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Abstract— We present the Computer Expression Recognition
Toolbox (CERT), a software tool for fully automatic real-time
facial expression recognition, and officially release it for free
academic use. CERT can automatically code the intensity of
19 different facial actions from the Facial Action Unit Coding
System (FACS) and 6 different protoypical facial expressions.
It also estimates the locations of 10 facial features as well
as the 3-D orientation (yaw, pitch, roll) of the head. On a
database of posed facial expressions, Extended Cohn-Kanade
(CK+ [1]), CERT achieves an average recognition performance
(probability of correctness on a two-alternative forced choice
(2AFC) task between one positive and one negative example) of
90.1% when analyzing facial actions. On a spontaneous facial
expression dataset, CERT achieves an accuracy of nearly 80%.
In a standard dual core laptop, CERT can process 320 × 240

video images in real time at approximately 10 frames per
second.

I. INTRODUCTION

Facial expressions provide a wealth of information about

a person’s emotions, intentions, and other internal states

[2]. The ability to recognize a person’s facial expressions

automatically and in real-time could give rise to a wide range

of applications that we are only beginning to imagine.

The last decade has seen substantial progress in the field

of automatic facial expression recognition systems (e.g., [3],

[4], [1], [5], [6]). Such systems can operate reasonably

accurately on novel subjects, exhibiting both spontaneous

and posed facial expressions. This progress has been mainly

enabled by the adoption of modern machine learning meth-

ods, and by the gathering of high-quality databases of facial

expression necessary for using these methods (e.g., Cohn-

Kanade [7], Extended Cohn-Kanade [8], MMI [9]). Systems

for automatic expression recognition can interpret facial

expression at the level of basic emotions [10] (happiness,

sadness, anger, disgust, surprise, or fear), or they can analyze

them at the level of individual muscle movements (facial

“action units”) of the face, in the manner of the Facial Action

Coding System (FACS) [10].

To date, no fully automatic real-time system that rec-

ognizes FACS Action Units with state-of-the-art accuracy

has been publicly available. In this paper, we present one

such tool – the Computer Expression Recognition Toolbox

(CERT). CERT is a fully automatic, real-time software tool

that estimates facial expression both in terms of 19 FACS

Action Units, as well as the 6 universal emotions. While the

technology continues to advance, at this time CERT provides

sufficiently accurate estimates of facial expression to enable

real-world applications such as driver fatigue detection [11]

and emotional reactivity such as pain reactions [12].

The objective of this paper is to announce the release

of CERT to the research community, to provide a descrip-

tion of the technical components of CERT, and to provide

benchmark performance data as a resource to accompany

the Toolbox. The development of the various components

of CERT has been published in previous papers. Here we

provide a coherent description of CERT in a single paper

with updated benchmarks.

Outline: We briefly describe the Facial Action Coding

System in Section I-A, which defines the Action Units that

CERT endeavors to recognize. We then present the software

features offered by CERT in Section II and describe the

system architecture. In Section IV-A we evaluate CERT’s

accuracy on several expression recognition datasets. In Sec-

tion V we describe higher-level applications based on CERT

that have recently emerged.

A. Facial Action Coding System (FACS)

In order to objectively capture the richness and complexity

of facial expressions, behavioral scientists found it necessary

to develop objective coding standards. The Facial Action

Coding System (FACS) [10] is one of the most widely used

expression coding system in the behavioral sciences. FACS

was developed by Ekman and Friesen as a comprehensive

method to objectively code facial expressions. Trained FACS

coders decompose facial expressions in terms of the appar-

ent intensity of 46 component movements, which roughly

correspond to individual facial muscles. These elementary

movements are called action units (AUs) and can be regarded

as the “phonemes” of facial expressions. Figure 1 illustrates

the FACS coding of a facial expression. The numbers identify

the action unit, and the letters identify the level of activation.

FACS provides an objective and comprehensive language for

describing facial expressions and relating them back to what

is known about their meaning from the behavioral science

literature. Because it is comprehensive, FACS also allows

for the discovery of new patterns related to emotional or

situational states.



II. COMPUTER EXPRESSION RECOGNITION

TOOLBOX (CERT)

The Computer Expression Recognition Toolbox (CERT) is

a software tool for real-time fully automated coding of facial

expression. It can process live video using a standard Web

camera, video files, and individual images. CERT provides

estimates of facial action unit intensities for 19 AUs, as

well as probability estimates for the 6 prototypical emotions

(happiness, sadness, surprise, anger, disgust, and fear). It also

estimates the intensity of posed smiles, the 3-D head orienta-

tion (yaw, pitch, and roll), and the (x, y) locations of 10 facial

feature points. All CERT outputs can be displayed within

the GUI (see Figure 1) and can be written to a file (updated

in real-time so as to enable secondary processing). For real

time interactive applications CERT provides a sockets-based

interface.

CERT’s processing pipeline, from video to expression

intensity estimates, is given in Figure 2. In the subsections

below we describe each stage.

A. Face Detection

The CERT face detector was trained using an extension of

the Viola-Jones approach [13], [14]. It employs GentleBoost

[15] as the boosting algorithm and WaldBoost [16] for

automatic cascade threshold selection. On the CMU+MIT

dataset, CERT’s face detector achieves a hit rate of 80.6%
with 58 false alarms. At run-time, the face detector is applied

to each video frame, and only the largest found face is

segmented for further processing. The output of the face

detector is shown in blue in Figure 1.

B. Facial Feature Detection

After the initial face segmentation, a set of 10 facial fea-

tures, consisting of inner and outer eye corners, eye centers,

tip of the nose, inner and outer mouth corners, and center of

the mouth, are detected within the face region using feature-

specific detectors (see [17]). Each facial feature detector,

trained using GentleBoost, outputs the log-likelihood ratio of

that feature being present at a location (x, y) within the face,

to being not present at that location. This likelihood term is

combined with a feature-specific prior over (x, y) locations

within the face to estimate the posterior probability of each

feature being present at (x, y) given the image pixels.

Given the initial constellation of the (x, y) locations of the

10 facial features, the location estimates are refined using

linear regression. The regressor was trained on the GENKI

dataset [18], which was labeled by human coders for the

positions of all facial features. The outputs of the facial

feature detectors are shown in small red boxes (except the

eye centers, which are blue) within the face in Figure 1.

C. Face Registration

Given the set of 10 facial feature positions, the face patch

is re-estimated at a canonical size of 96x96 pixels using an

affine warp. The warp parameters are computed to minimize

the L2 norm between the warped facial feature positions of

the input face and a set of canonical feature point positions

computed over the GENKI datset. The pixels of this face

patch are then extracted into a 2-D array and are used for

further processing. In Figure 1 the re-estimated face box is

shown in green.

D. Feature Extraction

The cropped 96x96-pixel face patch is then convolved

(using a Fast Fourier Transform) with a filter bank of 72

complex-valued Gabor filters of 8 orientations and 9 spatial

frequencies (2:32 pixels per cycle at 1/2 octave steps). The

magnitudes of the complex filter outputs are concatenated

into a single feature vector.

E. Action Unit Recognition

The feature vector computed in the previous stage is input

to a separate linear support vector machine (SVM) for each

AU. The SVM outputs can be interpreted as estimates of the

AU intensities (see Section II-F).

The action unit SVMs were trained from a compilation

of several databases: Cohn-Kanade [7], Ekman-Hager [19],

M3 [20], Man-Machine Interaction (MMI) [9], and two non-

public datasets collected by the United States government

which are similar in nature to M3. Cohn-Kanade and Ekman-

Hager are databases of posed facial expression, whereas the

M3 and the two government datasets contained spontaneous

expressions. From the MMI dataset, only posed expressions

were used for training. For AUs 1, 2, 4, 5, 9, 10, 12, 14, 15,

17, and 20, all of the databases listed above were used for

training. For AUs 6, 7, 18, 23, 24, 25, and 26, only Cohn-

Kanade, Ekman-Hager, and M3 were used. The number

of positive training examples for each AU is given by the

column “Np train” in Table I.

F. Expression Intensity and Dynamics

For each AU, CERT outputs a continuous value for each

frame of video, consisting of the distance of the input

feature vector to the SVM’s separating hyperplane for that

action unit. Empirically it was found that CERT outputs

are significantly correlated with the intensities of the facial

actions, as measured by FACS expert intensity codes [5].

Thus the frame-by-frame intensities provide information on

the dynamics of facial expression at temporal resolutions

that were previously impractical via manual coding. There is

also preliminary evidence of concurrent validity with EMG.
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Fig. 1. (a) Example of comprehensive Facial Action Coding System (FACS) coding of a facial expression. The numbers identify the action unit, which
approximately corresponds to one facial muscle; the letter identifies the level of activation. (b) Screenshot of CERT.
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Fig. 2. Processing pipeline of the Computer Expression Recognition Toolbox (CERT) from video to expression intensity estimates.

CERT outputs significantly correlated with EMG measures

of zygomatic and corrugator activity despite the visibility of

the electrodes in the video [21].

III. EXTENSION MODULES

The CERT architecture allows for extension modules that

can intercept the processing pipeline at several possible

points, including just after the face registration stage, and

after all AUs have been recognized (the endpoint). This

allows for the implementation of three particular modules

that are part of CERT – a detector of posed smiles, a 3-D

head pose estimator, and a basic emotion recognizer. These

are described below. Other secondary processing applications

of CERT’s AU outputs will be discussed in Section V.



A. Smile Detection

Since smiles play such an important role in social inter-

action, CERT provides multiple ways of encoding them. In

addition to AU 12 (lip corner puller, present in all smiles),

CERT is also equipped with a smile detector that was

trained on a subset of 20,000 images from the GENKI

dataset [18]. These were images of faces obtained from

the Web representing a wide variety of imaging conditions

and geographical locations. The smile detector utilizes the

same processing pipeline as the AU detectors up through

the face registration stage. Instead of using Gabor filters

(as for action unit recognition), the smile detector extracts

Haar-like box filter features, and then uses GentleBoost to

classify the resulting feature vector into {Smile, NonSmile}.

Smile detection accuracy (2AFC) on a subset of GENKI not

used for training was 97.9%. In addition, the smile detector

outputs were found to be significantly correlated with human

judgments of smile intensity (Pearson r = 0.894) [22]. Com-

parisons of Haar+GentleBoost versus Gabor+SVMs showed

that the former approach is faster and yields slightly higher

accuracy for the smile detection problem [22].

B. Pose Estimation

CERT also outputs estimates of the 3-D head orientation.

After the face-registration stage, the patch of face pixels are

passed through an array of pose range classifiers that are

trained to distinguish between different ranges of yaw, pitch,

and roll (see [23]). Two types of such classifiers are used: 1-

versus-1 classifiers that distinguish between two disjoint pose

ranges (e.g., [6, 18)◦, [18, 30)◦); and 1-versus-all classifiers

that distinguish between one pose range and all other pose

ranges. The pose range discriminators were trained using

GentleBoost on Haar-like box features and output the log

probability ratio of the face belonging to one pose range class

compared to another. These detectors’ outputs are combined

with the (x, y) coordinates of all 10 facial feature detectors

(Section II-D) and then passed through a linear regressor to

estimate the real-valued angle of each of the yaw, pitch, and

roll parameters.

Accuracy of the pose detectors was measured on the

GENKI 4K dataset (not used for training) [24]; see Figure 3

for Root Mean Square Error (RMSE) of pose estimation as

a function of human-labeled pose.

C. Basic Emotion Recognition

Since CERT exports a real-time stream of estimated AU

intensities, these values can then be utilized by second-layer

recognition systems in a variety of application domains. One

such application is the recognition of basic emotions. CERT

implements a set of 6 basic emotion detectors, plus neutral

expression, by feeding the final AU estimates into a mul-

tivariate logistic regression (MLR) classifier. The classifier

was trained on the AU intensities, as estimated by CERT, on

the Cohn-Kanade dataset and its corresponding ground-truth

emotion labels. MLR outputs the posterior probability of

each emotion given the AU intensities as inputs. Performance

of the basic emotion detectors is discussed in Section IV-A.

IV. EXPERIMENTAL EVALUATION

We evaluated CERT’s AU recognition performance on two

high-quality databases of facial expression: the Extended

Cohn-Kanade Dataset, containing posed facial expressions,

and the M3 Dataset, containing spontaneous facial expres-

sions. We measure accuracy as the probability of correct-

ness in discriminating between a randomly drawn positive

example (in which a particular AU is present) and a random

negative example (in which the AU is not present) based

on the real-valued classifier output. We call this accuracy

statistic the 2AFC Score (two alternative forced choice).

Under mild conditions it is mathematically equivalent to

the area under the Receiver Operating Characteristics curve,

which is sometimes called the the A′ statistic (e.g., [8]). An

estimate of the standard error associated with estimating the

2AFC value can be computed as

ŝe =

√
p(1 − p)

min{Np, Nn}

where p is the 2AFC value and Np and Nn are the number

of positive and negative examples, respectively, for each

particular AU [22].

A. Extended Cohn-Kanade Dataset (CK+)

We evaluated CERT on the Extended Cohn-Kanade

Dataset (CK+) [8]. Since CK+ is a superset of the original

Cohn-Kanade Dataset (CK) [7], and since CERT was trained

partially on CK, we restricted our performance evaluation to

only those subjects of CK+ not included in CK. These were

subject numbers: 5, 28, 29, 90, 126, 128, 129, 139, 147, 148,

149, 151, 154, 155, 156, 157, 158, 160, 501, 502, 503, 504,

505, 506, 895, and 999.

Our evaluation procedure was as follows: For each video

session of each of the 26 subjects listed above, we used

CERT to estimate the AU intensity for the first frame

(containing a neutral expression) and the last frame (con-

taining the expression at peak intensity). The first frames

constituted negative examples for all AUs, while the last

frame constituted positive examples for those AUs labeled

in CK+ as present and negative examples for all other AUs.

From the real-valued AU intensity estimates output by CERT,

we then calculated for each AU the 2AFC statistic and
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Fig. 3. Smoothed root-mean-square errors (RMSE), as a function of human-labeled pose, for both the automatic pose tracker and the individual human
labelers. RMSE for the automatic pose tracker was estimated over GENKI-4K using the average human labeler’s pose as ground-truth. RMSE for humans
was measured on a different subset of GENKI comprising 671 images on which at least 4 different humans had labeled pose.

Performance on CK+

AU Np train Np test 2AFC(%)± ŝe

1 2186 14 97.5± 4.1
2 1848 9 87.1± 11.2
4 1032 23 97.4± 3.3
5 436 14 87.0± 9.0
6 278 6 80.2± 16.3
7 403 9 89.1± 10.4
9 116 5 100.0± 0.0

10 541 2 86.8± 23.9
12 1794 8 92.4± 9.4
14 909 22 91.0± 6.1
15 505 14 91.0± 7.6
17 1370 31 89.0± 5.6
18 121 1 93.0± 25.4
20 275 6 91.1± 11.6
23 57 9 81.3± 13.0
24 49 3 96.8± 10.2
25 376 11 90.7± 8.7
26 86 7 69.5± 17.4

Avg 90.1

TABLE I

CERT’S AU RECOGNITION ACCURACY ON THE 26 SUBJECTS OF THE

EXTENDED COHN-KANADE DATASET (CK+) NOT INCLUDED IN THE

ORIGINAL COHN-KANADE DATASET (CK).

standard error. An average 2AFC over all AUs, weighted

by the number of positive examples for each AU, was also

calculated. Results are shown in Table I.

We also assessed the accuracy of CERT’s prototypical

emotion recognition module (Section III-C) on the same

26 subjects in CK+ not in CK. We measured accuracy

in two different ways: (a) using the 2AFC statistic when

Emotion Classification Confusion Matrix

An Di Fe Ha Sa Su Ne

An 36.4 9.1 0.0 0.0 0.0 0.0 54.5
Di 0.0 100.0 0.0 0.0 0.0 0.0 0.0
Fe 0.0 0.0 60.0 0.0 0.0 40.0 0.0
Ha 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Sa 0.0 0.0 0.0 0.0 60.0 0.0 40.0
Su 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Ne 0.0 0.0 0.0 0.0 0.0 0.0 100.0

TABLE II

SEVEN-ALTERNATIVE FORCED CHOICE EMOTION CLASSIFICATION OF

THE 26 SUBJECTS OF THE CK+ DATASET NOT IN CK.

discriminating images of each emotion i from images of all

other emotions {1, . . . , 7}\{i}, and (b) as the percent-correct

classification of each image on a seven-alternative forced

choice (among all 7 emotions). The test set consisted of 86

frames – all the first (neutral) and last (apex) frames from

each of the 26 subjects whose emotion was one of happiness,

sadness, anger, fear, surprise, disgust, or neutral. For (a),

the individual 2AFC scores were 93.5, 100.0, 100.0, 100.0,

100.0, 100.0, and 97.94 for the emotions as listed above;

the average 2AFC was 98.8%. For (b), a confusion table is

given in Table II. The row labels are ground-truth, and the

column labels are the automated classification results. The

seven-alternative forced choice performance was 87.21%.

B. M3 Dataset

The M3 [20] is a database of spontaneous facial behav-

ior that was FACS coded by certified FACS experts. The

dataset consists of 100 subjects participating in a “false

opinion” paradigm. In this paradigm, subjects first fill out



a questionnaire regarding their opinions about a social or

political issue. Subjects are then asked to either tell the truth

or take the opposite opinion on an issue on which they

rated strong feelings, and convince an interviewer they are

telling the truth. This paradigm has been shown to elicit

a wide range of emotional expressions as well as speech-

related facial expressions [25]. The dataset was collected

from four synchronized Dragonfly video cameras from Point

Grey. M3 can be considered a particularly challenging dataset

due to the typically lower intensity of spontaneous compared

to posed expressions, the presence of speech-related mouth

movements, and the out-of-plane head rotations that tend to

be present during discourse.

In earlier work [5], we trained a FACS recognition sys-

tem on databases of posed expressions and measured its

accuracy on the frontal video stream of M3. In contrast,

here we present results based on training data with both

posed and spontaneous facial expressions. The evaluation

procedure was as follows: M3 subjects were divided into

three disjoint validation folds. When testing on each fold i,

the corresponding subjects from fold i were removed from

the CERT training set described in Section II-E. The re-

trained CERT was then evaluated on each video frame on all

subjects of fold i. 2AFC statistics and corresponding standard

errors for each AU, along with the total number of positive

examples (defined as the number of onset-apex-offset action

unit events in video) of each AU occurring in the entire M3

dataset (over all folds), are shown in Table III. The average

over all AUs, weighted by the number of positive examples

for each AU (as in [8]), was also calculated.

V. APPLICATIONS

The adoption of and continued improvement to real-time

expression recognition systems such as CERT will make

possible a broad range of applications whose scope we are

only beginning to imagine. As described in Section II-F

CERT’s real-time outputs enable the study of facial expres-

sion dynamics. Below we describe two example projects

utilizing CERT as the back-end system for two different

application domains.

A. Automated Detection of Driver Fatigue

It is estimated that driver drowsiness causes more fatal

crashes in the United States than drunk driving [26]. Hence

an automated system that could detect drowsiness and alert

the driver or truck dispatcher could potentially save many

lives. Previous approaches to drowsiness detection by com-

puter make assumptions about the relevant behavior, focusing

on blink rate, eye closure, yawning, and head nods [27].

While there is considerable empirical evidence that blink

Performance on M3

AU Np test 2AFC(%)± ŝe

1 169 82.3± 0.8
2 153 81.2± 2.8
4 32 75.6± 3.9
5 36 82.8± 2.8
6 50 95.5± 1.4
7 46 77.3± 3.3
9 2 86.5± 6.1

10 38 73.1± 3.6
12 3 90.1± 1.8
14 119 74.4± 0.5
15 87 83.1± 4.1
17 77 84.0± 2.4
18 121 78.0± 4.9
20 12 64.5± 5.0
23 24 74.0± 5.2
24 68 83.0± 2.0
25 200 76.8± 5.3
26 144 80.1± 6.9

Avg 79.9

TABLE III

CERT’S AU RECOGNITION ACCURACY ON THE M3 DATASET OF

SPONTANEOUS FACIAL EXPRESSIONS, USING 3-FOLD

CROSS-VALIDATION (SEE SECTION IV-B). Np REFERS TO NUMBER OF

AU EVENTS IN THE VIDEO, NOT NUMBER OF VIDEO FRAMES.

rate can predict falling asleep, it was unknown whether there

were other facial behaviors that could predict sleep episodes.

Vural, et. al [11] employ a machine learning architecture to

recognizing drowsiness in real human behavior.

In this study, four subjects participated in a driving sim-

ulation task over a 3 hour period between midnight and

3AM. Videos of the subjects faces, accelerometer readings of

the head, and crash events were recorded in synchrony. The

subjects’ data were partitioned into drowsy and alert states as

follows: The one minute preceding a crash was labeled as a

drowsy state. A set of “alert” video segments was identified

from the first 20 minutes of the task in which there were no

crashes by any subject. This resulted in a mean of 14 alert

segments and 24 crash segments per subject. The subjects’

videos were analyzed frame-by-frame for AU intensity using

CERT.

In order to understand how each action unit is associated

with drowsiness across different subjects, a Multinomial

Logistic Ridge Regressor (MLR) was trained on each facial

action individually. The five most predictive facial actions

whose intensities increased in drowsy states were blink, outer

brow raise, frown, chin raise, and nose wrinkle. The five

most predictive actions that decreased in intensity in drowsy

states were smile, lid tighten, nostril compress, brow lower,



 
a      b 

Fig. 4. Changes in movement coupling with drowsiniess. a,b: Eye Openness
(red) and Eye Brow Raise (AU2) (Blue) for 10 seconds in an alert state (a)
and 10 seconds prior to a crash (b), for one subject.

and jaw drop. The high predictive ability of the blink/eye

closure measure was expected. However the predictability

of the outer brow raise was previously unknown. It was

observed during this study that many subjects raised their

eyebrows in an attempt to keep their eyes open. Also of

note is that AU 26, jaw drop, which occurs during yawning,

actually occurred less often in the critical 60 seconds prior

to a crash.

A fatigue detector that combines multiple AUs was then

developed. An MLR classifier was trained using contin-

gent feature selection, starting with the most discriminative

feature (blink), and then iteratively adding the next most

discriminative feature given the features already selected.

MLR outputs were then temporally integrated over a 12

second window. Best performance of 98% (2AFC) was

obtained with five features.

Changes were also observed in the coupling of behaviours

with drowsiness. For some of the subjects, coupling between

brow raise and eye openness increased in the drowsy state

(Figure 4 a,b). Subjects appear to have pulled up their

eyebrows in an attempt to keep their eyes open. This is the

first work to our knowledge to reveal significant associations

between facial expression and fatigue beyond eyeblinks. Of

note is that a behavior that is often assumed to be predictive

of drowsiness, yawn, was in fact a negative predictor of

the 60-second window prior to a crash. It appears that in

the moments just before falling asleep, drivers may yawn

less often, not more often. This highlights the importance

of designing a system around real, not posed, examples of

examples of fatigue and drowsiness.

B. Automated Teaching Systems

There has been a growing thrust to develop tutoring

systems and agents that respond to students’ emotional and

cognitive state and interact with them in a social manner

(e.g., [28], [29]). Whitehill, et al. [30] conducted a pilot

experiment in which expression was used to estimate the

student’s preferred viewing speed of the videos, and the

level of difficulty, as perceived by the individual student,

of the lecture at each moment of time. This study took first

steps towards developing methods for closed loop teaching

policies, i.e., systems that have access to real time estimates

of cognitive and emotional states of the students and act

accordingly.

In this study, 8 subjects separately watched a video lecture

composed of several short clips on mathematics, physics,

psychology, and other topics. The playback speed of the

video was controlled by the subject using a keypress. The

subjects were instructed to watch the video as quickly as

possible (so as to be efficient with their time) while still

retaining accurate knowledge of the video’s content, since

they would be quizzed afterwards.

While watching the lecture, the student’s facial expressions

were measured in real-time by CERT. After watching the

video and taking the quiz, each subject then watched the

lecture video again at a fixed speed of 1.0x. During this

second viewing, subjects specified how easy or difficult they

found the lecture to be at each moment in time using the

keyboard.

For each subject, a regression analysis was performed to

predict perceived difficulty and preferred viewing speed from

the facial expression measures. The expression intensities,

as well as their first temporal derivatives (measuring the

instantaneous change in intensity), were the independent

variables in a standard linear regression. The facial expres-

sion measures were significantly predictive of both perceived

difficulty (r = .75) and preferred viewing speed (r = .51).

The correlations on validation data were 0.42 and 0.29,

respectively. The specific facial expressions that were cor-

related with difficulty and speed varied highly from subject

to subject. The most consistently correlated expression was

AU 45 (“blink”), where subjects blinked less during the more

difficult sections of video. This is consistent with previous

work associating decreases in blink rate with increases in

cognitive load [31].

Overall, this study provided proof of principle that fully

automated facial expression recognition at the present state

of the art can be used to provide real-time feedback in

automated tutoring systems. The recognition system was

able to extract a signal from the face video in real-time

that provided information about internal states relevant to

teaching and learning.



VI. DIRECTIONS FOR FURTHER RESEARCH

While state-of-the-art expression classifiers such as CERT

are already finding practical applications, as described above,

much room for improvement remains. Some of the most

pressing issues are generalizing to non-frontal head poses,

providing good performance across a broader range of eth-

nicities, and the development of learning algorithms that can

benefit from unlabeled or weakly labeled datasets.

A. Obtaining a Free Academic License

CERT is available to the research community. Distribution

is being managed by Machine Perception Technologies, Inc.

CERT is being released under the name AFECT (Automatic

Facial Expression Coding Tool). The software is available for

free for academic use. Information about obtaining a copy is

available at http://mpt4u.com/AFECT.
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