) codifies the slp x1, x2, 5x1, x2+5x1, (x2+
5x1)

2. The instruction to separate two consecutive slp’s is an empty cell, that
is, a 0. The second slp γ2 is now codified exactly as the first one. Therefore,
γ := (γ1, . . . , γM) ∈ �Q[x1, . . . , xn]M is codified as a vector in Q∞, in fact in
QM+3 L(γ ) since we need to add “0” M − 1 times to separate two consecutive
slp’s.

The machineM manipulates this input, the finite family of slp’s γ ∈ �Q[x1,

. . . , xn]M : it operates on these slp’s and gives as the output an element of OM
corresponding to a finite family of slp’s in�Q[y1, . . . , ym]M ′

. As we have just seen,
the input and output size is (essentially) the length of each of these families. Thus,
we speak here of a finite family of slp’s γ as the input ofM and we simply denote
byM(γ ) its output in �Q[y1, . . . , ym]M ′

.

Remark 1.3. Let γ ∈ �Q[x1, . . . , xn]M be the input slp family of a BSS machine
M and letM(γ ) ∈ �Q[y1, . . . , ym]M ′

be its output. Then

L(M(γ )) ≤ 3L(γ )+ CM(γ ).

Proof. As we do not know how the machineM operates on γ , the only bound
for L(M(γ )) is the number of operations labeled from 2 to 6 of the representation
ofM(γ ) inM, which is bounded by the number of nonzero cells of this repre-
sentation minus 1 (since the first cell of the output corresponds to the number of
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variables m of the output). This is bounded by 1+ 3L(γ )+ CM(γ )− 1, that is,
the size of γ as an input ofM (excepting the M−1 zero cells separating different
input slp’s) plus the number of computation nodes CM(γ ) minus 1.

Our main algorithms are in fact probabilistic. For this reason we implement
them in the model of a probabilistic BSS machine over Q [5, Section 17.1]. This
is a BSS machineM with an additional kind of node, called probabilistic. These
are nodes that have two next nodes and no associated map and that “flip coins,”
that is, when a computation reaches a probabilistic node, it randomly chooses the
next node between the two possible ones with probability 1

2 for each of them.
In this probabilistic setting, each run—on the same given input γ—of the ma-

chineMmay lead to a different path computation. In our case, for any given input,
the number of probabilistic nodes traversed is finite, that is, the number of possible
paths is finite. We treat the probalistic nodes as branches and charge cost 1 for
each of them.

As every path P ofM corresponds to a BSS machine of complexity CP(γ ),
the algebraic complexity CM(γ ) of the machineM on the input γ turns out to be
a random variable, with finite sample set. Moreover, again in our context, every
path is finite: it may happen that a branch ends in an error message but in any case
the complexity of any path is bounded. Thus the random variable CM(γ ) satisfies

Prob(CM(γ ) = C) :=
∑

Prob(P; P path such that CP(γ ) = C).

We are interested in the worst-case complexity Cmax
M (γ ), the maximum complexity

of the paths ofM on γ , and the expected complexity EM(γ ), defined as the (finite)
expectation of this random variable, that is,

EM(γ ) := E(CM(γ )) =
∑
C∈N

C · Prob(CM(γ ) = C).

Observe that Cmax
M (γ ) ≥ EM(γ ) always holds.

As before, we also consider the function EM : N→ N:

EM(�) := sup{EM(γ ) ; n, M ∈ N, γ ∈ �Q[x1, . . . , xn]M and M + 3L(γ ) ≤ �}.

We define now the error probability of the machine on a given input. Again,
there is here a modification with respect to traditional probabilistic BSS machines.
Keeping in mind that for any run of the probabilistic machineM on the input γ ∈
�Q[x1, . . . , xn]M , its output (independently of the path randomly taken) encodes
a finite family of polynomials f := ( f1, . . . , fM) ∈ Q[y1, . . . , ym]M ′

, we define:

Definition 1.4 (Bounded Probability Algorithm). Given γ ∈ �Q[x1, . . . , xn]M

and given a set of polynomials f := ( f1, . . . , fM ′) ∈ Q[y1, . . . , ym]M ′
, the error

probability eM(γ, f ) thatM computes f from the given input γ is the probability



The Computational Complexity of the Chow Form 57

that the output ofM from γ does not encode f ; that is, the probability that the
computation finishes with an error message, or that it outputs δ ∈ �Q[y1, . . . , ym]M ′

which does not encode f .
We say thatM computes f if eM(γ, f ) ≤ 1

4 . As this happens at most for one
f , when it happens, we set eM(γ ) := eM(γ, f ). When eM(γ ) ≤ 1

4 for every
input γ , we say that M is a bounded probability machine for polynomial slp’s,
and we speak of a bounded probability algorithm.

Observe that our probabilistic machine is a little unusual since, in fact, as
different slp’s may encode the same polynomial, the polynomial f computed by
the probabilistic machineM corresponds to an equivalence class of outputs rather
than a single one. In this paper, all machines are bounded probability machines for
polynomial slp’s in the sense of this definition.

In our setting, probability is introduced by choosing a random element with
equidistributed probability in a set [0, �)n := {0, . . . , � − 1}n for given natural
numbers � and n. Since probabilistic machines flip coins to decide binary digits,
each of these random choices can be easily simulated with a machine with com-
plexity O(n �log ��), where here and in the sequel, log denotes logarithm in base
2. This machine is denoted by Random(n, �). In this work, in each case, there
is a nonzero polynomial F ∈ Q[x1, . . . , xn]\{0} such that a random choice a is
good—that is, leads to the computation of the desired output—if F(a) �= 0. The
error probability of this random choice is then estimated by the Zippel–Schwartz
zero test [61], [53, Lemma 1]:

Prob(F(a) = 0) ≤ deg F

�
.

The choice of 1
4 as a bound for the error probability is not restrictive and we

can easily modify it in order to reduce the error probability as much as desired.
The usual procedure is to run the machineM many times and to declare that the
polynomial family f is computed byM if it is the output of more than half the
times. There is a slight difficulty here, appearing from the fact that our machine
computes slp’s instead of polynomials, and two different runs may lead to different
encodings of the same polynomials. That is why we need here to be more careful
in our definition. We define it in the following way:

Given the bounded probability machineM which on input γ ∈ �Q[x1, . . . , xn]M

computes f ∈ Q[y1, . . . , ym]M ′
, and given s ∈ N, the machineMs is the machine

which performs the following tasks:

1. Ms runs s times the machineM on the given input γ ∈ �Q[x1, . . . , xn]M :
for 1 ≤ i ≤ s it obtains the output slp family δi ∈ �Q[y1, . . . , ym]M ′

together
with the complexity Ci of the path followed to compute δi .

2. ThenMs chooses randomly a ∈ [0, M ′ 2s+3 L(γ )+C1+···+Cs )m and computes
δi (a), 1 ≤ i ≤ s.
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3. For j = 1 to �s/2�:
• it computes δj (a)− δk(a), j < k ≤ s, and compares the results to 0;
• if 0 is obtained for strictly more than s/2 values of k, it returns the

polynomial family f ∈ Q[y1, . . . , ym]M ′
encoded by δj as the output

and ends; and
• if not, it goes to j + 1.

If for no j ≤ �s/2� the algorithm obtains 0 enough times, it outputs error
and ends.

Proposition 1.5. Given a bounded probability machineMwhich on γ ∈ �Q[x1,

. . . , xn]M computes f ∈ Q[y1, . . . , ym]M ′
and given s ∈ N, the worst-case com-

plexity, the expected complexity and the error probability of the machineMs on
γ verify the following bounds:

Cmax
Ms

(γ ) = O
(
(m + 1) s (L(γ )+ Cmax

M (γ ))+ m log M ′ + M ′
(

s

2

))
,

EMs (γ ) = O
(
(m + 1)s(L(γ )+ EM(γ ))+ m log M ′ + M ′

(
s

2

))
,

eMs (γ ) ≤ 2
(

3
4

)s/2
.

Proof. Let us begin by describing the algebraic complexity C of a given run of
the machine CMs on γ in terms of the complexities Ci of the paths followed by
the machineM on γ on the i th run.

Cost of Item 1: It has complexity C1 + · · · + Cs .
Cost of Item 2: Producing the random choice a costsO(m(log M ′+s+L(γ )+

C1+· · ·+Cs)) and, from Remark 1.3, computing δ1(a), . . . , δs(a)
costs 3sL(γ )+ C1 + · · · + Cs .

Cost of Item 3: As δj (a) ∈ QM ′
, to compute all δj (a) − δk(a) and compare

them to 0 costs 2M ′
(

s

2

)
.

Hence, the worst-case complexity of the machineMs on γ is

Cmax
Ms

(γ ) = O
(
(m + 1) s(L(γ )+ Cmax

M (γ ))+ m log M ′ + M ′
(

s

2

))
,

while, as the complexity is an affine combination of the s independent random
variables C1, . . . ,Cs , its expectation verifies

EMs (γ ) = O
(
(m + 1) s(L(γ )+ EM(γ ))+ m log M ′ + M ′

(
s

2

))
.

The error probability is bounded by the probability that there is no group of
more than s/2 vectors which coincide, plus the probability that δj (a) = δk(a) but
the two polynomial families encoded by δj and δk do not coincide.
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The first probability of error is bounded by
(

3
4

)s/2
as in [5, Section 17.2,

Lemma 1]. To estimate the second probability of error we apply Schwartz’ lemma:
for 1 ≤ i ≤ s the output δi encodes f ∈ Q[y1, . . . , ym]M ′

where the degree of
each component is bounded by 23L(γ )+Ci . Thus the probability of error of one test
is bounded by (M ′ 23L(γ )+Ci )/(M ′ 2s+3L(γ )+C1+···+Cs ) ≤ ( 1

2

)s
. As there are at most(

s

2

)
such independent tests, the total error probability verifies

eMs (γ ) ≤ (3/4)s/2 +
(

s

2

) (
1
2

)s ≤ 2
(

3
4

)s/2

for s ≥ 2.

Corollary 1.6. Given a bounded probability machineM which on γ ∈ �Q[x1,

. . . , xn]M computes f ∈ Q[y1, . . . , ym]M ′
and given N ∈ N, N ≥ 4, the error

probability of the machineMs on γ for s := �6 (log N + 1)� is bounded by 1/N
while its worst-case complexity is of order

O((m + 1) log N (L(γ )+ Cmax
M (γ ))+ m log M ′ + M ′ log2 N ).

Proof. As
(

3
4

)3
< 1

2 ,

eMs (γ ) ≤ 2
(

3
4

)3(log N+1) ≤ ( 3
4

)3 log N ≤ 1
2

log N = 1/N .

Corollary 1.6 will be used to decrease the error probability of intermediate
subroutines of our main algorithm and keep control of the complexity in order that
the error probability of the latter is bounded by 1

4 . Observe that the length of the
output slp is of the same order as the length of the slp obtained when running any
of the repetitions of the algorithm.

Given a bounded probability machineM, any time we want to obtain the output
ofM for an slp input family γ with error probability bounded by 1/N , we run
Subroutine 1 which gives a new probability machine M(γ ; N ) doing so. Any
time we runM for the input family γ , we will denote by Complexity(M(γ )) the
complexity of doing it this time.

1.3. Complexity of Basic Computations

We summarize the complexity of the basic operations on polynomials and matrices
that our algorithms rely on. As our interest is mostly theoretical, it will be sufficient
for us to apply the more naive procedures for these operations. For the more
advanced complexity results, we refer to [8] for a complete account, see also [30]
for a brief survey of the existing literature.

Let R denote a commutative Q-algebra and let d ∈ N. The multiplication of
d × d-matrices with coefficients in R can be done with O(d3) operations of R



60 G. Jeronimo, T. Krick, J. Sabia, and M. Sombra

Subroutine 1. Decreasing error probability ofM.

procedureM(γ ; N )

# γ is an slp input family forM,
# N ∈ N, N ≥ 4.
# The procedure returns the output ofM with error probability bounded by 1/N .

1. s := �6(log N + 1)�;
2. for i from 1 to s do
3. (δi ,Ci ) := (M(γ ),Complexity(M(γ )));
4. od;
5. a := Random(m, M ′ 2s+3L(γ )+C1+···+Cs );
6. (�1, . . . , �s) := (δ1(a), . . . , δs(a));
7. j := 1;
8. while j ≤ �s/2� do
9. k := j + 1;

10. t := 0;
11. while k ≤ s do
12. if �j −�k = 0 then
13. t := t + 1;
14. fi;
15. k := k + 1;
16. od;
17. if t ≥ s/2 then
18. return(δj );
19. else
20. j := j + 1;
21. fi;
22. od;
23. return(“error”);

end.

and no branches. The computation of the coefficients of the characteristic poly-
nomial of a d × d-matrix—and in particular the computation of the adjoint and
the determinant of this matrix—can be done with O(d4) arithmetic operations
and no branches, the same bounds hold for the inversion of an invertible matrix
[2], [1].

Addition of univariate polynomials with coefficients in R and degree bounded
by d can be done in d + 1 arithmetic operations, while the straightforward poly-
nomial multiplication algorithm takes O(d2) arithmetic operations and has no
branches. Division with remainder—provided the divisor is a monic polynomial—
has also in a straightforward manner complexity O(d2) and no branches. The
greatest common divisor (gcd) can be computed through subresultants with O(d)
branches (computing the degree of the greatest common divisor corresponds to
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checking the vanishing of the determinant of submatrices of the Sylvester matrix)
and complexity O(d5) (solving a linear system) [14], [7].

Now we are going to consider some procedures involving polynomials encoded
by slp’s. First, given an slp γ which computes f ∈ Q[x1, . . . , xn] and given
a ∈ Qn , we can compute f (a) ∈ Q within complexity L(γ ) and so we can also
check f (a) = 0 within the same complexity. The derivative of the polynomial f
with respect to one of its variables will be computed by means of the Baur–Strassen
algorithm (see [3]) within complexity O(L(γ )).

For a group of variables y := (y1, . . . , ym) and a ∈ Qm , we will denote by
Expand( f, y, a, d) the subroutine which, given an slp γ which encodes a multi-
variate polynomial f , computes as intermediate results slp’s for the homogeneous
components centered at a and of degree bounded by d of the polynomial f with
respect to the given group of variables y: In [42, Lemma 13], [8, Lemma 21.25]
are given slp’s of lengthO(d2 L(γ )) in which all the homogeneous components of
f of degree bounded by d appear as intermediate computations. These procedures
can be easily modified within the same complexity to compute the homogeneous
components centered at a and up to degree d of a polynomial with respect to the
given group of variables. In particular, if y consists of a single variable and a = 0,
this procedure computes the coefficients of the given polynomial with respect
to y.

Quite frequently we use a mixed representation of f : instead of encoding it by
means of a single slp, we consider f as a polynomial in a distinguished variable,
and if d is a bound for the degree of f in this variable, we give a (d + 1)-uple of
slp’s, which encode the coefficients f0, . . . , fd of f with respect to the variable.
The length of this mixed encoding does not essentially differ from the length of
f ; denote by L ′( f ) the length of the mixed encoding and by L( f ) the length of
f , we have

L( f ) = O(d + L ′( f )) and L ′( f ) = O(d2L( f )).

Sometimes we need to compute the exact degree of a polynomial with respect
to a particular variable. We will call Deg( f, d) the procedure which computes the
degree of the univariate polynomial f given by its dense representation, where d is a
bound for its degree. This computation is done by simply comparing the coefficients
of f with 0. This procedure can be adapted to obtain a probabilistic algorithm
Deg( f1, . . . , fs, x, d; N )which computes, with error probability bounded by 1/N ,
the total degrees of the polynomials f1, . . . , fs in the group of variables x , from
slp’s encoding f1, . . . , fs and an upper bound d for their degrees in the variables
x . To do so, first we apply subroutine Expand( fi , x, 0, d) for 1 ≤ i ≤ s, to
obtain the homogeneous components of fi . Then by choosing a random point in
[0, 1, . . . , sd N )n we decide probabilistically which is the component of greatest
degree different from zero of each polynomial f1, . . . , fs . If the given polynomials
are encoded by slp’s of length bounded by L , the worst-case complexity of this
procedure is of order O(sd2L + n log(sd N )).
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1.4. Effective Division Procedures

Here, we gather the division subroutines we will need. Basically, they compute the
division of multivariate polynomials and power series, and the greatest common
divisor of multivariate polynomials. In all cases, the objects will be multivariate
polynomials encoded by slp’s and power series, whose known graded parts will
also be encoded by slp’s. The proposed procedure for multivariate power series
division is new and plays an important role in Subroutine 7, which in turn is the
key step of our main algorithm.

The following subroutine is the well-known Strassen Vermeidung von Divisio-
nen (division avoiding) algorithm [56]. We reprove it briefly in order to estimate
its complexity.

Lemma 1.7. Let f, g ∈ Q[x1, . . . , xn] be polynomials encoded by slp’s of length
bounded by L such that f divides g. Let d ∈ N be such that deg(g/ f ) ≤ d , and
a ∈ Qn such that f (a) �= 0.

Then PolynomialDivision (Subroutine 2) computes g/ f within complexity
O(d2(d + L)).

Proof. The quotient polynomial h := g/ f ∈ Q[x1, . . . , xn] can also be seen as
a power series in Q[[x − a]]. For α := f (a), we have

h = g

f
= gα−1

(
1− α − f

α

)−1

= g
∞∑

i=0

(α − f )i

αi+1
∈ Q[[x − a]].

Subroutine 2. Polynomial division.

procedure PolynomialDivision( f, g, d, a)

# f, g ∈ Q[x1, . . . , xn] such that f divides g,
# d ∈ N an upper bound for the degree of the quotient g/ f ,
# a ∈ Qn such that f (a) �= 0.
# The procedure returns h := g/ f .

1. α := f (a);
2. v := (1/α)

∑d
i=0(t/α)

i ;
3. H = g · v(α − f );
4. (H0, . . . , Hd) := Expand(H, x, a, d);
5. h :=∑d

m=0 Hm ;
6. return(h);

end.
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For

H := g
d∑

i=0

(α − f )i/αi+1 ∈ Q[x1, . . . , xn]

we have h ≡ H mod (x − a)d+1. Thus, if (Hm)m≤d are the homogeneous compo-
nents of H centered at a and of degree bounded by d , we conclude h =∑d

m=0 Hm .
The stated complexity is obtained as follows: We compute the univariate poly-

nomial v with O(d + L) operations. Hence we compute H within complexity
O(d + L). We compute its homogeneous components in x − a up to degree
d within complexity O(d2(L(H))) = O(d2(d + L)). Finally, we obtain h as∑d

m=0 Hm within the same complexity bound.

Observe that the same procedure can be used to compute the graded parts
centered at a and of a certain bounded degree of the rational function g/ f , even in
case f does not divide g. We denote this subroutine by GradedParts( f, g, D, a),
where the argument D corresponds to the bound for the degree of the graded parts
to be computed. Its complexity is of order O(D2(D + L)).

Subroutine 2 converts slp’s with divisions computing polynomials inQ[x1, . . . ,

xn] into ordinary slp’s: Slp’s with divisions are defined as ordinary slp’s, but with
the set of basic operations enlarged to include the division, which we denote by
the bar /. A further requirement is that all divisions should be well defined, that
is, no intermediate denominator can be zero. In general, the result of an slp with
divisions is a rational function in Q(x1, . . . , xn).

Observe that, given an slp with divisions γ which encodes a rational function
h, we can easily compute separately a numerator g and a denominator f by means
of two slp’s ζ, η without divisions: for instance, for each addition hi := hj + hk

in the result sequence of γ , if hj := hj1/hj2 and hk : = hk1/hk2, we set gk :=
hj1hk2+hj2hk1 and hk := hj2hk2 for the corresponding result sequence in ζ and η,
respectively. We proceed analogously for the other operations in �′n := �n ∪ {/}.

We have

h := Eval(γ ) = Eval(ζ )

Eval(η)
.

Furthermore, the slp’s ζ and η can be computed within complexity L(ζ ) ≤ 3L(γ )
and L(η) ≤ L(γ ). In particular, given a ∈ Qn , we can check if γ is well defined
at a and, if that is the case, if h(a) = 0 within complexity O(L(γ )). In case
h is a polynomial of degree bounded by d, the previous considerations together
with Lemma 1.7 show that we can compute an slp without divisions for h with
complexity O(d2(d + L(γ ))).

Now follows a bounded probability algorithm (in the sense of Definition 1.4) to
compute the greatest common divisor of two multivariate polynomials encoded by
slp’s (for another algorithm solving this task, see [40]). Herein, GCD1(F,G, d, e)
is the subresultant algorithm which computes a greatest common divisor of two
univariate polynomials F and G of degrees d and e, respectively, with coefficients
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Subroutine 3. Greatest common divisor.

procedure GCD( f, g, x, d)

# f, g ∈ Q[x1, . . . , xn] of degrees bounded by d,
# x := (x1, . . . , xn).
# The procedure returns h := gcd( f, g).

1. a := Random(n, 8 d(d + 1));
2. if f (a) = 0 then
3. return(“error”);
4. else
5. ( f0, . . . , fd) := Expand( f, x, a, d);
6. (g0, . . . , gd) := Expand(g, x, a, d);
7. e := 0;
8. while ge(a) = 0 and e ≤ d do
9. e := e + 1;

10. od;
11. if e = d + 1 then
12. return( f );
13. else
14. F :=∑d

k=0 fk td−k and G :=∑e
k=0 gk te−k ;

15. (q, Q) := GCD1(F,G, d, e);
16. h := PolynomialDivision(q(x), Q(x, 1), d, q(a));
17. return(h);
18. fi;
19. fi;

end.

in a ring A. The output of GCD1 is (q, Q), where q ∈ A\{0} and Q is the multiple
by q of the monic greatest common divisor of F and G over the fraction field of
A.

Lemma 1.8. Let f, g ∈ Q[x1, . . . , xn] be polynomials of degree bounded by d
encoded by slp’s of length bounded by L .

Then GCD (Subroutine 3) is a bounded probability algorithm which computes
(an slp for) the greatest common divisor between f and g. Its worst-case complexity
is of order O(n log d + d4(d2 + L)).

Proof. For a ∈ Qn such that f (a) �= 0 and t an additional variable, we set

F(x, t) := td f

(
x − a

t
+ a

)
, G(x, t) := td g

(
x − a

t
+ a

)
∈ Q[x][t].

Since f (a) �= 0, F is monic—up to the scalar factor f (a)—of degree d in t . Set
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H for the greatest common divisor of F and G in Q(x)[t]. Since F is monic in
t , H belongs to Q[x, t], and it is easy to check that gcd( f, g) = H(x, 1) (up to a
scalar factor).

The procedure runs as follows: First we observe that if f = ∑
α fα(x − a)α ,

then

F =
∑

0≤k≤d

(∑
|α|=k

fα(x − a)α
)

td−k,

(and the same holds with g and G). So the homogeneous components of f and g
centered at a turn out to be the coefficients of the monomial expansion of F and
G with respect to t . Then, we apply the subresultant algorithm GCD1 to compute
the multiple Q ∈ Q[x, t] and the superfluous factor q in Q[x] of their gcd H in
Q(x)[t]. Finally, we apply Subroutine 2 to avoid divisions in the computation of
gcd( f, g) := H(x, 1) = Q(x, 1)/q(x).

Let us calculate the size of the sets of points we have to take to ensure that the
algorithm has an error probability bounded by 1

4 :

We are going to choose randomly a point a ∈ Qn . This same point a will be
used, in each step we need a random point. The first condition the point a must
satisfy, so that the algorithm computes a greatest common divisor of f and g, is
that f (a) �= 0. Then we use the point a to compute the degree of G in t . Finally, it
is used in the subresultant algorithm to compute the degree of the greatest common
divisor (by deciding whether certain determinants are zero or not). Checking the
degree of G involves testing an n-variate polynomial of degree bounded by d
(the coefficients of G as a polynomial inQ[x][t]) while checking the degree of the
greatest common divisor involves testing n-variate polynomials of degree bounded
by 2d2.

Thus, applying the Schwartz bound for the set [0, �)n , the conditional probability
p of success verifies

p ≥
(

1− d

�

) (
1− d

�

) (
1− 2d2

�

)
≥ 1− d + d + 2d2

�
= 1− 2d (d + 1)

�
.

Therefore, taking � := 8d(d + 1) ensures that the error probability is bounded
by 1

4 .

Now let us compute the worst-case complexity of the machine:

The cost of simulating the random choices here is O(n log d). Computing the
homogeneous components of f and g centered at a and checking the exact degree
of G (that is, finding the first nonzero coefficient of G with respect to t) can be
done within complexityO(d2(d+L)). In Algorithm GCD1, to compute the degree
of the greatest common divisor involves computing at most d + 1 determinants
of Sylvester-type matrices of size at most 2d × 2d , that is, at most (d + 1)O(d4)

operations. Once we know this degree, computing the greatest common divisor by
means of an adjoint addsO(d4) steps. That is, the complexity of computing Q(x, t)
(and q(x)which is the nonvanishing determinant) is of orderO(d2(d3+ L))while
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L(Q(x, t), q(x)) = O(d2(d2 + L)) since the computation of the degree does not
intervene in the length. Applying Subroutine 2 at q(a) which is different from
0 (if not, subroutine GCD1 in line 3 would have returned error) we obtain a
final complexity of orderO(n log d + d2(d + L(Q(x, t), q(x)))) = O(n log d +
d4(d2 + L)).

The following procedure (Subroutine 4) computes the quotient—provided it
is a polynomial of bounded degree—of two multivariate power series from their
graded components up to a certain bound.

Let ϕ =∑
α aα xα ∈ Q[[x1, . . . , xn]] be a power series. For i ∈ N0 we denote

by ϕi := ∑
|α|=i aαxα ∈ Q[x1, . . . , xn] the i-graded component of ϕ. Also we

denote by ordϕ the order of ϕ, that is, the least i such that ϕi �= 0.

Proposition 1.9. Let ϕ,ψ ∈ Q[[x1, . . . , xn]] be power series such that h :=
ψ/ϕ ∈ Q[x1, . . . , xn]. Assume we are given m := ordϕ, d ≥ deg h, and that the
i-graded parts of ϕ and ψ for i = m, . . . ,m + d are encoded by slp’s of lengths
bounded by L .

Then PowerSeries (Subroutine 4) computes q := ϕd+1
m h within complexity

O(d3L).

Proof. Set


(x, t) := ϕ(t x) =
∞∑

i=0

ϕi (x)t
i ,

Subroutine 4. Power series division.

procedure PowerSeries(n,m, d, ϕm, . . . , ϕm+d , ψm, . . . , ψm+d)

# n ∈ N is the number of variables,
# m ∈ N0 is the order of the denominator ϕ ∈ Q[[x]],
# d ∈ N is the degree of the quotient h := ψ/ϕ ∈ Q[x],
# the ϕi ’s and ψi ’s are the graded parts of the power series ϕ and ψ , respectively.
# The procedure returns q := ϕd+1

m h ∈ Q[x].

1. v :=∑d
i=0 yd−i zi ∈ Q[y, z];

2. P :=
(∑d

i=0 ψm+i t i
)
v

(
ϕm,−

∑d
j=1 ϕm+ j t j

)
;

3. (P0, . . . , Pd) := Expand(P, t, 0, d);
4. q :=∑d

i=0 Pi ;
5. return(q);

end.
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�(x, t) := ψ(t x) =
∞∑

i=0

ψi (x)t
i ∈ Q[x][[t]] ↪→ Q(x)[[t]].

Also set H := h(t x) ∈ Q(x)[t]. We first observe that ord
 = m, and thus
ord� ≥ m as �/
 = H ∈ Q(x)[t] is a polynomial. Hence the following
identity holds in Q(x)[[t]]:

H = �



= �

tm

1

ϕm

(
1− ϕm −
/tm

ϕm

)−1

= �

tm

∞∑
i=0

(ϕm −
/tm)i

ϕi+1
m

.

Thus, for

P :=
(

d∑
i=0

ψm+i t i

) d∑
i=0

ϕd−i
m

(
−

d∑
j=1

ϕm+ j t j

)i
 ∈ Q[x][t]

we have that ϕd+1
m H ≡ P(mod td+1). Let P =∑

i Pi t i be the monomial expan-
sion of P . Then ϕd+1

m H = ∑d
i=0 Pi t i , as the degree of H with respect to t is

bounded by d. Hence ϕd+1
m h =∑d

i=0 Pi .
The stated complexity is obtained as follows: We compute an slp encoding of

v :=∑d
i=0 yd−i zi within complexityO(d). We compute P as

∑d
i=0 ψm+i t i times

v
(
ϕm,−

∑d
j=1 ϕm+ j t j

)
within complexityO(d L). We compute the expansion of

P with respect to t up to degree d within complexityO(d3L). Finally, we compute
q as

∑d
i=0 Pi . The total complexity is of order O(d3L).

Remark 1.10. In case that, in addition, we are given b ∈ Qn such thatϕm(b) �= 0,
we can directly apply Subroutine 2 to compute the quotient polynomial h within
total complexity O(d5L).

2. The Representation of the Chow Form

This section presents an algorithm for the computation of the Chow form of an
equidimensional variety from a zero-dimensional fiber and a set of local equations
at a neighborhood of this fiber. This is the key step in our general algorithm (see
Section 3), although it has independent interest; it shows that the Chow form and
the geometric resolution are—up to a polynomial time computation—equivalent
representations of a variety (see Subsection 3.1). As a further application, we give
a nontrivial upper bound for the length of an slp representation of the Chow form
(Corollary 2.11).

In order to state the result, we need the following definitions:

Definition 2.1. Let V ⊂ Pn be an equidimensional variety of dimension r .
We say that fr+1, . . . , fn ∈ I (V ) is a system of local equations at ξ ∈ V if

the polynomials fr+1, . . . , fn generate I (V ) at some neighborhood of ξ , that is,
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I (V )ξ = ( fr+1, . . . , fn)ξ (where the subscript ξ denotes localization at the ideal
of the point ξ ).

If Z is a subset of V , we say that fr+1, . . . , fn ∈ I (V ) is a system of local
equations (of V ) at Z if it is a system of local equations at every ξ ∈ Z .

The existence of a system of local equations at a point ξ ∈ V implies that
(C[x]/I (V ))ξ is Cohen–Macaulay and thus, by [19, Theorem 18.15], for fr+1, . . . ,

fn ∈ I (V ) to be a system of local equations at ξ is equivalent to the fact that the
Jacobian matrix of this system has maximal rank n − r at ξ .

Definition 2.2. Let Z ⊂ An be a zero-dimensional variety of cardinality D. A
geometric resolution of Z consists of an affine linear form � = c0 + c1x1 + · · · +
cn xn ∈ Q[x1, . . . , xn] and of polynomials p ∈ Q[t] and v = (v1, . . . , vn) ∈ Q[t]n

such that:

• The affine linear form � is a primitive element of Z , that is, �(ξ) �= �(ξ ′) for
all ξ �= ξ ′ in Z .

• The polynomial p is monic of degree D and p(�(ξ)) = 0 for all ξ ∈ Z ; that
is, p is the minimal polynomial of � over Z .

• deg vi ≤ D − 1, 1 ≤ i ≤ n, and Z = {v(η); η ∈ C, p(η) = 0}; that is, v
parametrizes Z by the zeros of p.

Observe that the minimal polynomial p and the parametrization v are uniquely
determined by the variety Z and the affine linear form �. We say that (p, v) is the
geometric resolution of Z associated to �.

In case Z ⊂ Pn is a zero-dimensional projective variety which satisfies that none
of its points lie in the hyperplane {x0 = 0}, Z can be identified to a zero-dimensional
affine variety Z aff, the image of Z under the rational map Pn ��� An defined
by (x0 : · · · : xn) �→ (x1/x0, . . . , xn/x0). By a geometric resolution of Z we
then understand a geometric resolution—as defined before—of the affine variety
Z aff ⊂ An . In homogeneous coordinates, the definition of geometric resolution
states that the homogenized linear form �h satisfies (�h/x0)(ξ) �= (�h/x0)(ξ

′)
for all ξ �= ξ ′ in Z . The polynomial p is then the minimal monic polynomial
of �/x0 over Z aff. On the other hand, v defines a parametrization V (p) → Z ,
η �→ (1 : v1(η) : · · · : vn(η)).

Now, we are able to state the lemma:

Main Lemma 2.3. Let V ⊂ Pn be an equidimensional variety of dimension r
and degree D which satisfies Assumption 1.2. Set Z := V ∩ V (x1, . . . , xr ), and
let p ∈ Q[t] and v ∈ Q[t]n be a given geometric resolution of Z associated to a
given affine linear form � ∈ Q[x1, . . . , xn]. Let fr+1, . . . , fn ∈ I (V ) be a system
of local equations at Z . Assume that fr+1, . . . , fn have degrees bounded by d and
are encoded by slp’s of length bounded by L .

Then there is a deterministic algorithm (Procedure ChowForm (Subroutine 7)
below) which computes ChV within complexity O(r8 log2(r D)n7d2 D11L).
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In Subsection 2.3 we present the complete proof of the correctness of the al-
gorithm and its complexity estimate. The algorithm is essentially based on a new
Poisson-type product formula for the Chow form (see Proposition 2.5 below),
which describes the Chow form as a quotient of products of norms of certain poly-
nomials. We interpret this expression as a quotient of two power series, which can
be approximated with the aid of a symbolic version of Newton’s algorithm. Finally,
we apply Procedure PowerSeries (Subroutine 4 above) to compute the Chow form
from the approximate quotient.

2.1. Newton’s Algorithm

In this subsection we present a symbolic version of Newton’s algorithm for the
approximation of roots of equations. Newton’s algorithm is nowadays a widely
used tool for polynomial equation solving, starting from [27] and [23] as we already
mentioned. The situation in the present work is not much different from that in,
e.g., [34], [30]. Hence we just describe this procedure in order to adapt it to our
setting and to estimate its complexity; its correctness follows directly from [34,
Section 2] and the arguments therein.

First, we state the situation in which Newton’s algorithm is applied:

Let W ⊂ Ar × An be an equidimensional variety of dimension r such that the
projection map π : W → Ar is dominant, that is, the image π(W ) is a Zariski
dense set. Set A := Q[t1, . . . , tr ] = Q[Ar ] and let K be its fraction field. Also let
B := Q[W ] and set L := K ⊗A B. Then L is a finite K -algebra, and its dimension
D := [L : K ]—that is, the degree of π—equals the maximum cardinality of the
finite fibers of π [32, Proposition 1].

The norm Nπ (h) ∈ K of a polynomial h ∈ A[x1, . . . , xn] is defined as the
determinant of the K -linear map L → L defined by f �→ h f . Let I (W )e denote
the extension of the ideal I (W ) to the polynomial ring K [x1, . . . , xn], and set
W e := V (I (W )e) ⊂ An(K ), which is a zero-dimensional variety of degree D.
Then

Nπ (h) =
∏
γ∈W e

h(γ ).

We also denote this norm by NW e(h) when the projection map is clear from the
context. In various settings, we will be given a polynomial h and an equidimen-
sional variety W and our aim will be to compute an approximation of NW e(h).
The input of the procedure will be the polynomial h, a geometric resolution of a
zero-dimensional fiber of π and local equations at this fiber.

Let F1, . . . , Fn ∈ I (W ) ⊂ A[x1, . . . , xn] and set F := (F1, . . . , Fn). Let

JF :=
(
∂Fi

∂xj

)
1≤i, j≤n

∈ A[x1, . . . , xn]n×n

be the Jacobian matrix of F with respect to the variables x1, . . . , xn , and let�F :=
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|JF | ∈ A[x1, . . . , xn] be its Jacobian determinant. Let Z ⊂ An be such that
π−1(0) = {0} × Z . We assume that Z is a zero-dimensional variety of cardinality
D and that JF is nonsingular at π−1(0), that is, �F (0, ξ) �= 0 for all ξ ∈ Z .
Observe that this means that F(0, x) is a system of local equations at Z .

Under our assumptions, the implicit function theorem implies that the elements
in W e can also be considered as power series vectors: For ξ ∈ Z , since�F (0, ξ) �=
0, there exists a unique γξ ∈ C[[t1, . . . , tr ]]n such that

γξ (0) = ξ and F(t1, . . . , tr , γξ ) = 0.

(See, e.g., [6, Chapter 3, Section 4.5, Corollary 2].) It follows that f (t1, . . . , tr , γξ )
= 0 for all f ∈ I (W ) as F is a system of local equations at ξ , and so this also
holds for all f ∈ I (W e) = I (W )e. Hence γξ ∈ W e and, as #Z = #W e = D, we
conclude that the correspondence

Z → W e, ξ �→ γξ ,

is one-to-one. In particular, since NW e(h) is the determinant of a matrix in
Q(t1, . . . , tr ), NW e(h) ∈ C[[t1, . . . , tr ]] ∩Q(t1, . . . , tr ) ⊂ Q[[t1, . . . , tn]].

The given data—the description of the fiber and its local equations—suffices to
determine W e uniquely and, in particular, allows us to compute a rational function
q which approximates the norm NW e(h) to any given precision κ (we understand
by this that both Taylor expansions coincide up to degree κ , that is, NW e(h) ≡
q mod (t1, . . . , tr )κ+1). The rational function q can be obtained by a procedure
based on an iterative application of the Newton operator. This operator, defined as

N t
F := xt − JF (x)

−1 F(x)t ∈ K (x)n×1,

enables us to approximate the points in W e from the points in the fiber Z . If we
set N (m)

F ∈ K (x)1×n for the m-times iteration of NF , then, for every ξ ∈ Z ,

N (m)
F (ξ) ≡ γξ mod (t1, . . . , tr )

2m

(see [34, Section 2]).
Procedure NumDenNewton (Subroutine 5) computes polynomials g(m)

1 , . . . ,

g(m)
n , f (m)

0 in Q[t1, . . . , tr ] such that

N (m)
F = (g(m)

1 / f (m)
0 , . . . , g(m)

n / f (m)
0 ).

Herein, Homog( f, d) is a procedure which computes the homogeneization of the
polynomial f up to degree d ≥ deg( f ), JacobianMatrix(F, x) is a procedure
which constructs the Jacobian matrix with respect to the variables x associated
to the system of polynomials F and Adjoint(M) is a procedure which computes
the adjoint of the matrix M . For the correctness and complexity of the whole
procedure, see [23, Lemma 30]. We summarize the procedure that approximates
the norm of a given polynomial h in Procedure Norm (Subroutine 6). Herein,
CompanionMatrix is the procedure which constructs the companion matrix of a
given univariate polynomial.
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Subroutine 5. Computation of numerators and denominators for the Newton
operator.

procedure NumDenNewton(F, n, x, d,m)

# F1, . . . , Fn ∈ A[x1, . . . , xn] such that JF (x) �≡ 0,
# n is the number of dependent variables x ,
# d is an upper bound for the degrees of the polynomials F1, . . . , Fn ,
# m is the number of iterations to be computed.
# The procedure returns g(m)

1 , . . . , g(m)
n , f (m)

0 such that

NF (x)
(m) = (g(m)

1 / f (m)

0 , . . . , g(m)
n / f (m)

0 ).

1. JF := JacobianMatrix(F, x);
2. �F := |(JF )|;
3. A := Adjoint(JF );
4. ν := nd + 1;
5. for i from 1 to n do
6. g(1)

i := �F xi −
∑n

j=1 Ai j f j ;

7. Gi := Homog(g(1)
i , ν);

8. od;
9. f (1)0 := �F ;

10. F0 := Homog(�F , ν);
11. for k from 2 to m do 12;
12. for i from 1 to n do
13. g(k)

i := Gi ( f (k−1)
0 , g(k−1)

1 , . . . , g(k−1)
n );

14. od;
15. f (k)0 := F0( f (k−1)

0 , g(k−1)
1 , . . . , g(k−1)

n );
16. od;
17. return(g(m)

1 , . . . , g(m)
n , f (m)

0 );

end.

Lemma 2.4. Let notations be as before. Assume that h, F1, . . . , Fn ∈ A[x1, . . . ,

xn] are polynomials encoded by slp’s of length bounded by L such that deg h ≤ δ

and deg(Fi ) ≤ d , 1 ≤ i ≤ n.
Then Norm (Subroutine 6) computes f, g ∈ A with f (0) �= 0 such that g/ f

approximates NW e(h)with precision κ , within complexityO((log2 κ)n
7δ2d2 D4L).

Proof. For the correctness of the algorithm we refer to [34, Section 2] and the
arguments given there. Now, we estimate its complexity:

First, the complexity of Subroutine 5 applied to our situation is of orderO((log2 κ)

n7d2L) (see [23, Lemma 30] and its proof). Then, the algorithm computes the
matrices vj (Mp) (1 ≤ j ≤ n) with complexity of order O(nD3) (note that,
as the companion matrix is very sparse, the multiplication by Mp can be done
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Subroutine 6. Approximation of the norm.

procedure Norm(h, δ, n, x, p, v, F, d, κ)

# h ∈ A[x1, . . . , xn] is the polynomial whose norm we want to approximate,
# δ is an upper bound for the degree of h,
# n ∈ N is the number of dependent variables x ,
# p ∈ Q[t], v ∈ Q[t]n is a given geometric resolution of Z ,
# F = (F1, . . . , Fn) is a vector of polynomials in I (W ) such that �F (0, ξ) �= 0 for all
# ξ ∈ Z ,
# d is an upper bound for the degrees of the polynomials F1, . . . , Fn ,
# κ ∈ N is the desired level of precision.
# The procedure returns f, g ∈ A with f (0) �= 0 such that g/ f
# approximates the norm NW e (h) with precision κ .

1. m := �log2(κ + 1)�;
2. (g1, . . . , gn, f0) := NumDenNewton(F, n, x, d,m);
3. Mp := CompanionMatrix(p);
4. for i from 1 to n do
5. Mi := gi (v(Mp));
6. od;
7. M0 := f0(v(Mp));
8. H := Homog(h, δ);
9. M := H(M0, M1, . . . , Mn);

10. f := |M0|δ;
11. g := |M |;
12. return( f, g);

end.

with complexity O(D2)). Now, the matrices Mi := gi (v(Mp)) (1 ≤ i ≤ n) and
M0 := f0(v(Mp)) are obtained within complexity O((log2 κ)n

7d2 D3L). As h is
encoded by an slp of length L , its homogeneous components up to degree δ are
encoded by slp’s of lengthO(δ2L). Therefore, the complexity of the computation
of M is of orderO(δ2L D3+(log2 κ)n

7d2 D3L). Finally, f and g can be computed
within complexityO(D4+ (log2 δ) D3+ (log2 κ)n

7d2 D3L) andO(D4+ δ2 D3+
(log2 κ)n

7d2 D3L), respectively.

2.2. A Product Formula

In what follows, we establish a product formula for the Chow form of an affine
variety. This formula is an analogue of the classical Poisson formula for the resul-
tant [15, Chapter 3, Theorem 3.4]. It describes, under certain conditions, the Chow
form in a recursive manner.
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Let V ⊂ An be an equidimensional affine variety of dimension r and degree D
which satisfies Assumption 1.2. Let U0, . . . ,Ur be r +1 groups of n+1 variables
each and let Li := Ui0 + Ui1 x1 + · · · + Uin xn , 0 ≤ i ≤ r , be the affine linear
forms associated to these groups of variables. Set K := Q(U0, . . . ,Ur−1) and let
I (V )e denote the extension of the ideal of V to the polynomial ring K [x1, . . . , xn]
(or to any other ring extension of Q[x1, . . . , xn] which will be clear from the
context). We also set V 0 := V (I (V )e) ∩ V (L0, . . . , Lr−1) ⊂ An(K ), which is a
zero-dimensional variety of degree D.

For 0 ≤ i ≤ r , we set Vi := V ∩V (xi+1, . . . , xr ) ⊂ An , which is an equidimen-
sional variety of dimension i and degree D as V satisfies Assumption 1.2. Observe
that these varieties satisfy Assumption 1.2 as well. Let Ki := Q(U0, . . . ,Ui−1) ↪→
K and set

V 0
i := V (I (Vi )

e) ∩ V (L0, . . . , Li−1) ⊂ An(Ki ).

Observe that V 0
i is also a zero-dimensional variety of degree D. Under these

notations we have that V 0
0 = V0, Kr = K , and V 0

r = V 0.

Proposition 2.5 (Product Formula). Let V ⊂ An be an equidimensional variety
of dimension r which satisfies Assumption 1.2. Let notations be as in the previous
paragraph. Then

ChV (U0, . . . ,Ur ) =

r∏
i=0
ChV 0

i
(Ui )

r∏
i=1
ChV 0

i
(ei )

∈ Q(U0, . . . ,Ur−1)[Ur ].

The proof of this fact is based on the following lemma:

Lemma 2.6. Let V ⊂ An be an equidimensional variety of dimension r . Let
FV ∈ Q[U0, . . . ,Ur ] andFV 0 ∈ K [Ur ] be Chow forms of V and V 0, respectively.
Then there exists λ ∈ K ∗ such that

FV = λFV 0 .

Proof. As before, we denote by I (V )e the extension of the ideal I (V ) to a
ring extension of Q[x0, . . . , xn] which will be clear from the context. Let U lin

i ,
0 ≤ i ≤ r , denote the group of n variables Ui\{Ui 0}. We consider the map

Q[U0, . . . ,Ur ][x1, . . . , xn]/(I (V )e + (L0, . . . , Lr ))

→ Q[U lin
0 , . . . ,U lin

r ][x1, . . . , xn]/I (V )e

defined by Ui 0 �→ −(Ui 1 x1 + · · · + Ui n xn), Ui j �→ Ui j and xj �→ xj for
0 ≤ i ≤ r , 1 ≤ j ≤ n.
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As it is a ring isomorphism, I (V )e+ (L0, . . . , Lr ) is a radical ideal. Following
notations in Subsection 1.1, it follows that this ideal coincides with the defining
ideal of the incidence variety 
V and, therefore,

(FV ) = (I (V )e + (L0, . . . , Lr )) ∩ Q[U0, . . . ,Ur ].

Similarly,

(FV 0) = (I (V 0)e + (Lr )) ∩ K [Ur ].

We have that I (V )e + (L0, . . . , Lr ) ⊂ I (V 0)e + (Lr ) and so (FV ) ⊂ (FV 0), that
is, there exists λ ∈ K [Ur ]\{0} such that FV = λFV 0 . As degUr

FV = deg V =
degFV 0 , λ is an element in K ∗.

Proof of Proposition 2.5. Let 1 ≤ i ≤ r . From Lemma 2.6, there exists λi ∈ K ∗
i

such that

ChVi (U0, . . . ,Ui ) = λi ChV 0
i
(Ui ). (1)

Hence ChVi (U0, . . . ,Ui−1, ei ) = λi ChV 0
i
(ei ). Now, it is easy to see that ChVi−1

(U0, . . . ,Ui−1) divides ChVi (U0, . . . ,Ui−1, ei ). From Assumption 1.2, it follows
that deg Vi−1 = deg Vi = D and, therefore, both polynomials have the same
degree. Moreover, the normalization imposed on both Chow forms implies that
they coincide. So

ChVi−1(U0, . . . ,Ui−1) = λi ChV 0
i
(ei ). (2)

From identities (1) and (2) we deduce that

ChVi (U0, . . . ,Ui )

ChVi−1(U0, . . . ,Ui−1)
=
ChV 0

i
(Ui )

ChV 0
i
(ei )

. (3)

Multiplying these identities for i = 1, . . . , r we obtain

ChV (U0, . . . ,Ur )

ChV0(U0)
=

r∏
i=1

ChVi (U0, . . . ,Ui )

ChVi−1(U0, . . . ,Ui−1)
=

r∏
i=1

ChV 0
i
(Ui )

ChV 0
i
(ei )

which gives the formula stated in Proposition 2.5.

Observe that ChV 0
i
(Ui ) = ∏

γ∈V 0
i

Li (γ ) = NV 0
i
(Li ) and ChV 0

i
(ei ) =∏

γ∈V 0
i

xi (γ ) = NV 0
i
(xi ). Thus, Proposition 2.5 can be restated as

ChV (U0, . . . ,Ur ) =

r∏
i=0

NV 0
i
(Li )

r∏
i=1

NV 0
i
(xi )

∈ Q(U0, . . . ,Ur−1)[Ur ]. (4)
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Also, observe that Lemma 2.6 implies the following:

Remark 2.7. The Chow form ChV is the numerator of NV 0(Lr ).

Unfortunately this norm is a rational function, due to the fact that the map πr

is not finite but just dominant. The product formula is the tool which enables us to
overcome this difficulty, as it gives an expression for ChV without any extraneous
denominator. Identity (4) enables us to compute ChV as a quotient of power series.
To do so, we state a technical lemma first, that we prove here for lack of reference.

Lemma 2.8. Let V ⊂ An be an equidimensional variety of dimension r which
satisfies Assumption 1.2. Assume that V is Cohen–Macaulay at every point of
Z := V ∩ V (x1, . . . , xr ). Then, the ideal I (V )+ (x1, . . . , xr ) ⊂ C[x1, . . . , xn] is
radical.

Proof. Let V denote the projective closure of V ⊂ An ↪→ Pn . Let Z := V ∩
V (x1, . . . , xr ). The fact that #Z = deg V implies that Z = V ∩ V (x1, . . . , xr ).

Take ξ ∈ Z and let Qξ be the primary component of the ideal I (V ) +
(x1, . . . , xr ) ⊂ C[x1,. . . ,xn] which corresponds to ξ . We consider the length
�(V,V (x1,. . . ,xr );ξ) which under our assumptions can be defined as

�(V , V (x1, . . . , xr ); ξ) = dimC C[x1, . . . , xn]/Qξ . (5)

By a suitable version of Bézout’s theorem (see [60, Proposition 3.30])∑
ξ∈Z

�(V , V (x1, . . . , xr ); ξ) ≤ deg V .

On the other hand, as �(V , V (x1, . . . , xr ); ξ) is a positive integer for each ξ ∈ Z ,
and as #Z = deg V , it follows that∑

ξ∈Z

�(V , V (x1, . . . , xr ); ξ) ≥ deg V .

Then �(V , V (x1, . . . , xr ); ξ) = 1 for all ξ ∈ Z , and so (5) implies that Qξ =
(x1 − ξ1, . . . , xn − ξn) which is a prime ideal.

As I := I (V )+ (x1, . . . , xr ) is zero-dimensional, it has no embedded compo-
nents. Hence I = ∩ξ Qξ is a radical ideal.

The following corollary shows that the coordinates of all the points in V 0
i belong

to the subring C[[U0 − e1, . . . ,Ui−1 − ei ]] ∩ Ki , and that there is a one-to-one
correspondence between the points of Z := V ∩ V (x1, . . . , xr ) and the points
of V 0

i .

Corollary 2.9. Let notations and assumptions be as in Lemma 2.8 and before. Let
0 ≤ i ≤ r and ξ ∈ Z . Then there exists a uniqueγ (i)

ξ ∈ C[[U0−e1, . . . ,Ui−1−ei ]]n

such that γ (i)
ξ ∈ V 0

i and γ (i)
ξ (e1, . . . , ei ) = ξ .
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Proof. Suppose I (V ) is generated by the polynomials h1, . . . , ht . Since we are in
the conditions of the previous lemma, the Jacobian criterion [19, Theorem 18.15]
implies that the Jacobian matrix associated to the generators h1, . . . , ht , x1, . . . , xr

of the ideal I (V ) + (x1, . . . , xr ) has maximal rank n at ξ . In other words, there
are n polynomials g1, . . . , gn among h1, . . . , ht , x1, . . . , xr such that the associ-
ated Jacobian determinant is nonzero. Now, as the rank of the Jacobian matrix of
h1, . . . , ht at ξ is bounded by the codimension n − r of V at ξ , we can assume
without loss of generality that g1 := x1, . . . , gr := xr .

Let

� :=
∣∣∣∣∣
(
∂gi

∂xj

)
r+1≤i, j≤n

∣∣∣∣∣
be the Jacobian determinant of gr+1, . . . , gn with respect to the variables xr+1, . . . ,

xn . Then �(ξ) �= 0 since � coincides with the Jacobian determinant of the system
g1, . . . , gn .

On the other hand, let �i ∈ Ki [x1, . . . , xn] denote the Jacobian determinant of
the system L0, . . . , Li−1, xi+1, . . . , xr , gr+1, . . . , gn . An easy verification shows
that �i (e1, . . . , ei−1)(ξ) = �(ξ) �= 0. The statement follows from the implicit
function theorem (see Subsection 2.1).

Now, set

� :=
r∏

i=0

NV 0
i
(Li ) ∈ K [Ur ], 
 :=

r∏
i=1

NV 0
i
(xi ) ∈ K ∗,

so that, by identity (4), ChV := �/
. From Corollary 2.9, � ∈ Q[[U0 − e1,

. . . ,Ur−1 − er ]][Ur ] and 
 ∈ Q[[U0 − e1, . . . ,Ur−1 − er ]].
The following lemma gives the order of the denominator
 at E := (e1, . . . , er )

∈ Ar (n+1) together with its graded component of lowest degree:

Lemma 2.10. Let notations be as in the previous paragraph and let D := deg V .
Then ordE (
) = r D and its graded component of degree r D is


r D = ±
r∏

i=1

ChV0(Ui−1).

Proof. Clearly, ordE (
) =
∑r

i=1 ordE (NV 0
i
(xi )).

Let 1 ≤ i ≤ r . Recall that NV 0
i
(xi ) = ChV 0

i
(ei ). From identity (3) in the proof

of Proposition 2.5 we have

ChV 0
i
(ei ) ChVi (U0, . . . ,Ui ) = ChV 0

i
(Ui ) ChVi−1(U0, . . . ,Ui−1).

As ChV 0
i
(e0) = 1, then ChV 0

i
(ei ) ChVi (U0, . . . ,Ui−1, e0) = ChVi−1(U0, . . . ,

Ui−1). We also have that

ChVi (e1, . . . , ei , e0) = ± ChVi (e0, e1, . . . , ei ) = ±1.



The Computational Complexity of the Chow Form 77

This shows that ChVi (U0, . . . ,Ui−1, e0) is invertible inQ[[U0−e1, . . . ,Ui−1−ei ]]
and, therefore, if m := ordE (ChV 0

i
(ei )),

ChV 0
i
(ei ) ≡ ±ChVi−1(U0, . . . ,Ui−1) mod (U0 − e1, . . . ,Ui−1 − ei )

m+1.

By Lemma 2.6, there exists λi−1 ∈ Q(U0, . . . ,Ui−2)\{0} such that

ChVi−1(U0, . . . ,Ui−1) = λi−1 ChV 0
i−1
(Ui−1).

AsChV 0
i−1
(Ui−1) is a homogeneous polynomial of degree D in the group of variables

Ui−1 and does not depend on Ui−1 i , it is also homogeneous as a polynomial ex-
panded in Ui−1−ei . Then, the order of ChVi−1 at ei with respect to the group of vari-
ables Ui−1 equals D. On the other hand, we have that ChVi−1(e1, . . . , ei−1,Ui−1) =
± ChV0(Ui−1) �= 0. This implies that the seriesChVi−1 inQ[[U0−e1, . . . ,Ui−1−ei ]]
has a term of degree D depending only on the group of variables Ui−1 − ei . We
conclude that m = D and

(NV 0
i
(xi ))D = (ChV 0

i
(ei ))D = ±(ChVi−1(U0, . . . ,Ui−1))D = ± ChV0(Ui−1).

Therefore, ordE (
) =
∑r

i=1 ordE (NV 0
i
(xi )) = r D and the graded part of lowest

degree of 
 is 
r D =
∏r

i=1(NV 0
i
(xi ))D = ±

∏r
i=1 ChV0(Ui−1).

2.3. The Algorithm

Here, we are going to put the previous results together in order to obtain the
algorithm underlying Main Lemma 2.3 and to estimate its complexity.

Let notations be as in Main Lemma 2.3. As we have already noted, the imposed
conditions imply that both V and Z have no component in the hyperplane {x0 = 0}.
Hence V equals the projective closure of its affine part Vx0 := V \{x0 = 0} and so
both their Chow forms coincide. Hence we concentrate without loss of generality
on the affine case. We use affine coordinates and keep the notation of the previous
subsection. From identity (4), we have that

ChV =

r∏
i=0

NV 0
i
(Li )

r∏
i=1

NV 0
i
(xi )

.

Now, we approximate the norms appearing in this formula.
Set

Vi := V (I (Vi )
e) ∩ V (L0, . . . , Li−1)) ⊂ Ai(n+1) × An.

The map πi : Vi → Ai(n+1) defined by (U, x) �→ U is dominant of degree D :=
deg V . We set Z := V0 = V ∩ V (x1, . . . , xr ) ⊂ An and let Ei := (e1, . . . , ei ) ∈
Ai(n+1). Then

Zi := π−1
i (Ei ) = {Ei } × Z ,
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and so this fiber is a zero-dimensional variety of cardinality D. Furthermore, it is
easy to check that

L0, . . . , Li−1, xi+1, . . . , xr , fr+1, . . . , fn ∈ Q[U0, . . . ,Ui−1][x1, . . . , xn]

is a system of local equations of Vi at Zi .
Since, by definition, Nπi (xi ) and Nπi (Li ) coincide with NV 0

i
(xi ) ∈ Q[[U0 −

e1, . . . ,Ui−1 − ei ]] and NV 0
i
(Li ) ∈ Q[[U0 − e1, . . . ,Ui − ei+1]], respectively, we

can compute any approximation of the latter applying Procedure Norm (Subroutine
6) modulo a change of variables (U0, . . . ,Ui ) �→ (Ũ0+e1, . . . , Ũi+ei+1) (in order
to center the series at 0). We multiply the computed approximations for 0 ≤ i ≤ r
to obtain rational functions ψ and ϕ which approximate the power series

� :=
r∏

i=0

NV 0
i
(Li ) ∈ Q[[U0 − e1, . . . ,Ur−1 − er ]][Ur ],


 :=
r∏

i=1

NV 0
i
(xi ) ∈ Q[[U0 − e1, . . . ,Ur−1 − er ]]∗,

respectively.
From these approximations, we compute the graded parts of 
 and � of

degrees between r D and (2 r + 1)D centered at (E, 0) ∈ A(r+1)(n+1) (where
E := (e1, . . . , er ) ∈ Ar(n+1)) by applying Procedure GradedParts (see Subsec-
tion 1.4).

By Lemma 2.10, we have that ord(E,0)(
) = ordE (
) = r D. We also have
deg ChV = (r + 1) D. We use this information together with the obtained graded
parts in order to apply Procedure PowerSeries (Subroutine 4). This yields a poly-
nomial Q ∈ Q[U0, . . . ,Ur ] such that

Q = 

(r+1)D+1
r D ChV .

Again, from Lemma 2.10, the denominator 
(r+1)D+1
r D does not vanish at E0 :=

(e0, . . . , e0) ∈ Ar(n+1). We apply Procedure PolynomialDivision (Subroutine 2)
to the polynomials Q and 
(r+1)D+1

r D and the point E0.
We summarize this procedure in Procedure ChowForm (Subroutine 7) which

computes the Chow form of an affine equidimensional variety V satisfying
Assumption 1.2.

Proof of Main Lemma 2.3. As we have already observed, we may suppose with-
out loss of generality that V is an affine variety and that the polynomials fr+1, . . . ,

fn are in Q[x1, . . . , xn]. We apply Procedure ChowForm (Subroutine 7) to V in
order to compute its normalized Chow form. The correctness of this procedure
follows from our previous analysis. The announced complexity is a consequence
of the complexity of the subroutines we call during this procedure:

• By Lemma 2.4, the complexity of lines 1 to 6 is of orderO(r log2(r D)n7d2

D4L). The products in lines 7 and 8 do not change this estimate.
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Subroutine 7. Chow form from a fiber and local equations.

procedure ChowForm(n, x, r, D, p, v, f, d)

# n is the number of variables x := (x1, . . . , xn),
# r, D are the dimension and the degree of V , respectively,
# p ∈ Q[t], v ∈ Q[t]n is a given geometric resolution of the fiber Z ,
# f = ( fr+1, . . . , fn) ∈ Q[x1, . . . , xn]n−r is a system of local equations of V at Z of
# degrees bounded by d .
# The procedure returns the normalized Chow form ChV .

1. for i from 1 to r do
2. (ϕ

(1)
i , ϕ

(2)
i ) := Norm(xi , 1, n, x, p, v, L0, . . . , Li−1, xi+1, . . . , xr , fr+1, . . . , fn, d,

(2 r + 1)D);
3. od;
4. for i from 0 to r do
5. (ψ

(1)
i , ψ

(2)
i ) := Norm(Li , 1, n, x, p, v, L0, . . . , Li−1, xi+1, . . . , xr , fr+1, . . . , fn,

d, (2r + 1)D);
6. od;
7. ϕ(1) :=∏r

i=1 ϕ
(1)
i , ϕ(2) :=∏r

i=1 ϕ
(2)
i ;

8. ψ(1) :=∏r
i=0 ψ

(1)
i , ψ(2) :=∏r

i=0 ψ
(2)
i ;

9. (
0, . . . , 
(2r+1)D) := GradedParts(ϕ(1), ϕ(2), (e1, . . . , er ), (2 r + 1)D);
10. (�0, . . . , �(2r+1)D) := GradedParts(ψ(1), ψ(2), (e1, . . . , er , 0), (2 r + 1)D);
11. Q := PowerSeries((r + 1)(n + 1), r D, (r + 1)D,
r D, . . . , 
(2r+1)D,

�r D, . . . , �(2r+1)D);
12. ChV := PolynomialDivision(Q,


(r+1)D+1
r D , (r + 1)D, (e0, . . . , e0));

13. return(ChV );

end.

• The computation of the graded parts in lines 9 and 10 has complexity O(r3

log2(r D)n7d2 D6L).
• Finally, the subroutines PowerSeries and PolynomialDivision in lines 11 and

12 add complexity O(r8 log2(r D)n7d2 D11L).

We conclude that the overall complexity is O(r8 log2(r D)n7d2 D11L).

We directly derive the following estimate for the length of an slp representation
of the Chow form of an equidimensional variety:

Corollary 2.11. Let V ⊂ Pn be an equidimensional variety of dimension r and
degree D. Let fr+1, . . . , fn ∈ I (V ) be a system of local equations at a dense open
subset of V , encoded by slp’s of length bounded by L . Then, if d := max{deg( fi ) :
r + 1 ≤ i ≤ n}, we have

L(FV ) ≤ O(r8 log2(r D)n7d2 D11L).
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Proof. Let �1, . . . , �r ∈ Q[x0, . . . , xn] be linear forms such that Z := V ∩
V (�1, . . . , �r ) is a zero-dimensional variety of cardinality D. We can choose these
linear forms so that Z lies in the dense open subset where fr+1, . . . , fn is a system of
local equations. Furthermore, let �0, �r+1, . . . , �n be linear forms which complete
the previous ones to a change of variables such that Z ∩ {�0 = 0} = ∅. Then V
satisfies Assumption 1.2 with respect to these variables, and the statement follows
directly from Main Lemma 2.3.

3. The Computation of the Chow Form

We devote this section to the description and complexity analysis of the algorithm
underlying Theorem 1. The first subsections gather some results which lead to the
proof of the theorem.

3.1. Geometric Resolutions

Geometric resolutions where first introduced in the works of Kronecker and König
in the last years of the nineteenth century. Nowadays they are widely used in com-
puter algebra, especially in the zero-dimensional case, but there are also important
applications in the general case. We refer to [26] for a complete historical account.

In what follows we recall how to compute any—sufficiently generic—geometric
resolution of an equidimensional variety from a Chow form in polynomial time.
This computation and the procedure described in Section 2 imply that, from the
point of view of complexity, Chow forms and geometric resolutions are equivalent
representations of an equidimensional variety.

Let V ⊂ An be an equidimensional affine variety of dimension r and degree
D. For 0 ≤ i ≤ r , let Li denote, as usual, the generic affine forms. Let ci ∈ Qn+1.
We set

�i := Li (ci ) = ci0 + ci1 x1 + · · · + cin xn ∈ Q[x1, . . . , xn].

We assume that the projection map

π(�1,...,�r ): V → Ar , x �→ (�1(x), . . . , �r (x))

is finite, that is, the affine linear forms �1, . . . , �r are in Noether position with
respect to V . Let y1, . . . , yr be new variables. Set

K := Q(y1, . . . , yr ), L = Q(�1, . . . , �r )⊗Q[�1,...,�r ] Q[V ]

and consider the morphism

K → L , yi �→ �i .
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Then K ↪→ L is a finite extension of degree [L : K ] ≤ D. We assume, furthermore,
that �0 is a primitive element of this extension, that is, L = K [�0].

Then the geometric resolution of V associated to � := (�0, . . . , �r ) is the pair

p := pV,� ∈ K [t], w := wV,� ∈ K [t]n,

where p is the monic minimal polynomial of �0 with respect to the extension K ↪→
L , and w = (w1, . . . , wn) verifies degwi < [L : K ] and p′(�0) xi = wi (�0) ∈ L
for 1 ≤ i ≤ n, where p′ := ∂p/∂t . These polynomials are uniquely determined
and, because of the Noether position assumption, we have that p, wi lie, in fact,
in Q[y1, . . . , yr ][t], see, e.g., [30, Section 3.2].

A geometric resolution gives a parametrization of a dense open set of V in
terms of the points of a hypersurface in Ar+1: there is a map

V (p(t, y1, . . . , yr ))\V (p′(t, y1, . . . , yr )) → V \V (p′(�0(x), �1(x), . . . , �r (x))),

(t, y1, . . . , yr ) �→ w

p′
(t, y1, . . . , yr ).

Note that, in case the considered variety is zero-dimensional, this definition
of geometric resolution essentially coincides with the one given in Section 2: the
passage from one to the other can be made by considering the resultant with respect
to the variable t between p and p′.

The following construction shows that the geometric resolution associated to
the generic affine linear forms L0, . . . , Lr can be expressed in terms of the char-
acteristic polynomial of the variety and, hence, in terms of the Chow form:

Let U0, . . . ,Ur be r +1 sets of n+1 variables which correspond to the coordinate
functions ofA(r+1)(n+1) and let T := (T0, . . . , Tr ) be a set of r+1 variables which
correspond to the coordinate functions of Ar+1. We recall that a characteristic
polynomial PV ∈ Q[U0, . . . ,Ur ][T0, . . . , Tr ] of V is defined as any defining
equation of the Zariski closure of the image of the map

ϕV : A(r+1)(n+1) × V → A(r+1)(n+1) × Ar+1,

(u0, . . . , ur ; ξ) �→ (u0, . . . , ur ; L0(u0, ξ), . . . , Lr (ur , ξ)),

which is a hypersurface. This is a multihomogeneous polynomial of degree D
in each set of variables Ui ∪ {Ti }. Its degree in the group of variables T is also
bounded by D.

A characteristic polynomial of V can be derived from a Chow form FV . For
1 ≤ i ≤ r we set ζi := (Ui0 − Ti ,Ui1, . . . ,Uin). Then

PV = (−1)D FV (ζ0, . . . , ζr ) (6)

is a characteristic polynomial of V .
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Set PV := aD T D
0 + · · · + a0 for the expansion of PV with respect to T0. Then

aD lies in Q[U1, . . . ,Ur ]\{0} and, in fact, it coincides with the coefficient of U D
00

in FV , that is,

aD(U1, . . . ,Ur ) = FV (e0,U1, . . . ,Ur ).

In case V satisfies Assumption 1.2, we define the characteristic polynomial of V
as

(−1)D ChV (ζ0, . . . , ζr )

where ChV is the normalized Chow form of V . We refer to [43, Section 2.3.1] for
further details as well as for the proof of the stated facts.

Lemma 3.1. Let V ⊂ An be an equidimensional variety of dimension r and
degree D. Let U0, . . . ,Ur be r+1 sets of n+1 variables and let L0, . . . , Lr be the
generic affine forms associated to U0, . . . ,Ur . Set E := Q(U0, . . . ,Ur ) and let V e

denote the Zariski closure of V in An(E). Let T0, . . . , Tr be new indeterminates.
Then the geometric resolution of V e associated to L0, . . . , Lr is given by

P := PV

aD
∈ E[T1, . . . , Tr ][T0],

W := − 1

aD

(
∂PV

∂U0 1
, . . . ,

∂PV

∂U0 n

)
∈ E[T1, . . . , Tr ][T0]n,

where PV is a characteristic polynomial of V and aD is the leading coefficient of
PV with respect to T0.

Proof. Using the fact that the extended ideal I (V )e ⊂ E[x1, . . . , xn] is radical,
it is easy to check that I (V e) = I (V )e. Consider then the morphism

A := E[T1, . . . , Tr ] −→ B := E[x1, . . . , xn]/I (V )e, Ti �→ Li (Ui , x).

Our first aim is to prove that this is an integral inclusion or, in other words, that
the projection map π(L1,...,Lr ): V e → Ar (E) is finite.

By definition

P(U0, . . . ,Ur )(L0(U0, x), . . . , Lr (Ur , x)) ≡ 0 mod I (V )⊗Q[x] Q(U )[x].
(7)

Specializing U0 by the (i + 1)th element of the canonical basis ei in this identity,
we deduce that P(ei ,U1, . . . ,Ur )(T0, T1, . . . , Tr ) ∈ A[T0] is a monic equation
for xi for i = 1, . . . , n. Therefore A ↪→ B is an integral extension.

Set K := E(T1, . . . , Tr ) and L := K ⊗A B. It is immediate that P := PV /aD

is a monic polynomial equation for L0 with respect to the extension K ↪→ L. As
A ↪→ B is an integral extension, from the definition of PV we deduce that P is
the minimal monic polynomial of L0. This implies that [L : K] = D and that L0

is a primitive element of this extension.
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Write

Q(U, x) := PV (U0, . . . ,Ur )(L0(U0, x), . . . , Lr (Ur , x)) =
∑
β

bβ Uβ

0

with bβ ∈ Q[U1, . . . ,Ur ][x1, . . . , xn]. As bβ ∈ I (V )e ⊂ Q[U1, . . . ,Ur ]
[x1, . . . , xn] for all β,

∂Q(U, x)

∂U0i
∈ I (V )e ⊂ Q[U0, . . . ,Ur ][x1, . . . , xn] for i = 1, . . . , n.

Therefore, ∂Q(U, x)/∂U0i = 0 in L for 1 ≤ i ≤ n. Then the chain rule implies
that the identity

∂PV

∂T0
(U, L(U, x)) xi = − ∂PV

∂U0i
(U, L(U, x))

holds in L and the lemma follows.

Now we show how a particular geometric resolution can be obtained by direct
specialization of the generic one. Using the same notation as at the beginning
of this subsection, we will assume that V ∩ V (�1, . . . , �r ) is a zero-dimensional
variety of cardinality D. This condition is satisfied provided that �1, . . . , �r are
generic enough [43, Proposition 4.5]. After a linear change of variables, we may
assume without loss of generality that �i = xi for i = 1, . . . , r , so that the stated
condition is Assumption 1.2.

Thus, for the rest of this section we fix the following notations:

Z := V∩V (x1, . . . , xr ), K := Q(x1, . . . , xr ), L := K⊗Q[x1,...,xr ]Q[V ].

We also assume that �0 = L0(c0, x) ∈ Q[x1, . . . , xn] separates the points of Z .
This is also a generic condition: if we set ρ := discrT0 PZ ∈ Q[U0]\{0}, this
condition is satisfied provided that ρ(c0) �= 0.

These two conditions ensure the existence of the associated geometric resolution
of V :

Lemma 3.2. Let V ⊂ An be an equidimensional variety of dimension r and
degree D which satisfies Assumption 1.2. Let �0 := L0(c0, x) ∈ Q[x1, . . . , xn] be
an affine linear form which separates the points of Z .

Then the projection map π : V → Ar , π(x) = (x1, . . . , xr ) is finite and �0

is a primitive element of the extension K ↪→ L . The geometric resolution of V
associated to � := (�0, x1, . . . , xr ) is given by

p := PV (c0, e1, . . . , er )(t, x1, . . . , xr ) ∈ Q[x1, . . . , xr ][t],

w := −
(
∂PV

∂U01
, . . . ,

∂PV

∂U0n

)
(c0, e1, . . . , er )(t, x1, . . . , xr ) ∈ Q[x1, . . . , xr ][t]n,

where PV is the normalized characteristic polynomial of V .
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Proof. The fact that π is finite follows from [43, Lemma 2.14]. On the other
hand, the normalization imposed on PV implies that

p0(t) := p(t, 0, . . . , 0) = PV (c0, e1, . . . , er )(t, 0, . . . , 0) ∈ Q[t]

is a monic—and thus nonzero—polynomial of degree D which vanishes on �0(ξ)

for all ξ ∈ Z . The hypothesis that �0 separates the points of Z implies that p0 is
the minimal polynomial of �0 over Z ; in particular, it is a squarefree polynomial
of degree D and so, as p is monic,

0 �= (discr p0) = ((discrt p))(0, . . . , 0).

In particular, discrt p �= 0, and thus p is also a squarefree polynomial which
annihilates �0 over V . Now, as the map π is finite, the minimal polynomial m�0 ∈
K [t] of �0 lies in Q[x1, . . . , xr ][t]. Hence m�0(0, . . . , 0, t) vanishes on �0(ξ) for
all ξ ∈ Z . This implies that degt m�0 = D. As p is a monic polynomial of degree
D in t , then p = m�0 . So �0 is a primitive element of the extension K ↪→ L , and
p is its minimal polynomial.

Using the same notation of Lemma 3.1 we have

∂PV

∂T0
(U, L(U, x))xi = − ∂PV

∂U0 i
(U, L(U, x)) ∈ L.

As this identity involves only polynomials inQ[U0, . . . ,Ur ][x1, . . . , xn], it can be
directly evaluated to obtain the parametrization w.

In particular, this shows that the total degree of the polynomials in the geometric
resolution is bounded by deg p ≤ D and degwi ≤ D (see also [30, Proposition
3]). Lemma 3.2 can be applied directly to compute a geometric resolution of an
equidimensional variety V which satisfies Assumption 1.2 from a given Chow
form of V :

Corollary 3.3. Let notations and assumptions be as in Lemma 3.2. Suppose
that there is given a Chow form FV of V , encoded by an slp of length L . Then,
there is an algorithm which computes a geometric resolution of V associated to
� within complexity O(nL). All polynomials arising in this geometric resolution
are encoded by slp’s of length O(L). �

Lemma 3.2 also yields, from ChV , a geometric resolution of the fiber Z as-
sociated to an affine linear form �0, as ChZ (U0) = ChV (U0, e1, . . . , er ). This is
summarized in Procedure GeomRes (Subroutine 8).

In Procedure GeomRes (Subroutine 8), as we do in all zero-dimensional situ-
ations, we use the definition of geometric resolution stated in Section 2 to avoid
divisions by p′. In line 8 of this subroutine, Res( f, g, d1, d2) is a procedure that,
using basic linear algebra, computes (ρ, q1, q2) where ρ is the resultant between
the univariate polynomials f and g of degrees d1 and d2, respectively, and q1 and
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Subroutine 8. Computing a geometric resolution of a fiber.

procedure GeomRes(n, r, D, ChV , ξ, c)

# n is the number of variables,
# r, D are the dimension and an upper bound for the degree of V , respectively,
# ChV is the normalized Chow form of V ,
# ξ := (ξ1, . . . , ξr ) ∈ Ar such that #Zξ = deg V , where Zξ := V ∩V (x1−ξ1, . . . , xr−ξr ),
# c0 ∈ Qn+1 s.t. �0 := L0(c0, x) is the considered affine linear form.
# The procedure returns (D0, p, v), where D0 is the degree of V and (p, v) ∈ Q[t]n+1 is
# the geometric resolution of Zξ associated to �0 in case �0 separates the points in Zξ .
# Otherwise, it returns error.

1. P(U0, t) := ChV ((U00 − t,U01, . . . ,U0n), e1 − ξ1e0, . . . , er − ξr e0);
2. (p0, . . . , pD) := Expand(P(c0, t), t, 0, D);
3. D0 := D;
4. while pD0 = 0 and D0 ≥ 0 do
5. D0 := D0 − 1;
6. od;
7. p := (−1)D0 P(c0, t);
8. (ρ, q1, q2) := Res(p, p′, D0, D0 − 1);
9. if ρ = 0 then

10. return (“error”);
11. else
12. (w1, . . . , wn) := ((−1)D0+1∂P/∂U01(c0, t), . . . , (−1)D0+1∂P/∂U0n(c0, t));
13. (v1,. . . ,vn) := (Mod((1/ρ) q2w1, p, 2D0 − 1,D0),. . . ,Mod((1/ρ) q2 wn, p,

2D0 − 1, D0));
14. return(D0, p, v1, . . . , vn);

end.

q2 are polynomials of degrees bounded by d2 − 1 and d1 − 1, respectively, satis-
fying ρ = q1 f + q2g. In line 13, Mod( f, g, d1, d2) is a procedure that computes
the remainder of the division of the polynomial f of degree bounded by d1 by the
polynomial g of degree bounded by d2.

Proposition 3.4. Let V ⊂ An be an equidimensional variety of dimension r and
degree bounded by D. Let (ξ1, . . . , ξr ) ∈ Ar be such that Zξ := V ∩ V (x1 −
ξ1, . . . , xr − ξr ) is a zero-dimensional variety of cardinality deg V . Assume we
are given both an slp of length L encoding ChV and the coefficients of an affine
linear form �0 ∈ Q[x1, . . . , xn] which separates the points in Zξ . Then, Procedure
GeomRes (Subroutine 8) computes a geometric resolution of Zξ (in the sense of
Section 2) within complexity O(nD2L + D4). �

On the other hand, our next result shows the converse of Corollary 3.3: To
derive a Chow form from a given geometric resolution is quite standard in the zero-
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dimensional case, but it was by no means clear up to now how to generalize that for
varieties of arbitrary dimension. Here we show how to do that within polynomial
complexity. This is done by deriving, from the given geometric resolution of V ,
a geometric resolution of the fiber Z and a system of local equations for V at Z ,
which enables us to apply Procedure ChowForm (Subroutine 7).

Proposition 3.5. Let V ⊂ An be an equidimensional variety of dimension r and
degree D which satisfies Assumption 1.2. Let �0 ∈ Q[x1, . . . , xn] be a linear form
which separates the points of Z .

Suppose that there is given a geometric resolution (p, w) of V associated to
� := (�0, x1, . . . , xr ), encoded by slp’s of length L .

Then there is a bounded probability algorithm which computes (an slp for) ChV

within complexity O(n16 D19(D + L)).

Proof. First we derive a geometric resolution of Z associated to �0:

We know that ChZ (U0) = ChV (U0, e1, . . . , er ). Thus,

PZ (U0)(t) = PV (U0, e1, . . . , er )(t, 0, . . . , 0) ∈ Q[U0][t].

The geometric resolution (p, w) of V associated to � is given by Lemma 3.2.
Applying the same lemma to Z , we deduce that the geometric resolution (p0, w0)of
Z associated to �0 is p0(t) := p(t, 0, . . . , 0) ∈ Q[t] andw0(t) := w(t, 0, . . . , 0) ∈
Q[t]n .

Now, let us derive a system of local equations of V at Z :

Let ci ∈ Qn+1, r + 1 ≤ i ≤ n, be such that the affine linear forms �i :=
ci0 + ci1x1 + · · · + cin xn ∈ Q[x1, . . . , xn] are linearly independent and such that
each of them separates the points of Z .

For r + 1 ≤ i ≤ n define

Hi := |p′(Mp) t − (p′ �i (w/p′))(Mp)|,
where Mp ∈ Q[x1, . . . , xr ]D×D denotes the companion matrix of p. Since p′ �i

(w/p′) belongs to Q[x1, . . . , xr ][t], we see that Hi ∈ Q[x1, . . . , xr ][t].
Observe that xi = (wi/p′)(�0(x)) in L implies that in L ,

p′(�0)�i = ci0 p′(�0)+ ci1w1(�0)+ · · · + cinwn(�0) = (p′ �i (w/p′))(�0).

Thus, as Mp is the matrix of multiplication by �0 with respect to K ↪→ L , we
conclude that Hi = | p′(Mp) |m�i where m�i is the minimal polynomial of �i

over K .
Now, each m�i belongs to Q[x1, . . . , xr ][t] because �i separates the points of

Z and the projection π : V → Ar , x �→ (x1, . . . , xr ) is finite. Therefore, for
r + 1 ≤ i ≤ n, we can define

fi := m�i (�i ) = 1

|p′(Mp)|Hi (x1, . . . , xr )(�i ).
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These are squarefree polynomials in separated variables which vanish over V , and
so it is easy to verify from the Jacobian criterion that fr+1, . . . , fn is a system of
reduced local equations of V at Z .

Now we show that |p′(Mp)|(0, . . . , 0) �= 0 and, hence, we can use the point
(0, . . . , 0) to perform Procedure PolynomialDivision (Subroutine 2) in order to
obtain division free slp’s for fr+1, . . . , fn: There exist a, b ∈ Q[x1, . . . , xr ][t]
such that discr(p) = a(t) p(t) + b(t) p′(t), thus discr(p) Id = b(Mp) p′(Mp).
On the other hand, the fact that deg Z = deg V implies discr(p)(0, . . . , 0) =
discr(p0) �= 0. Therefore, |b(Mp) p′(Mp)|(0, . . . , 0) = (discr(p0))

D �= 0.
Finally, we apply procedure ChowForm (Subroutine 7) to Z and { fr+1, . . . , fn}.
Let us decide now the random choices in order to ensure that the algorithm has

an error probability bounded by 1
4 :

We need cr+1, . . . , cn ∈ Qn+1 satisfying the stated conditions of independence
and separability. These conditions are satisfied provided that

ρ(cr+1) · · · ρ(cn)

∣∣∣(ci j ) r+1≤i≤n
1≤ j≤n−r

∣∣∣ �= 0,

where ρ := discrt PZ ∈ Q[U0]\{0}. As PZ is an homogeneous polynomial of
degree D and degt PZ = D, deg ρ ≤ D(2D−1). Thus the degree of the polynomial
giving bad choices is bounded by (n−r)D(2D−1)+(n−r). We choose � := 8nD2

in order to apply the Schwartz lemma.

Now we compute the complexity of the algorithm:

The dense representation of the geometric resolution of Z associated to �0 is
computed within complexity O(nD2L) (using Procedure Expand).

The construction of the random choice for the affine linear forms �r+1, . . . , �n

is not relevant here. The computation of each polynomial Hi requires O(D4)

operations for the computation of the determinant plus the computation of each
coefficient of the matrix, that is, O(D3L) more operations, Hence, computing Hi

requires O(D3(D + L)) operations.
By Lemma 1.7, taking into account that the total degree of each fi is bounded

by D (since it is the minimal polynomial of the affine linear form �i ), and that the
lengths of Hi and |p′(Mp)| are of orderO(D3(D+ L)), the complexity of the final
division for computing each fi is O(D2(D + D3(D + L))) = O(D5(D + L)).
Finally, Lemma 2.3 gives the final complexityO(r8 log2(r D)n7 D13 D5(D+L)) =
O(n16 D19(D + L)).

3.2. Intersection of a Variety with a Hypersurface

Let V ⊆ An be an equidimensional variety defined overQ, and let f ∈ Q[x1, . . . ,

xn] be a nonzero divisor modulo I (V ). In this subsection we compute, from the
Chow form of V and the equation f , a Chow form of the set-theoretic intersection
V ∩ V ( f ) ⊂ An . In order to do this, we use generalized Chow forms, which we
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define now. We refer to [50] and [43, Section 2.1.1] for a more extensive treatement
of these generalized Chow forms.

We assume that dim V = r and that deg f ≤ d . As before, for i = 0, . . . , r ,
we introduce a set Ui = (Ui0, . . . ,Uin) of n+ 1 variables; we introduce also a set

U (d)r of
(d + n

n
)

variables. We set

Li := Ui0 +Ui1x1 + · · · +Uin xn, Fr :=
∑
|α|≤d

U (d)rα xα,

for the generic affine linear forms in n variables associated to Ui and the generic
polynomial of degree d in n variables associated to U (d)r .

Set N := r (n + 1)+
(

d + n

n

)
and let W ⊂ AN × V be the incidence variety

of L0, . . . , Lr−1, Fr with respect to V , that is,

W := {(u0, . . . , ur−1, u(d)r ; ξ) ∈ AN × An;
ξ ∈ V, L0(u0, ξ) = 0, . . . , Lr−1(ur−1, ξ) = 0, Fr (u(d)r , ξ) = 0}.

Let π : AN ×An → AN denote the canonical projection onto the first coordinates.
Then π(W ) is a hypersurface inAN . A generalized Chow form or d-Chow form of
V is any squarefree polynomialFd,V ∈ Q[U0, . . . ,Ur−1,U (d)r ] definingπ(W ) ⊆
AN . A d-Chow form Fd,V happens to be a multihomogeneous polynomial of
degree d deg V in each group of variables Ui , and of degree deg V in the group
U (d)r . If the variety V satisfies Assumption 1.2, we define the normalized d-
Chow form of V as the unique d-Chow form Chd,V ∈ Q[U0, . . . ,Ur−1,U (d)r ] of
V satisfyingChd,V (e0, . . . , er−1, e(d)) = 1, where e(d) is the vector of coefficients
of the polynomial xd

r .
Let V and V ( f ) denote the closure in Pn of V and V ( f ), respectively. Set

V ∩ V ( f ) =⋃C C for the irreducible decomposition of V ∩ V ( f ) ⊂ Pn and, for
each irreducible component C , let FC ∈ Q[U0, . . . ,Ur−1] denote a Chow form of
C . Then [50, Proposition 2.4] states that

Chd,V (U0, . . . ,Ur−1, f ) = λ
∏

C

FmC
C (8)

for some λ ∈ Q∗ and some positive integers mC ∈ N. (Here we wrote Chd,V

(U0, . . . ,Ur−1, f ) for the specialization of the group U (d)r into the coefficients of
the polynomial f .) On the other hand, as V∩V ( f ) =⋃C �⊂{x0=0} C , the polynomial∏

C �⊂{x0=0}
FC

is a Chow form of V ∩ V ( f ).
Hence, in order to compute FV∩V ( f ), the goal is to compute first Chd,V ( f ) :=

Chd,V (U0, . . . ,Ur−1, f ), then compute its squarefree part and, finally, eliminate the
factors coming from the Chow forms of components contained in the hyperplane
{x0 = 0}.
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The following result enables us to compute a d-Chow form from the standard
one. We recall some of the notation of Subsection 2.2: for an equidimensional
variety V ⊂ An of dimension r and degree D satisfying Assumption 1.2, we
set K := Q(U0, . . . ,Ur−1) and I (V )e for the extension of the ideal of V to
K [x1, . . . , xn]. Also recall that

V 0 := V (I (V )e) ∩ V (L0, . . . , Lr−1) ⊂ An(K ),

is a zero-dimensional variety of degree D, and that NV 0 refers to the Norm as
defined in Subsection 2.1.

Lemma 3.6. Under Assumption 1.2, we have

Chd,V = ChV (U0, . . . ,Ur−1, e0)
d NV 0(Fr ).

Proof. Let Chd,V 0 ∈ K [Ur ] be the d-Chow form of V 0. First, one shows—exactly
as in Lemma 2.2—that there exists λd ∈ K ∗ such that Chd,V = λd Chd,V 0 . Set
e(d)0 for the vector of coefficients of the polynomial xd

0 . Evaluating this identity
at U (d)0 �→ e(d)0 we obtain

Chd,V (U0, . . . ,Ur−1, e(d)0) = λd Chd,V 0(e(d)0) = λd .

Consider the morphism "d : Q[U0, . . . ,Ur−1,U (d)r ] → Q[U0, . . . ,Ur−1,Ur ]
defined by "d(Li ) = Li for 0 ≤ i ≤ r − 1 and "d(Fr ) = Ld

r . Then "d(Chd,V ) =
Chd

V (see [43, Lemma 2.1]), which implies that

Chd,V (U0, . . . ,Ur−1, e(d)0) = "d(Chd,V )(U0, . . . ,Ur−1, e0)

= ChV (U0, . . . ,Ur−1, e0)
d .

Therefore, λd = ChV (U0, . . . ,Ur−1, e0)
d . The statement follows immediately

from this identity and the observation that Chd,V 0 = NV 0(Fr ).

To clean the components of V ∩ V ( f ) lying in the hyperplane {x0 = 0} we use
the following criterion:

Lemma 3.7. Let W ⊂ Pn be an irreducible variety of dimension r − 1. Then
W ⊂ {x0 = 0} if and only if FW does not depend on the variable U00.

Proof. In case FW does not depend on U00 we have that

FW (e0,U1, . . . ,Ur−1) = 0,

which is equivalent to the fact that W is contained in the hyperplane {x0 = 0}.
On the other hand, assume that W ⊂ {x0 = 0} ∼= Pn−1. Then FW coincides

with the Chow form of W considered as a subvariety of this linear space, see, e.g.,
the proof of [43, Lemma 2.6]. Hence FW does not depend on U00 and, as a matter
of fact, it does not depend on any of the variables Ui 0 for 0 ≤ i ≤ r − 1.
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Let again FC ∈ Q[U0, . . . ,Ur−1] denote a Chow form of an irreducible com-
ponent C of V ∩ V ( f ) ⊂ Pn . Recalling Identity (8), set

F1 :=
∏

C⊂{x0=0}
FmC

C and F2 :=
∏

C �⊂{x0=0}
FmC

C .

Then Chd,V ( f ) = λF1F2 for λ ∈ Q∗, and the squarefree part (F2)red of F2 is a
Chow form of V ∩ V ( f ). By the previous lemma, F1 does not depend on U00,
while all the factors of F2 do.

Therefore

∂Chd,V ( f )

∂U00
= λF1

∂F2

∂U00
,

and so

FV∩V ( f ) := Chd,V ( f )

gcd(Chd,V ( f ), ∂Chd,V ( f )/∂U00)
(9)

is a Chow form of V ∩ V ( f ).

Lemma 3.8. Let V ⊂ An be an equidimensional variety of degree D which
satisfies Assumption 1.2 and let f ∈ Q[x1, . . . , xn] of degree bounded by d be
a nonzero divisor modulo I (V ). Assume that ChV and f are encoded by slp’s of
length bounded by L .

Then there is a bounded probability algorithm (Procedure Intersection (Subrou-
tine 9) below) which computes the Chow form FV∩V ( f ) of the intersection variety
V ∩ V ( f ) within (worst-case) complexity O((nd D)12L) .

Proof. Our first goal is to compute Chd,V ( f ) ∈ Q[U0, . . . ,Ur−1] by means of
Lemma 3.6. To obtain NV 0( f )we derive first a geometric resolution of V 0 from its
characteristic polynomial and Lemma 3.1. It is easy to check that the polynomial

p(t) := (−1)D ChV (U0, . . . ,Ur−1, (Ur0 − t,Ur1, . . . ,Urn))

is a characteristic polynomial of V 0, with leading coefficient a := ChV (U0, . . . ,

Ur−1, e0).
Then, the geometric resolution of V 0 associated to Lr is given by

1

a
p(t) ∈ K [Ur ][t] and

1

a
w(t) ∈ K [Ur ][t]n

where w := −
(

∂p

∂Ur1
, . . . ,

∂p

∂Urn

)
.

For γ ∈ V 0, if we denote by f h the homogeneization up to degree d of f with
respect to a new variable x0 and p′ the derivative of p with respect to t , we have

p′(Lr (γ ))
d f (γ ) = f h(p′(Lr (γ )), w1(Lr (γ )), . . . , wn(Lr (γ ))).
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Thus, if M denotes the companion matrix of (1/a)p(t), we get

|p′(M)|d NV 0( f ) = | f h(p′(M), w1(M), . . . , wn(M))|.

In order to avoid divisions (since M ∈ K [Ur ]D×D), we replace M by Mp :=
a M and p′, w1, . . . , wn by their homogeneizations (p′)h , wh

1 , . . . , w
h
n up to de-

gree D such that M0 := aD p′(M) = (p′)h(a Id, Mp) and for 1 ≤ i ≤ n,
Mi := aDwi (M) = wh

i (a Id, Mp). Therefore, multiplying both sides by ad D2 =
|aD Id |d , we obtain

|M0|d NV 0( f ) = | f h(M0, M1, . . . , Mn)|.

Finally, from Lemma 3.6, we conclude that

Chd,V ( f ) = ad NV 0( f ) = ad | f h(M0, M1, . . . , Mn)|
|M0|d ∈ Q[U0, . . . ,Ur−1].

(10)
We compute this quotient applying Procedure PolynomialDivision (Subroutine 2).

Next we apply Identity (9) to compute a Chow form F := FV∩V ( f ) from
Chd,V ( f ): we first compute the polynomial

G := gcd(Chd,V ( f ), ∂Chd,V ( f )/∂U00) (11)

applying Procedure GCD (Subroutine 3) and then perform the division F =
Chd,V ( f )/G applying again Procedure PolynomialDivision.

Now let us calculate the number of points necessary to ensure that the algorithm
has an error probability bounded by 1

4 :

First, in order to computeChd,V ( f )we need u ∈ Q(r+1)(n+1) such that |M0|(u) �= 0.
But let us observe that in fact |M0|(e1, . . . , er ,Ur ) �= 0 ∈ Q[Ur ] (so it is enough
to randomly choose ur ∈ Qn+1 such that |M0|(e1, . . . , er , ur ) �= 0). This is
due to the fact that a(e1, . . . , er ) = ChV (e1, . . . , er , e0) = ±1. Thus Assump-
tion 1.2 implies that ChV (e1, . . . , er ,Ur ) = ±ChZ (Ur ). Hence, pZ (Ur , t) :=
p(e1, . . . , er )(Ur , t) is a characteristic polynomial of Z , whose discriminant does
not vanish, and then the polynomial |M0|(e1, . . . , er ,Ur ) �= 0 ∈ Q[Ur ]. Now, as
deg |M0|(e1, . . . , er ,Ur ) ≤ D2, taking ur := Random(n + 1, 12 D2), we infer
that, with probability at least 1− 1

12 , the point (e1, . . . , er , ur ) is a good base point
to apply Procedure PolynomialDivision and obtain Chd,V ( f ). Next we compute
G applying Procedure GCD �6(1+ log 12)� = 26 times (see Remark 1.6) so that
its error probability is at most 1

12 . Finally, as G is a polynomial of degree bounded
by rd D in r(n + 1) variables, choosing u := Random(r(n + 1), 12rd D) we also
guarantee that the probability that u is a good base point to perform the last di-
vision is at least 1 − 1

12 . Thus, the error probability of the whole algorithm is at
most 1

4 .



92 G. Jeronimo, T. Krick, J. Sabia, and M. Sombra

Now let us compute the (worst-case) complexity of this algorithm:

The whole complexity of computing the numerator and denominator in identity
(10) is of orderO(n(d2 D3L+D4)) = O(nd2 D4L). By Lemma 1.7 the complexity
of computing Chd,V ( f ) is of orderO((nd D)2(nd D+nd2 D4)L) = O(n3d4 D6L).
Then, we apply Lemma 1.8 and Proposition 1.5 to compute an slp of length
O(n7d8 D10L) for G of identity (11) within complexity O(n9d8 D10L).
Finally, when we perform the last division, the overall complexity of computing
FV∩V ( f ) is of order O((nd D)12L).

We summarize the algorithm in Procedure Intersection (Subroutine 9).

3.3. Separation of Varieties

Let V ⊂ An be an equidimensional variety of dimension r . Let g ∈ Q[x1, . . . , xn]
\{0}, and let Y be the union of the irreducible components of V contained in V (g)
and let W be the union of the other components. Hence Y and W are equidimen-
sional varieties of dimension r such that V = Y ∪ W , Y ⊂ V (g), and g is not a
zero divisor modulo I (W ). The following procedure (Subroutine 10) computes the
Chow forms of Y and W from a Chow form of V and the polynomial g. For the sake
of simplicity we assume that V —and therefore Y and W —satisfy Assumption 1.2.

Lemma 3.9. Let V ⊂ An be an equidimensional variety of degree bounded by
D which satisfies Assumption 1.2. Let g ∈ Q[x1, . . . , xn]\{0} of degree bounded
by d and Y and W defined as above. Assume that ChV and g are encoded by slp’s
of length bounded by L .

Then there is a bounded probability algorithm (Procedure Sep (Subroutine 10)
below) which computes the Chow forms ChY and ChW within (worst-case) com-
plexity O((nd D)8L).

Proof. Let PV ∈ Q[U0, . . . ,Ur ][T0, . . . , Tr ] be the normalized characteristic
polynomial of V , as defined in Subsection 3.1 and set P ′ := ∂PV /∂T0. We consider
the following map, already introduced in Subsection 3.1,

ϕV : A(r+1)(n+1) × V → V (PV ),

(u0, . . . , ur ; ξ) �→ (u0, . . . , ur ; L0(u0, ξ), . . . , Lr (ur , ξ)).

By Lemma 3.1 ϕV is a birational map which in fact is an isomorphism when
restricted to

U := (A(r+1)(n+1) × V )\V (P ′(L0, . . . , Lr ))→ U := V (PV )\V (P ′),

with inverse

ψV : (u0, . . . , ur ; t0, . . . , tr ) �→
(

u0, . . . , ur ; − 1

P ′
∂PV

∂U01
, . . . ,− 1

P ′
∂PV

∂U0n

)
.
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Subroutine 9. Intersection with a hypersurface.

procedure Intersection(n, r, D, f, d, ChV )

# n is the number of variables,
# r, D are the dimension and the degree of V , respectively,
# f ∈ Q[x1, . . . , xn] is a nonzero divisor modulo I (V ) of degree bounded by d,
# ChV is the normalized Chow form of V .
# The procedure returns a normalized Chow formF := FV∩V ( f ) of the intersection variety
# V ∩ V ( f ).

1. p := (−1)DChV (U0, . . . ,Ur−1, (Ur0 − t,Ur1, . . . ,Urn));
2. a := ChV (U0, . . . ,Ur−1, e0);

3. w := −
(

∂p

∂Ur1
, . . . ,

∂p

∂Urn

)
;

4. Mp := a CompanionMatrix(p/a);
5. for i from 1 to n do
6. wh

i := Homog(wi , D);
7. Mi := wh

i (a, Mp);
8. od;
9. (p′)h := Homog(∂p/∂t, D);

10. M0 := (p′)h(a, Mp);
11. f h := Homog( f, d);
12. Mf := f h(M0, M1, . . . , Mn);
13. H1 := |Mf |;
14. H2 := |M0|;
15. ur := Random(n + 1, 12 D2);
16. if H2(e1, . . . , er , ur ) = 0 then
17. return(“error”);
18. else
19. Chd,V ( f ) := PolynomialDivision(ad H1, H d

2 , rd D, (e1, . . . , er , ur ));
20. G := GCD(Chd,V ( f ), ∂Chd,V ( f )/∂U00, (U0, . . . ,Ur−1), rd D; 12);
21. u := Random(r(n + 1), 12rd D);
22. if G(u) = 0 then
23. return(“error”);
24. else
25. F := PolynomialDivision(G, Chd,V ( f ), r Dd, u);
26. return(F );

end.

Define

G := (P ′)d ψ∗V (g) = gh

(
P ′,− ∂PV

∂U01
, . . . ,− ∂PV

∂U0n

)
,
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Subroutine 10. Separation of varieties.

procedure Sep(n, r, D, g, d, ChV )

# n is the number of variables,
# r, D are the dimension and an upper bound for the degree of V , respectively,
# g ∈ Q[x1, . . . , xn]\{0},
# d is a bound for the degree of g,
# ChV is the normalized Chow form of V .
# The procedure returns the normalized Chow forms ChY and ChW .

1. PV := ChV ((U00 − T0,U01, . . . ,U0r ), . . . , (Ur0 − Tr ,Ur1, . . . ,Urn));
2. gh := Homog(g, d);

3. G := gh

(
P ′,− ∂PV

∂U01
, . . . ,− ∂PV

∂U0n

)
;

4. PY := GCD(G,PV , (U0, . . . ,Ur , T0, . . . , Tr ), (r + 1)d D);
5. PW := PolynomialDivision(PY ,PV , (r + 1) D, (e0, . . . , er ; 0, . . . , 0));
6. ChY := PY (U )(0)/PY (e0, . . . , er ; 0, . . . , 0);
7. ChW := PW (U )(0)/PW (e0, . . . , er ; 0, . . . , 0);
8. return(ChY , ChW );

end.

where gh := Homog(g, d). Thus ϕV induces an isomorphism between V (g) ∩U
and V (G)∩U . Hence V (PY ) equals the union of the components in V (PV )which
are contained in the hypersurface V (G) ⊂ A(r+1) (n+1)+(r+1), and V (PW ) is the
union of the other components. As PV is a squarefree polynomial we conclude
that

PY := gcd(G,PV ), PW = PV

gcd(G,PV )
,

and therefore, from Identity (6) of Subsection 3.1, we obtain that

FY = PY (U )(0) and FW = PW (U )(0)

are Chow forms of Y and W , respectively.
Note that as PY | PV , PY (e0, . . . , er , 0, . . . , 0) �= 0, thus e := (e0, . . . , er , 0,

. . . , 0) is a good base point to apply Procedure PolynomialDivision. Thus the
only probability step of this algorithm is the computation of the Greatest Common
Divisor between PV and G.

Now we estimate the (worst-case) complexity of the algorithm:

The characteristic polynomial PV can be computed from ChV with complexity
O(L) using identity (6) in Subsection 3.1. Its partial derivatives with respect to
T0 and U01, . . . ,U0n can be computed within complexityO(n L). The polynomial
G is obtained within complexity O(d2(d + nL)). As degPV = (r + 1)D and
deg G ≤ d ((r+1)D−1), both bounded by (r+1)d D, the greatest common divisor
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computation ofPY requires (nd D)6(d+L) additional arithmetic operations. From
Lemma 1.7, the polynomial division for PW is then performed within complexity
O((nd D)8L). The final specialization T �→ 0 does not change this estimate.
Therefore, the (worst-case) complexity of the algorithm is of order O((nd D)8L).

We summarize the algorithm in Procedure Sep (Subroutine 10).

Remark 3.10. In case the variety V does not satisfy Assumption 1.2, this proce-
dure can be modified within the same bounds of complexity so that, from a Chow
form of V , we obtain Chow forms of W and Y . The only problem that may appear
in the previous lemma is that PY (e) may be zero and we will not be able to ac-
complish the polynomial division. To solve this, we can modify Subroutine 10 in
the following way: we choose a random point so that we can apply the polynomial
division subroutine with error probability bounded by 1

8 and we change the error
probability of the greatest common divisor computation also by 1

8 (by repeating
it several times) in order that the error probability of the whole procedure is still
bounded by 1

4 .

3.4. Equations in General Position

The algorithm we construct in Subsection 3.5 works under some genericity hy-
potheses on the input polynomial system. This is one of the main reasons—but
not the only one—for the introduction of nondeterminism in our algorithm: there
are no known efficient deterministic procedures to obtain these hypotheses from
a given system. In order to achieve them we replace the system and the vari-
ables by random linear combinations. Effective versions of Bertini’s and Noether
normalization theorems enable us to estimate the probability of success of this
preprocessing.

The complexity of our algorithm is controlled by the geometric degree of the
input system, that is, the maximum degree of the varieties successively cut out
by the equations obtained by this preprocessing. To define this parameter, which
is a suitable generalization of the geometric degree of a zero-dimensional system
introduced in [27], we first give the following definition:

Definition 3.11. Let g ∈ Q[x0, . . . , xn] be a homogeneous polynomial, let Ig ⊂
Q[x0, . . . , xn]g be a homogeneous ideal, and let V ⊂ Pn be a projective vari-
ety. We say that Ig is radical of dimension r outside Vg := V \V (g) if every
primary component Q of Ig such that V (Q)g := V (Q)\V (g) �⊂ Vg is prime of
dimension r .

An analogous definition holds for an ideal in Q[x1, . . . , xn]g and an affine
variety Vg ⊂ An

g .
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Let f1, . . . , fs, g ∈ Q[x0, . . . , xn] be homogeneous polynomials of degree
bounded by d, and set Vg = V ( f1, . . . , fs)g ⊂ Pn

g . We assume that Vg �= Pn
g , that

is, f j �= 0 for some j . We also assume without loss of generality deg f j = d for
every j : if this is not the case, we replace the input system by

x
d−deg f j

i f j , 0 ≤ i ≤ n, 1 ≤ j ≤ s.

For a1, . . . , an+1 ∈ Qs we set

Qi (ai ) := ai 1 f1 + · · · + ai s fs

for the associated linear combination of f1, . . . , fs , which—by the assumption
that deg f j = d—is also a system of homogeneous polynomials of degree d.

Let� be the set of all (n+1)×s-matrices A = (a1, . . . , an+1)
t ∈ Q(n+1)×s such

that the ideals Ii (A) := (Q1(a1), . . . , Qi (ai )) ⊂ Q[x0, . . . , xn], 1 ≤ i ≤ n + 1,
satisfy:

• V (In+1(A))g = Vg in Pn
g .

• For 1 ≤ i ≤ n, if V (Ii (A))g �= Vg , then Ii (A)g is a radical ideal of dimension
n − i outside Vg .

(These are the first genericity hypotheses the polynomials should verify in order
that our algorithm work.)

For every A ∈ � we set δ(A) := max{deg V (Ii (A))g; 1 ≤ i ≤ n + 1}.

Definition 3.12. Keeping these notations, the geometric degree of the system

f1 = 0, . . . , fs = 0, g �= 0,

is defined as

δ := δ( f1, . . . , fs; g) := max{δ(A) ; A ∈ �}.

Note that the Bézout inequality implies δ ≤ dn .

Remark 3.13. For a system of polynomials F1, . . . , Fs,G ∈ Q[x1, . . . , xn] (not
necessarily homogeneous) of degree bounded by d, the affine analogue δaff of the
geometric degree is defined in exactly the same manner, but without preparing the
polynomials to make their degrees coincide.

In fact, if for 1 ≤ i ≤ s, di := deg Fi , d := maxi di , and Fh
i , Gh ∈

Q[x0, . . . , xn] are the homogenizations of Fi and G, respectively, then

δaff(F1, . . . , Fs; G) = δ(xd−d1
0 Fh

1 , . . . , xd−ds
0 Fh

s ; x0 Gh).

Let

Vg = V0 ∪ · · · ∪ Vn−1
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be the equidimensional decomposition of Vg in Pn
g , where Vr is either empty or of

dimension r , and let A = (a1, . . . , an+1)
t ∈ �. For i = 1, . . . , n + 1, as Ii (A) ⊆

( f1, . . . , fs), Vg ⊆ V (Ii (A))g always holds. Moreover, if V (Ii (A))g = Vg for
some i , then V (Ij (A))g = Vg for all j ≥ i . Also, observe that the ideal Ii (A)
is generated by i polynomials, so every irreducible component of V (Ii (A)) has
dimension at least n − i . Thus, we infer that for r := n − i, 0 ≤ r ≤ n − 1, we
have

V (In−r (A))g = V ′
r ∪ Vr ∪ · · · ∪ Vn−1,

where V ′
r is an equidimensional variety of dimension r . (We set V ′

r = ∅ for every
r such that V (In−r (A))g = Vg since in these cases Vg = Vr ∪· · ·∪Vn .) From now
on, Qi (ai ) will be denoted simply by Qi . The condition that A ∈ � implies that,
in case V ′

r �= ∅, Qn−r+1 is not a zero divisor modulo I (V ′
r )g . In this case, we have

V ′
r−1 ∪ Vr−1 ∪ Vr ∪ · · · ∪ Vn−1 = V (Q1, . . . , Qn−r+1)g

= (V ′
r ∪ Vr ∪ · · · ∪ Vn−1) ∩ V (Qn−r+1)

= (V ′
r ∩ V (Qn−r+1)) ∪ Vr ∪ · · · ∪ Vn−1,

as for all i , Vi ⊂ V (Qn−r+1). Hence, since dim(V ′
r ∩ V (Qn−r+1)) = r − 1, we

deduce that

V ′
r ∩ V (Qn−r+1) = V ′

r−1 ∪ Vr−1 ∪ Ṽr−1, (12)

where

Ṽr−1 =
⋃
{C; C component of V ′

r ∩ V (Qn−r+1)

∩ (Vr ∪ · · · ∪ Vn−1) of dimension r − 1}

is an equidimensional subvariety of Vr ∪ · · · ∪ Vn−1 of dimension r − 1. We set
Ṽn−1 := ∅ and V ′

−1 := ∅.
Now for b0, . . . , bn ∈ Qn+1 we consider the linear change of variables

yk(bk) := bk0 x0 + · · · + bkn xn, 0 ≤ k ≤ n.

We say that (b0, . . . , bn) is admissible if, under this linear change of variables, for
0 ≤ r ≤ n − 1:

• the varieties V ′
r ∪ Vr ∪ Ṽr satisfy Assumption 1.2; and

• the polynomials Q1, . . . , Qn−r ∈ I (V ′
r )g are a system of local equations of

V ′
r at Zr := V ′

r ∩ V (y1, . . . , yr ).

We construct the polynomials Q1, . . . , Qn+1 and the variables y0, . . . , yn by
choosing the coefficient vectors ai , 1 ≤ i ≤ n + 1, and bk , 0 ≤ k ≤ n, at random
in a given set. In what follows we estimate the error probability of this procedure:
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Lemma 3.14. Let notation be as in the previous paragraphs. Let N be a positive
integer and let

ai ∈ [0, 8N (d + 1)2n)s, 1 ≤ i ≤ n + 1,

bk ∈ [0, 2Nn2d2n)n+1, 0 ≤ k ≤ n,

be chosen at random. Then the error probability of A := (a1, . . . , an+1)
t being in

� and (b0, . . . , bn) being admissible is bounded by 1/N .

Proof. The set of matrices � contains in fact a nonempty open set of Q(n+1)×s ;
by the effective Bertini theorem in [46, Lemmas 1 and 2] or a local version of [43,
Proposition 4.3 and Corollary 4.4] there is a nonzero polynomial F with deg F ≤
4 (d + 1)2n such that F(a1, . . . , an+1) �= 0 implies that A = (a1, . . . , an+1)

t ∈ �.
Assume now that A ∈ �. By the effective Noether theorem version of [43,

Proposition 4.5] there is a nonzero polynomial G ∈ k[U0, . . . ,Un] with

deg G ≤ 2
n−1∑
r=0

r deg(V ′
r ∪ Vr ∪ Ṽr )

2

such that G(b0, . . . , bn) �= 0 implies that under the linear change of variables
given by (b0, . . . , bn), the varieties Vr ∪ V ′

r ∪ Ṽr satisfy Assumption 1.2. Since,
from Identity (12),

deg(V ′
r ∪ Vr ∪ Ṽr ) ≤ d deg Vr+1 ≤ dn,

deg G ≤ n(n − 1)d2n .
Now we will define a polynomial H ∈ k[U1, . . . ,Un−1] such that H(b1, . . . ,

bn−1) �= 0 implies that the second condition for admissibility holds.
Fix r , 0 ≤ r ≤ n − 1. We know that (Q1, . . . , Qn−r )g is a radical ideal

of dimension r outside Vg whose associated variety coincides with V ′
r outside

Vg . Thus, localizing at any ξ ∈ V ′
r , ξ /∈ Vg , we get ((Q1, . . . , Qn−r )g)ξ =

I (V ′
r )ξ , that is, Q1, . . . , Qn−r is a system of local equations of V ′

r at ξ . There-
fore, it suffices to take new variables y0, . . . , yn such that V ′

r ∩ Vg ∩ V (y1, . . . ,

yr ) = ∅. From the definition of V ′
0, it is clear that V ′

0 ∩Vg = ∅. For 1 ≤ r ≤ n−1,
as Vg is definable by polynomials of degrees bounded by d and no irreducible
component of V ′

r is contained in Vg , there exists a polynomial gr ∈ k[x1, . . . , xn]
with deg(gr ) ≤ d such that Vg ⊂ V (gr ) and V ′

r ∩ V (gr ) is equidimensional of
dimension r − 1. Let Fr ∈ k[U1, . . . ,Ur ] be a Chow form of V ′

r ∩ V (gr ).

Set H := ∏n−1
r=1 Fr ∈ k[U1, . . . ,Un−1]. The condition H(b1, . . . , bn−1) �= 0

implies that, for every 1 ≤ r ≤ n − 1, Fr (b1, . . . , br ) �= 0 and so,

V ′
r ∩ Vg ∩ V (y1(b1), . . . , yr (br )) ⊂ V ′

r ∩ V (gr ) ∩ V (y1(b1), . . . , yr (br )) = ∅.
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Observe that H is a nonzero polynomial with

deg H =
n−1∑
r=1

degFr =
n−1∑
r=1

deg V ′
r ∩ V (gr ) ≤

n−1∑
r=1

d deg V ′
r

≤
n−1∑
r=1

dn−r+1 ≤ (n − 1)dn.

Therefore, there exists a nonzero polynomial condition of degree bounded by
n(n − 1)d2n + (n − 1)dn ≤ n2d2n which ensures that the matrix (b0, . . . , bn) is
admissible.

The conclusion follows as usual from the Zippel–Schwartz test.

3.5. Proof of Theorem 1

Let f1, . . . , fs, g ∈ Q[x0, . . . , xn] be homogeneous polynomials of degree bound-
ed by d, and set Vg := V ( f1, . . . , fs)g ⊆ Pn

g . Set δ for the geometric degree of the
system f1 = 0, . . . , fs = 0, g �= 0. The algorithm is iterative and consists of two
main steps, besides the preparation of the input (equations and variables).

The preparation of the input enables us to work with an affine variety W instead
of the input quasiprojective variety Vg and local systems of equations of certain
auxiliary varieties appearing in the process.

The first main step computes recursively the Chow forms of a nonminimal
equidimensional decomposition of W . Here the crucial point which controls the
explosion of the complexity is that the size of the input of an iteration does not
depend on the size of the output of the previous step: the input of each recursive
step has the same controlled size.

The second main step clears out extra components and computes the Chow
forms of the equidimensional components of the minimal decomposition of W
from which the Chow forms of the equidimensional components of Vg are obtained
straightforwardly.

This is a bounded error probability algorithm whose expected complexity is of
order s(nd δ)O(1)L . Its worst-case complexity is s(ndn)O(1)L . For the rest of this
proof, we set N := d56n .

Input Preparation

Set Vg = V0 ∪ · · · ∪ Vn for the minimal equidimensional decompositon of Vg ,
where each Vr is either empty or of pure dimension r . First, applying Procedure
Deg described at the end of Subsection 1.3 to f1, . . . , fs , we compute with error
probability bounded by 1/(6N ) the exact degree of the polynomials f1, . . . , fs

within complexity O(sd2L + n log(sd N )). This also states whether these poly-
nomials are the zero polynomial and, therefore, whether Vg = Pn

g . In that case,
FVn = |(U0, . . . ,Un)| and for i < n, FVi = 1. Thus, with error probability
bounded by (1/6N ) we can assume we know the exact degree of the polynomials
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f1, . . . , fs , and that Vn = ∅ and dim Vg ≤ n − 1. We consider the polynomials

f̃i j := x
d−deg f j

i f j , 0 ≤ i ≤ n, 1 ≤ j ≤ s;

hence we have now t ≤ (n + 1)s polynomials f̃i j of degree d, that we rename
f̃1, . . . , f̃t .

We apply Lemma 3.14 to randomly choose a matrix A = (a1, . . . , an+1)
t ∈

Q(n+1)×t and a matrix B = (b0, . . . , bn) ∈ Q(n+1)×(n+1) such that the error proba-
bility that A ∈ � and B is admissible is bounded by 1/(6N ). We can assume thus
that the linear combinations (Q1, . . . , Qn+1) = A( f̃1, . . . , f̃t ) satisfy

Vg = V (Q1, . . . , Qn+1)g

and, for 0 ≤ r ≤ n − 1:

• (Q1, . . . , Qn−r )g is either empty outside Vg or a radical ideal of dimension
r outside Vg .

• V (Q1, . . . , Qn−r )g = V ′
r ∪ Vr ∪ · · · ∪ Vn−1, where V ′

r is either empty or
an equidimensional variety of dimension r with no irreducible component
included in Vr ∪ · · · ∪ Vn−1.

• V ′
r ∩ V (Qn−r+1)g = V ′

r−1 ∪ Vr−1 ∪ Ṽr−1, where Ṽr−1 is either empty or an
equidimensional variety of dimension r − 1 included in Vr ∪ · · · ∪ Vn−1. We
set V ′

n := Pn
g to extend this property to r = n.

We can assume moreover that the change of coordinates y = Bx verifies:

• BV ′
r ∪ BVr ∪ BṼr satisfies Assumption 1.2; and

• Q1(B−1 y), . . . , Qn−r (B−1 y) is a system of local equations of BV ′
r at BV ′

r ∩
V (y1, . . . , yr ).

The complexity of constructing the random matrices A and B and the inverse of
the matrix B is of order O(sn4(log N + log d)).

Now, Assumption 1.2 implies that the varieties have no irreducible compo-
nent at infinity. Hence we restrict to the affine space: we set y0 = 1 and denote
by q1, . . . , qn+1, h the set of polynomials in the new variables obtained from
Q1, . . . , Qn+1, g, that is,

(q1, . . . , qn+1) = A F(B−1(1, y1, . . . , yn)), h = g(B−1(1, y1, . . . , yn)),

where F := ( f̃1, . . . , f̃t ). We define

W := V (q1, . . . , qn+1)h = B V ∩ An
h ⊂ An.

Let W = W0 ∪ · · · ∪Wn−1 be the minimal equidimensional decomposition of W ,
where for 0 ≤ r ≤ n − 1, Wr is either empty or of dimension r , and let W ′

r and
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W̃r be defined by the same construction as V ′
r and Ṽr before, that is:

• V (q1, . . . , qn−r )h = W ′
r ∪Wr ∪ · · · ∪Wn−1; and

• W ′
r ∩ V (qn−r+1)h = W ′

r−1 ∪Wr−1 ∪ W̃r−1.

As the identity

Wr = B Vr ∩ An
h

holds, from a Chow form of Wr we obtain a Chow form of the corresponding Vr

by means of the change of variables

FVr (U0, . . . ,Ur ) = ChWr (U0 B−1, . . . ,Ur B−1).

We observe that W ′
r = B V ′

r ∩ An
h , and then q1, . . . , qn−r is a system of local

equations of W ′
r at W ′

r ∩ V (y1, . . . , yr ).
The error probability of this preparation step is bounded by 1/(3N ). Once

the matrices A and B are fixed, we have that the complexity of computing the
polynomials q1, . . . , qn+1, h is of order O(sn2d L), as well as their length.

First Main Step

From r = n − 1 to 0, the algorithm computes the Chow form of Wr ∪ W̃r and a
geometric resolution of the fiber Zr := W ′

r ∩ V (y1, . . . , yr ) (which also gives the
degree Dr of W ′

r ). The former will be the input of the second main step while the
latter is the input of the next step in this recursion. Each step of this recursion is
a bounded probability algorithm whose error probability is bounded by 1/(3nN )

provided that the input of the iteration step was correct. We begin with the fiber
Zn = V (y1, . . . , yn) = (0, . . . , 0) and its geometric resolution (t, (t, . . . , t))
associated to � = x1. We also set Dn := 1.

Now, we are going to describe a step of the recursion. From a geometric reso-
lution of Zr+1 we compute a Chow form for Wr ∪ W̃r and a geometric resolution
of Zr , which is the input of the next recursive step. Set Dr+1 for the given estimate
of deg W ′

r+1.

• Computation of ChW ′
r+1

:
From the geometric resolution (pr+1, (v1, . . . , vn)) associated to the affine
linear form �r+1 of Zr+1, and the system of local equations q1, . . . , qn−r−1

of W ′
r+1 at Zr+1, we compute a Chow form of W ′

r+1 applying Procedure
ChowForm (Subroutine 7). This step of the algorithm is deterministic and
computes ChW ′

r+1
provided that the polynomials and variables satisfy the

genericity conditions and that the geometric resolution of Zr+1 is accurate.
Observe that, by Main Lemma 2.3 applied to the local system of equations
q1, . . . , qn−r−1 of degree d and length O(sn2d L), the complexity and the
length of the output are both of order

L(ChW ′
r+1
) = O((r + 1)8 log2((r + 1)Dr+1)n

7d2 D11
r+1(sn2d L))

= O(sn6(nd Dr+1)
12L).
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• Computation of FW ′
r+1∩V (qn−r ):

Now we apply sufficiently many times Procedure Intersection (Subroutine 9)
to compute a Chow form of W ′

r+1 ∩ V (qn−r ) with error probability bounded
by 1/(18nN ): by Lemma 3.8, the length of the output Chow form and the
complexity of one iteration are both of order

L(FW ′
r+1∩V (qn−r )) = O((nd Dr+1)

12L(ChW ′
r+1
)) = O(sn6(nd Dr+1)

24L),

while, from Corollary 1.6 for the choice s = �6(log(18nN )+ 1)�, the com-
plexity of this step is of order

O(((r + 1)(n + 1)+ 1) log(18nN )(L(ChW ′
r+1
)+ L(FW ′

r+1∩V (qn−r )))

+ log2(18nN )) = O(log2(N )sn9(nd Dr+1)
12L).

• Computation of ChWr∪Wr∪W̃r
:

Observe that each irreducible component of W ′
r+1 ∩ V (qn−r ) is either an

irreducible component of W ′
r ∪Wr ∪ W̃r or an irreducible variety included in

V (h). Therefore, we apply sufficiently many times Procedure Sep (Subrou-
tine 10) to compute the Chow form of W ′

r ∪Wr ∪ W̃r with error probability
bounded by 1/(18nN ): by Lemma 3.9, the length of the output Chow form
and the complexity of one iteration are both of order

L(ChW ′
r∪Wr∪W̃r

) = O((nd(d Dr+1))
8L(FW ′

r+1∩V (qn−r )))

= O(sn6d8(nd Dr+1)
32L),

while the complexity of this step is of order

O(log2(N )sn9d8(nd Dr+1)
32L).

• Computation of ChW ′
r

and ChWr∪W̃r
:

Next, since V (qn−r+1) contains Wr ∪W̃r but does not contain any component
of W ′

r , we use qn−r+1 to separate ChW ′
r

from ChWr∪W̃r
. We apply sufficiently

many times Procedure Sep (Subroutine 10) to compute the Chow forms of
W ′

r and Wr ∪ W̃r with error probability bounded by 1/(18nN ): the length of
the output Chow forms and the complexity of one iteration are both of order

L(ChW ′
r
, ChWr∪W̃r

) = O((nd(d Dr+1))
8L(ChW ′

r∪Wr∪W̃r
))

= O(sn6d16(nd Dr+1)
40L),

while the complexity of this step is of order

O(log2(N ) sn9d16(nd Dr+1)
40L).
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• Computation of a geometric resolution of Zr := W ′
r ∩ V (y1, . . . , yr ):

We apply here Procedure GeomRes (Subroutine 8). It requires a random
choice of the coefficients of a separating linear form �r . We do that in order
to ensure that the error probability is 1/(6nN ). The condition that a linear
form separates the points of the fiber Zr is given by a polynomial of degree

bounded by

(
deg Zr

2

)
≤ d2(n−r)

2
as deg Zr ≤ dn−r . So we choose the set

of coefficients of �r in [0, 3nNd2(n−r))n+1. The complexity of constructing
these coefficients is thus of order O((n + 1)(log(nN ) + (n − r) log d)) =
O(n2(log N+log d)) and the complexity of computing afterward the geomet-
ric resolution of Zr (that is, all its constant coefficients) adds, as Dr ≤ d Dr+1,

O(n(d Dr+1)
2L(ChW ′

r
)+ d4 D4

r+1) = O(sn5d16(nd Dr+1)
42L)

operations.

Summarizing, from the geometric resolution of Zr+1 and the polynomials
q1, . . . , qn−r , the algorithm produces, within complexity O(log2(N )sn7d16(nd
Dr+1)

42L), all the coefficients of the geometric resolution of Zr and an slp of
length O(sn6d16(nd Dr+1)

40L) for the Chow form of Wr ∪ W̃r . The error proba-
bility that the computed objects are not the correct ones, provided that the input
was right, is bounded by 1/(3nN ).

Therefore, provided that the input preparation was correct, this algorithm is
expected to compute ChWr∪W̃r

, for 0 ≤ r ≤ n − 1, with error probability bounded
by 1/(3N ), within complexity of order

O
(

log2(N ) sn7d16

(
n−1∑

k=r+1

(nd Dk)
42

)
L

)
,

and, by the iterative character of the algorithm, to compute all ChWr∪W̃r
, 0 ≤ r ≤

n − 1, within the same complexity as that of computing ChW0∪W̃0
.

Second Main Step

For 0 ≤ r ≤ n − 1, in order to extract from the Chow form ChWr∪W̃r
the factor

ChWr , we define a hypersurface V (Gr ) such that, probabilistically, W̃r is exactly
the union of all the irreducible components of Wr ∪ W̃r contained in V (Gr ), and
then we apply Procedure Sep (Subroutine 10) to compute ChWr .

Fix k, 1 ≤ k ≤ n − 1. We define a polynomial Hk ∈ Q[y1, . . . , yn] such that,
with error probability bounded by 1/(6(n − 1)N ), the following conditions hold:

1. Wk ∪ W̃k ⊆ V (Hk); and
2. no irreducible component of Wr is contained in V (Hk) for r = 0, . . . , k−1.

Let P be the characteristic polynomial of Wk ∪ W̃k . For any affine linear form
�0 = L0(c0, x), we have that Hk := P(c0, e1, . . . , ek)(�0, y1, . . . , yk) vanishes on
Wk ∪ W̃k . We now determine randomly �0 such that Condition 2 holds with error
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probability bounded by 1/(6(n − 1)N ). This is a standard argument that can be
found, for instance, in [25, Section 2.3.5].

For any irreducible component C of W0 ∪ · · · ∪ Wk−1 there exists ξC :=
(ξC

1 , . . . , ξ
C
n ) ∈ C − (Wk ∪ W̃k). Now, if a linear form �0 satisfies that for any

ξ ∈ (Wk ∪ W̃k) ∩ V (y1 − ξC
1 , . . . , yk − ξC

k ) (which is a zero-dimensional variety
of degree bounded by d δ), �0(ξ) �= �0(ξC), then

P(c0, e1, . . . , ek)(�0(ξC), ξ
C
1 , . . . , ξ

C
k ) �= 0.

Hence C is not included in V (Hk).
The condition to be satisfied is thus given by∏

C,ξ

(�0(ξ)− �0(ξC)) �= 0,

where C runs over the irreducible components of W0 ∪ · · · ∪ Wk−1 and ξ ∈
(Wk ∪ W̃k) ∩ V (y1 − ξC

1 , . . . , yk − ξC
k ). The polynomial has degree bounded by

dδ2 ≤ d2n+1 since deg W0 ∪ · · · ∪ Wk−1 ≤ δ. Choosing c0 := (0, c01, . . . , c0n) ∈
[0, 6(n − 1)Nd2n+1)n , the probability that Hk does not satisfy Condition 2 is
bounded by 1/(6(n − 1)N ). Therefore the probability that, for 1 ≤ k ≤ n − 1, at
least one Hk does not satisfy Condition 2 is bounded by 1/(6N ).

Now, for r = 0, . . . , n − 2 we define Gr := ∏n−1
k=r+1 Hk . Clearly, as W̃r ⊂

Wr+1 ∪ · · · ∪Wn−1, Gr vanishes on W̃r by Condition 1. On the other hand, as, by
Condition 2, no irreducible component of Wr is contained in V (Hk) for r + 1 ≤
k ≤ n − 1, Gr splits Wr and W̃r .

For 1 ≤ k ≤ n − 1, deg Hk ≤ d Dk+1 and L(Hk) = O(L(ChWk∪W̃k
)) since

we derive P from the corresponding Chow form by identity (6). Hence L(Hk) =
O(sn6d16(nd Dk+1)

40L). Thus, for 0 ≤ r ≤ n − 2, deg Gr ≤ d
∑

k≥r+1 Dk+1 and

L(Gr ) = O
(

sn6d16

( ∑
k≥r+1

(nd Dk+1)
40

)
L

)
.

The computation of all Hk , 1 ≤ k ≤ n−1, involves the computation of the random
coefficients of each linear form �0, that is, O(n2(log N + n log d)) operations
for each one of them, plus the complexity of computing and specializing each
characteristic polynomial. Thus the total complexity of computing all Hk is of
order O(n2 log N + sn6d16(

∑
k≥2(nd Dk)

40)L). We conclude that the complexity
of computing all Gr , 0 ≤ r ≤ n − 2, is also of the same order. This algorithm is
expected to compute the right polynomials G0, . . . ,Gn−2, provided that the Input
Preparation and the First Main Step were correct, with error probability bounded
by 1/(6N ).

Now we apply sufficiently many times Procedure Sep (Subroutine 10) to
ChWr∪W̃r

and Gr in order to compute ChWr with error probability bounded by
1/(6nN ): the length of the output Chow forms and the complexity of one iteration
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are both of order

L(ChWr ) = O
(n

(
d

n−1∑
k=r+1

Dk+1

)
(d Dr+1)

)8

L(ChWr∪W̃r
,Gr )


= O(sn7d16(nd D)56L),

where D = max{Dk : 1 ≤ k ≤ n − 1}, while the total complexity of computing
all ChWr with error probability bounded by 1/(6N ), provided that the polynomials
G0, . . . ,Gn−2 were correct, is of order

O(log2(N )sn11d16(nd D)56L + s log2(s)n2 log(d)L).

Thus, the total error probability of the second main step is bounded by 1/(3N ).
Finally, the Chow formFVr is obtained by changing variables back. This compu-

tation does not change the order of complexity involved. The total error probability
of the whole algorithm is bounded by 1/N . Moreover, in case each of the random
choices was right, Dk ≤ δ for every k, and therefore the Chow forms FVr of the
equidimensional components Vr of Vg are encoded by slp’s of length

L(FVr ) = O(sn7d16(ndδ)56L),

and computed within complexity

O(log2(N )sn11d16(ndδ)56L).

Since, in any case, Dk ≤ dn−k ≤ dn−1 for every 1 ≤ k ≤ n − 1, the worst-case
complexity of the computation is of order

O(log2(N )sn67d16d56n L).

Therefore the expected complexity of the algorithm is

O
((

1− 1

N

)
(log2(N )sn11d16(ndδ)56L)+ 1

N
(log2(N )sn67d16d56n L)

)
.

Fixing N := d56n , we conclude that the expected complexity of our bounded
probability algorithm is of order

O(log2(d56n)sn11d16(ndδ)56L + log2(d56n)sn67d16L) = s(ndδ)O(1)L ,

while the error probability is bounded by 1/N .
We summarize in Procedure Equidim (Subroutine 11) the algorithm underlying

the Proof of Theorem 1.

4. Applications

We present some algorithmical applications of our results, concerning the compu-
tation of resultants and the resolution of generic overdetermined systems.
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Subroutine 11. Equidimensional decomposition.

procedure Equidim(n, d, f1, . . . , fs, g, x)

# f1, . . . , fs, g are homogeneous polynomials in Q[x0, . . . , xn] and x := (x0, . . . , xn),
# d is an upper bound for the degrees of f1, . . . , fs, g.
# The procedure returns the Chow forms FV0 , . . . ,FVn of the equidimensional components
# of Vg := V ( f1, . . . , fs)g ⊂ Pn

g .

1. N := d56n ;
2. (d1, . . . , ds) := Deg( f1, . . . , fs, x, d; 6s N );
3. if (d1, . . . , ds) := (−1, . . . ,−1) then
4. (FV0 , . . . ,FVn−1 ,FVn ) := (1, . . . , 1, |(U0, . . . ,Un)|);
5. else
6. F := (xd−d1

0 f1, . . . , xd−d1
n f1, . . . , xd−ds

0 fs, . . . , xd−ds
n fs);

7. A := RandomMatrix(n + 1, s(n + 1), 48N (d + 1)2n);
8. B := RandomMatrix(n + 1, n + 1, 12Nn2d2n);
9. (y0, . . . , yn) := B (x0, . . . , xn);

10. (q1, . . . , qn+1) := A F(B−1(1, y1, . . . , yn));
11. h := g(B−1(1, y1, . . . , yn));
12. FVn := 1;
13. (c(n), Dn, pn, v

(n)) := (e1, 1, t, (t, . . . , t));
14. for i from 1 to n do
15. r := n − i ;
16. ChW ′

r+1
:= ChowForm(n, r + 1, Dr+1, c(r+1), pr+1, v

(r+1), q1, . . . , qn−r−1, d);

17. F := Intersection(n, r + 1, Dr+1, qn−r , d, ChW ′
r+1
; 18nN );

18. ChW ′
r∪Wr∪W̃r

:= (Sep(n, r + 1, d Dr+1, h, d, F; 18nN ))2;

19. (ChW ′
r
, ChWr∪W̃r

) := Sep(n, r, d Dr+1, d, ChW ′
r∪Wr∪W̃r

, qn−r+1; 18nN );

20. c(r) := Random(n + 1, 3nNd2(n−r));
21. (Dr , pr , v

(r)) := GeomRes(n, r, d Dr+1, ChW ′
r
, (0, . . . , 0), c(r));

22. od;
23. for k from 0 to n − 1 do
24. Pk := ChWk∪W̃k

((U00 − T0,U01, . . . ,U0n), . . . , (Uk0 − Tr ,Uk1, . . . ,Ukn));
25. u(k) := Random(n + 1, 6(n − 1)Nd2n+1);
26. Hk := Pk(u(k), e1, . . . , ek)(u

(k)
0 + u(k)

1 y1 + · · · + u(k)
n yn, y1, . . . , yk);

27. od;
28. for r from 0 to n − 2 do
29. Gr :=∏n−1

k=r+1 Hk ;
30. ChWr := Sep(n, r, d Dr+1,Gr , d(Dr+2 + · · · + Dn), ChWr∪W̃r

; 6nN );
31. FVr := ChWr (U0 B−1, . . . ,Ur B−1);
32. od;
33. fi;
34. return(FV0 , . . . ,FVn );

end.
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4.1. Computation of Resultants

4.1.1. The Classical d-Resultant. The classical resultant Resn,d of a system of
n + 1 generic homogeneous polynomials in n + 1 variables is a polynomial in
the indeterminate coefficients of the polynomials that characterizes for which co-
efficients the system has a nontrivial solution (we refer to [15, Chapter 3] for
its definition and basic properties), and its computation is a classical problem.
In 1902, Macaulay [49] gave an explicit formula for the resultant as a quotient
of two determinants and, more recently, several results in the same line of work
were presented [39], [18]. All these formulas involve determinants of matrices of
exponential size.

Here, we show, as an introductory application of our method, how an slp for
the classical resultant of n + 1 generic homogeneous polynomials of degree d in
n+ 1 variables can be computed. Our algorithm follows directly from Lemma 2.3
and, therefore, it is deterministic and does not involve any matrix formulation.

Corollary 4.1. There is a deterministic algorithm which computes (an slp for)
the classical resultant Resn,d of n+1 generic homogeneous polynomials of degree
d in n + 1 variables within complexity (ndn)O(1).

Proof. It is a well-known fact that the resultant Resn,d is the Chow form of the
Veronese variety V (n, d) defined as the image of the morphism

ϕ(n,d): P
n → PN , ξ �→ (ξα)α∈Nn+1

0 ,|α|=d ,

where N :=
(

n + d

n

)
−1. We recall that Vn,d is an irreducible variety of dimension

n and degree dn . We compute here the resultant by defining a system of local
equations at an appropriate fiber of V (n, d) in order to apply Lemma 2.3.

Let {yα : α ∈ Nn+1
0 , |α| = d} be a set of homogeneous coordinates of PN and

consider the projection

π : V (n, d)→ Pn, (yα)α �→ (yde0 : · · · : yden ),

where ei is as usual the (i+1)-vector of the canonical basis ofQn+1. This projection
is finite [54, Chapter 1, Theorem 5.3.7]. Moreover, Z := π−1((1 : 1 : · · · : 1))
verifies that Z = ϕn,d(Z0)with Z0 := {(1 : ω1 : · · · : ωn); ωd

i = 1 for 1 ≤ i ≤ n }.
Thus #Z = dn = deg V (n, d), and the n-dimensional variety V (n, d) satisfies
Assumption 1.2 for the fiber Z .

Let us define now a system of local equations of V(n,d) at Z : For every α =
(α0, . . . , αn) ∈ (N0)

n+1 such that |α| = d and α �= (d − 1)e0+ ei (0 ≤ i ≤ n) we
consider the polynomial

fα := yd−1−α0
de0

yα − yα1
(d−1)e0+e1

· · · yαn
(d−1)e0+en

.
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These are N−n nonzero homogeneous polynomials of degree d−α0 which vanish
at V(n,d) since

fα((ξ
β)β) = ξ

d(d−1−α0)
0 ξα − ξ

(d−1)(α1+···+αn)
0 ξ

α1
1 · · · ξαn

n = 0.

From the Jacobian criterion one also checks that, as ∂ fα/∂yα = yd−1−α0
de0

and
∂ fα/∂yβ = 0 for β �= α and β �= (d − 1)e0 + ei , the Jacobian matrix of the
system has maximal rank N − n at any ξ ∈ Z . Observe that the equations fα can
be encoded by slp’s of length O(d).

The next step in order to apply Lemma 2.3 is to compute a geometric resolution
of the fiber Z . For that purpose we compute its characteristic polynomial (consid-
ering it as an affine variety in {yde0 �= 0}) and apply Lemma 3.2 for a separating
linear form. Let L := ∑

|α|=d Uα yα be a generic linear form in N + 1 variables,
and let P =∑|α|=d Uαxα be the generic homogeneous polynomial of degree d in
n + 1 variables associated to L . The characteristic polynomial of Z is

PZ (U, T ) =
∏
ξ∈Z

(T − L(U, ξ)) =
∏

(1:ω)∈Z0

(T − L(U, ϕn,d(1, ω)))

=
∏

(1:ω)∈Z0

(T − P(U, (1, ω))) =
∏

ω: (1:ω)∈Z0

(T − Pa(U, ω)),

where Pa(U, ω) = P(U, (1, ω)). Therefore, if we set A := Q[x1, . . . , xn]/(xd
1 −

1, . . . , xd
n − 1), PZ is then computed as the characteristic polynomial of the linear

map A → A defined by g �→ Pag within complexity dO(n).
Finally, an easy computation shows that the linear form � = yde0+dy(d−1)e0+e1+

· · · + dn y(d−1)e0+en separates the points in Z . Thus � yields a geometric resolution
of Z and we apply Lemma 2.3 to compute Resn,d within the stated complexity.

4.1.2. Sparse Resultants. Let A = {α0, . . . , αN } ⊂ Zn be a finite set of integer
vectors. We assume that Zn is generated by the differences of elements in A. For
0 ≤ i ≤ n let Ui be a group of N + 1 variables indexed by the elements ofA, and
set

Fi :=
∑
α∈A

Uiα xα ∈ Q[Ui ][x
±1
1 , . . . , x±1

n ]

for the generic Laurent polynomial with support inA. Let WA ⊂ (PN )n+1×(C∗)n

be the incidence variety of F0, . . . , Fn in (C∗)n , that is,

WA = {(ν0, . . . , νn; ξ) ∈ (PN )n+1 × (C∗)n : Fi (νi , ξ) = 0, 0 ≤ i ≤ n},
and let π : (PN )n+1× (C∗)n → (PN )n+1 be the canonical projection. Then π(WA)
is an irreducible variety of codimension 1. The A-resultant ResA is defined as
the unique—up to a sign—irreducible polynomial inZ[U0, . . . ,Un] which defines
this hypersurface (see [22, Chapter 8, Proposition–Definition 1.1]).

This is a multihomogeneous polynomial of degree Vol(A) in each group of
variables Ui , where Vol(A) denotes the (normalized) volume of the convex hull
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Conv(A), which is defined as n! times its volume with respect to the Euclidean
volume form of Rn . Consider the map

(C∗)n → PN , ξ �→ (ξα0 : · · · : ξαN ).

The Zariski closure of the image of this map is called the affine toric variety
XA ⊂ PN associated to A. This is an irreducible variety of dimension n and
degree Vol(A). Its Chow form coincides—up to a scalar factor—with the sparse
resultant ResA ∈ Z[U0, . . . ,Un] (see [22, Chapter 8, Proposition 2.1] and [15,
Chapter 7, Theorem 3.4]). For a broader background on toric varieties and sparse
resultants we refer to [22] and [15].

We apply the algorithm underlying Theorem 1 to compute the sparse resultant
ResA for the particular case that A ⊂ (N0)

n and the elements 0, e1, . . . , en—that
is, the vertices of the standard simplex of Rn—lie in A. To do so, we construct a
set of equations which define XA in the open chart (PN )y0 , where (y0 : · · · : yN )

is a system of homogeneous coordinates of PN , and compute a Chow form of this
variety.

Corollary 4.2. Let A ⊂ Nn
0 be a finite set which contains {0, e1, . . . , en}. Then

there is a bounded probability algorithm which computes (an slp for) a scalar
multiple of the A-resultant ResA within (expected) complexity (n + Vol(A))O(1).

Proof. Without loss of generality we assume that in A, α0 = 0 and αi = ei for
i = 1, . . . , n. Set d := maxα∈A|α|. For n + 1 ≤ j ≤ N we set

f j := yd−1
0 yj − y

d−|αj |
0 y

αj1

1 · · · y
αjn
n ∈ Q[y0, . . . , yN ].

Then, XA\{y0 = 0} = V := V ( fn+1, . . . , fN )y0 ⊂ (PN )y0 . Therefore the Chow
form of XA coincides with the one of V and can be computed by application of
Procedure Equidim (Subroutine 11) to the polynomial system fn+1, . . . , fN ; y0.

Each polynomial f j , n+ 1 ≤ j ≤ N , can be encoded by an slp of lengthO(d).
Moreover, as for each α ∈ Vol(A), |α| = Vol({0, e1, . . . , en, α}) ≤ Vol(A) since
{0, e1, . . . , en, α} ⊂ Vol(A), then d ≤ Vol(A). Therefore L( f j ) ≤ O(Vol(A)) for
n + 1 ≤ j ≤ N . Now, as the toric variety XA is nondegenerated (that is, it is not
contained in any hyperplane in PN ), [31, Corollary 18.12] implies that

N + 1 ≤ dim XA + deg XA = n + Vol(A).

This gives an estimation for the parameter N .
Finally, we have to estimate the geometric degree δ( fn+1, . . . , fN ; y0). As we

want to compute this degree outside {y0 = 0} it is enough to deal with linear
combinations of the dehomogeneized polynomials f̂ j obtained by specializing
y0 = 1 in the original f j for n+ 1 ≤ j ≤ N . For 1 ≤ i ≤ N , n+ 1 ≤ j ≤ N , and
ai j ∈ Q we set

qi := ain+1 f̂n+1 + · · · + ai N f̂N .



110 G. Jeronimo, T. Krick, J. Sabia, and M. Sombra

For every i , the support Supp(qi )—that is, the set of exponents of its nonzero
monomials—is contained in (A× {0}) ∪ S ⊂ ZN , where S := {en+1, . . . , eN } ⊂
ZN and then, by [43, Proposition 2.12],

deg V (q1, . . . , qi ) ≤ Vol((A× {0}) ∪ S).
As we have that

Vol((A× {0}) ∪ S) = N ! volRN Conv((A× {0}) ∪ S)
= n! volRn Conv(A) = Vol(A)

(where volRN and volRn denote the standard Euclidean volume forms) we infer that

δ := δ( fn+1, . . . , fN ; y0) ≤ Vol(A).

We conclude that ResA can be probabilistically computed by means of subrou-
tine Equidim within complexity (N − n)(Ndδ)O(1)L( fn+1, . . . , fN ) ≤ (n +
Vol(A))O(1).

Remark 4.3. It would be interesting to improve this algorithm in order to com-
pute ResA without any extraneous scalar factor. It would suffice to compute this
factor as the coefficient of any extremal monomial of FXA , as we know a priori
that the corresponding coefficient in ResA equals ±1 [22, Chapter 8, Theorem
3.3], see also [58, Corollary 3.1].

Example 4.4. We take the following example from [43, Example 4.13]: Set

A(n, d) := {0, e1, . . . , en, e1 + · · · + en, 2(e1 + · · · + en), . . . ,

d (e1 + · · · + en)} ⊂ Zn.

It is easy to check that Vol(A(n, d)) = nd, and so the previous algorithm computes
an slp for (a scalar multiple of) ResA(n,d) within (nd)O(1) arithmetic operations.

4.2. Generic Overdetermined Systems

Our second application concerns the computation of the unique solution of a
generic overdetermined system.

Let f0, . . . , fn ∈ Q[x0, . . . , xn] be homogeneous polynomials of degree d . The
associated equation system is generically inconsistent, where generically means
if and only if the vector of the coefficients of the polynomials does not lie in the
hypersurface V (Resn,d) ⊂ (PN )n+1 defined by the classical resultant Resn,d of n+1

homogeneous (n + 1)-variate polynomials of degree d , and N :=
(

d + n

n

)
− 1.

Now assume that the system is consistent. In this case the system is said to be
overdetermined, in the sense that its solution set can be defined—at least locally—
with fewer equations.
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Under this condition the system has generically exactly one solution, which is
a rational map of the coefficients of the polynomials f0, . . . , fn (see Corollary 4.7
below). This rational parametrization can be easily derived from the resultant, and
therefore can be computed with our algorithm (see also [59] for a related approach).

In fact, we treat the more general case of an overdetermined linear system on
a variety. The following result seems to be classical although we could not find it
in the existing literature. The closest statement we found is given in [22, Chapter
3, Corollary 3.7] and has a mistake as we discuss below.

Lemma 4.5. Let V ⊂ Pn be an equidimensional variety of dimension r definable
over Q. Let FV (U0, . . . ,Ur ) be a Chow form of V , and let u := (u0, . . . , ur ) ∈
V (FV ) ⊂ (Pn)r+1 be such that ∂FV /∂Ui0 j0(u) �= 0 for some 0 ≤ i0 ≤ r, 0 ≤
j0 ≤ n. For 0 ≤ i ≤ r , let Li (Ui , x) := Ui0x0 + · · · + Uin xn denote the generic
linear form associated to Ui . Then V ∩ V (L0(u0, x), . . . , Lr (ur , x)) consists of
exactly one element ξ(u), and

ξ(u) =
(
∂FV

∂Ui00
(u) : · · · :

∂FV

∂Ui0n
(u)

)
.

Proof. As the formula stated by the lemma is invariant under linear changes of
variables, we can assume without loss of generality that no irreducible component
of V is contained in any hyperplane {xj = 0}, 0 ≤ j ≤ n. For 0 ≤ i ≤ r we
set �i (x) := Li (ui , x) = ui0x0 + · · · + uin xn ∈ C[x0, . . . , xn] for the linear form
associated to ui ∈ Cn+1. Then V ∩ V (�0, . . . , �r ) �= ∅ because of the assumption
FV (u) = 0. Let ξ be a point in this variety. Suppose ξ0 �= 0.

Set V aff ⊂ An for the image of V under the rational map ψ : Pn ��� An defined
by (x0 : · · · : xn) �→ (x1/x0, . . . , xn/x0). Let T := {T0, . . . , Tr } be a group of
r + 1 additional variables, and let P := PV aff ∈ Q[U ][T ] be the characteristic
polynomial of V aff, as defined in Subsection 3.1. Then, for 0 ≤ j ≤ n,

0 = ∂P(U, L)

∂Ui0 j
(u, ξ)+ ξj

ξ0

∂P(U, L)

∂Ti0

(u, ξ) = ∂FV

∂Ui0 j
(u)− ξj

ξ0

∂FV

∂Ui00
(u). (13)

The first equality was shown in Lemma 3.1, while the second follows directly from
formula (6) in Subsection 3.1, and the fact that Li (ui , ξ) = 0 for 0 ≤ i ≤ r .

From identity (13) and the assumption ∂FV /∂Ui0 j0(u) �= 0, we infer that ξjξ0 =(
(∂FV /∂Ui0 j )/(∂FV /∂Ui00)

)
(u). Therefore

ξ =
(
∂FV

∂Ui00
(u) : · · · :

∂FV

∂Ui0n
(u)

)
.

This shows in particular that �0, . . . , �r have exactly one common root in V \{x0 =
0}. Moreover, as the formula for the coordinates of ξ does not depend on the chosen
affine chart, we conclude that ξ is the only common root of �0, . . . , �r in V .
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Corollary 3 of [22, Chapter 3] would imply that the formula of Lemma 4.5
holds in case ξ(u) is a simple common root of �0, . . . , �r in V . Denoting by OV,ξ

the local ring of V at ξ , this is equivalent to the fact that OV,ξ /(�0, . . . , �r ) ∼= C.
The following counterexample shows that this is not true: let

F(t, x, y) := x2(x + t)− t y2 ∈ Q[t, x, y], C := V (F) ⊂ P2.

C is an elliptic curve with a node at (1 : 0 : 0). The linear forms �0 := L0((0 :
1 : 0), (t : x : y)) = x and �1 := L1((0 : 0 : 1), (t : x : y)) = y have a
single common root (1 : 0 : 0) in C , which is a simple root of �0, �1 in C . On the
other hand, as C is a hypersurface, FC = F(M0,−M1, M2), where Mj denotes
the maximal minor obtained by deleting the ( j + 1)th column of the matrix(

U00 U01 U02

U10 U11 U12

)
.

A straightforward computation shows that ∂FC/∂Ui j ((0 : 1 : 0), (0 : 0 : 1)) = 0
for every i, j .

The proof given in [22] is based on the biduality theorem and on Cayley’s trick,
and it holds in case V is smooth, and in case u = (u0, . . . , ur ) does not lie in the
singular locus of the hypersurface V (FV ). This last condition is equivalent to ours.

Let V ⊂ Pn be an equidimensional variety of dimension r , and set �V :=
V (FV ) ⊂ (Pn)r+1 for the set of (coefficients of) overdetermined linear systems
over V . As FV is squarefree and each of its irreducible factors depends on every
group of variables,

gcd(FV , ∂FV /∂Ui 0, . . . , ∂FV /∂Uin) = 1

for 0 ≤ i ≤ r . Then #i := �V \V (∂FV /∂Ui 0, . . . , ∂FV /∂Ui n) is a dense open
set of �V and so

�V : �V ��� Pn, u �→ ξ(u) :=
(
∂FV

∂Ui0
(u) : · · · :

∂FV

∂Uin
(u)

)
if u ∈ #i

is a rational map well defined on #0 ∪ · · · ∪#r .
Now let V ⊂ (Pn)g be an arbitrary variety of dimension r , and let V =

Vr ∪ · · · ∪ V0 be its equidimensional decomposition. In what follows, for the sake
of clarity, we keep the same notations as previously for different objects sharing
analogous properties. Set (again) �V ⊂ (Pn)r+1 for the set

�V = {(u0, . . . , ur ) ∈ (Pn)r+1 : ∃ ξ ∈ V / L0(u0, ξ) = 0, . . . , Lr (ur , ξ) = 0}
of generic overdetermined linear systems over V , which is a quasiprojective variety
of codimension 1 in (Pn)r+1. For every 0 ≤ k ≤ r , let �Vk be the set of the
coefficients of r + 1 linear forms which have a common root in Vk . If FVk is a
Chow form of Vk , we have that

�Vk ⊂
⋂

0≤i0<···<ik≤r

V (FVk (Ui0 , . . . ,Uik ))
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and, therefore, �Vk has codimension at least 2 for 0 ≤ k ≤ r − 1. Let #i :=
�Vr \V (∂FVr /∂Ui 0, . . . , ∂FVr /∂Ui n) for i = 0, . . . , r . Then every overdeter-
mined linear system over V with coefficients in the open set (#0∪· · ·∪#r )\(�V0∪
· · · ∪�Vr−1) of �V has a unique solution in V which, in fact, lies in Vr . As before,
this solution can be given by the rational map

�V := �Vr : �Vr ��� (Pn)g,

u �→ ξ(u) :=
(
∂FVr

∂Ui0
(u) : · · · :

∂FVr

∂Uin
(u)

)
if u ∈ #i .

As an immediate consequence of Theorem 1 and Lemma 4.5 we obtain:

Corollary 4.6. Let f1, . . . , fs, g ∈ Q[x0, . . . , xn] be homogeneous polynomials
of degree bounded by d encoded by straight-line programs of length bounded
by L . Set V := V ( f1, . . . , fs)\V (g) ⊂ Pn for the quasiprojective variety { f1 =
0, . . . , fs = 0, g �= 0} and let V = V0 ∪ · · · ∪ Vn be its minimal equidimensional
decomposition. Let δ := δ( f1, . . . , fs; g) be the geometric degree of the input
polynomial system.

Then there is a bounded probability algorithm which computes (slp’s for) the
coordinates of the rational map �V defined above within (expected) complexity
s(ndδ)O(1)L .

The previous result can be applied directly to compute the solution of a generic
overdetermined system of n + 1 homogeneous polynomials in n + 1 variables of
degree d by means of Resn,d :

Corollary 4.7. Let u = (u0, . . . , un) ∈ (PN )n+1 where N :=
(

d + n

n

)
− 1 and,

for 0 ≤ i ≤ n, set

fi :=
∑
|α|=d

uiα xα.

Assume that Resn,d(u) = 0 and that ∂ Resn,d/∂Ui0 β(u) �= 0 for some 0 ≤ i0 ≤
n, β = (β0, . . . , βn) ∈ (N0)

n+1 with |β| = d.
Then V ( f0, . . . , fn) consists of exactly one element ξ(u) ∈ Pn , and

ξ(u) =
(

∂ Resn,d

∂Ui0,(d−1) ej+e0

(u) : · · · :
∂ Resn,d

∂Ui0,(d−1) ej+en

(u)

)
for any 0 ≤ j ≤ n such that βj �= 0.

Proof. From Lemma 4.5 applied to the Veronese variety V (n, d) ⊂ PN (see
Subsection 4.1.1) we have that V ( f0, . . . , fn) has only one point ξ(u) and that

(ξ(u)α)|α|=d =
(
∂ Resn,d

∂Ui0α

(u)

)
|α|=d

.
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Let β = (β0, . . . , βn) be such that |β| = d and ∂ Resn,d /∂Ui0β(u) �= 0, and let
0 ≤ j ≤ n be such that βj �= 0. The previous identity implies that ξ ∈ {xj �= 0}.
Then

ξ(u) = (ξ d−1
j ξ0 : · · · : ξ d−1

j ξn)

=
(

∂ Resn,d

∂Ui0,(d−1) ej+e0

(u) : · · · :
∂ Resn,d

∂Ui0,(d−1) ej+en

(u)

)
.

As an immediate consequence of this result and Proposition 4.1, we obtain:

Corollary 4.8. Let notation be as in Corollary 4.7. Then the rational map
(PN )n+1 ��� Pn , u �→ ξ(u) can be (deterministically) computed within com-
plexity (ndn)O(1).
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