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We argue that the projection of the visual field to the cortex constrains
and informs the modeling of visual word recognition. On the basis of
anatomical and psychological evidence, we claim that the higher-level
cognition involved in word recognition does not completely transcend
initial foveal splitting. We present a schematic connectionist model of
word recognition that instantiates the precise splitting of the visual field
and the contralateral projection of the two hemifields. We explore the spe-
cial nature of the exterior (i.e., first and last) letters of words in reading.
The model produces the correct behavior spontaneously and robustly.
We analyze this behavior of the model with respect to words and random
patterns and conclude that the systematic division of the visual input has
predictable, general informational consequences and is chiefly responsi-
ble for the exterior letters effect.

1 Introduction

The human fovea is precisely split about a vertical midline: the left and right
hemifields are projected contralaterally to the right and left hemispheres of
the brain, respectively (Fendrich & Gazzaniga, 1989; Fendrich, Wessinger,
& Gazzaniga, 1996; Sperry, 1968). This foveal splitting is sufficiently exact to
mean that when a printed word is fixated, under typical reading distances,
the two parts of the word are initially projected to different hemispheres
(Sugishita, Hamilton, Sakuma, & Hemmi, 1994). Foveal splitting has been
recognized in cognitive neuropsychological research, particularly research
involving split-brain subjects, but it has received little attention in psycholin-
guistic approaches to visual word recognition (Brysbaert, 1994; Shillcock &
Monaghan, 1998; Shillcock, Ellison, & Monaghan, in press; Shillcock, Mon-
aghan, & Ellison, 1999). We describe a series of studies using neural net-
work architectures to explore an abstract characterization of one aspect of
visual word recognition: that of coordinating the information in the two
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Figure 1: Split model architecture. Each column of eight units in the input and
output layers represents one letter. Gray units denote nonactivated nodes; white
units denote activated nodes. Words were presented in every position across the
input units.

hemifields, containing, respectively, the two parts of a fixated word. We
will show that one particular aspect of visual word recognition, the special
status accorded to the exterior (i.e., first and last) letters of a word, may
be explained by the split nature of the processor. More generally, we will
show that such modeling can yield theoretical insights into the nature of
hemispheric interaction.

Figure 1 illustrates a neural network model of word recognition that in-
stantiates foveal splitting in the simplest, most extreme form. The model
carries out an identity mapping from an orthographic representation pre-
sented across the input nodes to the same representation across the output
nodes. The division between the two halves of the input is precise, with no
sharing of information between the two hemifields. In reality, in the human
visual system, it is likely that some degree of ipsilaterally projected infor-
mation is available. For instance, low spatial-frequency information about



Word Recognition in a Split Model 1173

Figure 2: Example of the five different versions of the stimulus for any one
word.

a fixated word may be accessible from subcortical routes, which are not
dependent on callosal transfer; thus, information about the length of the
fixated word may be available to both hemispheres. Elsewhere we argue
in more detail that this initial splitting of the input conditions the higher
cognitive processing involved in visual word recognition (Shillcock et al., in
press; Shillcock & Monaghan, 1998; Shillcock et al., 1999). Our strategy has
been first to investigate the robust behavior of the simplest model of foveal
splitting. The critical feature of the model is that it is required to coordinate
the information in the two hemifields regardless of where the fixation point
falls. Thus, as shown in Figure 2, for a four-letter word there are five possible
fixation points, ranging from just before the first letter to just after the last
letter and ignoring the possibility of a fixation directly on a letter.

2 The First and Last Letters of Words

In psycholinguistic experiments, the first and last letters of a visually pre-
sented word have been shown to be more salient than the rest of the letters
and to receive priority in processing. Forster (1976) argues that these exte-
rior letters constitute an access code that activates a subset of the lexicon.1

Rumelhart and McClelland (1981) suggest that “subjects use some sort of
‘outside in’ processing strategy that leads to variations in performance
across serial position” (p. 76). Jordan (1990) concludes that “psychologi-
cal representations for exterior letter combinations from words do appear
to exist, and . . . can be activated even though no other letters are perceived”
(p. 903). The priority of exterior letters is evident from a number of experi-
mental paradigms:

• Identity priming. Recognition of the whole target word (e.g., trap) is
facilitated by the prior presentation of its exterior letters (t p) but not
its interior letters ( ra ) (Forster & Gartlan, 1975; McCusker, Gough, &
Bias, 1981).

1 Throughout this article we use Jordan’s (1990) terminology of exterior letters to refer
to the first and last letter of a visually presented word and interior letters to refer to all the
letters that lie between the first and last position.
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• Probed report. Exterior letters of pattern postmasked strings are re-
ported more accurately than interior letters (Butler & Merikle, 1973;
Merikle, 1974; Merikle & Coltheart, 1972; Merikle, Coltheart, & Lowe,
1971). Importantly, the two exterior letters produce closely compara-
ble levels of report. Rumelhart and McClelland (1981) present data
from the Reicher-Wheeler task, showing serial position effects in the
form of a bow-shaped curve (experiment 7, figure 18, p. 77); it is these
data that prompt Rumelhart and McClelland to make the “outside in”
processing claim quoted above.

• Identification. Legal pairs of exterior letters such as (d k) (from dark,
disk) are reported more accurately than single letters (d) or illegal pairs
of exterior letters (d x) or (z k) (Jordan, 1990, 1995). This “pair-letter
effect” was observed only when the pattern postmask matched the
horizontal boundaries of the legal exterior letter pair. Reports of whole-
word displays were always superior to reports of letter pairs.

• Off-line identification. Exterior letters tend to be recognized first in noisy
conditions, as when successive presentations of blurred content words
become clearer and clearer (see, e.g., Shillcock, Kelly, Buntin, & Patter-
son, 1997).

In summary, the exterior letters of visually presented words are afforded
priority in processing in a variety of recognition tasks. One potential ex-
planation is that although the exterior letters are in fact farthest away from
the central foveal fixation point, the relevant visual information is actually
clearer than that in the middle because exterior letters are bounded on one
side by white space and are thus not susceptible to the same level of visual
ambiguity and lateral interference as interior letters (Eriksen & Rohrbaugh,
1970; Estes, Allmeyer, & Reder, 1976). This explanation is perhaps most
compelling for the off-line recognition of degraded lexical stimuli. Jordan
(1990) argues against this lateral interference account as the sole explanation
of all the data, on the grounds that not all types of string elicit the effect:
pattern-postmasked strings of letter-like nonsense characters elicit the re-
verse pattern of results, with exterior characters being perceived less well
than interior characters (Hammond & Green, 1982; Mason, 1982; Mason &
Katz, 1976). These particular data are seen as resulting from a word recog-
nition device specifically attuned to exterior letters, which is partially set
in motion by the nonsense characters and cannot be completely inhibited.
These data involving letter-like nonsense characters are simultaneously ev-
idence for the special status of exterior letters and the claim that this status
does not derive solely from more peripheral, psychophysical considera-
tions.

The credit for the original demonstration that the effect can emerge from
an implemented computational model goes to Rumelhart and McClelland,
who suggest a number of mechanisms that might account for the serial
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position effects they observe in the human data; they implement two of
them to simulate the data. First, they differentially weight the inputs to
each of the four letter positions in their interactive-activation model (IAM).
Second, they assume that the readout occurs at different times for the dif-
ferent positions: the two exterior letters are read out first, followed by the
second and then the third. Rumelhart and McClelland also mention pos-
sible perceptibility differences of particular letters in particular positions,
statistical properties of the words, and variations in locus of fixation and
attention, thus summarizing the most relevant parameters in a monolithic
(nonsplit) model of word recognition. The statistical properties of the En-
glish lexicon will be relevant to our own explorations below. The beginnings
of English words are typically the most informative parts; redundancy rises
across serial position (see, for instance, Yannakoudakis & Hutton, 1992, for
an analysis of the phonological statistics of English words). In monosyllabic
English words, the dominant consonant-vowel-consonant (CVC) structure
allows greater variety in onsets and codas than in the middles of words.
Thus, giving processing priority to the exterior letters of English words is
adaptive.

The exterior letters effect (ELE) is outside the range of data that has been
captured by models of visual word recognition in the connectionist tradition
other than the IAM. In Seidenberg and McClelland’s (1989) developmental
model, the Wickelgraph input representation leads to the reverse predic-
tion by underrepresenting the exterior letters compared with the interior
letters, in its triples of consecutive letters: ∗da, dar, ark, rk∗ (this criticism also
applies to Mozer’s, 1987, BLIRNET model).2 In some of the subsequent
models of visual word processing (chiefly concerned with pronunciation)
in this tradition (e.g., Plaut & McClelland, 1993), the orthographic input is
explicitly structured in terms of onset, nucleus, and coda, and there is no
indication that any differential processing can emerge for exterior letters;
indeed, Plaut and McClelland remark on the typically autonomous and
componential processing occurring in onset, nucleus, and coda, the three
positions interacting in the processing of only words with irregular pronun-
ciations, like pint. In summary, existing models of visual word recognition
do not spontaneously allow the ELE to emerge as a principled result of their
basic architecture. Below, we develop an account of the effect, based on the
claim that foveal splitting fundamentally conditions word recognition. We
present simulations using a lexicon of the 60 most frequent English words
to demonstrate that the ELE occurs with psychologically realistic stimuli,
and we present simulations using more controlled lexica to establish that
the effect is genuinely due to the split nature of the processor.

2 The computational measure of coding ends of words in two ways, as ∗ and ∗∗, al-
lows interior and exterior letters to participate in an equal number of representations:
∗∗d,∗ da, dar, ark, rk∗, k∗∗. However, this amendment still does not make the correct predic-
tion of better representation of exterior letters.



1176 Richard Shillcock and Padraic Monaghan

Figure 3: Nonsplit model. The dashed line indicates incomplete connectivity
between the input and the hidden layers. See the text for details.

We compare the behavior of the split model with an otherwise compa-
rable nonsplit model, shown in Figure 3. In the simulations with a nonsplit
architecture, we used the same training and testing regime as with the split
architecture. In the nonsplit model, the input layer consisted of eight letter
positions, effectively pooling the separate input layers of the split model.
The hidden layer was also a pooled-resource version of the split model,
and contained 40 units. The hidden layer and the output layer were fully
connected. However, in order to make the processing power of the two
networks comparable, each unit in the input layer in the nonsplit model
was connected randomly to only half the hidden units. This measure al-
lows there to be the same number of weighted connections between input
and hidden layers in the split and nonsplit models. The processing power
of neural networks is a function of the number of units and the number of
weighted connections. If the two models are alike in these respects, then
their performances may be compared.
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3 Simulating the Exterior Letters Effect

Figure 1 shows the basic model that we explored. The input layer is com-
posed of two sets of four input units (four letter slots) on either side of a
midline, or fixation point. There is complete connectivity between these sets
of input units and their respective groups of 20 hidden units. The number
of hidden units was determined by pilot studies and represents the mini-
mum number capable of reliably solving this mapping problem. There is
complete connectivity between the two sets of hidden units and the set of
four output units. Our network encodes letters in terms of the eight-bit vi-
sual feature system employed by Plaut and Shallice (1994). The features
correspond to attributes such as “contains a vertical stroke” or “contains a
closed part.” Each input layer and the output layer contain four letter po-
sitions. The model was required to recreate and integrate its orthographic
inputs at the output units, for all five possible inputs for each word (see
Figure 2). The network was trained using the backpropagation learning al-
gorithm (Rumelhart, Hinton, & Williams, 1986) and was implemented in
PDP++ (O’Reilly, Dawson, & McClelland, 1995).

The principal psychological reality that this model is intended to capture
is that of the splitting of the visual field. The set of output units is not
necessarily intended to be located in any one hemisphere. We use the model
to address the question of what happens when information divided between
two processing domains is required to be coordinated. What processing
strategies spontaneously emerge from a simple instantiation of the problem
in a split architecture?

3.1 Simulating the ELE with a Real-Word Lexicon. The exterior letters
of four-letter words, such as d∗∗k as in disk, are recognized better than the
interior letters of words in studies with human subjects (Forster & Gartlan,
1975; McCusker et al., 1981). In this simulation we aim to show that this
effect naturally emerges from a split model trained on a small but realistic
set of English words. The 60 words used in the training set, and listed
in the appendix, were all the four-letter words with a frequency greater
than 1 in 10,000 from the CELEX lexical database (Baayen, Pipenbrock, &
Gulikers, 1995). Each word was presented to the model an equal number
of times in each of the five possible input locations. For each presentation,
the model was required to recreate the word at the output. The words were
presented in random permuted order, with particular presentation positions
also randomized. After approximately 100 epochs of training, the network
had learned the task well, with mean squared error (MSE) for each word
being less than 0.5. The nonsplit network was similarly trained on the same
lexicon, with the words presented in all five possible positions in the input
and was trained to the same level of MSE as the split model. Ten simulations
were carried out, and all produced very similar results.
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We tested the hypothesis that the ELE would emerge within these simple
constraints. The trained models were presented with stimuli consisting of
either the exterior or the interior letters of each of the words in the training
set. These letters were positioned so that the notional words of which they
were a part occupied all possible positions across the input units (below,
we refer to the individual input nodes by number, counting from left to
right from 1 to 8). In the exterior letters condition, the exterior letters of
each word in the training set were presented intact, and each of the interior
letters was replaced by an ambiguous pattern in which all the units were
activated to half their maximum value.3 We used these ambiguous patterns
to represent stimulus conditions in the original experiments by Jordan and
others in which information was provided about word length but with no
indication about what letters were present in those particular positions.4 In
the interior letters condition, the interior letters were presented intact, and
the exterior letters were replaced by ambiguous patterns.

Figure 4 shows the MSE at output letter positions 3 and 6 (the exterior let-
ters, given a central fixation of the word) for the split and nonsplit networks
respectively, for the exterior letters condition. Figure 5 shows the MSE for
the output letter positions 4 and 5 (the interior letters, given a central fixation
of the word) for the split and nonsplit networks, respectively, for the interior
letters condition. Taken together the two graphs show a striking interaction
between model type (split versus nonsplit) and letters presentation condi-
tion (exterior versus interior): the difference between the MSE for exterior
letters and interior letters is greater in the split model than in the nonsplit
model. The graphs also show a somewhat smaller MSE for the exterior letters
compared with the interior letters in the nonsplit model alone. An analysis
of variance was carried out treating the individual trained models as sub-
jects in an experiment; the MSE was summed for the two interior letters and
the two exterior letters in each model. The analysis of variance confirmed a
significant interaction between model type and letters presentation condi-
tion (F(1,18) = 31.23, p < .001; F(1,59) = 149.47, p < .001). Individual t-tests
were performed on the MSE summed across the two exterior letters and
across the two interior letters for each model. For the split model, there was
a significant difference between MSE for the exterior letters and MSE for the
interior letters (t(9) = −9.89, p < .001, two-tailed). For the exterior letters
alone, there was a significant difference between the split model and the
nonsplit model (t(9) = −6.35, p < .001, two-tailed). For the interior letters
alone, there was no significant difference between the split model and the
nonsplit model (t(9) = .39, n.s.). These results all represent an ELE in which
the split nature of one of the models plays a crucial part. However, there is

3 This pattern of activation is exactly equidistant from each letter in the eight-
dimensional input space.

4 In the experimental paradigm used by Jordan (1990, 1995), information about word
length was conveyed by the stimulus mask.
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Figure 4: Mean squared error (MSE) at individual letter positions 3 and 6 for
the 60 words of English when the exterior letters of the words were presented
as input to the split and nonsplit model, respectively. Error bars in all graphs
represent standard error of the mean.

also a (smaller) significant difference between the exterior and interior let-
ters in the nonsplit model alone (t(9) = −2.80, p = .021 two-tailed). This last
result suggests an ELE with its origin in the basic task—the shift-invariant
identity mapping—that the models are both required to perform.

These results refer only to the central fixation, across input nodes 3, 4,
5, and 6. Separate analyses were carried out for each of the five possible
input positions for a word. The results are presented in Tables 1, 2, and
3; the middle rows of the tables contain the results discussed above, and
illustrated in Figures 4 and 5, for the central fixation.

Table 1 shows the MSE data for the exterior letters condition and Table 2
for the interior letters condition. Table 3 summarizes the results of analyses
of variance summing MSE for the two interior and the two exterior letters in
each model, with subjects (F(1,18)) and items (F(1,59)), respectively, as the
random variable; only the outcome of the (model× presentation condition)
interaction is shown, in the second column. The four right-most columns
of Table 3 show the results of the t-tests (df = 9) between summed MSE for
exterior and for interior letters and split and nonsplit models. The pattern
of results described above for the central fixation is broadly followed in
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Figure 5: MSE at individual letter positions 4 and 5 for the 60 words of English
when the interior letters of the words were presented as input to the split and
nonsplit models, respectively.

Table 1: MSE for Presentation of the Exterior Letters to the Split and Nonsplit
Models Trained on the 60 Most Frequent English Four-Letter Words.

Model Mean Squared Error in Letter Position

1 2 3 4 5 6 7 8

Split 0.68 - - 0.93
Nonsplit 0.85 - - 0.89
Split 0.50 - - 0.19
Nonsplit 1.04 - - 0.95
Split 0.45 - - 0.37
Nonsplit 1.03 - - 1.04
Split 0.20 - - 0.49
Nonsplit 1.07 - - 1.01
Split 0.97 - - 0.65
Nonspit 0.85 - - 0.78

the two other more central presentations, in which the word is “fixated”
between two of its constituent letters and input falls into each half of the
model; the interaction was significant in each. In single hemifield presen-
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Table 2: MSE for Presentation of the Interior Letters to the Split and Nonsplit
Models Trained on the 60 Most Frequent English Four-Letter Words.

Model Mean Squared Error in Letter Position

1 2 3 4 5 6 7 8

Split - 0.81 1.21 -
Nonsplit - 0.80 1.13 -
Split - 1.23 1.64 -
Nonsplit - 0.92 1.27 -
Split - 1.19 1.40 -
Nonsplit - 1.15 1.36 -
Split - 1.19 1.42 -
Nonsplit - 1.13 1.37 -
Split - 0.93 1.36 -
Nonspit - 0.92 1.22 -

Table 3: Results of the Analyses of Variance and t-Tests (Two-Tailed) for the Split
and Nonsplit Networks Presented with the 60 Most Frequent Words of English.

Input Interaction t-Test for t-Test for Split t-Test for t-Test for
Nodes Between Exterior Model, Interior Nonsplit

Model and Letters, Comparing Letters, Model,
Presentation Comparing Exterior Comparing Comparing
Condition, by Split and and Interior Split and Exterior
Subjects and Nonsplit Letters Nonsplit and Interior
by Items Models Models Letters

1234 n.s.,∗∗∗ n.s. ∗ n.s. n.s.
2345 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ ∗ n.s.
3456 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ n.s. ∗
4567 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ n.s. ∗
5678 n.s.,∗∗∗ n.s. ∗∗∗ n.s. ∗∗

Note: ∗p < .05. ∗∗p < .01. ∗∗∗p < .001.

tations, in which all of the input falls in half of the model, the interaction
becomes nonsignificant in the analyses by subjects. In some of the individ-
ual models trained from different random starting weights, the interactions
for the single hemifield presentations achieved significance in the analyses
by subjects, but the interaction was always weaker than those for the split
(more central ) presentations. Table 3 shows the precise role of the exterior
letters in the split model in causing the interaction. The ELE seems to re-
ceive contributions from at least two sources: the split architecture of one
of the models and the nature of the task itself. Each model is required to
perform the same task, so the significant interaction between model type
and presentation condition must reflect the architectural difference between
the models—the fact that one of them is split. The data in the right-most
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Figure 6: PDP++’s representation of the split network’s performance on the
centrally presented word mean when only the exterior letters are presented.
Each node’s activation level is indicated by the size of the light area; when the
node is highly activated, it is wholly white, and when it is inactive, it is wholly
gray.

column of Table 3 are evidence for a smaller potential contribution to the
ELE from the task itself.

Figure 6 shows the PDP++ representation of the network when it is pre-
sented with only the exterior letters: m∗∗n of the centrally presented word
mean. The exterior letters are reproduced with very little error in the output.
Figure 7 shows the network when it is presented with only the correspond-
ing interior letters: ∗ea∗. In this condition, the features of the interior letters
are not reproduced accurately. For the letter e, one of the three features is not
activated very strongly, and two features are erroneously activated. For the
letter a, three of the four features are not activated strongly, and two features
are activated erroneously. It is also informative to compare the activation
of letters that are not presented in the input in Figures 6 and 7. When only
the exterior letters are presented, the network correctly produces five of the
seven features present in the interior letters and incorrectly activates four
features. When only the interior letters are presented the network correctly
produces four of the seven features of the exterior letters but inappropri-
ately activates seven other features. This detailed study of one stimulus



Word Recognition in a Split Model 1183

Figure 7: The network’s performance on the word mean when only the interior
letters are presented. Performance is worse than when only exterior letters are
presented. See the text for details.

word, mean, presented in the two conditions provides a qualitative picture
of the ELE as it appears in the whole-word priming task, which we describe
in more detail below.

McCusker et al. (1981) show, in a series of four experiments, that the
exterior letters of four-letter words are better than the corresponding interior
letters at priming the subsequently presented whole word. We simulated
this effect using the 10 different versions of each of the split and nonsplit
model trained on the 60-word lexicon, as described above. The exterior
letters or the interior letters of each word were presented, and the total
MSE associated with the relevant whole word at the output was recorded.
This measure indicates how close the network comes to reproducing the
whole word from just the presented letters. We tested the hypothesis that
the exterior letters would lead to a significantly smaller MSE for the whole
word, compared with the MSE generated by the interior letters.

Two-way ANOVAs with model type (Split versus Nonsplit) and letters
presentation condition (Exterior versus Interior) and MSE over the whole
word as dependent variable were performed for each of the 10 split and
nonsplit simulations. The effects were qualitatively identical to when er-
ror only for presented letters was analyzed, as above: presenting exterior
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letters to the split model primes the whole word better than presenting in-
terior letters, whereas for the nonsplit model, this difference in priming is
significantly smaller. For the centrally presented words (input nodes 3, 4, 5,
and 6), for example, MSE with the split model was 5.70 when the exterior
letters were presented and 8.22 when the interior letters were presented.
For the nonsplit model, MSE was 7.27 following presentation of the exterior
letters and 7.60 following presentation of the interior letters. For the single-
hemifield presentations (input nodes 1, 2, 3, 4 and 5, 6, 7, 8) the interactions
between model type (Split versus Nonsplit) and presentation condition (Ex-
terior versus Interior) were not significant (F(1, 18) = 0.16, p = 0.69; and F(1,
18) = 1.81, p = 0.20, respectively). However, for the other presentation po-
sitions (input nodes 2, 3, 4, 5; 3, 4, 5, 6; and 4, 5, 6, 7), there were significant
interactions (F(1, 18) = 47.91, p < 0.001; F(1, 18) = 45.08, p < 0.001; F(1, 18) =
78.43, p < 0.001, respectively). For the presentations that cross the midline
of the split network, the ELE obtains in the simulation of the whole-word
priming task.

We report this simulation as a direct demonstration of the modeling of
psychological data related to the ELE. We hypothesize that the superior
whole-word priming observed for the exterior letters is due to the split
architecture of the processor, but support for this hypothesis must await
the control studies with completely artificial lexica, which we report below.
However, the simulations reported above show that the ELE is a robust
effect with a real-word lexicon.

In summary, construing part of visual word recognition as a shift-invariant
identity mapping and training with the 60 most frequent four letter words of
English produce the ELE, and produce it significantly more robustly in the
split model. Presenting just the exterior letters leads to good representations
of those letters and hence to effective primes for words, whereas presenting
just the interior letters produces less secure representations and hence less
effective priming of the appropriate word. One factor potentially contribut-
ing toward such behavior is the particular statistics of the training set. As
an inspection of the appendix reveals, interior letters are more ambiguous
in the words to which they refer: there are 9 ambiguous exterior letter-pairs
(e.g., h∗∗e matches both have and here), including two three-way ambigui-
ties (e.g., life, like, late), whereas there are 15 ambiguous interior letter pairs,
including 4 three-way ambiguities (e.g., keep, seem, feed) and one four-way
ambiguity (them, then, when, they). Exterior letters cue a smaller number of
words than do interior letters, and it is therefore useful to prioritize their
representation compared with the interior letters. The statistics of the train-
ing set broadly reflect the fact that in English CVC words, more variety is
possible in the consonants of the onset and coda than in the vowels of the
nucleus. A second potentially contributing explanation is that the observed
ELE emerges from the split nature of one of the processors. A third poten-
tial explanation is that it is due to the nature of the shift-invariant identity
mapping that the task requires. A fourth potential account of the ELE in
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the split model involves the definition of letters in terms of their immediate
contexts: the orthotactic constraints of English monosyllabic words dictate,
for instance, that f may be followed by t, but that the reverse is not allowed,
and that only certain vowels in certain orders may appear adjacently. We
may expect the nonsplit model as well as the split model to encode letter
identity at least in part in terms of immediate context, so that an unspecified
letter might be partially restored. In the split model, this means of encoding
letter identity might be expected to militate against interior letters compared
with exterior letters in that the contexts of the former are more adversely
affected by the split and the shift-invariant identity mapping.

In the simulations described below, we address the four potential expla-
nations given above by using lexica composed of items in which the degree
of structure-mediating features and words in the original real-words lexi-
con is decreased. First, below, we randomize the order of letters within the
words, thereby removing orthotactic structure from the lexicon. Further,
we remove the letter level completely in a lexicon in which each word is
represented by a unique random array of features. We hypothesize that the
split nature of the processor will produce the most robust contribution to
the ELE.

3.2 Simulating the ELE in a Random-Letter Lexicon. The random-letter
lexicon contained 60 items. Items were generated by randomly assigning a
letter to each position within the item. Randomization was permuted so that
each letter occurred at least twice in each letter position across the lexicon.
This random-letter lexicon allows us to assess the extent to which the ELE
observed with real words was due to the orthotactic constraints present in
real words of English.

The split and nonsplit models were trained and tested, as with the real-
word lexicon above, by presenting first the exterior letters and then the
interior letters and recording the respective MSE. Tables 4 and 5 present the
data for all presentation positions, as in the analysis of the real-words lexicon
above. Table 6 summarizes the model× presentation condition interaction
from analyses of variance conducted as in the real-words simulation above.
The interaction between model type and presentation condition was again
the most striking aspect of the data. The ELE emerged robustly, as with
the real-words lexicon. However, in the nonsplit model, the MSE for the
exterior letters was also noticeably smaller than that for the interior letters.
As Tables 4, 5, and 6 show, with the random-letter words, the interaction
between model type and presentation condition reaches significance in both
of the single hemifield presentations. The ELE obtains even when the word
is being presented to a single hemifield.

Table 6 shows that in the simulations with the random-letter words, the
overall pattern of results found for the real English words obtains more ro-
bustly. In the current simulation the model× presentation condition inter-
action is significant in the analyses by subjects even in the single-hemifield
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Table 4: MSE for Presentation of the Exterior Letters to the Split and Nonsplit
Models Trained on the Random-Letter Words.

Model Mean Squared Error in Letter Position

1 2 3 4 5 6 7 8

Split .84 - - 1.14
Nonsplit 1.05 - - 1.19
Split .69 - - .27
Nonsplit 1.34 - - 1.33
Split .61 - - 0.49
Nonsplit 1.51 - - 1.39
Split .28 - - .62
Nonsplit 1.54 - - 1.46
Split 1.18 - - .92
Nonspit 1.37 - - 1.23

Table 5: MSE for Presentation of the Interior Letters to the Split and Nonsplit
Models Trained on the Random-Letter Words.

Model Mean Squared Error in Letter Position

1 2 3 4 5 6 7 8

Split - 1.64 1.55 -
Nonsplit - 1.36 1.46 -
Split - 1.69 1.71 -
Nonsplit - 1.65 1.57 -
Split - 1.93 1.73 -
Nonsplit - 2.04 1.72 -
Split - 2.05 1.80 -
Nonsplit - 1.73 1.64 -
Split - 1.56 1.38 -
Nonspit - 1.48 1.34 -

presentations, and four of five of the MSE differences between the exterior
letters in the split and nonsplit model are highly significant, the t-values
being greater than the corresponding values in Table 3 for the real-words
simulation. Similarly, in the right-most column of Table 6, more of the t-tests
of the difference between MSE for the interior and exterior letters in the non-
split model are significant, compared with the same comparisons in Table 3.

In summary, the simulations with the random-letter lexicon rule out two
of the four potential accounts we suggested for the ELE observed in our sim-
ulations with the real-words lexicon. The orthotactic constraints present in
the 60-word English lexicon could not have been wholly responsible for the
effect. Similarly, the split architecture’s greater disruption of the letter con-
text of the interior letters compared with the exterior letters could not have
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Table 6: Results of the Analyses of Variance and t-Tests (Two-Tailed) for the
Split and Nonsplit Networks Presented with the 60 Random-Letter Words.

Input Interaction t-Test for t-Test for Split t-Test for t-Test for
Nodes Between Exterior Model, Interior Nonsplit

Model and Letters, Comparing Letters, Model,
Presentation Comparing Exterior Comparing Comparing
Condition, by Split and and Interior Split and Exterior
Subjects and Nonsplit Letters Nonsplit and Interior
by Items Models Models Letters

1234 ∗∗,∗∗∗ n.s. ∗∗∗ ∗∗ ∗∗
2345 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ n.s. ∗∗∗
3456 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ n.s. ∗∗∗
4567 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗
5678 ∗∗,∗∗∗ ∗∗ ∗∗∗ n.s. n.s.

Note: ∗p < .05. ∗∗p < .01. ∗∗∗p < .001.

played a major role. The ELE was more pronounced in the random-letter
lexicon, despite the absence of reliable orthotactic contexts. The ELE in both
the real-words simulations and the random-letters simulations is caused by
the nature of the processing task; it emerges spontaneously and robustly
from the shift-invariant identity mapping and is significantly magnified by
the presence of a split in the processor.

We repeated the simulations corresponding to whole-word priming with
the random-letters lexicon. We tested the prediction that compared with the
interior letters, the exterior letters would produce a significantly smaller
MSE for the whole word of which they were part.

Two-way ANOVAs with model type (Split versus Nonsplit) and letters-
presentation condition (Exterior versus Interior) and MSE over the whole
word as dependent variable were calculated as above, and the effects were
qualitatively similar. For the centrally presented words (input nodes 3, 4,
5, 6), for example, MSE for the split model was 5.90 when the exterior let-
ters were presented and 9.87 when the interior letters were presented. For
the nonsplit model, MSE was 8.31 following presentation of the exterior
letters and 9.10 following presentation of the interior letters. For the single-
hemifield presentations (input nodes 1, 2, 3, 4 and 5, 6, 7, 8), the interaction
between model type (Split versus Nonsplit) and presentation condition (Ex-
terior versus Interior) was significant in the right visual field presentation
(F(1, 18) = 6.34, p = 0.021) and was marginally significant in the left visual
field presentation (F(1, 18) = 3.36, p = 0.083). For the other presentation
positions (input nodes 2, 3, 4, 5; 3, 4, 5, 6; and 4, 5, 6, 7) there were significant
interactions (F(1, 18) = 443.66, p < 0.001; F(1, 18) = 94.53, p < 0.001; F(1, 18)
= 195.97, p < 0.001, respectively). With lexical entries containing no ortho-
tactic structure, the ELE obtains more strongly than in the same simulations
with the real-word lexicon.
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The results show that exterior letters are better primes than interior letters
for the words from which they are drawn, even when the words are random
strings of letters. These results support our interpretation of the same effect
for the real-word lexicon that the effect was due to the nature of the processor
and the task, as opposed to being solely due to the orthotactic structure
contained in the real words or the unequal disruption of the immediate
contexts of exterior and interior letters. The simulations show that the ELE
in whole-word priming is a sufficiently strong effect not to be disrupted by
the presence of realistic orthotactic structure in the training data.

3.3 Simulations with Random Feature Patterns as “Words”. In the two
sets of simulations, we have used real English words and artificial words
composed of randomly scrambled letters, respectively. In both cases, there
is a letter level of representation between the lexical and featural levels in
the input lexicon, and the hidden units may be encoding generalizations at
this letter level. The real-word input allowed intermediate generalizations
about letters; for instance, 23 letters occurred in the training set, the letter
y may occur only in particular locations, the sequence rd may occur word-
finally but not word-initially, and the sequence aa is not permitted. The
random-letters lexicon contained a letter level of representation although
no orthotactic structure, and generalizations were possible concerning the
within-letter contexts in which particular features could occur. We carried
out a final set of simulations with an input lexicon with no such letter level.
We created a lexicon of 60 random distributions of features, which may be
thought of as single-character pictograms: each word is unique, and it does
not share any predictable structure with any other words above the level of
individual features. Thus, in Figure 1, the 4 × 8 feature map representing
word was effectively scrambled, although each “letter” so produced was
composed on average of the same number of features used in the real-word
lexicon, and each “letter” consisted of at least one activated feature. This
randomized input allowed generalizations only at the feature level (i.e.,
whether a particular node is activated) and at the “word,” or pictogram,
level (the whole 4× 8 pattern). This final input lexicon therefore represents
a more difficult mapping problem than the two previous lexica. We tested
the hypothesis that the ELE would emerge robustly for this input with
random patterns as words.

Simulations with the two models were carried out as in the two previous
sets of simulations. The models learned to the same criterion as for the
lexical input after approximately 150 epochs of training. The results for the
central presentation are presented in Tables 7, 8, and 9, showing a yet clearer
manifestation of the behavior seen in the two sets of simulations above.
There is a strong interaction of model type and presentation condition and
an ELE in the nonsplit model. Compared with the corresponding results for
the real-word lexicon and the random-letters lexicon, the pattern of results
in Table 9 shows increased uniformity in the model×presentation condition
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Table 7: MSE for Presentation of the Exterior Letters to the Split and Nonsplit
Models Trained on the 60 “Pictogram” Words.

Model Mean Squared Error in Letter Position

1 2 3 4 5 6 7 8

Split 1.13 - - 1.44
Nonsplit 1.13 - - 1.52
Split .90 - - .56
Nonsplit 1.29 - - 1.52
Split .85 - - .98
Nonsplit 1.36 - - 1.43
Split .48 - - 1.01
Nonsplit 1.44 - - 1.42
Split 1.40 - - 1.20
Nonspit 1.23 - - 1.11

Table 8: MSE for Presentation of the Interior Letters to the Split and Nonsplit
Models Trained on the 60 “Pictogram” Words.

Model Mean Squared Error in Letter Position

1 2 3 4 5 6 7 8

Split - 1.67 1.95 -
Nonsplit - 1.69 1.81 -
Split - 1.96 2.17 -
Nonsplit - 1.93 1.94 -
Split - 2.24 2.11 -
Nonsplit - 2.19 2.18 -
Split - 2.02 2.02 -
Nonsplit - 2.04 2.01 -
Split - 1.83 1.66 -
Nonspit - 1.84 1.71 -

interaction and in the t-tests in the rest of the table. Values of F and of t are
typically larger than in the previous analyses.

In summary, the ELE emerged in both models presented with the pic-
togram input lexicon, but with a significant interaction between model type
and presentation condition, confirming our claim that two sources are re-
sponsible for the effect.

4 Discussion and Conclusions

We began with the phenomenon, demonstrated from a range of experimen-
tal paradigms, that the representation of the exterior letters of words seems
to be prioritized in reading—the ELE. We described the precise vertical split-
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Table 9: Results of the Analyses of Variance and t-Tests for the Split and Nonsplit
Networks Presented with the 60 “Pictogram” Input Lexicon.

Input Interaction t-Test for t-Test for Split t-Test for t-Test for
Nodes Between Exterior Model, Interior Nonsplit

Model and Letters, Comparing Letters, Model,
Presentation Comparing Exterior Comparing Comparing
Condition Split and and Interior Split and Exterior

Nonsplit Letters Nonsplit and Interior
Models Models Letters

1234 ∗∗,∗∗∗ n.s. ∗∗∗ n.s. ∗∗∗
2345 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ n.s. ∗∗∗
3456 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ n.s. ∗∗∗
4567 ∗∗∗,∗∗∗ ∗∗∗ ∗∗∗ n.s. ∗∗∗

5678 ∗∗∗,∗∗∗ p = .053† ∗∗∗ n.s. ∗∗∗

Notes: ∗p < .05. ∗∗p < .01. ∗∗∗p < .001.
The p value marked with † refers to an effect that is in the unpredicted direction:
the exterior letters accrue higher MSE in the split than in the nonsplit model.

ting of the human fovea, an underrecognized fact within the field of visual
word recognition, and we hypothesized that part of the explanation for the
ELE might lie in the divided nature of the processor. Our simulations used
a shift-invariant identity mapping in a split and a nonsplit model. In this
approach, letter location is not physically encoded within the initial archi-
tecture (there is complete connectivity between input and hidden layers)
but is expressed in terms of co-occurring information. In the split model,
the most important coding of location concerned the half of the model in
which particular pieces of information occur. Our simulations have shown
two distinct contributions toward the ELE: one arising within the nonsplit
model and one reflecting the vertical division in the split model. Below, we
explore related explanations of these two contributions and assess some of
the psychological implications.

First, we consider the ELE as it appears in the split model. The data in
Tables 1, 4, and 7 suggest a resource-based explanation for the ELE in the
split model. Each table shows the MSE for both of the exterior letters for
each presentation position of the word. Error is smallest for the left-most
letter position when it appears at input node 4 and for the right-most letter
position when it appears at input node 5 (in Table 1, the MSE is 0.20 and
0.19, respectively). In these presentations, a single, exterior letter is stranded
alone in one half of the model, allowing that letter access to all of the pro-
cessing resources of that half of the model. In contrast, the remaining three
letters must share the resources of the other half of the model. Consider
the left-most letter in the word as it appears in input positions 1, 2, 3, and
4. The MSE progressively falls (from 0.68 to 0.20 in Table 1, for instance).
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This fall reflects the fact that the letter is being processed in the same half
of the model and, for each presentation, has a progressively larger share
of the processing resources. The MSE increases sharply when the midpoint
is crossed (it is 0.97 for input position 5 in Table 1), reflecting the fact that
the letter is now being processed in a different half of the model, using
resources that must also represent the rest of the word. The three sets of
simulations all demonstrate this precise pattern, for both ends of the pre-
sented word in the split model. In contrast to the exterior letters, the interior
letters are divided more evenly between the two halves of the split model,
and the resulting MSE data reflect the fact that the responsibility of each
half of the model for each interior letter is not so skewed as it is for the
exterior letters. We will refer to this explanation as the hemispheric divi-
sion of labor account. Further evidence for this resource-based account is
found in the way that the split model learns words in the five different
presentation positions shown in Figure 2. For 10 different versions of the
split model, we plotted the fall in total MSE for all of the words for each
of the presentation positions every 10 epochs of training. We carried out
this procedure for the three different lexica. For each lexicon, the central
presentation position (input nodes 3, 4, 5, and 6) typically began to show
a smaller MSE than the other positions very early in training and main-
tained this advantage throughout. The MSE for the two single-hemifield
presentations typically fell the slowest of all, with the remaining two posi-
tions usually accruing intermediate levels of MSE. This collaboration of the
two halves of the model resembles a simple example of superadditivity—
a feature of human performance on a range of tasks using the two visual
hemifields, in which the combined activity of the two hemispheres is ap-
parently greater than the “sum of their parts” (see, e.g., Banich & Belger,
1990).

The second contribution toward the ELE appears to come from the shift-
invariant identity mapping itself, given that the nonsplit model produces
the ELE in its own right. There is complete connectivity between the input
and hidden layers, meaning that exterior letters are defined only by appear-
ances of the stimuli in other locations in the input field. As Table 5 illus-
trates, the MSE associated with interior letter positions is typically greater
for more central input locations; the shift-invariant mapping requires these
nodes to support a greater variety of representations, thereby increasing
the problems of superpositional storage for these positions. We will refer
to this explanation as the superpositional storage account. Support for this
account comes from recording the fall in MSE in the nonsplit model for
the five presentation positions and for the three lexica, as described above.
From very early in training, the central presentation position typically pro-
duced the highest MSE of all five positions. The U-shaped curve for MSE
across the five positions that was observed for the split model, as described
above, was inverted for the nonsplit model; in the nonsplit model, the single
hemifield presentation positions typically generated the smallest levels of
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MSE throughout training. The mechanisms behind the hemispheric divi-
sion of labor account and the superpositional storage account may operate
additively in the split model.

One of the potential explanations of the ELE we considered involved the
split model’s disproportionately disrupting the immediate contexts of inte-
rior letters more than those of exterior letters. This potential account of the
ELE in the simulation with real English words received no support from the
subsequent simulations with the random-letters lexicon and the pictogram
lexicon. In these two sets of simulations, there is less and less potential to de-
fine the constituents of words in terms of their contexts, compared with the
real English words, yet the ELE becomes progressively stronger across the
three sets of simulations. We therefore reject this potential account based
on disrupted contexts; the hemispheric division of labor account and the
superpositional storage account remain the principal explanations of the
observed behaviors in the three sets of simulations we have reported.

The increase in the size of the ELE from the English words, to the random-
letter words, to the pictograms is a marked feature of the data we have
presented. This change reflects the increasing difficulty of the task as less
and less intermediate structure (i.e. orthotactic constraints and a letter-level
of representation) is available to the model. This increased task difficulty
was reflected in the number of epochs required by the models to train to
criterion for each input lexicon. The longer and more difficult the learning
task, the greater is the opportunity for the two sources of the ELE to take
effect. The stronger ELE may be seen in increasing significance levels across
F and t in Tables 3, 6, and 9 and in the appearance of significant effects in
some of the single-hemifield presentations to the split model. The learning
phase is essential to the network’s performance, and so we would predict
that presenting novel stimuli to the network would not show the ELE so
clearly. The reverse effect to the ELE is observed in human data with the
presentation of letter-like nonsense characters (Hammond & Green, 1982;
Mason, 1982; Mason & Katz, 1976), and whether this would emerge from
our model is a topic for future research.

We turn now to the psychological implications of the modeling results.
The models and the task that we have presented are simple and small; only
the vertical splitting of one of the models is directly psychologically realistic.
What conclusions can be drawn for psychological models of visual lexical
processing? The hemispheric division of labor account of the ELE has a di-
rect psychological interpretation, as follows. Any word can be fixated at any
point along its length, causing it to be cleanly split in its projection to the two
hemispheres. Processing that is directly relevant to word recognition occurs
intrahemispherically before the two domains of information are completely
merged. Over a history of a variety of fixation points for any one word,
the right hemisphere develops an increasingly exclusive relationship with
the information that is closer to the left end of the word, and the left hemi-
sphere behaves similarly with respect to the information closer to the right
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end of the word. This pattern of processing produces the ELE. This account
of the ELE has been derived here solely from computational modeling. In
retrospect, it might equally well have been produced from a consideration
of the facts of foveal splitting and fixation data during reading, in which
case the modeling above would be a computational implementation of the
argument.

It is less easy to claim that the superpositional storage account has a com-
parable psychological reality. In this account, we claimed that the weighted
connections between the middle region of the input and the hidden layer (in
the nonsplit model) came under pressure to represent a greater variety of
letters, and so better, less errorful representations emerged toward the edges
of the input field, where the exterior letters tend to fall. The two accounts—
superpositional storage and hemispheric division of labor—are both cashed
out in the same terms in the simple connectionist models we have employed:
a better mapping is possible if a greater number of weighted connections is
exclusively available to mediate it. In the superpositional storage account,
the exclusivity arises from the relatively smaller density of mappings re-
quired from the outer regions of the input field. In the hemispheric division
of labor account, the exclusivity arises from different parts of the input
falling in different halves of the processor. The hemispheric division of la-
bor account may be plausibly applied to real single-word reading; the earlier
stages of single-word reading are demonstrably divided between the two
hemispheres. The superpositional storage account requires more specific,
and less plausible, assumptions about word recognition in the brain; it re-
quires us to believe that the representational substrate for word recognition
is coded in terms of absolute location, with specific letter positions pos-
sessing dedicated resources. In contrast, the hemispheric division of labor
account need only specify location in terms of being in one or other hemi-
sphere. We therefore claim that of the two sources we have identified for
the ELE in our simulations, the hemispheric division of labor account has
more psychological reality. Our goal has been to model the psychological
data, and we therefore conclude that these data are in part explained by
foveal splitting and the initial projection of the two parts of a word to dif-
ferent hemispheres. We have directly modeled the ELE in the whole-word
priming experiments reported by McCusker et al. (1981); our simulations
with different lexica suggest that the effect, stemming from the split na-
ture of the architecture and the nature of the task, is sufficiently strong
not to be eclipsed by the orthotactic structure present in the real-world
materials.

Our model is a very abstract characterization of word recognition, in-
tended only to represent the psychological reality of foveal splitting. Its
input consisted of only four-letter words, reflecting the fact that the rele-
vant human experimentation predominantly uses words of this length. It is
likely that each hemisphere has available (from subcortical routes) relatively
crude, low-spatial-frequency visual information from the ipsilateral hemi-
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field, thereby providing information about word length (see Sergent, 1987;
Corballis & Sergent, 1988). Restricting the model to words of one length
therefore has some psychological justification.

Jordan (1990) lists some of the letter groups that have been proposed
as processing units in the reading of isolated words: digrams, trigrams,
prefixes, suffixes, morphemes, phonological units, and basic orthographic
syllabic structures. He proposes exterior letters as just such a perceptual
unit. We have developed Jordan’s proposal in the context of a psycho-
logically more realistic architecture: the splitting of the visual projection
is fundamental to the psychological architecture underlying word recog-
nition. The putative perceptual units listed by Jordan are generated on
the strength of emergent formal and statistical structure. Prefixes, for ex-
ample, are morphological units and also occur sufficiently frequently to
have perhaps assumed the status of single entities. The perceptual units
we have described are qualitatively different from the other units listed,
in that they have their origin in the anatomical structure of the proces-
sor. In the modifications that Smith, Jordan, and Sharma (1991) make to
the IAM, the length of the word is independently represented, thereby en-
coding the status of the exterior letters as a qualitatively different type of
information. In our own model, the length of the word is not separately
represented.

The strongest claim we can make is that the ELE found in reading is
solely due to foveal splitting, as we have modeled the phenomenon. A
more realistic conclusion may be that a variety of factors conspire to make
the prioritizing of the exterior letters of words an adequate and natural
strategy for accomplishing word recognition. We consider them in turn.

First, there may be a (small) contribution to the ELE from psychophysical
factors. It may also be that lateral inhibition between adjacent letters exists at
the abstract, cognitive levels of lexical processing, favoring outside letters.

Second, exterior letters possess a unique informational status, which we
have explored elsewhere (Shillcock et al., in press): given a fixation in the
middle of a word or just left of the middle, letter location information need
only specify which hemifield a letter appears in to define uniquely most
words in the English lexicon. If the left hemifield contains a, c, and r and the
right hemifield contains e, p, and t, then the word must be carpet. This hemi-
field information about letter location is less adequate for shorter words,5

and it is the identity of the exterior letters that resolves all of the ambigu-
ities in the three- and four-letter words and virtually all of the remaining
ambiguity in the five-letter and longer words. In summary, if letter identi-
ties are known, then letter location information can be surprisingly crude,
but with exterior letters playing a unique informational role. (Both of these

5 Although note that less than 5% of four-letter words are ambiguous, like time and
item, which share the same letters in the right and left hemifield following a central split.
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factors are the direct result of foveal splitting, which automatically assigns
the two parts of the fixated word to different hemispheres and instantiates
a “two-slot” processor.)

The third factor, which chiefly concerns monosyllabic words, is that the
exterior letters usually represent the onset and coda, and therefore tend to
be more informative than the interior letters, better restricting the identity
of the word involved. This third factor is relatively fortuitous.

Thus, although our hemispheric division of labor account may be cen-
tral to the explanation of the ELE, different factors converge to make ex-
terior letters important and to encourage the processor to prioritize them.
Indeed, within these constraints, the range of possible solutions to the prob-
lem of visual word recognition is much more limited than would first ap-
pear. At a more general level we have shown, along with Reggia, Goodall,
and Shkuro (1998), for instance, that small-scale neural network models of
hemispheric coordination can produce behavior that illuminates processing
problems that are solved with the full resources of the brain. The analysis
of such models can provide a richer conceptual vocabulary for exploring
hemispheric interaction than has emerged from classical models of cogni-
tion.

Appendix: Training Set Words

also away back both
call come down each
even fact feel find
from give good hand
have here into just
keep know last late
life like look make
many mean more much
must only over part
same seem some such
take tell than that
them then they this
time turn very want
well what when will
with work year your
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