
CHI 90 I’m.%dingS April1990

THE COMPUTER REACHES OUT:
THE HISTORICAL CONTINUITY OF INTERFACE DESIGN

Jonathan Grudin

Aarhus University (on leave from MCC)
Computer Science Department

Ny Munkegade, Bygn. 540
8000 Aarhus C Denmark

(45) 86127188 jgrudin@daimi.dk

ABSTRACT
This paper examines the evolution of the focus of user
interface research and development from the first
production of commercial computer systems in the 1950s
through the present. The term “user interface” was not
needed in the beginning, when most users were engineers
and programmers; it may again become inappropriate
when more applications are written for groups than for
individuals. But there is a continuity to the outward
movement of the computer’s interface to its external
environment, from hardware to software to increasingly
higher-level cognitive capabilities and finally to social
processes. As the focus shifts, the approaches to design
and the skills required of practitioners changes. In this
paper five foci or levels of development are identified.
Most development today is positioned in the third level
and considerable research is directed at the fourth. Some
attention is now being given to the fifth: repositioning
the interface in the work group or organization itself.
Work at the different levels is not entirely independent, so
establishing a comprehensive framework may enable us
to position existing research and development efforts and
plan future work more effectively.

INTRODUCTION
Ironically, “user interface” is a technology-centered term:

the computer is assumed, the user must be specified.l
And indeed, consideration of the history of that interface
goes more smoothly if we position ourselves at a distance
and think of the “computer interface” to the user and the
world. This perspective afford us a single view that takes
in the period before the term “user interface” was used and
extends more gracefully into the future, when the
computer will reach beyond individual users to understand
and suppofl mnms and nraanijrati~~

Permission to copy without fee all or part of ehis material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish requires a fee and/or specific
permission.

When we consider only those interface techniques that are
already in widespread use, the number of unresolved
design questions is daunting. Unless one clones an
existing product, designing even one aspect of an interface
-- menu navigation, window operations, command names,
function key assignments, mouse button syntax, icon
design, etc. -- gives rise to a potentially endless series of
decisions. The methods for arriving at informed choices
are often too time-consuming and imprecise. Many more
studies are needed if we are to develop an engineering base
of appreciable utility. At the same time, user interface
design is in a period of tremendous change. Color,
graphics, sound, video, and animation arc only beginning
to be explored or widely applied. More sophisticated
system foundations -- distributed, object-oriented,
knowledge-based -- are just starting to find substantial
markets. Other technologies are sure to appear. The field
faces a major challenge in deciding where to invest its
effort. This paper sets out a historical framework for
understanding the options.

The principal focus of activity in computer development
has moved gradually from hardware to software and is
now shifting toward the user interface. Corresponding
shifts are present within the domain of user interface
research and development itself. We can plot the
trajectory of work in human-computer interaction: the
location of the “user .interface” has been pushed farther and
farther out from the computer itself, deeper into the user
and the work environment. This in turn has led to new
approaches to design and evaluation. And so it shall
continue. We can extrapolate that new approaches,
responding to the user interface’s move into the
workplace, will require new skills, supplementing current
approaches. They may not graft easily -- or at all -- onto
existing development practices. Already, accepted
methods for developing good interfaces clash with efforts
to standardize the development process; the approaches of
the future will greatly amplify these problems.

0 1990 ACM 0-89791-345-O/90/0004-0261 1 SO 261

CHI 90 Ptmeedim

Figure 1. The five foci of interface development.

THE TRAJECTORY OF INTERFACE RESEARCH
AND DEVELOPMENT

The Shifting Focus Of Computer Development
Twenty years ago, hardware remained the undisputed
monarch of computer development. The major computer
companies produced hardware and lived or. died by its
success. Simple processing benchmarks were the critical
measure of new products. Microcoders were “soft” [161.

This changed in the late 1970s and early 1980s with the
success of the spreadsheet, word processing, and licensed
operating systems. True, this software primarily drove
hardware sales, where the profits remained highest -- the
major beneficiaries were IBM, Wang, and Digital, whose
proprietary hardware was the hardware of choice for key
software products in these areas.

Hardware innovation has a considerable future. Many
computer companies still compete primarily at the level
of hardware, accepting foreign ,compeGtion and declining
margins. But many companies that established
themselves in the 1980s sell primarily software:
Microsoft, Lotus. Ashton-Tate, and others. Debates go
on within major companies over the wisdom of relying
exclusively on profits from sales of “iron.” For many
companies, the business is changing. A manager of
hardware engineering at a major computer company
conhded, “I wouldn’t say this to my people, but a lot of
hardware engineering these days consists of knowing how
to use catalogs.” The.spread of workstations and standard
platforms will extend the software focus that already
exists in the PC world to more powerful machines.
Software is moving to center stage.

The last five years have seen the beginning of the next
step: a shift of marketplace attention to the user interface.
The Macintosh interface produced profits first by driving

the sale of proprietary hardware, but the myriad third-party
Macintosh developers have used the interface to drive
software sales. Software alone is profitable enough to
justify a shift of attention to the user interface as a means
of accelerating sales. This process is still at an early
stage. The user interface draws more attention in mature
software product areas. The appearance of new markets,
where unadorned functionality oft.en predominates, will
slow the overall shift of focus toward the user interface.
But the movement in that direction is inexorable.

The Shifting Focus Of Interface Development
Of course, systems have always had user interfaces: how
have they evolved, prior to and since attracting attention?
Again we find a series of changes in the focus of research
and design, influenced by the changing backdrop of
computer development. Figure 1 summarizes the shift in
the principle focus of interface work. Initially, the user
interface was located at the hardware itself -- most users
were engineers working directly with the hardware. The
focus then moved to the programm:ing task -- higher-level
programming languaged and environments progressively
freed users from the need to be familiar with the hardware.
Next, with the widespread appearance of interactive
systems and non-programming “end users,” the user
interface shifted to the display and keyboard, with early
attention to perceptual and motor issues. Recent years
have seen increasing research focus on the users’
“conversational” dialogues with systems and applications,
involving deeper cognitive issues underlying the learning
and use of systems: the user interface is extending past
the eyes and fingers, into the mind. Finally, with the
advent of “groupware” and systems to support
organizations, we are beginning to see the focus of user
‘interface design extend out into the social and work
environment, reaching even further from its origin at the
heart of the computer.

262

CHI 90 Ptm?edngs April 1990

The “outward” progression depicted in Figure 1 is natural.
When we have solved the most pressing problems at one
level -- or can handle them adequately -- human and
computer resources are available to work on the next
level. In a sense, the computer is colonizing its
environment -- or, less threateningly, computers are
progressively learning more about the world around them.
This learning has generally been implicit, reflected in
improved system and application &sign.

From this perspective, the “user interface” to the
computer is misnamed, because it conjures up “a user” or
a static cross-section of users. This obscures the
continuity that extends through the two dramatic shifts in
the user population: the shift from engineers and
programmers to end users as the primary users, and the
shift from supporting individuals to supporting groups
that is just starting. That the latter shift can be perceived
as a discontinuity is reflected in Malone’s [17] coinage of
the term “organizational interface” by analogy to “user
interface.” But if we remain in our own skin and consider
the “computer interface” to users and the world, the
discontinuities melt away and we see a smooth outward
reach, as the computer “learns” about its environment.

1. The interface At The Hardware
The first computer users were engineers who required a
relatively full understanding of the hardware. They worked
in binary, octal, or hexadecimal numbering systems, dealt
directly with specific registers and memory locations, and
whether engaged in scientific or business computing were
focused on maximizing hardware performance.

The important point is that aspects of the hardware were
dealt with by the typical users of the time, engineers and
programmers -- hardware was a central part of the user
interface. The user interface could be improved in three
ways. First, more reliable and more capable hardware was
developed. Second, the ergonomic presentation and
manipulation of hardware components could be improved,
for example by meaningfully arranging and Iabelling
switches. Third; and most important, the user interface
was improved by freeing the user, namely the
programmer, from having to know about the hardware.
This occurred through the development of higher-level
programming languages, virtual memory, and so forth.
This was not characterized as user interface development
at the time, because when virtually all users were
programmers the term “user interface” was not needed.

Even in the 1970s. the first home computers placed the
user interface at the hardware [9] and more advanced
computers still often brought users close to the hardware.
Switch panels on computer exteriors provided direct
manipulation of internal registers, although most users
operated them in a cook-book fashion. Limitations such
as physical memory size were more critical to
programmer-users then than they are for most users of
any stripe today.

Gradually, the distance between programmers (and other
users) and hardware grew. The user interface was moving
away from the hardware, away from the computer itself,
beginning a journey that is still far from complete.

2. The Interface At The Programming Task
Through the 60s and mid-70s, computer programmers
remained the principal users. Computer time and
equipment were expensive. Early CRTs cost over
$10,000. The first text editors were line-oriented editors
designed for programmers; general use of computers for
word processing was too expensive. In a true sense,
improving the user interface meant improving
programmer efficiency. The crucial advances -- still not
characterized as user interface development -- were in
higher-level programming languages, assemblers,
compilers, debuggers, and operating systems. The new
field of software engineering contributed concepts in
virtual storage, data design, design methods, and software
management that improved the programmer-user’s
interface to the computer.

Improving the ease of use for programmers was only one
of several motivations underlying this work, which did
not typically include human factors attention to the
legibility of code, the memorability of terms, and so
forth. Even in the case of programming languages, much
of the focus was on providing access to higher-level
abstractions and features that promote more structured
programs [33]. Only toward the end of this period did a
number of formal studies emerge of problem-soIving in
programming, debugging strategies, effective program
documentation, and program visualization.

Emphasis on the programmer as user and computer
programming as a central focus for user interface research
was still evident at the 1982 Gaitiersburg conference that
led to the establishment of SIGCHI. Eight papers
appeared in sections titled “Human Factors in
Programming” and “Documendng and Developing
Programs.” The same focus was reflected in other papers
as well; for example, “An analysis of line numbering
strategies in text editors,” 1251 was one of eight papers on
text editing; “Patterned prose for automatic specification
generation,” [28] was one of four on design guidelines.

The most significant boon to programmers was the
development and use of multitasking, virtual memory,
and interactive terminals. But interactive terminals soon
changed the user interface even more dramatically by
changing the user -- by creating vast non-programmer
markets. The term “user interface” gained currency and a
new field of research was established. Although attention
to improving programming environments continues,
emphasis within CHI has shifted from helping
programmers-as-users to helping programmers develop
better interfaces for non-programming end-users (e.g.,
papers on User Interface Management Systems
outnumbered “new paradigms for programming” by about
340-l at CHI’89).

263

CHI !%I F’meedinsls Apli11990

3. The Interface At The Terminal
The visual display and interactive capability of terminals,
home and computers, and workstations opened broad areas
for development and research. Perceptual issues such as
print legibility and motor issues such as comparative
speed and accuracy arose in designing displays, keyboards
and other input devices. Existing ergonomic or human
factors work in these areas could be applied and extended.
But the flexibility and extensibility of computers raised
issues that went beyond the basic perceptual and motor
processes, as function keys, command languages, menus,
and other interface elements were developed. These
created opportunities for cognitive psychologists to
contribute in such areas as motor learning, concept
formation, semantic memory, and a&ion.

In a sense, this marked the emergence of the distinct
discipline of human-computer interaction. It is illumi-
nating to contrast the papers on computer interfaces at the
1981 Human Factors Society meeting with the papers at
the Gaithersburg conference a few months later. They
overlap in authorship, content, and heavy reliance on
traditional experimental methodologies. But the human
factors papers, scattered among papers unrelated to
computing, focus heavily on sensory and perceptual
aspects, while Gaithersburg drew numerous cognitive
psychologists with broader, more theoretical interests.

Work on the perceptual and basic cognitive processes
shared by most users remains the dominant focus of work
in human-computer interaction. These issues were
highlighted in Shneiderman’s 1986 CHI plenary address
on “central issues in human-computer interaction.” [27].
More such work is needed as color, bit-mapped graphics,
sound, larger displays, windows, and other capabilities
become more widespread. These bring in graphic artists,
with their different approaches to design and evaluation.

This ergonomic and cognitive research benefits all users
of interactive terminals, but the :focus of user interface
research and development has shifted with the user
population to “end users.” And while the cognitive
processing issues underlying menu and form layout,
command name specificity, and other such design
decisions are not fully resolved, some satisfaction is felt
with emerging (and converging) gaphic interface styles.

4. The Interface At The Interaction Dialogue
As the “level 3” perceptual-motor and cognitive results
are being refined, extended to larger screens, incorporating
color and sound, and responding to other technological
advances, substantial “leading edge” research in human-
computer interaction is taking on a deeper cognitive
focus. This includes work on interfaces that develop a
sense of the user by modeling users’ goals or plans, by
retaining past user actions to develop in the computer a
sense of dialogue with the user, and by adapting or
tailoring the interface to an individual over time [e.g., 13,
241. In a metaphoric sense, the computer is extending its
grasp beyond the keyboard and the display surface on
which fonts, color patterns, and menus are arranged --
extending its knowledge into the, mind of the user.

“Higher” functions studied in cognitive psychology and
cognitive science are germane to this research. Human
problem-solving, seen earlier in the studies of design and
debugging by the programmer-as-user, is now an issue for
more general users. Psycholinguistics can contribute to
understanding dialogue. Studies of human planning and
execution <of complex tasks are relevant. With the weaker
science base at this level, the dramatic arts may
eventually contribute significantly [19,20].

Technological advances that enable this development
include the availability of memory and processing power,
more sophisticated approaches to knowledge representa-
tion in software, and the spread of multi-tasking operating
systems and software products that motivate a greater
focus on dialogue and task organization.

Over the past few years, many experiments with user
modeling, computer-based training and coaching,
interactive advising, and adaptive systems have emerged.
The research paradigms are not as well established as they
are for studying lower cognitive processes and the
methods are often less precise. Studies of planning and
interaction dialogue rely less on controlled experiments
measuring time and errors, and more on recording the
dialogues and analyzing transcripts. This includes
videotaping users’ sessions, asking them to “think aloud,”
logging their keystrokes, and engaging in “Wizard of Oz”
studies, where hidden experimenters test unimplemented
capabilities by generating responses that the users believe
are coming from the computer. Progress on the higher
cognitive issues of level 4 is relatively slow, both
because it is difficult and because the level 3 perceptual
and basic cognitive processing issues remain the key
concern of interface developers.

5. The Interface At The Work Setting
We can see increasing preparation for the next outward
step of the interface, into the social or work setting.
Since most work occurs in a social context, computers
will support it more successfully if they implicitly or
explicitly incorporate so&al and organizational
knowledge. The spread of networked systems is of course
a technological foundation for “groupware” or Workgroup
computing. Research and development areas include
systems for electronic mail, co-authorship, distributed
project management, and group decision support.
However, progress in this area has been very slow.

Applications to support groups have all of the usual
interface design problems and many more. Software
supporting an entire group or organization will encounter
individuals with a wide range of roles, skills,
backgrounds, and preferences. Social, motivational,
economic, and political factors arise that do not affect
single-user applications. And studying groups is difficult
-- group processes are often variable and context-sensitive,
and usually unfold over time and in different locatibns;
organizational change that. results from introducing
technology may take even longer to observe; and
generalizing from observation is difficult -- each group’s
experience is governed by its constitution and the
conditions under which technology is introduced [7].

264

CHI 90 PmceedingS &fill990

principal users

Level 1.
Interface as
hardware

Interface specialist
disciplines

Research methods

Duration of basic
events studied

Cost of evaluation

Precision, generality

Major focus

Level 2.
Interface as

Level 3.
Interface as

Level 4.
In&ace as

Level 5.
Interface as

I

196Os-1970s I 197os-1990s 1 198Os- 1 199os-

Table 1. Summary of the distinctions across levels of interface focus.

Factors contributing to the frequent failures of groupware
include: i) it often requires that some people do additional
work, people who are not the ones perceiving a direct
benefit from its use; ii) it may lead to activity that
violates social taboos, threatens political structures, or
otherwise demotivates its users; iii) it may not allow for
the wide range of exception handling and improvisation
that characterizes much group activity: iv) developers’
intuitions are especially poor for multi-user applications;
v) we fail to learn from experience because of the
difficulty of generalizable analysis and evaluation [lo].

Formal studies of group settings often originate in
business or management schools. Relevant techniques
include those of social psychology [31] and anthropology
[e.g. 23,29,343. Approaches that have been used include
“contextual research,” in which users are interviewed in
their work contexts [32], “participant observer” studies, in
.which a researcher joins and participates in the activity of
a group [22], and “participatory design,” in which system
designers form a full partnership with,the eventual users
of a system [3, 41. In addition, technology has been
placed in a broader setting by examining the interplay
over time of individuals and artifacts [5,14,18].

SUMMARY
The first row of Table 1 lists the principal computer users
for each level of interface focus. The second row lists
specialized disciplines addressing interface issues at that
level. Of course, most actual interface research and
development has been the work of programmers and
software engineers.

Next are methods employed by these specialists. Interface
improvements for engineers and programmers have
generally been designed and evaluated informally.
Laboratory experiments dominated the human factors and

early cognitive psychology work on low-level processes.
Protocol collection and analysis are central to studies of
dialogue. Methods largely drawn from the social sciences
are being used to examine technology in the context of
the workplace.

The fourth row lists the duration of the basic events that
concern the interface designer. The programmer interface
drew attention both to hardware and software events,
measured in fractions of seconds, and to improving the
efficiency of programming, measured in programmer
hours. Tbe basic perceptual and motor events measured
in level 3, even in studies of learning, have generally
been on the order of seconds. Interaction dialogues
typically cover substantial segments of a user’s session
with an application or system and may span multiple
sessions. Finally, much longer durations are involved in
studies of the work setting. A simple group process such
as sending and receiving an electronic mail message may
involve a considerable physical and temporal span, and
many social processes unfold over weeks or months.

The next two rows address the difficulty of evaluation, as
measured in the cost of running a test and the ease of
generalizing from its results. It is usually unnecessary or
straightforward to test whether improved hardware benefits
users. Similarly, while programmers do not always agree
among themselves, it is relatively easy to compare the
time taken to code or modify a routine or application in
different environments. (Of course, coding time is only
one factor considered in choosing a development
environment; tradeoffs always accompany usability
issues.), Results in these areas generalize relatively
broadly. This picture changes as end user efficiency
becomes the object of design. A tremendous number of
issues and. alternatives arise, making design and
evaluation expensive; users vary widely, making
generalization difficult; and the Science base is not as well

265

CHI 90 l’meedings April 1990
--

und.erstood [e.g.. 23. The problems increase as we move
to the higher-level processes governing dialogue; they are
less well understood and their longer time course increases
the methodological uncertainty and the cost of study.
Finally, group processes magnify these difficulties
substantially, with long time courses, great differences in
individual and group composition, little science base, and
huge effects on performance resulting from a host of local
conditions [7, 101.

The final row contains approximate intervals during
which each user interface level was in substantial focus.
Improving hardware was the dominant concern for the
first commercial computers of the 19fiOs. The 1960s and
early 1970s were the focus for the analysis and
exploration of higher-level programming languages [32]
and for the other developments that progressively freed
programmers from the hardware, including multitasking
and virtual storage [15]. The advances of those periods
have been consolidated and extended, but since then user
interface attention has shifted from programmers as users
to end users. A strong focus on basic perceptual, motor,
and cognitive functions began in the mid-to-late 70s.
leading to the formation of SIGCHI and other
organizations and conferences. This concern with “look
and feel” continued through the 1980s and is converging
with the development of several similar user interface
standards. It will remain in focus through the 90s as
other modalities and capabilities are widely adopted. The
1980s have seen exploratory research on higher-level
cognitive aspects of interfaces; this work is likely to
move out of research laboratories and into development
projects in the coming decades. Finally, the work setting
as a determinant of user interface design for groups is just
coming into view in the United States and seems destined
to gain in research prominence in the 1990~~

Each level of user interface focus has its own
practitioners, Each relies on a scien,ce base that is less
mature than the previous level, produces results more
slowly and of less generality than the previous level, and
therefore will take longer to work through. In a sense,
we are teaching the computer about ourselves and the
world, and in areas where our knowledge is less complete,
it takes longer.

A DEVELOPMENTAL ANALOGY
The development path has some similarity to a growing
child’s. The computer first shared an infant’s focus on
basic physical functions (hardware), then developed
conscious (software) control over the limbs (peripheral
devices) that support the basic functions. It next
expanded its perceptual and motor relationship to the
outside world, followed by cognitive development, and
finally a concern with social relationships and structures.
These advances accompanied the computer’s growth -- in
power and quickness, though not size! And as with the
computer, each successive “stage” requires more time and
effort to achieve proficiency. Extending this half-serious
personification, the computer-infant initially interacted
exclusively with those who fed and healed it -- engineers
as parents, happy to learn the halting language and

266

primitive thought patterns of their charge, but
nevertheless very pleased when it was able to take control
of its own “basic physical functions.” Next came those
who would. still learn its language and adapt to it to a
great extent, while trying to educate it -- programmers as
teachers. Now it is reaching out to individuals who are
less inclined to adapt to it -- end users as community
members. And finally will come: social understanding,
where the onus may shift even more to the computer to
be cognizant of and considerate off its environment. In a
manner somewhat similar to a growing child, the
computer is reaching out into its anvironment.

INTERDEPENDENCIES AMONG THE LEVELS
The analogy extends to another important point.
Psychologists have used the concept of “stages of
development” to reflect the observation that children
acquire different skills at different points in time. Yet
this has been found to be at best an approximation to
what happens [6]. Activity in different “stages” overlaps,
and changes in one skill can affect performance in the
others. Progress at higher levels may be restricted by
incomplete knowledge at earlier ones, but mastery at one
level is not necessary for attention to be directed to
others. For example, although our social awareness may
be limited or influenced by the maturity of our skill at
more fundamental reasoning ancl planning, social and
cultural learning begins early and influences cognitive
processing at all levels. Even the Iunderlying “hardware,”
the brain itself, continues to mature through childhood
(and changes throughout life), with consequences for
learning and reasoning at all levels.

The same is true with interface development. We can
identify “stages” during which the user interface at the
hardware and then the interface at the software received the
most attention. More recently, most interface
development has been focused on the perceptual and
cognitive issues of “level 3.” However, even in the
195Os, a few researchers anticipated level 3 issues [26].
And today, exploration of hardware and software “user
interface” issues continues; for example, greater hardware
reliability and object-oriented programming techniques
have significant bearing on work in levels 3.4, and 5.

In the present, there is a partial polarization of the field,
with most development in the fin& period of level 3 work
and many leading research organizations exploring level 4
topics. This may partially account for the mixed reviews
given paper sessions at CHI Conferences -- a mismatch
between the interests of researchers and developers that
arises because CHI naturally wants to capture the leading
edge of research. It is important though for level 4
researchers to appreciate that only when details are better
worked out at level 3 will developers look to level 4
research for the next way to improve and differentiate their
products, and equally important for level 3 developers and
researchers to recognize that this period is ending and that
the level 4 issues, which may seem foreign or
uninteresting now, may soon be much more important.

In fact, because of the influences that work across levels,
optimal solutions for level 3 design issues actually

Cl-II 90 Proceedings Apill

require information about how individuals and groups
work over time that is acquired through level 4 and level
5 approaches. For example, the optimal design of
features such as function key placement, command name
abbreviation, and menu defaulting requires specific
knowledge about the users’ work practices and
environment [l 11. Refining level 3 designs may require
the research and development techniques here associated
with levels 4 and 5.

Looking ahead, the emergence of numerous quite similar
graphic interfaces signals that the level 3 issues are being
resolved through standardization on an adequate (though
not necessarily optimal) set of features and behaviors.
This will free many researchers and developers to work
elsewhere. But the move to levels 4 and 5 will be slowed
by the emergence of new modalities requiring perceptual
and basic cognitive analysis (sound, video, animation...)
and by the time needed to acquire interest in the new
concepts and skill with the new techniques of levels 4 and
5 or to recognize the need to hire people who have them.

In the meantime, there will be disagreement over the best
allocation of existing resources: software environment
improvements to accelerate change, perceptual and
cognitive studies that translate relatively directly into
engineering, cognitive theory that underlies higher-level
dialogue, or social and organizational research that places
technolo y and cognitive processes in a broader work
context. f In particular, one might question the need to
address level 5 issues at all, given their difficulty, our
lack of familiarity with the appropriate techniques for
designing systems for groups, and our need for more work
at other levels. The software development world is just
beginning to accept human factors work on level 3
issues, and is unlikely to adjust easily to the greater cost,
duration, and uncertainty associated with the level 4 and
especially level 5 techniques. Software development
organizations and the development process as widely
practiced today were structured without the special needs
of user interface design in mind [121, and already the
conflict between the desire to routinize software
development and the uncertainties of user interface design
make it difficult to employ widely endorsed methods for
user interface development [22].

However, as noted above, optimization at other levels
often requires “looking out” into the workplace. In
addition, in mature application areas, where products with
similar functionality are converging on similar “look and
feel,” vendors will seek new grounds for distinguishing
their product Finally, as with the child, mastery at one
level is not required to progress in another. In fact, once
a child is interacting with other people. you might wish
that the child’s higher reasoning powers were more
developed, but you had better start teaching the kid some
basic social skills right away! The spread of networked
computers and computer use in general means that, for
better or worse, the computer is reaching out into groups
and organizations, where the potential for subtle problems
is high. Anything that increases the computer’s effec-
tiveness will be welcome. We need work at all levels.

POSTSCRIPT: THE ENGINE OF CHANGE
J. Robert Oppenheimer 1211 said that an analogy is most
interesting where it breaks down. The metaphor of the
computer as child reaching out into the world is offered as
a stimulus for thought, but has limitations. One is that
whereas children master their own physical, perceptual,
cognitive, and social functions, this paper presents the
computer as gaining control over its own hardware and
software functions, but then increasing its knowledge of
our perceptual, cognitive, and social behavior. It does not
address the computer’s perceptual growth, reflected in
scene or speech recognition, for example, nor does it
address advances in machine reasoning. This could be
done -- it would be another paper and would be truer to
the metaphor of the child. I chose not to do so because I
feel that we have discovered that these abilities of the
computer are less important than its ability to
“understand” us. This reflects the complete subservience
of the computer to our collective will. The computer has
a great stake in understanding how we think and act. Of
course, the computer is not reaching out only into our
minds and organizations, it is also reaching out into the
world, as new application areas spring up and as existing
application domains are developed in ever greater depth.
This is no surprise, since computers are not marketed for
the purpose of understanding their users -- they are built
to act on the world. But they are built to act on the world
for us, and to communicate the results of their actions to
us. Their capability for autonomous action will always
be sharply limited by their ability to understand our needs
and communicate with us. Their effectiveness as agents
in the world will increase in step with their greater
understanding of us. For that reason, work to develop an
understanding of people will remain at the very heart of
the computer’s development. It is the engine of change.

FOOTNOTES

1 Bannon [I] has noted the pervasiveness of the linguistic bias
in the human-computer interaction field. “Casual users” is a
term often used to describe managers and executives -- who are
often not at all “casual”! “Novice” or “naive” users are often
expert at their jobs -- while the expertise of “expert users” may
not extend beyond computer use. Our terminology simply
assumes that everything is in reference to the computer. Other
terms that have been used include “non-professional user.” “non -
specialist user.” and “idiot-proof programs” IS]. The early 1980s
saw some resistance to the term “user interface” because many
non-technical people associated “user” with “drug user.” Non-
technical people, if asked for the term that best matches a
description of the human-computer interface, would probably
prefer “computer interface” to “user interface.”

2 In their ambitious framework, Gaines and Shaw [8] date some
of the advances mentioned here about a decade earlier. They
generally mark change by its fist arrival in a few research labs,
whereas I have tried to identify when the use of a technology
became reasonably widespread in the computing world

3 The interface at the hardware is omitted from this list because,
as noted above, the era of hardware dominance in computer
development is ending. Although hardware improvements will
continue to have a major impact, we are singularly unable to
exploit fully our existing hardware.

267

CHI 90 l’mceedw April 19!30

ACKNOWLEDGMENT
Jim Hollan encouraged me to organize these thoughts.
Seeing my “level 4” colleagues at IMCC and elsewhere
labor to position their work in the field helped me realize
that we are all working usefully toward a common goal.
Bob Glushko, Karen Holtzblatt, and Bill Kuhlman
commented usefully on earlier drafts. Phil Barnard, Robert
Mack, Dave Wroblewski, and the Aarhus IMV group
(with Liam Bannon) made especially helpful suggestions.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Bannon, L., 1990. From human factors to human
actors. In J. Greenbaurn and M. Kyng (Eds.), Design
a~ work. Hillsdale, NJ: Lawrence Erlbaum Associates
Barnard, P. and Grudin, J., 1988. Command names.
Iu M. Helander (Ed.), Handbook of Human-Computer
Interaction. Amsterdam: North-Holland
Bjerknes, G., Ehn, P., and Kyrrg, M. (Eds.), 1987.
Computers and democracy - a Scandinavian challenge.
Aldershot, UK: Gower.
Bodker, S., Ehn, P., Knudsen,, J., Kyng, M., and
Madsen, K., 1988. Computer support for
cooperative design. In Proc. CSCW’88 Conference
on Computer-Supported Cooperative Work.
Carroll, J.M. and Kellogg, W.A., 1989. Artifact as
theory-nexus: Hermeneutics meets theory-based
design. In Proc. CHI’89 Human Factors in
Computing Systems, (Austin, April 30 - May 4).
Cole, M. and Cole, S., 1989. 77re development of
children. San Francisco: W.H. Freeman.
Ehrlich, S.F., 1987. Strategies for encouraging
successful adoption of office communication
systems. ACM TOOIS, 5, 340-357.
Gaines, B.R. and Shaw, M.L.G., 1986. From
timesharing to the sixth generation: the development
of human-computer interaction. Part 1. Int. J. Mun-
Machine Studies, 24, l-27.

Gentner, D.R. and Grudin, J., 1990. Why good
engineers (sometimes) create bad interfaces. In Proc.
CHI’90 Human Factors in Computing Systems.
Grudin, J., 1989. Why groupware applications fail:
Problems in design and evaluation. Office:
Technology and People, 4,3,245-264.
Grudin, J., 1989. The case against user interface
consistency. Communications of the ACM, 32
(October), 1164-l 173.
Grudin, J., 1990. Organizational obstacles to
participatory design in large product development
organizations. ,Unpublished manuscript.
Hollan, J., Miller, J.R., Rich, E., and Wilner, W.,
1990. Knowledge bases and tools for building
integrated multimedia intelligent interfaces. In
Sullivan, J.W. and Tyler, S.W., Architectures for
intelligent interfaces: Elements and prototypes.
Reading, MA: Addison-Wesley, in press.
Hutchins, E., 1985. The social organization of
distributed cognition. Unpublished paper.
Jacobs, SM., 1984. Operating; systems. In Vick,
C.R. and Ramamoorthy, C.V., (Eds.), Handbook of
software engineering. NY: Van Nostrand Reinhold.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Kidder, T., 1981. The soul of a new machine.
Boston: Little, Brown.
Malone, T.W., 1985. De,signing organizational
interfaces. In Proc. CHI ‘85 Human Factors in
Comp,uting Systems, (San Francisco, April 14-18).
McKe.ndree, J. and Mateer, J. W., 1989. Film
techniques applied to the design and use of intelligent
systems. MCC Technical Report ACT-HI-261-89.
Mountford. J. (Moderator:), 1989. Drama and
personality in user interface design. In Proc. CH1’89
Human Factors in Computing Systems.
Normran, D.A., 1990. Cognitive artifacts. In J.M.
Carroxl @d.), Theory and design in human-computer
interaction, in press.
Oppenheimer, R., 1956. Analogy in science.
American Psychologist, II, K27-135.
Poltrock, S., 1989. Innovation in user interface
development: obstacles and opportunities. In Proc.
CHI’89 Human Factors in Computing Systems.
Reder, S., and Schwab, R.G.:, 1988. The communica-
tive economy of the Workgroup: Multi-channel
genres of communication. In Proc. CSCW’88
Conference on Computer-Supported Cooperative
Work, (Portland, September 26-28).
Rouse, W.B., Geddes, N.D., and Curry, R.E., 1987-
1988. An architecture for intelligent interfaces:
Outline of an approach to supporting operators of
complex systems. Human-Computer Interaction, 3,
87-122.

Schneider, M., Nudelman, S., and Hirsh-Pasek, K.,
1982. An analysis of line numbering strategies in
text editors. In Proc. Human Factors in Computing
Systems, Gaithersburg, MD.
Shackel, B., 1959. Ergonomics for a computer.
Design, 120, 36-39.
Shneiderman, B., 1986. Seven plus or minus two
central issues in human-computer interaction. In
Proc. CHIP86 Human Factors in Computing Systems
Smith S., 1982. Patterned prose for automatic
specification generation. In Proc. Human Factors in
Computing Systems, Gaithersburg, MD.
Suchman, L., 1983. Office procedures as practical
action: Models of work and system design. ACM
Trans. on Ofice Information Systems, I, 320-328.
Suchman, L., 1987. Plans and situated actions: The
problem of human-mtxhine communication.
Cambridge: Cambridge University Press.
Vaske, JJ. and Grantham, C.E., 1989. Socializing
the human-computer environment. Nonwod: Ablex.
Wegner, P., 1976. Programming languages -- the
fiit 25 years. IEEE Trans. on Computers, C-25,12,
1207-1225.
Wexelblat, R.L. (Ed.), 1978. Proceedings of ACM
SIGPLAN History of Programming Languages
Conference. SIGPLAN Notices, 13, 8.
Whiteside, J., Bennett, J., and Holtzblatt, K., 1988.
Usability engineering: our experience and evolution.
In M. Helander (Ed.), Handbook of human-computer
interaction. Amsterdam: North-Holland

268

