
The Concept and Implementation of
Data-Driven Processor Arrays

Israel Koren
Dept. ofElectrical and Computer Engineering, University ofMassachusetts, Amherst,
MA 01003 (on leavefrom Technion, Haifa 32000, Israel)
Irit Peled
Dept. ofElectrical Engineering, Technion, Haifa 32000, Israel

V arious topologies and architec-
tural designs for processor arrays
have recently been proposed.

These designs include systolic arrays and
globally asynchronous wavefront arrays. '
Both array types have a computation front
that propagates according to a predeter-
mined control sequence, and consequently
these control-driven arrays have proven to
be very effective for executing highly regu-
lar algorithms like vector and matrix oper-
ations. There are, however, many
computationally demanding problems
that do not exhibit high regularity and may
therefore prove unsuitable for these
control-driven arrays. Still, many ofthese
problems have an inherent parallelism,
and it should be possible to exploit this
parallelism by means of processor arrays
that can provide a high degree of
pipelining.

In Koren and Silberman,2 a new
approach to array design was proposed-
that of developing specialized array
architectures that would be capable of
executing any given algorithm. In this
approach, the algorithm is first repre-
sented in the form of a dataflow graph
(DFG) and is then mapped onto the array.
The processing elements (PEs) in the array
execute the operations included in the cor-
responding nodes (or subsets of nodes) of
the DFG; regular interconnections ofthese
PEs serve as edges of the graph.

In general, when an arbitrary algorithm
is executed on an array there is no regular
propagation of computation fronts.
Hence, to speed up the execution of arbi-
trary algorithms, a more flexible array is
needed. Such an array should make pos-
sible the generation of new computation
fronts and their cancellation at a later time

0)

.0a:0
D

Figure 1. The floorplan of the processor-array chip.

(the time depends on the arriving data
operands). We therefore call these arrays
data-driven arrays. The cell (that is, the
PE) in these arrays should be capable of
testing for the presence of its operands and
executing only the instructions for which
all the necessary operands have arrived.
Thus, the order in which instructions are
executed is data dependent, and the cell is
truly a data-driven PE.

Processor-array
architecture and
principles of its
operation
The feasibility of designing control-

driven arrays was never in question;
several types of PEs for these arrays have
already been designed (see Fisher et al.3).
However, the degree of hardware com-
plexity required to add the data-driven
property was not clear to us. Therefore, we
made a preliminary design ofan appropri-
ate processing element. The result of this
design is very encouraging: The total hard-
ware complexity of the cell-which is
presented next-is less than 9000 transis-
tors in NMOS technology. This low com-
plexity should make possible the
fabrication of a VLSI chip containing
about 50 to 100 cells. The first phase ofthe
design has already been completed and is
reported in Peled.4 A group of graduate
students in the Dept. of Electrical and
Computer Engineering at the University of
Massachusetts in Amherst is now finaliz-
ing the detailed design and layout of the
VLSI chip.
The proposed floorplan of the chip is

shown in Figure 1. The floorplan contains

COMPUTER102



data-driven cells arranged in rows in such
a way that the typical cell has six immedi-
ate neighbors in a hexagonally connected
processor array. The cells communicate
with an external host computer through
buses, as shown in Figure 1. In this host,
the programs of the individual cells are
prepared and are then distributed to the
cells. The host also supplies the input oper-
ands and accumulates the final results.
Unlike host-to-array communication in
control-driven arrays, restricting the host-
to-array communication to passing only
through boundary cells can slow down the
array's operation substantially. Conse-
quently, we have decided to allow each cell
to communicate directly with the host.

The functional blocks that make up the
basic cell are depicted in Figure 2. There
are six registers, RI through R6, which are
connected to a common internal bus; each
ofthem is also directly connected to its cor-
responding register in one of the six neigh-
boring cells (see Figure 2). The latter
connection is under hardware control,
since its timing is crucial. In our design,
this data transfer takes a single clock and
is done inparallel with all other operations
in the cell.
The instruction memory contains six

instructions that specify the cell's opera-
tions; one instruction per register (out of
RI through R6 registers). Having six
instructions per cell increases the level of
utilization of the cell and leads to a lower
overall execution time.
The flag array is a uniquely designed

block that makes possible the data-driven
operation of the cell. The instructions in
the cell are not executed in any predeter-
mined order. Instead, the arrival of all
operands for a certain instruction enables
the cell to execute set instructions. The
flags monitor the movement of operands
both within the array and in and out ofthe
cell. For each register there is a flag indicat-
ing whether the register has an operand or
whether it is empty and can receive a new
operand. Only a single cycle is needed to
test these flags to determine whether an
instruction is ready to be executed.
The other functional units in the cell are

self-explanatory.
In parallel with designing the array, a

procedure for mapping DFGs onto data-

driven arrays has been developed and pro-
grammed by Mendelson and Silberman.5
In this procedure, the user's program (in
VAL) is translated into a DFG and then
mapped onto a finite array of PEs. The
procedure allows us to take advantage of
the data-driven cell's capability of per-
forming up to six operations. A node in the
original DFG includes only a single oper-
ation. Therefore, we may combine up to
six simple neighboring nodes and map
them onto a single PE. Finally, the array
is partitioned into several subarray chips
according to the technology-imposed limi-
tations on the number of PEs per chip.

In summary, the idea of directly map-
ping an arbitrary algorithm onto a VLSI
array has been shown to be feasible. Fur-
ther research is now being carried out to
prove the effectiveness and practicality of
this approach.

References
1 . S.Y. Kung, "On Supercomputing With Sys-

tolic/Wavefront Array Processors," Proc.
IEEE, July 1984, pp. 867-884.

2. I. Koren and G.M. Silberman, "A Direct
Mapping of Algorithms Onto VLSI Proces-
sor Arrays Based on the Data Flow
Approach," Proc. 1983 Int'l Conf. Paral-
lel Processing, Aug. 1983, pp. 335-337.

3 . A.L. Fisher et al., "Design of the PSC: A
Programmable Systolic Chip," Proc. Third
Caltech Conf. VLSI, March 1983, Califor-
nia Institute of Technology, Pasadena,
Calif., pp. 287-302.

4. I. Peled, "A Data-Driven Processing Ele-
ment," master's thesis (in Hebrew), 1986,
Dept. of Electrical Engineering, Technion,
Haifa, Israel.

5 . B. Mendelson and G.M. Silberman, "Map-
ping Data Flow Programs on a VLSI Array
of Processors," Proc. 1987 Int'l Conf.
Computer Architecture, June 1987. Also
published as a technical report in 1987 by the
Dept. of Computer Science, Technion,
Haifa, Israel.

Figure 2. Functional blocks in the data-driven cell.

July 1987

I
103


