
The Computing and Communication Architecture of the
DLR Hand Arm System

Stefan Jörg and Mathias Nickl, Alexander Nothhelfer, Thomas Bahls
and Gerd Hirzinger

Abstract— The computing and communication architecture
of the DLR Hand Arm System is presented. Its task is to
operate the robot’s 52 motors and 430 sensors. Despite that
complexity, the main design goal for it is to create a flexible
architecture that enables high-performance feedback control
with cycles beyond 1kHz. Flexibility is achieved through a
hierarchical net of computing nodes that goes from commercial-
of-the-shelf hosts down to the physical interfaces of sensors
and actuators. The concept of a Hardware Abstraction Layer
(HAL) provides a convenient high-level interface to the entire
robotic hardware. First experiments with prototypical control
applications, featuring 100 kHz and 3 kHz control loops,
demonstrate the performance of the architecture.

I. INTRODUCTION

The DLR Hand Arm System (see Fig. 1) is an anthropo-
morphic system that is aimed to reach its human archetype
regarding size, weight and performance. It features intrinsic
compliance implemented as variable stiffness actuation [1].
The hand arm system has in total 26 DOF, thereof 19 DOF
in the hand, 2 DOF in the wrist, and 5 DOF in the arm. To
implement all those DOF, the hand arm system comprises
52 actuators and 430 sensors of different types (see Table I).

To operate that many actuators and sensors precisely for
a certain control application the complexity of the system
needs to be hidden from application designers. On the other
hand, in order to maintain good performance the application
must have the most direct access to all actuators and sensors.
In other words, a valuable means of abstraction with only
minimal execution overhead is required.

This is the task of the Computing and Communication
Architecture. It incorporates the operating software and the
computing and communication infrastructure of the DLR
Hand Arm System. The aim is to provide a convenient high-
level hardware abstraction that still allows high-performance
feedback control with cycles beyond 1kHz.

Related Research

Designing computing and communication platforms is a
challenging task for every humanoid robotic project. Espe-
cially, the large number of sensors and actuators, the level of
integration, sample-rate and latency, mechanical constraints,
and even the project funding affect the design of computing
platforms.

All humanoid computing and communication architectures
are complex compositions of computing nodes (e.g. CPUs,

All authors are affiliated with the Institute of Robotics and Mechatronics,
German Aerospace Center (DLR), 82234 Wessling, Germany,
e-mail: stefan.joerg@dlr.de

Fig. 1. The DLR Hand Arm System

DSPs, or FPGAs), buses (e.g. Ethernet, CAN, PCI), as
well as sensors and actuators. Most platforms are imple-
mented with standard hardware components, originated in
the automation industry. Some projects develop dedicated
electronic hardware, e.g. motor drivers, to reach a higher
level of integration.

The HRP-II [2] by AIST, the Wabian-2 [3] by the Univer-
sity of Tokyo, and JOHNNIE [4] by Technische Universität
München use PC technology extended by PCI-I/O cards.

part Motors Sensors
Arm 4 RoboDrive Ilm50 4 Magneto-Resistive

6 RoboDrive Ilm25 6 Angular Hall enc.
15 Potentiometers
30 Current
6 Voltage

25 Temperature
Wrist 4 RoboDrive Ilm25 8 Angular Hall enc.

3 Potentiometers
12 Current
4 Voltage
9 Temperature

Hand 38 RoboDrive Ilm25 76 Angular Hall enc.
114 Current
38 Voltage
80 Temperature

Total 52 430

TABLE I
THE MOTORS AND SENSORS OF THE HAND ARM SYSTEM

KHR-2 [5] of KAIST and the HRP-3 [6] of AIST combine
a PC-platform with CAN bus communication.

HONDA’s ASIMO [7] consists of PCs, DSPs, and PCI I/O
cards as well as PCI and Ethernet for backplane communi-
cation.

The PR2 [8] by Willow Garage is a hierarchical platform
with CPU and Motor Control Boards that are connected
by EtherCat. ARMAR-III [9] by Universität Karlsruhe is a
hierarchical platform with PC104-PCs and integrated DSP-
FPGA boards that are connected by Gigabit Ethernet, and
CAN to connect sensors and actuators.

LOLA [10] by Technische Universität München is based
on PC technology and Sercos-III to connect sensors and
actuators. DLR’s Justin [11] is a heterogeneous platform
with 4 PCs, Motion Controllers, SERCOS, EtherCat, Gigabit
Ethernet, and CAN. NASA’s Robonaut 2 [12] consists of
distributed FPGA-PowerPC based motor controllers that are
connected by a custom communication to a central Compact-
PCI PowerPC based host.

Computing platforms have evolved from monolithic to
distributed control platforms. In this course new platform
concepts tackle the therefore necessary distribution of control
algorithms. Despite these efforts, the seamless distribution of
high-bandwidth control algorithms to heterogenous platforms
is still a challenge.

Above the operating system level, robotic middleware
frameworks handle distribution. Some frameworks have the
focus on hard real-time control loops. DLR’s aRD [13] uses
UDP communication and supports QNX, Linux and Vx-
Works. DDS [14] is a service-oriented real-time middleware
used by NASA’s RAPID [15] project.

Other robotic middleware frameworks are flexible and
extensible component frameworks that have the focus on a
more abstract command level. ROS [16] by Willow Garage
provides a structured communications layer above host op-
erating systems. MCA2 [17] handles distributed components
for Linux with RTAI/LXRT extensions. OpenHRP [18] is
a high-level CORBA based simulator and motion control
library.

The DLR Hand Arm System’s dedicated and heterogenous
platform is below common operating system interfaces. In
particular, common robotic middlewares do not support
FPGA or Micro-Controller platforms. Moreover, the goal of
control loops beyond 1kHz requires hard real-time support.
The hand arm system’s distributed, dedicated hardware asks
for a distributed but yet deterministic device driver.

The presented solution combines the concepts of device
drivers and middleware. It has the focus on the control
application level with hard real-time constraints and not on
a more abstract command level.

This paper is organized in three parts. The following two
sections present the computing and communication architec-
ture and the electronic hardware components. Sec. IV, The
Hardware Abstraction Layer, outlines the robot’s operating
software. Finally, Secs. V and VI present the results of first
control application implementations.

II. THE COMPUTING AND COMMUNICATION
ARCHITECTURE

To balance the opposing requirements of flexibility and
high integration, the DLR Hand Arm System’s computing
and communication platform is laid out hierarchical: At the
top are general purpose, commercial-of-the-shelf (COTS)
components. The footprint decreases towards the bottom
end which is defined by the dedicated physical interfaces
of sensors and motors. The available computing power
and communication bandwidth decreases along with the
decreasing footprint. A modular layout on each level (see
Sec. IV) together with the aggregation of components on
successive levels by the means of suitable communication
creates the desired platform flexibility (see Fig. 2). This
hierarchy is not driven by a functional separation but only
by the requirement of small footprint sizes at the physical
interfaces. The functionality of an application can be flexibly
mapped onto this hierarchy as required.

Fig. 2. The DLR Hand Arm System’s hierarchical computing and
communication platform has four layers of integration scale for computing
and communication.

A. The Computing Hierarchy

The top layer of the computing hierarchy, the Host Layer,
are COTS PCs running the real-time OS QNX. On this
layer run control applications that use a Simulink RTW
development tool chain. The real-time hosts are augmented
by auxiliary Linux workstations intended for user interfaces.
Below this, the Composition Layer is constituted by FPGAs
of the XILINX Virtex 5 family (package class 40mmx40mm)
which provide powerful computing nodes. The Composition
Layer aggregates the many modules of the lower level to
subsystems and systems . The Module Layer is the lowest
computing layer with small footprint CPLDs and FPGAs
(package class 10mmx10mm). Its task is to integrate the ded-
icated parts of the physical interfaces with their proprietary
communication into the hierarchy and to provide modules

with a common communication. The Physical Interfaces
constitute the most dedicated components of the architecture.
Specific ADC parts and power inverters are the immediate
interface to the analog physical world.

B. The Communication Hierarchy

The applied communication protocols follow the same
hierarchy as the computing nodes: At the top, the general-
purpose platforms are connected by high-bandwidth standard
communication protocols. Close to the physical interfaces,
low-bandwidth protocols are employed that feature small
implementation footprints.

The auxiliary Linux hosts are connected to each other
and the QNX real-time hosts via standard 1GBit TCP/UDP.
SpaceWire is the backbone of the Composition Layer that
connects the QNX real-time hosts to the FPGA computing
nodes on this layer. SpaceWire is a low footprint packet
based bus that is deterministic for a given topology [19].
The physical layer is implemented with an IEEE 802.3
Gigabit Ethernet compliant Ethernet transceiver featuring
1GBit/sec bandwidth. The FPGA/CPLDs of the Module
Layer are connected to the composition nodes with the
industry standard BiSS C-Mode [20]. BiSS is a Master/Slave
bi-directional serial bus with a typical data rate of 10Mbit/s.
Matching the hierarchy, the slave’s footprint is much smaller
than the master’s. The Physical Interfaces on the bottom
are connected to the module layer with their dedicated
communication protocols: SPI, I2C buses or Pulse-width
modulation (PWM) outputs.

The flexibility of the DLR Hand Arm System’s com-
puting and communication architecture is provided by pro-
grammable devices on the two intermediate Composition
and Module layers. Available computing power all the way
down to the physical interfaces opens up flexibility for both
computing and communication. Both, the SpaceWire and
BiSS protocols are entirely implemented in VHDL software
on the FPGA/CPLD computing nodes. Thus, both protocols
may be replaced by any communication protocol that fits to
the provided serial physical layers.

III. THE ELECTRONIC HARDWARE

In the following section a short explanation of the key
electronic components (see Fig. 3) in matters of computing
and communication of the DLR hand arm system is given.
The design of the electronic components follow the hierarchy
depicted in Fig. 2. Composition nodes are FPGA-based com-
munication and computation platforms that support dedicated
communication protocols, i.e. SpaceWire and BiSS. Modules
are sensor and motor electronics, which convert the analog
physical interfaces to dedicated communication protocols.

A SpaceWire PCIe Card (C1) connects the standard COTS
PCs (see II) to the SpaceWire network, which implements
the backbone of the composition layer. This card consists
of an Xilinx Virtex5 FPGA and two fiber optical channels
for SpaceWire communication. A dedicated fiber to copper
transceiver (omitted in Fig. 3) allows the seamless connection
of fiber and copper SpaceWire networks.

��

��

��

��

��

��

��

����

��

��

��

��

Fig. 3. The electronic components of the DLR Hand Arm System. Com-
position Layer: C1 SpaceWire PCIe Card, C2 Forearm Node, C3/M1 Arm
Node, Module Layer: M2 ILM25 MiniServo, M3 ILM50 with Magneto-
Resistive Sensor, M4 Potentiometer Module, M5 Angular Hall Modules

The two Forearm Node (C2) electronics comprise signal
aggregation and routing. They are used as SpaceWire com-
munication backbone and are capable of connecting 26 BiSS
modules. Each of them has two Virtex5 FPGA (V5LX50) and
provides 26 BiSS masters, the SpaceWire links and routers,
and temperature monitoring.

The Arm Nodes (C3/M1) are stackable circuit boards with
communication and computing capabilities combined with a
fully integrated motor power inverter with three SPI current
sensors and I2C temperature sensors. The module provides
one Virtex5 FPGA (V5LX50) as computation resource, two
interfaces with 1 Gbit

sec SpaceWire by using IEEE 802.3 phys-
ical layer, 8 BiSS connectors, two interfaces with 100 Mbit

sec
for data exchange in between multiple stacked Arm Nodes.

The ILM25 MiniServo (M2) motor module is a very com-
pact self-contained intelligent component, which consists of
a PMSM ILM25, inverter electronics, and control electronics.
A Xilinx Spartan 3e XC3S500EP132 with only 8x8 mm is
responsible for communication (BiSS) as well as position
and current control of the motor at 100 kHz. Control asks
for three SPI current sensors and one angular hall position
sensor with a resolution of 4096 Incs

rev , BiSS communication
and a very small volume consumption. Furthermore, for
housekeeping, two I2C temperature sensors and one SPI
sensor for the DC link voltage are employed. The entire hand
arm system uses 48 MiniServos in total.

A custom-designed Magneto-Resistive Position Sensor
(M3) with a resolution of 23040 Incs

rev is employed as position
sensor for the main motors ILM50. This sensor is optimized
for hollow shaft drives.

Potentiometer Modules (M4): In order to measure the
deflection of the elastic elements a CPLD is used to read
the digitized sensor data of the analog potentiometers and
transfer data via BiSS to the superimposed composition
nodes.

HALHAL

HardwareHardware

Application Application

R
ob

ot
 H

ar
dw

ar
e

C
om

po
ne

nt
s

R
ea

l-T
im

e
C

om
pu

tin
g

H
os

ts

HAL

Hardware

Application

HAL

Hardware

Application

HAL

Hardware

Application

HAL

Hardware

Application

HAL

Hardware

Application

Fig. 4. The signal-oriented Hardware Abstraction Layer (HAL) binds the
distributed hardware to the distributed application. For dedicated platforms
(e.g. FPGA), the HAL reaches below the operating system layer.

Signal Component Frame

Calibration and
Aggregation

Hardware

Signal-Oriented
Middleware

Application

Hardware
Abstraction
Layer (HAL)

Hardware Abstraction

Hardware Representation

Fig. 5. The HAL is a signal-oriented component-based device driver
concept. It tackles hardware distribution with a signal-oriented middleware
that presents the hardware functionality as is: The Hardware Represen-
tation Layer. On top of this a signal-oriented component frame handles
synchronization and scheduling. Data aggregation and calibration enhance
the hardware functionality for user convenience.

Angular Hall Sensor (M5): The same type of angular hall
position sensor that is utilized in the ILM25 MiniServos
provides measurement of the tendon deflection in the hand
as well as in the wrist.

IV. THE HARDWARE ABSTRACTION LAYER

The Hardware Abstraction Layer (HAL) is a distributed
device driver. The HAL is present on every node of the
electronic hardware where a part of the application is running
(see Fig. 4).

Hasy HAL Library
Release 0.4.0
Maintained by Stefan Joerg
© Copyright Inst. of Robotics and Mechatronics, DLR

hasy_arm_maintenance

Start

Reset

id_motor_des

iq_motor_des

i_quality_des

control_mode_des

theta_motor_des

theta_motor_quality_des

UnitRunning

UnitFailure

failure

id_motor

iq_motor

i_motor_quality

theta_motor

theta_motor_quality

dtheta_motor

q_flex

q_flex_quality

q_joint

q_joint_quality

q_adjuster

q_adjuster_quality

phi

sigma

ilm25_temperature

ilm25_temperature_quality

joint_temperature

joint_temperature_quality

latency

errors

hasy_arm

Start

Reset

id_motor_des

iq_motor_des

i_quality_des

adjuster_theta_des

adjuster_theta_quality_des

UnitRunning

UnitFailure

failure

id_motor

iq_motor

i_motor_quality

theta_motor

theta_motor_quality

dtheta_motor

q_flex

q_flex_quality

q_joint

q_joint_quality

q_adjuster

q_adjuster_quality

phi

sigma

ilm25_temperature

ilm25_temperature_quality

joint_temperature

joint_temperature_quality

latency

errors

Units

Hasy HAL Library
Release 0.4.0
Maintained by Stefan Joerg
© Copyright Inst. of Robotics and Mechatronics, DLR

hasy_hand_simul_BLOCKING

Start

Reset

control_mode_des

id_motor_des

iq_motor_des

i_quality_des

theta_des

theta_quality_des

UnitRunning

UnitFailure

failure

id_motor

iq_motor

i_motor_quality

theta_motor

theta_motor_quality

dtheta_motor

q_flex

q_flex_quality

q_wrist

q_wrist_quality

latency

errors

hasy_hand_simul

Start

Reset

control_mode_des

id_motor_des

iq_motor_des

i_quality_des

theta_des

theta_quality_des

UnitRunning

UnitFailure

failure

id_motor

iq_motor

i_motor_quality

theta_motor

theta_motor_quality

dtheta_motor

q_flex

q_flex_quality

q_wrist

q_wrist_quality

latency

errors

hasy_hand

Start

Reset

control_mode_des

id_motor_des

iq_motor_des

i_quality_des

theta_des

theta_quality_des

UnitRunning

UnitFailure

failure

id_motor

iq_motor

i_motor_quality

theta_motor

theta_motor_quality

dtheta_motor

q_flex

q_flex_quality

q_wrist

q_wrist_quality

latency

errors

Fig. 6. The HAL Simulink block library presents the hardware as high
level interfaces that feature calibrated sensor values in SI-Units.

Desired

MiniServ o

Desired

d/dt VelocityMH Sensor
(Position)

Motor PWM

Current/Position
Controller

100
kHz

Clock
Domain

Sensors

Actuator
State

Latency
Measurement

FPGA Xil inx Virtex 5
VHDL

Current
Sensors

Joint Sensors

3 kHz
Clock

Domain

Host Controller

HAL HALControl
Application

Potentiometer
Sensors

Simulink
RTW

Main
Sensors

Joint Actuators

MiniServ o

Forearm Actuators

MiniServ o

MiniServ o

Desired

Main Motor

Desired

4x

MR Sensor
(Position)

Current
Sensors

Motor PWM
d/dt Velocity

Current
Controller

100kHz
Clock

Domain

Sensors

Forearm Sensors

Potentiometer
Sensors

4x

QNX
Intel Core2Duo E6750 2.66GHz

3 kHz
Clock

Domain

Actuator
State

Latency
Measurement

MiniServo
Sensors

Main Motor

FPGA Xil inx Virtex 5
VHDL

MiniServo
Sensors

MiniServo
Sensors

Fig. 7. Top: The arm component architecture drives 4 main motors, 4 adjuster MiniServos, and 2 forearm MiniServos. The HAL aggregates all sensors
and motors to one block. Both, HAL and arm controller application run on a QNX real-time host. Bottom: The FPGA implementations of the main motor
current controller (left) and the MiniServo current/position controller (right) both operate at 100 kHz.

The HAL provides an abstract view on the robot’s dis-
tributed hardware. Therefore, the HAL hides all unwanted
hardware details like communication protocols and sensor
specific value types. It implements a convenient interface
intended for the use by control designers that represents all
values as floating point SI-units. This convenient interface
follows what we call a signal-oriented component model,
which is based on the actor model [21].

Fig. 5 illustrates the three tasks the HAL accomplishes in
order to provide a convenient hardware abstraction:

The Signal-oriented Middleware

The DLR Hand Arm System’s HAL uses the signal-
oriented middleware concept presented by Joerg et al. [22].
The middleware handles the distribution of heterogenous
hardware platforms including FPGAs.

The Signal-oriented Component Frame

The component model of the hand arm system’s HAL
is based on the formal Synchronous Model that assumes
discrete signals with a fixed sample period [23]. The domain-
model The Virtual Path, presented by Nickl et al. [24], is used
for the implementation of the HAL’s component frame. The
model defines the four roles Sensor, Controller, Actuator, and
Communication. It distinguishes synchronization in terms
of synchronous to physical time and scheduling. Sensors
are synchronized to physical time, i.e. a sensor is triggered
by a tick, which is an event that is synchronous to the
physical time. An Actuator has a watchdog clock, which
is synchronous to physical time. It is not necessary to

synchronize the controllers. The communication between
controllers can be implemented as simple FIFO channels.

Calibration And Aggregation - The Simulink interface

The HAL implements a convenient interface on any com-
puting node at which a part of the control application is
executed. On platforms where a Simulink RTW tool chain
is available the interface is implemented as Simulink block
library. Thus control designers are able to interface their
prototypical control applications with the DLR Hand Arm
System’s hardware. Fig. 6 depicts the two Simulink libraries
for the hand and arm units. Every block represents a certain
unit of the distributed robot hardware. For example, the 48
actuators and the corresponding sensors of the hand are
represented by one single block. The aggregation of the
concerned sensor value signals is implemented in the HAL.
The interface of each block consists of floating-point SI-
values that represent calibrated sensor values. The necessary
calibration models are also implemented in the hardware
abstraction layer.

V. FIRST CONTROL APPLICATIONS

To conduct first control experiments, presented by Greben-
stein et al. [1] and Petit et al. [25], a prototypical signal
component architecture was implemented.

The control applications use a cascade control architecture:
The inner control loop is the actuator controller which
operates at 100 kHz and the outer host control loop operates
at 3kHz. The latter includes the HAL Simulink interface
and the host control application implemented with Simulink.

Tendon Sensors A

3 kHz
Clock

Domain

Host Controller

HAL HALControl
Application

MH Position
Sensors Simulink

RTW

Tendon Actuators D

MiniServ o

Route

Route

Route

Route

Tendon Actuators A

MiniServ o

Tendon Actuators B

MiniServ o

Tendon Actuators C

MiniServ o

Aggregate

Aggregate

Aggregate

Aggregate

Tendon Sensors B

3 kHz
Clock

Domain

MH Position
Sensors

Tendon Sensors C

3 kHz
Clock

Domain

MH Position
Sensors

Tendon Sensors D

3 kHz
Clock

Domain

MH Position
Sensors

12x

11x

8x

11x

8x

11x

11x

7x

8x

12x

8x

7x

QNX
Intel Core2Duo E6750 2.66GHz

MiniServo
Sensors

MiniServo
Sensors

MiniServo
Sensors

MiniServo
Sensors

Fig. 8. The hand component architecture. The whole system is synchronized by its sensors (3kHz and 100kHz clock domains). 38 tendon MiniServo
modules (see Fig. 7) are aggregated to one block by the HAL. Both, HAL and control application run on a QNX real-time host.

The former is implemented entirely on the joint FPGAs. All
controllers are implemented with the Virtual Path model [24],
i.e. the loops are synchronized to their clock domain (either
100kHz or 3kHz) by the sensors (current, position).

A. The Arm

The arm part of the DLR Hand Arm System consists of
five joints. The first four joints are FSJ joints, presented by
Wolf et al. [26], that consist each of one main RoboDrive
Ilm50 motor and one stiffness adjuster MiniServo motor. The
fifth joint, implementing the forearm rotation, consists of two
MiniServos. This is reflected by the arm’s signal component
architecture illustrated in Fig. 7. The main motor’s current
control loop operates at 100kHz and is implemented on the
FPGAs of the joint layer of the computing hierarchy. The
same applies to the MiniServo implementation (see next
section). The HAL aggregates all sensors and actuators and
is implemented as a simulink block library (see Fig. 6).
The state feedback damping control approach [25] is imple-
mented with Simulink using the HAL block library. Both,
HAL and control application run on a QNX real-time host.

B. The Hand

The hand comprises 19 DOF that are implemented as
antagonistic tendon drives. Therefore 38 MiniServo modules
(see Sec. III) are used. The position of each of the 38 tendons
is measured by an angular Hall encoder. Fig. 8 depicts the
signal component architecture for the hand. The MiniServos
are arranged in four groups each of which is aggregated
to one SpaceWire message on a FPGA computing node of
the joint layer. The MiniServo has a current and a position

controller. Both operate at 100kHz and are implemented on
the FPGAs of the joint layer of the computing hierarchy. The
outer host control loop operates at 3kHz. It forms a cascade
control architecture together with the MiniServo’s controller
as the inner loop. The HAL is a part of the host control loop
and aggregates all MiniServos and sensor interfaces for the
finger impedance controller application, presented in [1].

VI. RESULTS

In order to validate the goal of high-performance control,
the performance of the implementation is evaluated by the
experimental identification of the latency of the control
loops. The Virtual Path Model [24] defines latency as the
accumulation of all computation and communication delays
of the virtual path from sensors to actuators. Hence, for the
outer loop of the cascaded control architecture latency is

tLatency = tSetDesired − ttick3kHz

Main Motor MR /
Current / Sensor

Main Motor Current
/ Controller

Main Motor PWM /
Actuator

100kHz Tick
T=10us
100kHz Tick
T=10us

3.2 us
0.35 us

total Latency
= 10 us

Set Power InvertersSet Power Inverters

[wait t = T]:

Fig. 9. The latency analysis of the 100kHz current control loop of the arm’s
main motors from Sensor ADCs to the Pulse-width modulation (PWM)
output. The computing latency is 3.55 µs. The PWM is synchronized to
the clock, i.e. the overall latency is exactly 10.0 µs.

Joint Sensors Control Application Joint ActuatorsHAL HAL

15 us

depending on
control
application
typ. 20-80 us

mean Latency
220 us
+ Control
Application
typ. 20-80 us

SetSet

15 us

3kHz tick
T=333.333us
3kHz tick
T=333.333us

150 us

40 us

Fig. 10. Execution sequence of the arm’s 3kHz host control loop. The
communication latency averages to 30 µs, the HAL averages to 190 µs.
The host controller computing time depends on the control application. See
Fig. 11 for detailed measurements.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

100

200

300

400

latency / sec

sa
m

pl
es

 /
se

c

Shoulder 1

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

100

200

300

400

latency / sec

sa
m

pl
es

 /
se

c

Shoulder 2

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

100

200

300

400

latency / sec

sa
m

pl
es

 /
se

c

Upper Arm

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

100

200

300

400

latency / sec

sa
m

pl
es

 /
se

c

Elbow

Fig. 11. The latency of the 3kHz control loops for the arm’s four main
motors. The histograms show the latency distribution for the damping
control application (blue) and for HAL only (i.e. no host control application)
(red).

To exactly measure the latency, the Latency Measurement
in the components Main Motor and MiniServo is used (see
Figs. 7 and 8). Implemented on an FPGA the measurements
have a deterministic resolution (0.64e−6s for MiniServo
and 0.51e−6s for Main). We define good performance as a
deadline of two cycles of the 3kHz control loop, i.e. a latency
< 667µs. For all applications, the host for the experimental
setup is a Intel Core2Duo E6750 2.66GHz running QNX 6.3.

A. The Arm

The execution sequence of the inner loop of the control
cascade, the main motor’s control loop, is depicted by Fig. 9.
The deterministic implementation yields a constant latency
of exactly one clock cycle, i.e 10µs.

Fig. 10 depicts the execution sequence of the outer host
control loop. Two experiments were conducted to measure
the latency of the host control loop. First, the latency is
measured for a zero-computing dummy control application.
Second, the latency is measured for the damping control
algorithm presented in [25]. Table II lists the mean and
standard deviation of the measured latencies for each of the
four main motors. For the dummy application (HAL), the
latency stays below the cycle time of 333µs. On average, the
damping control case exceeds the cycle time. Typically, this
leads to more collisions which result in a higher jitter. This
is reflected by the higher standard deviation. The histogram
plots in Fig. 11 illustrate the higher jitter for the damping
case (blue bars).

Application Shoulder1 Shoulder2 Upp. Arm Elbow
HAL mean [µs] 219.34 227.65 237.23 245.99

std [µs] 16.53 16.53 15.00 15.01
Damp. mean [µs] 343.24 363.09 382.50 393.48

std [µs] 39.34 41.50 37.21 34.10

TABLE II
THE LATENCY OF THE ARM MAIN MOTOR CONTROL LOOPS

Application Grp 1 Grp 2 Grp 3 Grp 4 mean
Imped. mean [µs] 276.1 287.0 294.7 302.7 290.1

std [µs] 12.1 19.0 14.6 21.1 16.7

TABLE III
THE LATENCY OF THE HAND MINISERVOS CONTROL LOOP

B. The Hand

As for the arm, the overall latency of the control applica-
tion loop was measured for the finger impedance control ap-
plication presented in [1]. Fig. 12 (left) depicts the histogram
of the measured latencies for the impedance control loop for
all MiniServos. The plot of the mean latencies for each motor
(Fig. 12 right) shows four distinct groups. These coincides
with the four groups aggregated by the implementation on the
FPGA (see Sec.V). Fig. 13 depicts the histograms for each
group. Table III lists the mean latency and standard deviation
for each group. The latency stays well below the deadline of
667µs. On average, it even stays below one cycle.

2 3 4 5 6

x 10
−4

0

50

100

150

200

250

300

350

400

latency (sec)

sa
m

pl
es

 /
se

c

Tendon Servos 1 − 38

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

2.76

2.87

2.95

3.03

x 10
−4

Tendon Servo

m
ea

n
la

te
nc

y
(s

ec
)

Mean Latency

Fig. 12. Latency measured of the host impedance controller for all 38
hand MiniServos. Left: The histogram normalized to samples per second.
Right: The mean latencies fall in four groups

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

50

100

150

200

250

latency (sec)

sa
m

pl
es

 /
se

c

Group 1 (mean = 276.1µs)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

50

100

150

200

latency (sec)

sa
m

pl
es

 /
se

c

Group 2 (mean = 287.0µs)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

100

200

300

latency (sec)

sa
m

pl
es

 /
se

c

Group 2 (mean = 294.7µs)

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

x 10
−4

0

50

100

150

200

250

latency (sec)

sa
m

pl
es

 /
se

c

Group 4 (mean = 302.7µs)

Fig. 13. The latency histograms for the four servo groups. These groups
coincide with the aggregated servos of Fig. 8.

VII. CONCLUSION AND OUTLOOK

First control application implementations for the DLR
Hand Arm System’s Computing and Communication Archi-
tecture show that high performance control together with a
flexible architecture, a high level hardware abstraction, and
the domain model Virtual Path result in a deterministic and
performant system with a convenient interface.

The experiments demonstrate that the desired deadline of
two cycles (667µs) are met by the architecture.

However, the focus of those first control experiments is on
the evaluation of the novel variable stiffness mechanisms.
While the computing and communication architecture has
proven to work well for this, we will conduct more exper-
iments to further prove the robustness and stability of the
architecture.

The four-layer hierarchy has resulted in a design of the
electronic hardware that fits well into a highly-integrated
mechatronic humanoid arm of the same size as a human
arm. One exception is the design of the Arm Node (C3/M1
of Fig. 3). The combination of module and composition layer
on one board breaks the hierarchy. This turned out to be
impractical because the one-to-one relation of power inverter
and computing node reduces scalability, power efficiency and
maintainability. However, this experience is further confirma-
tion that the hierarchical approach is suitable.

The next step will be to further reduce the latency by
using the architecture’s flexibility for the optimization of the
communication implementation. This involves the movement
of packet routing and signal aggregation from the host down
to the joint FPGAs.

Future work will include the implementation of higher-
level control algorithms of the arm’s main motor on the
FPGA in order to gain a 100kHz cycle.

Moreover, a framework for the automatic generation of
the entire signal component infrastructure from application
specifications will be developed to enhance the middleware
approach.

The resulting flexibility of the architecture will be used to
experiment with highly distributed algorithms, such as low-
level safety measures or autonomous reflex actions.

REFERENCES

[1] M. Grebenstein, A. Albu-Schäffer, T. Bahls, M. Chalon, O. Eiberger,
W. Friedl, R. Gruber, S. Haddadin, U. Hagn, R. Haslinger, H. Hpp-
ner, S. Jörg, M. Nickl, A. Nothhelfer, F. Petit, J. Reill, N. Seitz,
T. Wimböck, S. Wolf, T. Wüsthoff, and G. Hirzinger, “The DLR
hand arm system,” in Proc. IEEE International Conf. on Robotics and
Automation, Shanghai, April 2011.

[2] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” in In IEEE
Int. Conf. Rob. Aut, 2004, pp. 1083–1090.

[3] Y. Ogura, H. Aikawa, H. Kondo, A. Morishima, H. ok Lim, and
A. Takanishi, “Development of a new humanoid robot wabian-2,” in
in Proceedings of IEEE International Conference on Robotics and
Automation, 2006, pp. 76–81.

[4] F. Pfeiffer, K. Löffler, M. Gienger, and H. Ulbrich, “Sensor and control
aspects of biped robot ”johnnie”,” I. J. Humanoid Robotics, vol. 1,
no. 3, pp. 481–496, 2004.

[5] J.-Y. Kim, I.-W. Park, J. Lee, M.-S. Kim, B. kyu Cho, and J.-H. Oh,
“System design and dynamic walking of humanoid robot KHR-2,” in
Proc. IEEE International Conf. on Robotics and Automation, April
2005, pp. 1431–1436.

[6] K. Kaneko, K. Harada, F. Kanhehiro, G. Miyamori, and K. Akachi,
“Humanoid robot HRP-3,” in Proc. IEEE International Conf. on
Robotics and Automation, Nice, France, September 2008, pp. 2471–
2478.

[7] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki,
and K. Fujimura, “The intelligent ASIMO: System overview and
integration,” in Proc. International Conference on Intelligent Robots
and Systems, 2002, pp. 2478–2483.

[8] W. Garage, PR2 user manual. [Online]. Available:
http://pr2support.willowgarage.com/wiki/PR2 Manual

[9] T. Asfour, K. Regenstein, J. S. P. Azad, A. Bierbaum, N. Vahrenkamp,
and R. Dillmann, “ARMAR-III: An integrated humanoid platform for
sensory-motor control,” in 6th IEEE-RAS International Conference on
Humanoid Robots, 2006, pp. 169–175.

[10] S. Lohmeier, T. Buschmann, and H. Ulbrich, “System design and
control of anthropomorphic walking robot LOLA,” Mechatronics,
IEEE/ASME Transactions on, vol. 14, no. 6, pp. 658 –666, Dec. 2009.

[11] Ch. Ott, O. Eiberger, W. Friedl, B. Bäuml, U. Hillenbrand, Ch. Borst,
A. Albu-Schäffer, B. Brunner, H. Hirschmüller, S. Kielhöfer, R. Koni-
etschke, M. Suppa, T. Wimböck, F. Zacharias, and G. Hirzinger, “A
humanoid two-arm system for dexterous manipulation,” in Humanoids,
Genoa, December 2006.

[12] M. Diftler, J. Mehling, M. Abdallah, N. Radford, L. Bridgwater,
A. Sanders, S. Askew, D. Linn, J. Yamokoski, F. Permenter, B. Har-
grave, R. Platt, R. Savely, and R. Ambrose, “Robonaut 2 - the first
humanoid robot in space,” in Proc. IEEE International Conf. on
Robotics and Automation, Shanghai, China, May 2011.

[13] B. Bäuml and G. Hirzinger, “Agile robot development (aRD): A prag-
matic approach to robotic software,” in Proc. International Conference
on Intelligent Robots and Systems, Peking, October 2006.

[14] Data distribution service portal. OMG. [Online]. Available:
http://portals.omg.org/dds/

[15] The robot application programming interface delegate project. NASA.
[Online]. Available: http://robotapi.sourceforge.net/index.html

[16] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA Workshop on Open Source Software, 2009.

[17] The modular controller architecture. Http://www.mca2.org/. [Online].
Available: http://www.mca2.org/

[18] H. Hirohisa, K. Fumio, and K. Shuuji, “OpenHRP: Open architecture
humanoid robotics platform,” in Robotics Research, ser. Springer
Tracts in Advanced Robotics, R. Jarvis and A. Zelinsky, Eds.
Springer, 2003, vol. 6, pp. 99–112.

[19] ECSS E-50-12A SpaceWire - Links, nodes, routers and net-
works, European Cooperation for Space Standardization (ECSS),
http://spacewire.esa.int, 2003.

[20] BiSS Interface Protocol Description (C-Mode), C1 ed., IC Haus,
http://www.ichaus.com, 2007.

[21] J. Liu, J. Eker, J. W. Janneck, X. Liu, and E. A. Lee, “Actor-oriented
control system design: A responsible framework perspective,” IEEE
Transactions on Control Systems Technology, vol. 12, no. 2, pp. 250–
262, 2004.

[22] S. Jörg, M. Nickl, and G. Hirzinger, “Flexible signal-oriented hard-
ware abstraction for rapid prototyping of robotic systems,” in Proc.
International Conference on Intelligent Robots and Systems, Peking,
October 2006, pp. 3755 – 3760.

[23] A. Benveniste and G. Berry, “The synchronous approach to reactive
and real-time systems,” Proceedings of the IEEE, vol. 79, no. 9, pp.
1270 – 1282, September 2001.

[24] M. Nickl, S. Jörg, and G. Hirzinger, “The virtual path: The domain
model for the design of the MIRO surgical robotic system,” in 9th
International IFAC Symposium on Robot Control, IFAC. Gifu, Japan:
http://www.ifac-papersonline.net/, 2009, pp. 97–103.

[25] F. Petit and A. Albu-Schäffer, “State feedback damping control for a
multi dof variable stiffness robot arm,” in Proc. IEEE International
Conf. on Robotics and Automation, Shanghai, China, 2011.

[26] S. Wolf, O. Eiberger, and G. Hirzinger, “The DLR FSJ: Energy based
design of variable stiffness joints,” in Proc. of the IEEE International
Conference on Robotics and Automation. Shanghai, China: IEEE,
May 2011.

