
ar
X

iv
:1

80
2.

09
32

2v
1 

 [
m

at
h.

A
P]

  2
6 

Fe
b 

20
18

THE CONCENTRATION-COMPACTNESS PRINCIPLE FOR FRACTIONAL

ORDER SOBOLEV SPACES IN UNBOUNDED DOMAINS AND APPLICATIONS

TO THE GENERALIZED FRACTIONAL BREZIS-NIRENBERG PROBLEM.

JULIÁN FERNÁNDEZ BONDER, NICOLAS SAINTIER AND ANALÍA SILVA

Abstract. In this paper we extend the well-known concentration – compactness principle for the Frac-
tional Laplacian operator in unbounded domains. As an application we show sufficient conditions for
the existence of solutions to some critical equations involving the fractional p−laplacian in the whole
Rn.

1. Introduction.

In recent years there has been an increasing amount of attention to problems involving nonlocal
diffusion operators. These problems are so vast that it is impossible to give a comprehensive list of
references. Just to cite a few we refer to [15, 16, 18, 21, 26, 42] for some physical models, [1, 22, 32]
for some applications in finances, [12] for applications in fluid dynamics, [20, 25, 31] for application in
ecology and [19] for some applications in image processing.

The most emblematic non-local diffusion operator is probably the so-called fractional Laplacian (−∆)s,
0 < s < 1, and its nonlinear generalization the fractional p-Laplacian (−∆p)

s, p > 1. The convenient
functional framework for these operators are the fractional order Sobolev spaces. It is well-known that
the usual Sobolev immersion theorem holds in the fractional setting, in particular when sp < n where n
is the dimension of the ambient spaces, that the limiting exponent for the embedding into the Lebesgue
space is p∗s = np/(n−sp). A challenging problem is then to provide sufficient conditions for the existence
of a nontrivial solution to equations of the form

(1.1) (−∆p)
su = h(x)|u|q−2u+K(x)|u|p

∗

s−2u

considered either in a bounded or unbounded subset of Rn. In the case s = 1 and p = 2 we recover
the famous Yamabé equation appearing in Riemannian geometry and studied by Aubin [2] and then by
Brezis-Nirenberg [6].

The study of such critical equations relies on the study of the concentration phenomenon taking
place when considering sequences of approximated solutions. The principle of concentration-compactness
developed by Lions [24] has proved to be a very useful tool. This principle was originally developed for
local critical equation in bounded domains and was later extended to deal with local critical problem in
unbounded domains by Chabrowski [10]. In the fractional setting such extension was recently obtained
by Palatucci and Pisante [28] for p = 2 and then by Mosconi et al for any 1 < p < n

s
, see [27], to deal

with problems in bounded domains.

The main contribution of this article is to obtain a concentration compactness principle in the fractional
setting suitable to deal with the possibility of loss of mass at infinity in the same spirit as Chabrowsky’s
paper [10] for the local case. We then apply this principle to obtain sufficient existence conditions for
equations like (1.1) in all Rn.
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In order to state our results we need to recall some basic facts about fractional order Sobolev spaces.
We refer to [40] and [13] for more details.

Given a function v ∈ L1
loc(R

n), 0 < s < 1 ≤ p < ∞, we define its (s, p)−Gagliardo seminorm as

[v]ps,p :=

∫∫

Rn×Rn

|v(x) − v(y)|p

|x− y|n+sp
dxdy.

We denote Ds,p(Rn) the closure of C∞
c (Rn) with respect to the Gagliardo seminorm [v]s,p. Notice that

this space can be also characterized as Ds,p(Rn) = {v ∈ Lp∗

s (Rn) : [v]s,p < ∞}. We define the fractional
(s, p)−gradient of a function v ∈ Ds,p(Rn) as

(1.2) |Dsv(x)|p =

∫

Rn

|v(x+ h)− v(x)|p

|h|n+sp
dh.

Observe that this (s, p)−gradient is well defined a.e. in R
n and, moreover, |Dsv| ∈ Lp(Rn).

Throughout this paper, it will always be assumed that sp < n. It is well known that for v ∈ C∞
c (Rn),

[v]s,p < ∞ the following fractional order Sobolev inequality holds (see, for instance [30])

‖v‖p∗

s
≤ C[v]s,p,

where p∗s = np
n−sp

is the (critical) Sobolev exponent and, as usual, ‖v‖q denotes the Lq(Rn)−norm.

Obviously this inequality holds for any v ∈ Ds,p(Rn). We can then consider the best constant in this
inequality, namely

(1.3) S := inf
u∈Ds,p(RN )

[v]ps,p
‖v‖pp∗

s

= inf
u∈C∞

c (Rn)

[v]ps,p
‖v‖pp∗

s

.

The main result of this paper reads:

Theorem 1.1. Let {uk}k∈N ⊂ Ds,p(Rn) be a weakly convergent sequence with weak limit u.

Then there exist two bounded measures µ and ν, an at most enumerable set of indices I, and positive

real numbers µi, νi, i ∈ I, such that the following convergence hold weakly in the sense of measures,

|Dsuk|
p dx ⇀ µ ≥ |Dsu|p dx+

∑

i∈I

µiδxi
,(1.4)

|uk|
p∗

s dx ⇀ ν = |u|p
∗

s dx+
∑

i∈I

νiδxi
,(1.5)

S
1
p ν

1
p∗s

i ≤ µ
1
p

i for all i ∈ I,(1.6)

where S = S(n, p, s) is Sobolev constant given by (1.3). Moreover, if we define

ν∞ = lim
R→∞

lim sup
k→∞

∫

|x|>R

|uk|
p∗

s dx,(1.7)

µ∞ = lim
R→∞

lim sup
k→∞

∫

|x|>R

|Dsuk|
p dx,(1.8)

then

lim sup
k→∞

∫

Rn

|Dsuk|
p dx = µ(Rn) + µ∞,(1.9)

lim sup
k→∞

∫

Rn

|uk|
p∗

s dx = ν(Rn) + ν∞,(1.10)

S
1
p ν

1
p∗s
∞ ≤ µ

1
p
∞,(1.11)
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The proof of (1.4)–(1.6) can be easily deduced from the results in [27]. However we will include a more
direct proof of this fact in order to make the paper self contained.

The main novelty here, as we mentioned above, is (1.9)–(1.11). In order to achieve this, we follow the
lines of the approach found in Chabrowski’s paper [10]. However, some nontrivial technical difficulties
appear due to the fact that in the local case, the gradient of a function with compact support also has
compact support. In the nonlocal case, if u ∈ C∞

c (Rn) then |Dsu|p > 0 in R
n.

In order to overcome this difficulty, one needs to give an estimate of decay for the nonlocal gradient
at infinity and, moreover, one also needs to prove a compact embedding result of Ds,p(Rn) into Lp with
weights.

As an application of Theorem 1.1, we obtain existence results for the critical problem

(1.12) (−∆p)
su = h(x)|u|q−2u+K(x)|u|p

∗

s−2u in R
n,

where (−∆p)
s is the so-called p−fractional Laplacian defined as

(−∆p)
su(x) = p.v.

∫

Rn

|u(x)− u(y)|p−2(u(x) − u(y))

|x− y|n+sp
dy,

where p.v. stands for in principal value, and p ≤ q < p∗s.

In the local case s = 1 this kind of equation have been the subject of an intense research activity since
the seminal paper [2]. An exhaustive bibliography is almost imposible to establish. On the contrary, in
the fractional setting s < 1 much less is known though much effort have been dedicated very recently.
Critical equation with the fractional Laplacian in bounded domains have been considered in [3, 11, 34,
33, 35, 37, 39] when p = 2 and in [27] for a general p. Concerning critical equations in unbounded domain
we are only aware of [7, 14, 38]. These papers are concerned with the linear case p = 2. For general p we
only found [29]. Their results slightly overlaps with ours, however our approach allows us to treat more
general problems.

Our existence results for equation (1.12) in R
n, are stated precisely in section 3 below.

2. concentration compactness principle

In the following we will need this two properties of the nonlocal (s, p)−gradient. The first one is a
scaling property and the second one is a decay estimate for the nonlocal gradient of a function with
compact support.

Lemma 2.1. Let u ∈ Ds,p(Rn) and given r > 0 and x0 ∈ R
n we define ur,x0(x) = u(x−x0

r
).

Then,

|Dsur,x0(x)|
p =

1

rsp
|Dsu(x−x0

r
)|p.

Proof. The proof is an immediate consequence of the change of variables formula. In fact,

|Dsur,x0(x)|
p =

∫

Rn

|ur,x0(x+ h)− ur,x0(x)|
p

|h|n+sp
dh

=

∫

Rn

|u(x+h−x0

r
)− u(x−x0

r
)|p

|h|n+sp
dh

=
1

rsp

∫

Rn

|u(x−x0

r
+ k)− u(x−x0

r
)|p

|k|n+sp
dk

=
1

rsp
|Dsu(x−x0

r
)|p.

This finishes the proof. �



4 J. FERNÁNDEZ BONDER, NICOLAS SAINTIER AND A. SILVA

Now we show the decay lemma. Recall that if a function has compact support, then its gradient also
has compact support. However, this is not the case for the nonlocal (s, p)−gradient. What one actually
obtain is a decay of this nonlocal gradient given by the decay of the fractional kernel.

Lemma 2.2. Let v ∈ W 1,∞(Rn) be such that supp(v) ⊂ B1(0). Then, there exists a constant C > 0
depending on n, s, p and ‖v‖1,∞ such that

|Dsv(x)|p ≤ Cmin{1, |x|−(n+sp)}.

Proof. Let us first obtain a global L∞ bound for |Dsv|p. In fact,

|Dsv(x)|p =

(

∫

|h|<1

+

∫

|h|≥1

)

|v(x + h)− v(x)|p

|h|n+sp
dh = I + II.

These two integrals are bounded in the standard way:

II ≤ C

∫

|h|≥1

1

|h|n+sp
dh = C

and, using that ‖∇v‖∞ < ∞,

I ≤ C

∫

|h|<1

1

|h|n+sp−p
dh = C.

Now we consider the case where |x| > 2 and obtain the desired decay. Observe first that v(x) = 0 and
so

|Dsv(x)|p =

∫

Rn

|v(x+ h)|p

|h|n+sp
dh =

∫

|x+h|<1

|v(x + h)|p

|h|n+sp
dh.

Now, by a simple computation, it follows that |h| ≥ |x| − 1 ≥ |x|
2 if |x+ h| < 1. Hence

|Dsv(x)|p ≤
C

|x|n+sp
,

as we wanted to show. �

Combining these lemmas 2.1 and 2.2 we get the following

Corollary 2.3. Let φ ∈ W 1,∞(Rn) be such that supp(φ) ⊂ B1(0) and given r > 0 and x0 ∈ R
n we define

φr,x0(x) = φ(x−x0

r
). Then

|Dsφr,x0(x)|
p ≤ Cmin{r−sp; rn|x− x0|

−(n+sp)},

where C > 0 depends con n, s, p and ‖φ‖1,∞.

Finally, we need a compactness lemma with weights.

Lemma 2.4. Let 0 < s < 1 < p be such that sp < n and let p ≤ q < p∗s.

Let w ∈ L∞(Rn) be such that there exists α > 0 and C > 0 such that

0 ≤ w(x) ≤ C|x|−α.

Then, if α > sq − n q−p
p

, Ds,p(Rn) ⊂⊂ Lq(w dx;Rn). That is, for any bounded sequence {uk}k∈N ⊂

Ds,p(Rn), there exists a subsequence {ukj
}j∈N ⊂ {uk}k∈N and a function u ∈ Ds,p(Rn) such that ukj

⇀ u
weakly in Ds,p(Rn) and

(2.1)

∫

Rn

|ukj
(x) − u(x)|q w(x)dx → 0 as j → ∞.

Remark 2.5. Observe that in the case p = q we need α > sp. So if φ ∈ W 1,∞(Rn) has compact support,
then w = |Dsφ|p verifies the hypotheses of Lemma 2.4 with q = p.
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Proof. From the reflexivity of Ds,p(Rn), the Rellich-Kondrashov theorem and a standard diagonal argu-
ment, it follows that there exists u ∈ Ds,p(Rn) and a subsequence (that we still denote by {uk}k∈N) such
that

uk ⇀ u weakly in Ds,p(Rn)

uk → u strongly in Lq
loc(R

n).

It remains to see (2.1).

Take R > 0 to be chosen, and compute

∫

Rn

|ukj
(x) − u(x)|q w(x)dx =

(

∫

|x|<R

+

∫

|x|≥R

)

|ukj
(x)− u(x)|q w(x)dx = I + II.

Let us first bound II. To this end, we use Hölder’s inequality and obtain

II ≤ C
(

‖uk‖
q
p∗

s
+ ‖u‖qp∗

s

)

(

∫

|x|≥R

w

(

p∗s
q

)

′

dx

)
1

(

p∗s
q

)

′

≤ C

(

∫

|x|≥R

w

(

p∗s
q

)

′

dx

)
1

(

p∗s
q

)

′

,

where we have used Sobolev-Poincaré inequality in the last step.

Finally, we use our decay assumption on w and obtain limR→∞ II = 0 uniformly on k ∈ N.

So given ε > 0 we chose R > 0 such that II < ε for any k ∈ N.

Next, in order to bound I, we just use the L∞ bound on w and obtain

I ≤ ‖w‖∞‖uk − u‖qq;BR
→ 0 as k → ∞.

All these estimates together imply that

lim sup
k→∞

∫

Rn

|ukj
(x)− u(x)|q w(x)dx ≤ ε,

for every ε > 0. The proof is completed. �

We are now in position of proving the concentration compactness principle.

Proof of Theorem 1.1. The proof of (1.4)–(1.6), can be found, for instance, in [27]. However, in order to
make the paper self contained, we make a short sketch of the proof. The strategy is the same as the one
in the seminal paper of P.L. Lions [24].

First we consider the case where u = 0. In this case, we first show that the measures µ and ν verify a
reverse Hölder inequality. In fact, given φ ∈ C∞

c (Rn) we will prove that

(2.2) S
1
p

(
∫

Rn

|φ|p
∗

s dν

)
1
p∗s

≤

(
∫

Rn

|φ|p dµ

)
1
p

Hence, from (2.2) it follows exactly as in [24] that there exists a countable set I, points {xi}i∈I ⊂ R
n

and positive weights {νi}i∈I , {µi}i∈I ⊂ R such that

ν =
∑

i∈I

νiδxi
, µ ≥

∑

i∈I

µiδxi
.

From this particular case u = 0, the general case can be deduced as in [24] by using the classical Brezis-
Lieb Lemma [5, Theorem 1].

Hence, we need to show (2.2) and the relation between the weights νi and µi given by (1.6).
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To prove (2.2), observe that, given φ ∈ C∞
c (Rn), applying the Sobolev inequality we get

S
1
p ‖φuk‖p∗

s
≤ ‖Ds(φuk)‖p.

By the definition of ν, it follows that ‖φuk‖p∗

s
→
(∫

Rn |φ|p
∗

s dν
)

1
p∗s as k → ∞.

For the right-hand-side, we observe that

‖Ds(φuk)‖p ≤

(
∫∫

Rn×Rn

|φ(x)|p
|uk(x + h)− uk(x)|

p

|h|n+sp
dh dx

)
1
p

+

(
∫∫

Rn×Rn

|uk(x+ h)|p
|φ(x+ h)− φ(x)|p

|h|n+sp
dh dx

)
1
p

where we have used Minkowski’s inequality.

Now, observe that, by a simple change of variables,
∫∫

Rn×Rn

|uk(x+ h)|p
|φ(x + h)− φ(x)|p

|h|n+sp
dh dx =

∫∫

Rn×Rn

|uk(y)|
p |φ(y)− φ(y + ĥ)|p

|ĥ|n+sp
dĥ dy

=

∫

Rn

|uk(y)|
p|Dsφ(y)|p dy.

Hence, we get

‖Ds(ukφ)‖p ≤

(
∫

Rn

|φ(x)|p|Dsuk(x)|
p dx

)
1
p

+

(
∫

Rn

|uk(x)|
p|Dsφ(x)|p dx

)
1
p

.

Now, from Lemma 2.2, the weight w(x) := |Dsφ(x)|p satisfies the hypotheses of Lemma 2.4, and hence
uk → 0 strongly in Lp(w). Therefore

lim sup
k→∞

‖Ds(φuk)‖p ≤

(
∫

Rn

|φ|p dµ

)
1
p

.

This concludes the proof of the reverse Hölder inequality (2.2).

Now, to prove the relation between the weights νi and µi (1.6), we take φ ∈ C∞
c (Rn) be such that

0 ≤ φ ≤ 1, φ(0) = 1, suppφ = B1(0) and given ε > 0 we consider the rescaled functions φi,ε(x) = φ(x−xi

ε
).

Without loss of generality we may assume that xi = 0 and write φε = φi,ε. Recall that from Corollary
2.3 we have that

(2.3) |Dsφε(x)|
p ≤ Cmin{ε−sp; εn|x|−(n+sp)}.

Now, (2.3) implies that |Dsφε|p satisfies the hypotheses of Lemma 2.4, therefore, arguing as in the
proof of the reverse Hölder inequality (2.2), one arrives at

S
1
p

(
∫

Rn

|φε|
p∗

s dν

)
1
p∗s

≤

(
∫

Rn

|φε|
p dµ

)
1
p

+

(
∫

Rn

|u|p|Dsφε|
p dx

)
1
p

.

Now,
∫

Rn |φε|p
∗

s dν ≥ νi and
∫

Rn |φε|p dµ ≤ µ(Bε(0)) → µi as ε → 0. Hence it remains to check that

(2.4)

∫

Rn

|u|p|Dsφε|
p dx → 0 as ε → 0.

Two main difficulties arise now. One, once again, comes from the fact that the nonlocal gradient
|Dsφε|

p does not has compact support. The second one, unlike the bounded domain case, is that u does
not belong to Lp(Rn). In order to overcome these difficulties, we use the precise rate of decay for |Dsφε|p

given by (2.3).
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So,
∫

Rn

|u|p|Dsφε|
p dx ≤ C

(

ε−sp

∫

|x|<ε

|u|p dx + εn
∫

|x|≥ε

|u|p

|x|n+sp
dx

)

= C(I + II).

The first term is the easiest one,

I ≤ ε−sp

(

∫

|x|<ε

|u|p
∗

s dx

)

p

p∗s

|Bε|
sp
n = C

(

∫

|x|<ε

|u|p
∗

s dx

)

p

p∗s

.

Since u ∈ Lp∗

s (Rn) the last term goes to zero as ε → 0.

For the second term we proceed as follows,

II =
∞
∑

k=0

εn
∫

2kε≤|x|≤2k+1ε

|u|p

|x|n+sp
dx

≤
∞
∑

k=0

1

2k(n+sp)

1

εsp

∫

|x|≤2k+1ε

|u|p dx

≤
∞
∑

k=0

1

2k(n+sp)

1

εsp

(

∫

|x|<2k+1ε

|u|p
∗

s dx

)

p

p∗s

|B2k+1ε|
sp
n

= c

∞
∑

k=0

1

2nk

(

∫

|x|<2k+1ε

|u|p
∗

s dx

)

p

p∗s

,

where c depends only on n, s, p.

Now, given δ > 0, take k0 ∈ N such that c
∑∞

k=k0+1 2
−nk < δ. So

II ≤ ‖u‖pp∗

s
δ + c

k0
∑

k=0

1

2nk

(

∫

|x|<2k0+1ε

|u|p
∗

s dx

)

p

p∗s

= ‖u‖pp∗

s
δ + C(s, p, n, k0)

(

∫

|x|<2k0+1ε

|u|p
∗

s dx

)

p

p∗s

.

Therefore, we obtain that lim supε→0 II ≤ δ‖u‖pp∗

s
, for any δ > 0. This concludes the proof of (1.6).

It remains to see (1.9)–(1.11). Consider a smooth function φ : [0,+∞) → [0, 1] such that φ ≡ 0 in [0, 1]
and φ ≡ 1 in [2,+∞). Then φR(x) := φ(|x|/R) is smooth and satisfies φR(x) = 1 for |x| ≥ 2R, φR(x) = 0
for |x| ≤ R and 0 ≤ φR(x) ≤ 1. We then write that

(2.5)

∫

Rn

|Dsuk|
p dx =

∫

Rn

|Dsuk|
pφp

R dx+

∫

Rn

|Dsuk|
p(1− φp

R) dx.

Observe first that
∫

|x|>2R

|Dsuk|
p dx ≤

∫

Rn

|Dsuk|
pφp

R dx ≤

∫

|x|>R

|Dsuk|
p dx

so that

(2.6) µ∞ = lim
R→∞

lim sup
k→∞

∫

Rn

|Dsuk|
pφp

R dx.

In the same way

(2.7) ν∞ = lim
R→∞

lim sup
k→∞

∫

Rn

|uk|
p∗

sφ
p∗

s

R dx.
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On the other hand, since 1− φp
R is smooth with compact support, we have by definition of µ that for R

fixed,

lim
k→∞

∫

Rn

(1 − φp
R)|D

suk|
p dx =

∫

Rn

(1 − φp
R) dµ.

Since φR → 0 pointwise and µ is a finite nonnegative measure, it follows from the Dominated Conver-
gence Theorem that limR→∞

∫

Rn φp
R dµ = 0. Hence, we obtain

(2.8) lim
R→∞

lim sup
k→∞

∫

Rn

(1− φp
R)|D

suk|
p dx = µ(Rn).

Plugging (2.6) and (2.8) into (2.5) yields (1.9). The proof of (1.10) is similar.

By definition of the Sobolev constant S, we know that

S
1
p ‖ukφR‖p∗

s
≤ ‖Ds(ukφR)‖p.

As before, we have

‖Ds(ukφR)‖p ≤

(
∫

Rn

|φR(x)|
p|Dsuk(x)|

p dx

)
1
p

+

(
∫

Rn

|uk(x)|
p|DsφR(x)|

p dx

)
1
p

.

In order to finish the proof of the result, it remains to prove that

(2.9) lim
R→∞

lim
k→∞

∫

Rn

|uk(x)|
p|DsφR(x)|

p dx = 0.

Once again, we use the precise rate of decay of this nonlocal gradient given by Corollary 2.3 and use
the compact embedding of Ds,p(Rn) into a weighted Lp space given by Lemma 2.4.

In fact, from Lemma 2.4 we have that

lim
k→∞

∫

Rn

|uk|
p|DsφR|

p dx =

∫

Rn

|u|p|DsφR|
p dx.

Now, let W (x) := min{1; |x|−(n+sp)}. Hence, from Corollary 2.3 applied to 1 − φR there exists a
constant C > 0, independent of R, such that |DsφR(x)|p ≤ CW (x) for every R > 1. Moreover, from
Lemma 2.4 we have that |u|pW ∈ L1(Rn). Finally, observe that |DsφR(x)|p → 0 as R → ∞. So, by the
Dominated Convergence Theorem, we arrive at

(2.10) lim
R→∞

∫

Rn

|u|p|DsφR|
p dx = 0.

The proof is finished. �

3. Applications to critical equations with the fractional p-Laplacian in R
n.

In this section we use Theorem 1.1 to obtain some existence results for the equation

(3.1) (−∆p)
su = λh(x)|u|q−2u+K(x)|u|p

∗

s−2u in R
n,

where p ≤ q < p∗s.

We consider two cases.

(1) p < q < p∗s and
(2) q = p.

For the first case, we impose the following assumptions on h and K:

0 ≤ h ∈ L1
loc(R

n) is such that the immersion Ds,p(Rn) ⊂ Lq(h dx;Rn) is compact.(h1)

The function K is nonnegative, bounded, and has a limit at ∞(K1)

i..e. K ∈ L∞(Rn), K ≥ 0, there exists K(∞) := lim
|x|→+∞

K(x).
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Under these assumptions we have the following result:

Theorem 3.1. Let 0 < s < 1 < p < q be such that sp < n and q < p∗s. Assume moreover that the

functions h and K satisfy (h1) and (K1).

Then, there exists λ0 > 0 such that (3.1) has a nontrivial solution for any λ > λ0.

This kind of result goes back to [17]. A result similar to ours in the linear case p = 2 is given in [38].

For the 2nd case q = p we assume that K(x) = 1 and that h verifies (h1) with q = p and

h ∈ L∞(Rn) and there exists x0 ∈ R
n such that h is continuous at x0 and h(x0) > 0.(h2)

Then, we have the following result:

Theorem 3.2. Let 0 < s < 1 < p < ∞ be such that sp2 < n. Assume moreover that the function h
satisfies (h1) with q = p and (h2) and that K(x) = 1.

Then, (3.1) has a nontrivial solution for any 0 < λ < λ1(h), where λ1(h) is given by

(3.2) λ1(h) := inf
v∈Ds,p(Rn)

[v]ps,p
∫

Rn h(x)|v|p dx
.

Remark 3.3. Observe that our assumption (h1) implies that λ1(h) is well define and positive. In fact, it
is the first eigenvalue of the problem

(−∆p)
su = λh(x)|u|p−2u in R

n.

The result of Theorem 3.2 can be generalized for nonconstant K under the assumption that K reaches
its maximum at some x0 ∈ R

n and is flat enough near x0. See Theorem 3.12.

As a final application we study the case where q = p and K reaches its maximum at ∞. For this case
we impose

0 ≤ K ∈ L∞(Rn), ‖K‖∞ = lim
|x|→∞

K(x) =: K(∞) and |K(x)−K(∞)| ≤
C

|x|β
(K∞)

for some β > 0.

Moreover, since (h1) implies a decay of h at infinity, we need a hypothesis to control this decay. So we
assume

h(x) ≥
A

|x|γ
, with γ <

n

p− 1
.(h∞)

for large values of |x|.

Theorem 3.4. Let 0 < s < 1 < p < ∞ be such that sp2 < n. Assume moreover that the function h
satisfies (h1) with q = p and (h∞) and that K verifies (K∞) for some β > γ.

Then, (3.1) has a nontrivial solution for any 0 < λ < λ1(h), where λ1(h) is given by (3.2).

Remark 3.5. Observe that from Lemma 2.4, in order for h to satisfy (h1) and (h∞) it is enough to have

A

|x|γ
≤ h(x) ≤

C

|x|γ′
,

for large values of |x|, with sp < γ′ ≤ γ < n
p−1 . Since we are assuming sp2 < n we have that sp < n

p−1

so there always exists admissible values for γ and γ′.

The method of proof of Theorems 3.1, 3.2, 3.12 and 3.4 we just stated is quite standard and relies
on the standard Mountain Pass Theorem. The Concentration-Compactness Principle Theorem 1.1 is
then used to obtain an existence criterion (see Theorem 3.8 below). We then conclude the proofs of the
different results doing some test-functions computations from which we obtain the sufficient conditions
stated above.
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This scheme of proof is very standard when dealing with critical equations, local or non-local. In
the nonlocal setting it has been succesfuly used to deal with the fractional Laplacian in bounded or
unbounded domain in all the papers mentioned in the introduction. It must be mentioned however that
the authors in [39] and [7] adopt Cafarrelli-Silvestre’s approach of the fractional Laplacian considering
the extension of the equation to R

n+1 which allows to recover a local setting at the cost of dealing with
degenerate operators, see [8].

Another approach has been taken in [14] where the authors construct a solution using the Lyapunov-
Schmidt reduction method considering equation (3.1) for small values of λ and thus as a perturbation of
the pure critical case.

The existence conditions we obtained are the natural counterpart of the known results in the local case
s = 1 and agrees with the results obtained in the fractional setting in [27] and [36]. It must be mentioned
however that our last result, though using the same ideas, does not seem to be classical even in the local
case (we refer to [?] where this kind of result has been proved recently in the context of variable exponent
spaces).

3.1. An existence criterion. We will look for a solution of (3.1) as a critical point of the associated
functional

Fλ : D
s,p(Rn) → R

(3.3) Fλ(u) :=
1

p

∫∫

Rn×Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy −

λ

q

∫

Rn

h(x)|u|q dx−
1

p∗s

∫

Rn

K(x)|u|p
∗

s dx.

We first prove a preliminary lemma which is more or less classical.

Lemma 3.6. Let {uk}k∈N ⊂ Ds,p(Rn) be a Palais-Smale sequence for Fλ. Then, up to a subsequence,

there exists u ∈ Ds,p(Rn) such that uk ⇀ u weakly in Ds,p(Rn) and u is a weak solution of (3.1).

Moreover letting µ, ν, µi, νi, µ∞, ν∞ be as in Theorem 1.1 when applied to {uk}k∈N we have the

following estimates:

νi ≥ S
n
spK(xi)

− n
sp , µi ≥ S

n
spK(xi)

1− n
sp if K(xi) > 0,(3.4)

µi = νi = 0 if K(xi) = 0,(3.5)

and a similar result at infinity:

ν∞ ≥ S
n
spK(∞)−

n
sp , µ∞ ≥ S

n
spK(∞)1−

n
sp if K(∞) > 0,(3.6)

µ∞ = ν∞ = 0 if K(∞) = 0,(3.7)

where K(∞) = lim sup|x|→∞ K(x).

Proof. The proof is more or less classical so we will be sketchy. We first prove that {uk}k∈N is bounded
in Ds,p(Rn). Recalling the definition of a Palais-Smale sequence, it is easily seen that

C + o(1)[uk]s,p ≥ Fλ(uk)−
1

q
〈F ′

λ(uk), uk〉

≥

(

1

p
−

1

q

)

[uk]
p
s,p +

(

1

q
−

1

p∗s

)
∫

Rn

K(x)|uk|
p∗

s dx.

Therefore, from (K1) we conclude that {uk}k∈N is bounded in Ds,p(Rn).

Up to a subsequence we can thus assume that {uk}k∈N weakly converges in Ds,p(Rn) to some u, and
then also that the convergence holds in Lq(h dx,Rn).

Estimates (3.4)–(3.7) are a direct consequence of (1.6), (1.11) and the following:

(3.8) µi = νiK(xi) for any i ∈ I,

and

(3.9) µ∞ = ν∞K(∞).
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To prove (3.8), we fix a concentration point xi, a smooth function φ : Rn → [0, 1] with compact support

in B2 such that φ = 1 in B1, and consider φδ(x) := φ( |x−xi|
δ

).

Notice that the sequence {ukφδ}k∈N is bounded in Ds,p(Rn). We then write that

〈(−∆p)
suk, ukφδ〉 =

∫∫

Rn×Rn

|uk(x) − uk(y)|p

|x− y|n+sp
φδ(x) dxdy

+

∫∫

Rn×Rn

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(φδ(x) − φδ(y))

|x− y|n+sp
uk(y) dxdy

=I + II

For the first term, we have

I =

∫

Rn

φδ|D
suk|

p dx →

∫

Rn

φδ dµ.

But, since µ−
∑

i∈I µiδxi
has no atoms and φδ(x) → 0 as δ → 0 for any x 6= x1, we conclude that

lim
δ→0

lim
k→∞

I = µi.

The second term converges to 0. In fact,

II ≤

∫

Rn

|uk(y)| (|D
suk(y)|

p)
1
p′ (|Dsφδ(y)|

p)
1
p dy

≤ ‖Dsuk‖
p

p′

p

(
∫

Rn

|uk|
p|Dsφδ|

p dx

)
1
p

≤ C

(
∫

Rn

|uk|
p|Dsφδ|

p dx

)
1
p

.

Using now Lemmas 2.2 and 2.4, we get that

lim sup
k→∞

II ≤ C

(
∫

Rn

|u|p|Dsφδ|
p dx

)
1
p

.

Finally, arguing as in the proof of (2.4), it follows that

lim
δ→0

lim
k→∞

II = 0.

On the other hand as {uk}k∈N is a Palais-Smale sequence,

o(1) = 〈F ′
λ(uk), ukφδ〉 = 〈−∆s

puk, ukφδ〉 − λ

∫

Rn

h(x)|uk|
qφδ dx−

∫

Rn

K(x)|uk|
p∗

sφδ dx.

It is easy to check that

lim
δ→0

lim
k→∞

∫

Rn

h(x)|uk|
qφδ dx = lim

δ→0

∫

Rn

h(x)|u|qφδ dx = 0

and

lim
δ→0

lim
k→∞

∫

Rn

K(x)|uk|
p∗

sφδ dx = lim
δ→0

∫

Rn

K(x)φδ dν = K(xi)νi.

We conclude that K(xi)νi = µi.

The proof of (3.9) is similar to the one of (3.8). In this case, we fix φ : Rn → [0, 1] be a smooth function
such that φ ≡ 0 in B1 and φ ≡ 1 in R

n\B2, and then consider φR(x) := φ( x
R
). Notice that for a given

R > 0, the sequence {ukφR}k∈N is bounded in Ds,p(Rn).
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Now

〈(−∆p)
suk, ukφR〉 =

∫∫

Rn×Rn

|uk(x)− uk(y)|p

|x− y|n+sp
φR(x) dxdy

+

∫∫

Rn×Rn

|uk(x)− uk(y)|p−2(uk(x)− uk(y))(φR(x) − φR(y))

|x− y|n+sp
uk(y) dxdy

=I + II.

For I we have limR→∞ limk→∞ I = limR→∞ limk→∞

∫

Rn φR|D
suk|

p dx = µ∞.

Proceeding as in the proof of (3.8), we get that

lim sup
k→∞

II ≤ C

(
∫

Rn

|u|p|DsφR|
p dy

)
1
p

.

Finally, we argue as in the proof of (2.10) and obtain that

lim
R→∞

lim
k→∞

II = 0.

As before,

o(1) = 〈F ′
λ(uk), ukφR〉 = 〈−∆s

puk, ukφR〉 − λ

∫

Rn

h(x)|uk|
qφR dx−

∫

Rn

K(x)|uk|
p∗

sφR dx.

It is easy to see that

lim
R→∞

lim
k→∞

∫

Rn

h(x)|uk|
qφR dx = 0,

lim
R→∞

lim
k→∞

∫

Rn

K(x)|uk|
p∗

sφR dx = K(∞)ν∞.

In fact,
∫

Rn

K(x)|uk|
p∗

sφR dx = K(∞)

∫

Rn

|uk|
p∗

sφR dx+

∫

Rn

(K(x)−K(∞))|uk|
p∗

sφR dx = K(∞)I + II,

and passing to the limit as k → ∞ and then as R → ∞ we get that I → ν∞ and II → 0 since, given
ε > 0, for R large, we have II ≤ ε

∫

|x|≥R
|uk|p

∗

dx → εν∞.

Thus combining these estimates, we obtain (3.9).

It follows from (3.4)–(3.5) that there are at most a finite number of concentration points.

It remains to see that u is a weak solution of (3.1). But this is somewhat standard, since given
v ∈ C∞

c (Rn), we have that

o(1) =〈F ′
λ(uk), v〉

=

∫∫

Rn×Rn

|uk(x) − uk(y)|p−2(uk(x) − uk(y))

|x− y|
n+sp

p′

v(x)− v(y)

|x− y|
n
p
+s

dxdy

− λ

∫

Rn

h(x)|uk|
q−2ukv dx−

∫

Rn

K(x)|uk|
p∗

s−2ukv dx.

By standard integration theory, one gets that
∫

Rn

h(x)|uk|
q−2ukv dx →

∫

Rn

h(x)|u|q−2uv dx,

∫

Rn

K(x)|uk|
p∗

s−2ukv dx →

∫

Rn

K(x)|u|p
∗

s−2uv dx.

Now, if we call

ξk(x, y) =
|uk(x) − uk(y)|p−2(uk(x)− uk(y))

|x− y|
n+sp

p′

,
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then {ξk}k∈N is bounded in Lp′

(Rn ×R
n) and so there exists ξ ∈ Lp′

(Rn ×R
n) such that ξk ⇀ ξ weakly

in Lp′

(Rn × R
n).

Therefore
∫∫

Rn×Rn

ξk(x, y)
v(x) − v(y)

|x − y|
n
p
+s

dxdy →

∫∫

Rn×Rn

ξ(x, y)
v(x) − v(y)

|x − y|
n
p
+s

dxdy.

Finally, since uk → u a.e. in R
n, one obtains that ξk → |u(x)−u(y)|p−2(u(x)−u(y))

|x−y|
n+sp

p′

a.e. in R
n × R

n and so

ξ(x, y) =
|u(x)− u(y)|p−2(u(x) − u(y))

|x− y|
n+sp

p′

.

These facts altogether give that u is a weak solution to (3.1). �

We now prove that the functional Fλ verifies the Palais-Smale condition for small energy levels.

Proposition 3.7. The functional Fλ defined in (3.3) verifies the Palais-Smale condition at level c for

all real numbers c satisfying

c <
s

N
S

N
sp ‖K‖

1− N
sp

∞ .

Proof. Let {uk}k∈N ⊂ Ds,p(Rn) be a Palais-Smale sequence for Fλ of level c. Up to a subsequence, we
can assume that {uk}k∈N weakly converges to some u ∈ Ds,p(Rn).

Let µ, ν, µi, νi, µ∞, ν∞ be as in the concentration-compactness principle Theorem. 1.1 when applied
to {uk}k∈N. Then

c = lim
k→∞

Fλ(uk)

=
1

p
(µ(Rn) + µ∞)−

λ

q

∫

Rn

h(x)|u|q dx−
1

p∗s

∫

Rn

K(x) dν

≥ Fλ(u) +
∑

i∈I

(

µi

p
−

K(xi)νi
p∗s

)

+
µ∞

p
−

K(∞)ν∞
p∗s

.

Observe now that, since by Lemma 3.6 u is a solution to (3.1), we have that

Fλ(u) = λ

(

1

p
−

1

q

)
∫

Rn

h(x)|u|q dx+

(

1

p
−

1

p∗s

)
∫

Rn

K(x)|u|p
∗

s dx ≥ 0,

then we deduce, using (3.8), (3.9) and (3.4)-(3.7), that

c ≥
s

N
S

n
sp ‖K‖

1− N
sp

∞ (#I + 1)

therefore I = ∅, ν∞ = µ∞ = 0 and the result follows. �

A direct application of the Mountain-pass theorem combined with Proposition 3.7 then yields the
following existence condition:

Theorem 3.8. Let 0 < s < 1 < p ≤ q be such that sp < n and p ≤ q < p∗s. Assume (h1) and (K1).
Moreover, assume that there exists v ∈ Ds,p(Rn) such that

(3.10) sup
t>0

Fλ(tv) <
s

n
S

n
sp ‖K‖

1− n
sp

∞ .

Then there exists a non-trivial solution for (3.1).
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Proof. We only need to check the geometric conditions of the Mountain Pass Theorem. The case p <
q < p∗s is standard and is omitted.

For the case p = q we just observe that if 0 < λ < λ1(h), then

[v]ps,p − λ

∫

Rn

h(x)|v|p dx ≥

(

1−
λ

λ1(h)

)

[v]ps,p.

From this inequality the rest of the proof is standard. �

3.2. Case p < q < p∗s. Proof of Theorem 3.1. We only need to show the existence of v ∈ Ds,p(Rn)
such that (3.10) holds. To this end, fix v ∈ Ds,p(Rn) such that

∫

Rn

K(x)|v|p
∗

s dx = 1,

and define

ϕλ(t) = Fλ(tv) =
tp

p
[v]ps,p − λ

tq

q

∫

Rn

h(x)|v|q dx−
tp

∗

s

p∗s
.

It is easy to see that given λ > 0, there exists tλ > 0 such that supt>0 Fλ(tv) = ϕλ(tλ).

We will show that tλ → 0 as λ → ∞ and so lim supλ→∞ ϕλ(tλ) ≤ 0, therefore the conclusion of
Theorem 3.1 follows.

Now, just observe that

0 = ϕ′
λ(tλ) = tp−1

λ [v]ps,p − λtq−1
λ

∫

Rn

h(x)|v|q dx− t
p∗

s−1
λ ,

from where it follows that

(3.11) [v]ps,p = t
p∗

s−p

λ + tq−p
λ λ

∫

Rn

h(x)|v|q dx.

From (3.11) if follows that tλ is bounded and, moreover,

tλ ≤

(

[v]ps,p
λ
∫

Rn h(x)|v|q dx

)

1
q−p

.

So, tλ → 0 as we wanted to show and this concludes the proof of Theorem 3.1. �

Remark 3.9. A careful observation of the proof of Theorem 3.1 provides with a (somewhat) explicit lower
bound for λ0. In fact, is we denote

C = C(n, s, p, q, h) = inf
v∈Ds,p(Rn)

[v]ps,p
(∫

Rn h(x)|v|q dx
)

p
q

,

which is positive and well defined by (h1), then one gets

λ0 > C
q
p

( s

n
S

n
sp ‖K‖

1− n
sp

∞

)

p−q
p

.

Remark 3.10. We want to point out that, once the functional setup for the functional Fλ is stablished,
together with the compact immersion Ds,p(Rn) ⊂⊂ Lp(h, dx), one can obtain the existence result for
(3.1) under the same assumptions of Theorem 3.1 but for any λ ≥ λ1(h). In fact, following the ideas of
[29], one applies a Linking theorem due to Yang and Perera in [41] (see also [9]) exactly in the same way
as in [29] with the obvious modifications.
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3.3. Case p = q. Proof of Theorem 3.2. Again, by Theorem 3.8 it remains to show the existence
of a test function v ∈ Ds,p(Rn) such that (3.10) holds. Recall that in this case we are assuming that
K(x) = 1.

The idea behind this construction goes back to the seminal paper by Brezis and Nirenberg [6]. The main
difficulty here is the fact that the explicit form of the extremal for the Sobolev embedding Ds,p(Rn) ⊂
Lp∗

s (Rn) is not know.

It is conjectured that this extremals are of the form

Vε,x0(x) := ε−
n−sp

p V

(

x− x0

ε

)

, V (x) =

(

1

1 + |x|p′

)

n−sp
p

,

which are the natural extensions of the standard bubbles for the embedding D1,p(Rn) ⊂ Lp∗

(Rn).

This conjecture is only known to be true in the case p = 2. See [23].

In the general case, it remains open, but nonetheless, what is known (see [4] for a thorough study of
this problem) is that there exists an extremal U ∈ Ds,p(Rn) for (1.3) and that this extremal is radial and
behaves like V at infinity. More precisely, it is shown in [4] that there exists universal constants c1, c2 > 0
such that

(3.12) c1V (x) ≤ U(x) ≤ c2V (x), for |x| ≥ 1.

Once these observations are made, the proof of Theorem 3.2 is even simpler than the classical result
of Brezis and Nirenberg, since we are working in the whole space and there is no need to truncate the
extremal U . However, this approach gives a further restriction on the exponents, that is classical in the
literature, that is sp2 < n. This restriction guarantees that U ∈ Lp(Rn).

So, we will show that Uε verifies (3.10), i.e.

sup
t>0

Fλ(tUε) <
s

n
S

n
sp ,

if ε > 0 is small enough, where

Uε(x) = ε−
n−sp

p U

(

x− x0

ε

)

,

and x0 ∈ R
n is the point given in (h2). Without loss of generality, we assume that x0 = 0.

We can also assume that U is normalized as

S
n
sp = [U ]ps,p = ‖U‖

p∗

s

p∗

s

and so

(3.13) S
n
sp = [Uε]

p
s,p = ‖Uε‖

p∗

s

p∗

s
.

Therefore, using (3.13),

Fλ(tUε) =

(

tp

p
−

tp
∗

s

p∗s

)

S
n
sp − λ

tp

p

∫

Rn

h(x)Up
ε dx.

But
∫

Rn

h(x)Up
ε dx = εsp

∫

Rn

h(εx)Up(x) dx = εsp
(

h(0)‖U‖pp +

∫

Rn

(h(εx)− h(0))Up(x) dx

)

.

So, if sp2 < n, (3.12) implies that U ∈ Lp(Rn), hence, by (h2),

(3.14)

∫

Rn

h(x)Up
ε dx = εsph(0)‖U‖pp + o(εsp).
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Therefore, straightforward computations show that

sup
t>0

Fλ(tUε) =
s

n

(

S − λh(0)‖U‖ppS
1− n

sp εsp + o(εsp)
)

n
sp

<
s

n
S

n
sp ,

if ε > 0 is small enough. The proof is complete. �

3.4. A refinement of Theorem 3.2. The result of Theorem 3.2 can be further generalized of we assume
that the function K in (3.1) is non constant, but reaches its maximum at some point x0 and is flat enough
near x0.

In fact, we need to impose that there exists α∗ = α∗(n, p, s) such that

(3.15) |K(x)−K(x0)| ≤ C|x− x0|
α, for some α > α∗.

In fact, from our computations it follows that we can take

α∗ =
spn

n− sp(p− 1)
.

Recall that since we are assuming that sp2 < n if follows that α∗ > 0.

To see this fact, is enough to prove that

(3.16)

∫

Rn

K(x)Uε,x0(x)
p∗

s dx = K(x0)S
n
sp + o(εsp).

This is the content of the next lemma.

Lemma 3.11. Assume sp2 < n and K ∈ L∞(Rn)∩C(Rn) be such there exists x0 ∈ R
n such that (3.15)

holds. Then (3.16) holds true.

Proof. The proof is rather standard. Without loss of generality we can assume that x0 = 0.
∫

Rn

K(x)Uε(x)
p∗

s dx =

∫

Rn

K(εx)U(x)p
∗

s dx

= K(0)S
n
sp +

∫

Rn

(K(εx)−K(0))U(x)p
∗

s dx.

So it suffices to show that
∫

Rn

|K(εx)−K(0)|U(x)p
∗

s dx = o(εsp).

As usual, we split the integral for small and large values of |x|. For that purpose, we take R > 0 to be
defined later and write

∫

Rn

|K(εx)−K(0)|U(x)p
∗

s dx =

(

∫

|x|≤R

+

∫

|x|>R

)

|K(εx)−K(0)|U(x)p
∗

s dx = I + II.

For I we use (3.16) and obtain

I ≤ C(εR)αS
n
sp .

For II, we just use the L∞ bound of K and (3.12) to obtain

II ≤ C

∫

|x|>R

V (x)p
∗

s dx ≤ CR− n
p−1 .

Now, optimizing on R, we take

R = ε−
α(p−1)

α(p−1)+n ,

obtaining
∫

Rn

|K(εx)−K(0)|U(x)p
∗

s dx ≤ Cε
αn

α(p−1)+n .
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From this estimate, we obtain the desired result once observed that αn
α(p−1)+n

> sp if and only if α >

α∗. �

As a corollary, we obtain the next result

Theorem 3.12. Let 0 < s < 1 < p < ∞ be such that sp2 < n. Assume moreover that K ∈ L∞(Rn) ∩
C(Rn) verifies (3.15) and reaches its maximum at some point x0 ∈ R

n for which the function h satisfies

(h2). Assume also that h satisfies (h1) with q = p.

Then, (3.1) has a nontrivial solution for any 0 < λ < λ1(h), where λ1(h) is given by (3.2).

3.5. Proof of Theorem 3.4. Take xε ∈ R
n be such that |xε| → ∞ as ε → 0.

The proof follows exactly as the one of Theorem 3.2 with test function given by Uε,xε
. So, in order to

conclude we need to estimate
∫

Rn

K(x)Uε,xε
(x)p

∗

s dx and

∫

Rn

h(x)Uε,xε
(x)p dx.

Changing variables, we get

(3.17)

∫

Rn

h(x)Uε,xε
(x)p dx = εsp

∫

Rn

h(xε + εx)U(x)p dx ≥ A
εsp

(2|xε|)γ

∫

B1(0)

Up dx

and
∫

Rn

K(x)Uε,xε
(x)p

∗

s dx =

∫

Rn

K(xε + εx)U(x)p
∗

s dx

= K(∞)S
n
sp +

∫

Rn

(K(xε + εx)−K(∞))U(x)p
∗

s dx.

Now we need to control the integral on the right hand side. So, as in the proof of Theorem 3.12, we take
R > 0 to be chosen later and write

∫

Rn

|K(xε + εx)−K(∞)|U(x)p
∗

s dx =

(

∫

|x|≤R

+

∫

|x|>R

)

|K(xε + εx)−K(∞)|U(x)p
∗

s dx

= I + II.

To bound I we use (K∞) and obtain

I ≤
C

(|xε| − εR)β
S

n
sp .

To bound II we use the L∞ bound of K and get

II ≤ C

∫

|x|>R

V p∗

s dx ≤ CR− n
p−1 .

So, if we take R = |xε| we obtain
∫

Rn

|K(xε + εx)−K(∞)|U(x)p
∗

s dx ≤
C

|xε|β
+

C

|xε|
n

p−1

.

Finally, if we take

|xε| ≫ max{ε−
sp

β−γ , ε
− sp

n
p−1

−γ }

we arrive at
∫

Rn

K(x)Uε,xε
(x)p

∗

s dx = K(∞)S
n
sp + o

(

εsp

|xε|γ

)

.

This estimate, along with (3.17) allows us to conclude the proof as in Theorem 3.2. �



18 J. FERNÁNDEZ BONDER, NICOLAS SAINTIER AND A. SILVA

Acknowledgements

This paper was supported by grants UBACyT 20020130100283BA,CONICET PIP 11220150100032CO
and ANPCyT PICT 2012-0153.

The authors are members of CONICET.

References

[1] Vedat Akgiray and G. Geoffrey Booth. The siable-law model of stock returns. Journal of Business & Economic
Statistics, 6(1):51–57, 1988.
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