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Abstract - -  Zusammenfassung 

The Computer Generation of Poisson Random Variables. An exact method for the generation of Poisson 
random variables on a computer is presented. The average time required per random variate 
decreases as the Poisson parameter tends to infinity. 
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Die Erzeugung yon Poisson-verteilten Zufallsvariablen im Computer. Es wird eine exakte Computer- 
methode zur Erzeugung von Poisson-verteilten Zufallsvariablen angegeben. Die durchschnittliche pro 
Zufallsvariable ben6tigte Zeit nimmt ab, wenn der Poisson-Parameter gegen unendlich strebt. 

I .  I n t r o d u c t i o n  

In this paper  we present yet another  algori thm for the computer  generation of 
Poisson r a n d o m  variables. We will say that  the r andom variable X is Poisson (2) 
when 

2i e-~ 
P ( X = i ) = p i = - -  i > 0 .  

i! ' - 

M a n y  algori thms for Poisson r a n d o m  variate generation are based on the proper ty  
that X is distr ibuted as the smallest integer such that  

X + I  

E l > 2  
i = 1  

where El ,  E2, ... is a sequence of i. i. d. exponential  r andom variables. Equi- 
valently, X is distributed as the smallest integer such that  

X + l  

1-I Ui <e-~ 
i = l  

where U1, U2, ... is a sequence of i. i. d. uniform (0, 1) r a n d o m  variables. Both 
versions have average complexity 0 ( 2+  1). The inversion principle states that  if 
X is the unique integer for w h i c h  

E Pi <- U1 < Z Pi, (1) 
i < X  i < X  
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then X is Poisson (2). Sequential search starting at i=0  leads to an algorithm 
with average complexity O (2 + 1). A two-level search (determination of one of M 
intervals, and subsequent sequential search within that interval) may reduce the 
average computer time but the average complexity remains 0 (2+ 1) (Atkinson, 
1979a). Knuth (1969) discusses all the early algorithms for Poisson random 
variate generation. Fishman (1976) pointed out that if the sequential search for 
the solution of (1) is started near the mode (.2.), the average complexity of the 

algorithm becomes 0 (]//2+ 1). Atkinson (1979a, 1979b) gives an excellent and 
interesting comparison of most Poisson variate generation algorithms. For 
moderate values of 2 (_<200) the celebrated table look-up method yielded the 
fastest algorithms in his comparison, followed by the two-level search algorithms 
for the solution of (1). In both cases, the size of the programs is enormous, and 
the theoretical average complexity is 0 (2 + !). 

More recently, several attempts were made at reducing the average complexity 
for large values for 2. Ahrens and Dieter (1974)proposed a recursive algorithm 
with average complexity O (1 + log (2)). Atkinson (1979 a) was the first person to 
publish an O (1) algorithm. His algorithm uses rejection from the logistic density, 
and he assumes that log x ! can be computed in time O (1). 

Finally, one could generate n Poisson variates at a time as follows: generate X, a 
Poisson (n2) random variate. Then generate X1, . . . ,X, ,  a multinomial 
/ 

(X,  l , . n  .., 1 )  random vector. The X~s are i.i.d. Poisson (2)(see Moran (1951), 
- /  

Bolshev (1965), Patil and Seshadri (1964) and Tadikamalla (1979)). 

In this paper, a simple and fast algorithm with average complexity 0 (1) is 
developed. It is a rejection algorithm that with probability 1 - o  (1) (as 2--+ oo) 
exits with a truncated normal random variable. In other words, it exploits the 
convergence of the Poisson distribution to the normal distribution. 

2. Inequalities for Poisson Probabilities 

In this paper we will need several tight bounds for the individual Poisson 
probabilities Pi. Most of them can be derived from the following collection of 
inequalities for log (1 + u) and log (1 - u), where u _> O. 

(i) log (1 +u)_<u 
U 2 U 3 

(ii) log (1 +u)<u-~+~- 
U 2 

(iii) log (t + u) > u - - -  
2 

2u 
(iv) l o g ( l + u ) >  2 + u  

U 2 /~k 

(v) l o g ( 1 - u ) _ < - u  2 " " - k - ' k - > l ' u < l  
u 2 u k 

(vi) t o g ( 1 - u ) > _ - u  2 "" k ( 1 - u ) '  k _ > l , u < l .  

(2) 
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Most of these inequalities are well-known. The other ones can be derived without 
difficulty from Taylor's theorem (see Whittaker and Watson, 1963). 

Let us define the quantity 

Clearly, 

q (y) = log pz + y + [log ,2 ! - ,2 log ,2 + ,2] 

/ ( ,2+y) t )  
= y log ,2-  log ~, ~ , y_> -,2, ,2 and y integer. 

I - l o g  l-I 1+ y > 0 ,  

0 y=O,  
- ' - ~ (  / )  q ( Y ) = /  log I~ 1 - ~ -  , y<O.  

k. i=0 

• iz= y(y+I) (2y+I) .  ~ i3= yz(y+I)2 
i=1 6 ' 4 i=1 

Using (2) and the identities 

, y (y  + 1) 
i = - - "  

i=1 2 ' 

valid for y integer, we have, without further work: 

Lemma 1: I f  y+ = m a x  (y, 0), then 

y ( y + l )  
q(Y)<- 2 , 2 + y + '  all integer y>_-,2. 

Proof: Use (2) (iv, v) and (5). 

L e m m a  2: For y >_ 0, y integer, 

> 0  
< y(y+ 1) (2 y +  1) 

y (y + 1) < - - - i 2  `2 2 
q(Y)+ 2 ~  [ > y ( y + l ) ( 2 y + l )  y2 (y+1)2 '  

[. - i 2  `22 12 `2 3 

For y <_ O, y integer, 
_<0 
< y(y+l) (2y+l)  

q (y) 4 y (y + 1) ~ - ~ ~ T ~  
22  [ > y ( y + l ) ( 2 y + l )  

Proof: Use (5) and (2) (i, ii, iii, v, vi). 

3. Discret izat ion 

y2 (y+l)2  

12 `22 ( 2 + y +  1) 

(3) 

(4) 

, (5) 

One of the most promising techniques for the generation of integer-valued random 
variables is the truncation of a continuous random variable, because it avoids a 
t ime-consuming search. It is very rare however that one can find a simple 
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continuous density for which the truncation works. One of the few examples is 
the exponential density: the integer-valued random variable obtained by trunca- 
tion is geometrically distributed. There is of course always the possibility of 
applying the following version of the rejection method: 

1. Generate a random variate X with density f on R d. Generate an independent 
uniform (0, 1) random variate U. Determine the integer Y from X ~ Ay where 
{A~t i integer} is a 9iven partition of R a into Borel sets of unit volume each. 
(This partition is such that 

inf inf c f (x) >_ 1 
y x~Ay Py 

for some constant c_>l and a given probability distribution {p~} on the 
integers.) 

2. If U. c f  (X)<_ PY, exit with Y. Otherwise, go to 1. 

It is clear that the random variate Y generated by this procedure has probability 
distribution {p~} on the integers. Also, step 1 will be executed c times on the 
average. 

We will apply this procedure to the Poisson distribution when 2 is integer. To 
do so, we need a simple density f that dominates the probabilities pa+y, roughly 
speaking. 

L e m m a  3 :  Consider the following partition of [ - 2 ,  ~ )  x [0, 1)u [0, 1) x [1, 2): 

[ [ y , y + l ) x [ O ,  1) /f y < O , y > - - 2  

A , = ~ [ y - l , y )  x[O, 1) if y > 0  

[ [0 ,  1) x [1, 2) /f y=O. 
Then 

q (y) < h (x, z), all (x, z) e Ax, all integer y > - 2, 
where 

- x + ~  / ( 2 2 + 6 ) + Q ,  x < ~ , 0 _ < z < l ,  

h(x'z)= j - ( x  + l) x>_6, 0_<z<1, (6) 
/ - -  

[0 ,  0_<x< 1, 1_<z<2. 

Here b > 0 is a given constant, and 

1 
c l =  82" 

Proof: By Lemma 1, it suffices to show that for (x, z) e Av, h (x, z) > Y (y + 1) Con- 
- 22+y+" 

sider first y < 0. Clearly, - y ( y  + 1)_< - x (x + 1) when (x, z) e Ay, i.e., y _< x < y + 1. 

Also, x (x + 1) x (x + 1) 6 (x + �89 t- c 1. The case y = 0 is 
2 ~  ~"  2 2 + ~  + 4(22) (22+3)  2 2 + 6  

trivial. Finally, for y > 0, we have Y (y + 1) x (x + 1) - -  < when (x, z) ~ Ay, i.e., 
2 2 + y  - 2 2 + x  
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x (x + 1) when x < 6, and y - 1  _< x < y. The last expression is not greater than 2 2 + ~  

6 (x+ 1) 
it is not greater than 2 2 + ~  when x _> 6. This concludes the proof of Lemma 3. 

The function e h (x. z) is proportional to a density: 

P, f l  (x) g (z) + P2 f2 (x) g (z) + P3 O (x) g ( z -  1). (7) 

Here g (.) is the uniform density on (0, 1), f l  (.) is the normal density with mean 

_ 12 and variance 2 + ~6 2 , truncated at 6, and f2 (.) is the right-tailed exponential 

6 
density with origin at 6 and with shape parameter 2 2 + 6" The pi's are positive 

numbers that sum to 1. Unfortunately, the pi's depend upon the error function 
in view of the truncation of f l  (.)- To eliminate this annoying dependence, we 
consider a new function h (x, z) which is defined as (6) except that on x_>6, 
0 < z <  1, we set (1)2 

6 x + ~ -  (22+6) -1  +ca.  (8) h ( x , z ) = - ( x + l )  2 2 + 6  

Now, e h (x' ~) is proportional to the density (7) with the understanding that f~ (.) 
1 

is the usual normal density with mean - ~ -  and variance 2 + ~---. The pi's are 

easily determined: pi=aj(a 1 + a 2 + a3), i = 1, 2, 3, where 

2 2 + 6  e x p (  6(6+1) '~.  

a3=1. 
Using the fact that the logarithm of a uniform (0, 1) random variable is distributed 
as minus an exponential random variable, we can state the following rough form 
for our algorithm for Poisson random variate generation. 

1. Generate U uniform (0, 1). If U > Pl, go to 3. 

2. Generate a normal (O, 1) random variable N and set X ~ N  ~ +  ~ ~ . 

If X > 6 or X < - 2, go to 1. Set Y~,X, if X < 0, and Y ~  otherwise. Generate 
N z 

E exponential (1), and set V ~  - E - ~ - + q .  Go to 4. 

3. If U>pa +Pz, exit with Y~2.  Otherwise, generate two independent exponen- 

tial (1) random variables E 1 and E z. Set X~6-~ 2 2 + 6  ~ - -  El, Y~-~  and 

6 (S  + 1) 
v,-- -/~2 24+6 

4. If V<q (Y), exit with Y*-2+ Y. Otherwise, go to 1. 
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Remark 1 ." The function (7) is not smaller than c pz+y for all (x, z) ~ Ay. It should 
be clear now that z is totally artificial, and that it is essentially redundant since 
it is only used to separate the third component in the mixture from the other two. 
Taking logarithms and canceling constants on both sides of the basic inequality 
gives, instead of (6), for integer values of y, 

2 

q(Y)<- 2 2 + 3  ~-el' --2~x<O, y < _ x < y + l  or O<_x<6, y - l < _ x < y ;  

q (0) = O; (9) 
6 

q ( y ) < - ( x + l )  2 2 + 6 '  x>6,  y - l < x < y .  

The random variable X in the algorithm is only defined if the third component 
in the mixture (7) is not selected (see steps 2 and 3). When the third component is 
selected, no test is necessary, and we can immediately exit with the value 2. The 
random variable V is equal to the right-hand-side of (9) evaluated at X minus an 
independent exponential random variable. V is then compared to q (I 0 in the 
acceptance/rejection step 4. 

Remark 2: The value of the threshold 6 is not determined yet. Since p~ + y is bounded 
from above by a constant depending upon 2 only, times exp (h (x, z)), (x, z)e Ay, 
it would be natural to choose 6 such that the area under exp (h (x, z)) is minimized. 
With the modification (8), this area is a I + a 2 + a 3. Minimizing this expression 
with respect to 6 can only be done numerically. However, since 2 is large, 
6 . ~- is small (or so we expect) and 6 is large (compared to 1), we may try to 

minimize the following good approximation of a 1 + a2: 

2 ] / ~  ( 1 +  ~ )  +-~-~ exp ( -  2fi~). 

The derivative with respect to 6 is 

42 2 ~ + 1  exp -- . 

This is 0 when 

32 =8 ~ (2+32) exp ( -  23~)- 

Again, an explicit solution is not available, but a good approximate solution is 
6 a = 2 log (b 2) for some constant b. Resubstitution in the equation gives 

8 
2 log (b 2)= ]//2 n b 2 log (e b 2). 

Equating the coefficients of 2 log (2) yields b=  32 . The value that we suggest 
for 6 is 

~ = V 2  l o g ( ~ +  1). (10) 
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It can easily be checked that with 6 as in (10), 

al+a2+a3=V'2n2 (1+o(1))  as 2-*oo. (11) 

In fact, one can show that a2=0 ( 1 / ~ ) a s  2~oo .  

Remark 3: The average number of times step 1 is executed is 

(a s + a z + a3)/ex p (log 2 ! - 2 log 2 + 2) 

,- l / 2 ~ / ] / / 2  rc 2-- 1 

as 2-* oo (see (3) and (11)). Here we used Stirling's approximation of the factorial 
(see Watson and Whittaker (1963, pp. 251--253)). This does not imply that the 
average complexity of the algorithm is O (1) because the evaluation of q (y) takes 
time O (1 +rY I). If X is the random variable defined in steps 1 -  3 (with X = 0  if 
U>Pl +Pz), then the average complexity of the algorithm is O (1 +E(I  X [)). If we 
choose 6 as in (10), then E(IX[)=O (l/~) as 2-*oo. In the next section we will see 
how we can reduce the average complexity to 0 (1) by the proper use of the 
squeeze principle. 

4. The Squeeze Principle 

In step 4 of the algorithm we need to evaluate q (Y), defined in (4). This requires the 
multiplication of Y or - Y -  1 numbers. We would like to avoid this time-con- 
suming step as often as possible. In view of Lemma 2, step 4 can be replaced by 
the following steps. 

1. Let A be the indicator of X < 0  (A= 1 if X < 0 ,  A = 0  otherwise), and let 
T.~ Y(Y+ 1) 

22 

2. (Quick acceptance.) If V< - Tand  A=0 ,  exit with Y ~ 2 +  Y. 

3. Compute q ,=  T 2 Y + l  1 qa=q, 
62  ' 3 (2+A ( g +  1)) 

4. (Quick acceptance.) If V<q,, exit with Y ~ 2 +  Y. 

5. (Quick rejection.) If V> qr, go to 1. 

6. If V<q(Y), exit with Y ~ 2 +  Y. Otherwise, go to 1. Note: q is evaluated 
using (4). 

In view of remark 3, we have E (number of executions of step 6.)= (1+o(1))  
P (6. executed on first pass). The latter probability is 

P (C; qa< V<qr) 

where C is the event " - 2 < X < 6  and U<pl; or p~ <_ U<p~ +Pz". Using I c for 
the indicator function of the event C, and noting that conditional on X, the random 
variable V is exponentially distributed, we have 

P(C;q,,< V<q')<E((q*-q")lc)=E(1222 (2+(Y+Y2 (Y+ 1)21) It<o) Ic)" 
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The random variable under the expectation sign, say Z, is split up into Z 1 + Z 2 
where Z 1 =ZIm<v<p,+v2, Z 2 =ZIu<~, .  Now, given that Yis defined as in step 3 
of the algorithm (case p~ < U < p~ + P2), we have 

Hence, 
( ~ )  ( 1 ) (10 ) O ( ( ~ ) ) .  

Here we used the fact that a s + a 2 + a 3 , ~ / 2  rc 2 as 2 ~ o% and that 

Next, Z 2 can be further split up into Z 3 + Z  4 where Z 3 = Z  2 Ir+~<-~./2 and 
Z 4 = Z 2 Iy + 1 >- -a/a. Clearly, 

8 o( )as 
Here we used the fact that Y is at most 1 away from a normal ( - 1 ,  2 + @ )  
random variable (see step 2 of algorithm). Finally, 

24 ( 2 U<pl, C)<_O(e-~/5) as 2--,oo E(Za)<_I~-~-P Y+ 1 < - ~ - ,  

Here we used the fact that Pl = 1 - o (1), and that for a standard normal random 
variable N, we have 

1 exp ( -  x2/2) 
P(N<-x,) 21/  

when x n is a sequence of numbers with x . ~  oo. Collecting bounds allows us to 
conclude that 

E (number of executions of step 6 . )=0  ( 2 )  as 2 ~ o o .  (12) 
N /  

The average complexity of the complete algorithm is bounded by 

0 (1 + E  ([ Yi Ic Iq.<F<qr)) 

_< 0 (1) + [E (I12 ic ) p (C; q, < V< q,)] 1/2 

= 0 ( t )  as , ~ o o  

because E (y2 ic)= 0 (2) and P (C; q ,<  V<qr)=O (2-1) (12). Here we used the 
Cauchy-Schwartz inequality. By using an argument similar to the one leading to 
(12), one can show more: the average complexity due to step 6. is o (1) as 2---, oo ! 
In other words, step 6. becomes asymptotically negligible, and the speed with 
which it is executed has practically no impact upon the overall average speed of 
the algorithm. Also, Pz decreases very quickly (it is about 0.003 for 2 = 1000 and 
0.0007 for 2 = 10000 !) so that the exponential tail is hardly ever used. 
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5. Practical Considerations 

205 

The algorithm outlined in this paper was coded in FORTRAN and run on 
McGill University's AMDAHL V7 computer. The supporting random number 
generators were taken from McGill University's Super-Duper random number 
generator package. In particular, we used the uniform (0, 1), exponential and 
normal random number generators from this package. 

The algorithm outlined in the previous sections is only valid for integer 2. For 
fractional 2, we generate a Poisson (2) random variate Y as Y1 + Y2 where Ya 
is Poisson (~), and Y2 is Poisson (2-2~) and independent of Y1. For Y2, the 
multiplication method is used: Y2 is distributed as the smallest integer such that 

Y2+l 

H U i < e _ ( , ~ _ ~  
i=l 

where U1, Uz, . . .  is a sequence of i.i.d, uniform (0, 1) random variables. In 
Table 1 we give the average time needed per variate for the new algorithm (called 
IP) and for the multiplication method. The program IP takes 1980 bytes compared 
to 482 for the code for the multiplication method. For 2 > 9, algorithm IP was 
faster. IP is especially recommended for very large values of 2. 

Table 1. Average times in microseconds per Poisson variate. 

Times were obtained by averagin9 over 5000 runs and roundin 9 
off Star (*) indicates that no experiments were carried out 

2 Algorithm IP Multiplication method 

1 
2 
4 
8 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 
8192 

16384 

49 
47 
46 
44 
42 
41 
40 
39 
38 
37 
36 
36 
36 
36 
36 

13 
17 
25 
40 
70 

129 

INTEGER FUNCTION IP(SL) 

THE SUBPROGRAM IP PRODUCES RANDOM POISSON VARIATES WIT~ PARAMETER 
SL>0. A REJECTION ALGORITHM WITH SQUEEZING IS USED. 

AUXILIARY SUBPROGRAMS REQUIRED : 

UNI .... UNIFORM (0,i) RANDOM VARIATE GENERATOR 
RNOR... STANDARD NORMAL RANDOM VARIATE GENERATOR 
REXP... EXPONENTIAL RANDOM VARIATE GENERATOR 

15 Computing 26/3 
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DATA L/O/,SLM,D,D2,D3,STDEV,PTAIL,PBODY,CON,RL,RI,TWO,EL/12*O./ 
IF(SL.]~Q.SLM) GO TO i0 
SLM=SL 
L~IFIX(SL) 
RL=FLOAT (n) 
EL=EXP (RL-SL) 
IF(L.EQ.0) GO TO 99 
RI=I./RL 
TWO=RL+RL 
D=SQRT (RL*ALOG (i .+i0.18593"RL) ) 
D2=D+TWO 
D3=D2/D 
STDEV=SQRT ( 0.5"D2 ) 
PTAIL=D3*EXP (- (D+I.)/D3) 
CON=0.25/TWO 
PBODY=EXP (CON) *SQRT (3.14159"D2) 
SUM=PTAIL+PBODY+I. 
PBODY=I. / SUM 
PTAIL=PBODY+PTAIL/SUM 

i0 IF(L.EQ.0) GO TO 99 
i A=0. 

IP=0 
U=UNI (0) 
IF(U.LT.PTAIL) GO TO 50 
R=RNOR(0) 
X=R*STDEV-0.5 
IF(X.GT.D.OR.X.LT.-RL) GO TO i 
IF(X.GT.0.) GO TO 18 
A=I. 
X=X-2. 

18 IP=IFIX(X+I. ) 
Y=FLOAT ( IP ) 
V~-P2.EP (0) -0.5*R**2+CON 

19 T=Y* (Y+I.)/TWO 
IF(V.LT.-T.AND.A.EQ.0.) GO TO i00 
QR=T* (-i. + (Y+Y+I.) *0.1666667"RI) 
QA=QR-T**2*0. 3333333/(RL+ (Y+I.) *A) 
IF(V.LT.QA) GO TO i00 
IF(V.GT.QR) GO TO 1 
RM=KI* (I. -2*A) 
K~-IP-I 
IF(IP.GT.0) K=IP 
PD=I. 
S=0. 
DO 20 J=IjK 
S=S+RM 

20 PD=PD* (I.+S) 
IF(V.LT. (2*A-I.)*ALOG(PD)) GO TO i00 
GO TO 1 

50 IF(U.LT.PBODY) C,O TO i00 
X=D+D 3*REXP (0) 
IP=IFIX(X+I. ) 
Y=FLOAT ( IP ) 
V=-REXP ( 0)- (X+l ~ )/D3 
IF(V.GT.-Y*(Y+I.)/(TWO+Y)) GO TO 1 
GO TO 19 

99 IP=0 
i00 IPffiIP+L 

PD= O-~I (0) 
ii0 IF(PD.LT.EL) RETURN 

IP=IP+I 
PD=PD*UNI (0) 
GO TO ii0 
END 
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Note added in proof: 

When this paper was already in press, the author was informed that J. H. Ahrens and U. Dieter 
have published two O (1) algorithms for Poisson random variates (see for example, "Sampling from 
binomial and Poisson distributions: a method with -bounded computation times", Computing, 
1980). B. Schmeiser (Purdue University) informed me that he also obtained an O (1) Poisson 
generator (unpublished technical report). Finally the author wishes to thank Dr. Klaus-D. Kohrt for 
pointing out a bug in the original FORTRAN program. 

References 

Ahrens, J. H., Dieter, U. : Computer methods for sampling from gamma, beta, Poisson and binomial 
distributions. Computing 12, 223--246 (1974). 

Atkinson, A. C. : The computer generation of Poisson random variables. Applied Statistics 28, 
29--35 (1979a). 

Atkinson, A. C. : Recent developments in the computer generation of Poisson random variables. 
Applied Statistics 28, 260--263 (1979b). 

Bolshev, L. N. : On a characterization of the Poisson distribution and its statistical applications. 
Theory of Probability and its Applications 10, 446--456 (1965). 

Fishman, G. S. : Sampling from the Poisson distribution on a computer. Computing 17, 147--156 
(1976). 

Knuth, D. E. : The Art of Computer Programming, Vol. 2. Reading, Mass. : Addison-Wesley 1969. 
Moran, P. A. P.: A characteristic property of the Poisson distribution. Proceedings of the 

Cambridge Philosophical Society 48, 206--207 (1951). 
Patit, G. P., Seshadri, V. : Characterization theorems for some univariate probability distributions. 

Journal of the Royal Statistical Society B-26, 286--292 (1964). 
Tadikamalla, P. R. : A simple method for sampling from the Poisson distribution. Working Paper 

365, Graduate School of Business, University of Pittsburgh, Pittsburgh, Pennsylvania, 1979. 
Whittaker, E. T., Watson, G. N.: A Course of Modem Analysis, 4th ed. Cambridge: Cambridge 

University Press 1963. 

Dr. L. Devroye 
School of Computer Science 
McGill University 
805 Sherbrooke Street West 
Montreal, Canada H3A 2K6 

15" 


