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THE CONCEPT OF ASYMPTOTIC COEFFICIENTS

OF VARIATION OF STRUCTURAL RESPONSE

APPLIED FOR FOUNDATION DESIGN

Phadet Ngamcharoen, Winai Ouypornprasert*

In this paper, firstly basic concepts of the structural reliability will be summarized
in terms of two basic variables, i.e. structural response (R) and load effect (S). The
uncertainty in structural response could be statistically characterized by mean and
coefficient of variation (ΩR). Based on these formulations, there must be an upper
limit of ΩR for the pre-specified acceptable level of reliability (pf). The increment
of coefficient of variation of load effect (ΩS) shows minor influence on the central
factor of safety (FS) and its effect diminishes rapidly where ΩR approaches the upper
limit. Below this limit, the structural system could be used safely for a pre-specified
target reliability. For lower value of ΩR, the target FS could be determined from the
quadratic relationship between ΩR and ΩS.

The structural response for foundations is typically a function of soil properties,
sections and dimensions. It is not uncommon that uncertainties in soil properties
could be normal or non-normal probability distribution and the relationship among
basic variables in forming the structural response could be either non-linear or so
complicated that results could be obtained from finite element analyses only. For-
tunately, the randomness of structural response could be obtained by Monte Carlo
simulation technique. Then the fitted distribution of outcome experiments could be
specified by Goodness-of-Fit tests. The applicability of proposed concepts could be
demonstrated in numerical examples, e.g. driven pile, spread footing and bored pile.
For the conventional design approach, soil parameters are considered to be constant.
The solution is simplified thorough the use of deterministic safety factor. In reality,
soil is neither isotropic nor homogeneous such that their uncertainties could not be
ignored. References to the calculated failure probability evidence that deterministic
safety factor could not guarantee enough safety. In some cases, an FS of 3 or more is
not considered too conservative to apply for the structural response.

Key words : reliability, structural response, central factor of safety, Monte Carlo si-
mulation

1. Introduction

In recent study [1], the reliability analyses revealed that there were asymptotic coefficients

of variation for structural responses (ΩR) against corresponding target values of structural

reliability. The asymptote for ΩR is independent of variation of load effect (ΩS). Below

this upper limit, structures could resist safely with the acceptable level of risk or failure

probability. The central factor of safety (FS) for normal variate could be determined from

the quadratic relationship between ΩR and ΩS. Extended studies [2] confirmed that the

concept of asymptotic coefficients of variation could be generalized for non-normal variates
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and any kind of system. Therefore, it is the aim of this paper to apply the concepts of limit

of ΩR and influence of uncertainties in soil parameters on FS for the foundation design.

2. Limit state function

For time invariant reliability analyses, the structural reliability (ps) may be defined as the

probability that the structural response (R) will not be exceeded by load effect (S) within

the whole service life as shown in Eq. (1). In this case, the limit state function of a structural

system may be defined as Eq. (2).

ps = Pr(R − S > 0) , (1)

g(X) = R − S , (2)

where X is a vector of basic random variables. g(x) > 0 defines safe state of structural

system and defines failure state, otherwise, as shown in Fig. 1.

Fig.1: Failure and safe domain for two random variables

The limit state can be classified into three types as followed : 1) an ultimate limit state

for structural safety which may correspond to the loss of equilibrium, rupture and fatigue;

2) a serviceability limit state means an excessive deformation such as crack, obvious oscilla-

tion or vibration, loss of durability or visual damage and 3) a limit state in other forms.

3. Failure probability, safety index and safety factor

For the case of two random variables, the limit state function for a structural system may

be simply defined as in Eq. (2). For the limit state, where g(x) = 0, the failure probability

can be obtained directly from the z-score as :

pf = Φ

(

0 − µg

σg

)

= Φ(−β) = Φ(−z) , (3)

β =
µg

σg

, (4)

where Φ(·) is the distribution function (cdf) of the standard normal variable. The term β

is well-known as the safety or reliability index. Relationships between the values of failure

probability and the safety indices are summarized in Table 1.

pf 10−1 10−2 10−3 10−4 10−6 10−8 10−10

β 1.370 2.326 3.090 3.719 4.753 5.612 6.361

Tab.1: Relationship between safety index and failure probability
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Fig.2: Relationship between safety index and failure probability

Fig. 2 interprets the probability of failure depending on the ratio of the mean value of

the limit state function to its standard deviation. The higher value of β implies lower value

of failure probability. In the conventional design approach, the central factor of safety (FS)

is defined as the ratio of the mean values of the structural response and load effect.

FS =
µR

µS

. (5)

4. Limit ΩR for normal variate

Let R and S be normally distributed. The safety index may be rewritten as in Eq. (6).

β =
µR − µS

√

σ2
R + σ2

S

. (6)

A standard measure for the dispersion about mean is the coefficient of variation (Ω). By

defining ΩR = σR/µR and FS = µR/µS, then Eq. (6) can be further rewritten as :

FS − 1 = β
√

FS2 Ω2
R + Ω2

S . (7)

The relationships between FS and ΩR for given values of ΩS can be shown in Fig. 3.

Fig.3: Relationship between ΩR and FS for pf = 10−6
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Fig. 3 shows that the asymptote for ΩR is independent of variation of ΩS. Furthermore,

the value of FS tends to increase rapidly with respect to ΩR. Whereas, the increment

of ΩS shows minor influence on FS and its effect diminishes rapidly where ΩR approaches

the upper limit. However, lower values of FS and ΩR are practical interests. For lower

value of ΩR, the structural system could be used safely for a pre-specified target reliability

with lower bound of factor of safety as in the case of ΩS = 0. In fact, material properties

are random in nature and ΩR could be higher than the limit of ΩR. For these cases, the

structural system might not be safe for the expected level of reliability. The limit values

of ΩR with respect to corresponding values of pf and β are summarized in Table 2.

pf 10−1 10−2 10−3 10−4 10−6 10−8 10−10

β 1.370 2.326 3.090 3.719 4.753 5.612 6.361

ΩR 0.730 0.430 0.324 0.269 0.210 0.178 0.157

Tab.2: Limits of ΩR against pf and β for normal variate

5. Limit of ΩR for non-normal structural response

In fact, the relationship among basic variables in the structural response could be either

linear or non-linear. It is not uncommon that the randomness of the structural response

could be non-normal distribution. If the structural response is not normally distributed

the limit of ΩR may be obtained using the equivalent normal concepts. The distribution

function (cdf) and the probability density function (pdf) of the non-normal distribution

should be equal to those of the corresponding equivalent normal distribution at the checking

point (x∗) [3]. The concept of equivalent normal variable for determining limit ΩR can be

interpreted in Fig. 4. If a lognormal is need for equivalent, the equations corresponding to

those can be interpreted as in Eq. (8) and Eq. (9).

Φ(−β) = Φ

(

lnx∗ − µ

ζ

)

, (8)

1

σ
φ(Z) =

1

ζ x∗
φ

(

lnx∗ − λ

ζ

)

, (9)

where λ and ζ are parameter of a lognormal distribution. These parameters could be deter-

mined from corresponding mean and standard deviation as shown in Eq. (10) and Eq. (11).

λ = lnµ −
1

2
ζ2 , (10)

ζ =
√

ln[Ω2 + 1] . (11)

Solving for Eq. (8) and Eq. (9), leads the relationship between β and Ω for the lognormal

distribution in the following form :

β =
[

lnx∗

− lnµ + ln(Ω2 + 1)
] x∗

σ
. (12)

Employing procedures similar to preceding concepts, the limits of ΩR for other types of

commonly used distribution for structural response are summarized in Table 3.
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Fig.4: Schematic sketch of equivalent normal concepts

ΩR

Type pf = 10−2 pf = 10−3 pf = 10−4 pf = 10−6 pf = 10−10

(β = 2.326) (β = 3.090) (β = 3.719) (β = 4.753) (β = 6.361)

Lognormal 0.253 0.187 0.155 0.120 0.090

Gamma 0.370 0.301 0.255 0.204 0.154

Normal 0.430 0.324 0.269 0.210 0.157

Weibull 0.402 0.350 0.324 0.295 0.269

Tab.3: Limits of ΩR for structural response distribution

6. Numerical example

Example 1 – prestress concrete pile : A driven pre-cast concrete pile in length of 26.0m

with 60 cm in diameter is selected to carry on a service load of 100 ton. Following conven-

tional design approach, the pile driving criterion for ultimate load (Qult) can be obtained

from Danish’s Formula [4] with FS = 2.5 as shown :

Qult =
E W H

S +

√

E W H L

2 AEp

, (13)

where W is the weight of a steel hammer (7 ton), Ep is the modulus of elasticity of pile

material (340 ton/cm2), H is the drop height (70 cm), A is the area of pile cross section

(1 571 cm2) and L is the pile length (2 600 cm). The hammer efficiency of rig (E) evaluated

by dynamic test is found 0.80 . Substituting all deterministic values and Qult = 250 ton into

Eq. (13), the pile settlement S is found 0.59 cm/blow for driving control. The statistics of

50 pilot piles from a new airport building at the southern part of Bangkok are summarized

in Table 4. Determine whether driven piles could be used safely for the ultimate limit state

(pf = 10−6).

Variable µ Ω Distribution

L 2410 cm 0.22 Normal

Ep 328 ton/cm2 0.18 Normal

S 0.57 cm/blow 0.18 Lognormal

Tab.4: Statistical properties of driven pile parameters variable
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In this case, the limit of service load which should not exceed the ultimate capacity is

considered for reliability analyses. Recall Eq. (2), the limit state function could be further

rewritten as Eq. (14).

g(x) =
E W H

S +

√

E W H L

2 AEp

− 100 . (14)

The first and second term in the right hand side of Eq. (14) are represented for the structural

response (R) and load effect (S), respectively. Note that the relationship among basic

variables in forming R is nonlinear. Therefore, the direct integration technique could not

be used to simply this solution easily. Substituting E = 0.8, W = 7 ton, H = 70 cm and

A = 1 571 cm2 into Eq. (14), the failure probability may be obtained using the Monte Carlo

simulation technique through Eq. (15).

g(xi) =
0.8 × 7 × 70

Si +

√

0.8 × 7 × 70 × Li

2 × 1571 × Epi

− 100 . (15)

The simulation numbers of 210 is used to generate for random numbers of L, Ep and S based

on its pdf . Substituting 3 sets of random numbers into Eq. (15), then numbers of failure

could be counted. The application of random experiments for failure probability calculation

can be conceptualized as in Fig. 5.

Fig.5: The scheme of failure probability calculation

For simulation numbers of 210, the failure probability using Monte Carlo simulation

technique and variance reduction technique, e.g. importance sampling, is found to be

3.81×10−6. Since the calculated failure probability is higher than the target failure proba-

bility, 3.81×10−6 ≥ 1×10−6, piles could not be used safety for the ultimate limit state. On

the other hand, the reliability of structural system may be examined using the limit of ΩR.
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Since the ultimate capacity of pile reflects the structural response, Eq. (16) can be pursued

for obtaining randomness.

Ri =
0.8 × 7 × 70

Si +

√

0.8 × 7 × 70 × Li

2 × 1571× Epi

. (16)

The statistical characteristics of R can be generated from statistical data, as shown in

Table 4, using the Monte Carlo Simulation technique with 210 simulations. The randomness

or uncertainty of R could be characterized by mean value µR = 264 ton and coefficient of

variation R = 0.214 . The Goodness-of-Fit test for simulation outcomes may be performed

by using CESTTEST software [5]. Where the confidence interval of 99%, the lognormal

distribution could be accepted by both Chi-Square and K-S Test as interpreted in Fig. 6.

Fig.6: Goodness of fit tests for lognormal : (a) chi-square, (b) K-S

If the target failure probability is 10−6 (β = 4.753) the corresponding limit of ΩR using

equivalent normal distribution, presented in Table 3, is 0.120 . It is confirmed that if ΩR of

the structural system is higher than the limit of ΩR, 0.214 > 0.120, the structure could not

be used safely with the target failure probability.

Reference to the calculated failure probability evidences if coefficient of variation of the

structural response is higher than the limit, the structure could not be used safely with the

corresponding acceptable level of risk. In views of conventional design approach, a higher

level of deterministic safety factor should be reviewed for piling criterion. Since the struc-

tural response is non-normal, Eq. (7) is not valid to review the target FS corresponding to

pf = 10−6 for further driving. In this case, the direct integration approach may be applied

for obtaining the value of µR. The concept for finding value of µR could be interpreted

in Fig. 7.

The parameter λ and ζ could be obtained from the relationship in Eq. (10) and Eq. (11),

respectively. For pf = 1×10−6, 100 ton and ΩR = 0.214, then µR is found to be 281 ton and

FS for the new design criteria becomes (281/100) = 2.81 . By substituting deterministic

value E = 0.8, L = 2 410 cm, W = 7 ton, A = 1 571 cm2, H = 70cm, Qult = 281 ton

and Ep = 328 ton/cm2 into Eq. (13), the pile settlement for further driving becomes

0.44 cm/blow. For lower values of pile settlement, a pile is needed to be driven into soil

layers for more embedded length.
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Fig.7: Concepts of integration

This example shows that design criterion was not accounted on how uncertainties of basic

parameters influence the safety factor. The solution is simplified by considering parameters

to be constant and performing for structural response thorough the use of deterministic

FS = 2.5 . If uncertain parameters are considered, FS = 2.81 or more would meet the pile

diving criteria.

Example 2 – spread footing : A square footing, subjected to gross load P , has to be

constructed in the soil condition as shown in Fig. 8. Using FS = 3, determine the size of the

footing.

Fig.8: Square footing subjected to load P

In the case of general shear failure, Terzaghi [6] suggested the equation for ultimate

load Qu as :

Qu = (1.3 c Nc + q Nq + 0.4 γ B Nγ)B2 . (17)

In fact, φ is less sensitive, coefficient of variation < 0.1, it can assume to be constant. For

φ = 20◦ the corresponding Terzaghi’s bearing factors are found to be Nc = 17.69, Nq = 7.44

and Nγ = 4.97 . Since the limit of ultimate load is considered for reliability analyses the

limit state function and structural response, in terms of Qu, can be written as in Eq. (18)

and Eq. (19), respectively.

g(x) = (23 c + 7.44 γ + 1.99 γ B)B2
− P , (18)

R = (23 c + 7.44 γ + 1.99 γ B)B2 . (19)
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Employing a procedure similar to that used in the preceding numerical example, it is possible

to develop expressions in Eq. (19) relating Monte Carlo simulation technique to the structural

response for various footing sizes. Based on 210 simulations and probabilistic values of c

and γ, the randomness corresponding to the base size could be expressed in Table 5.

B ×B Deterministic Probabilistic

(m×m) R (ton) µR (ton) ΩR Distribution

2.3× 2.3 304 303 0.145 Normal

2.4× 2.4 333 332 0.145 Normal

2.5× 2.5 363 362 0.145 Normal

Tab.5: Randomness of ultimate capacity

Since structural response is normally distributed, Eq. (7) is valid for obtaining FS. For

the target failure probability is 10−6, the safety index β for normal distribution becomes

4.753 . Substituting β = 4.753 and ΩR = 0.146 into Eq. (7), leads typical cases of FS as

shown in Table 6 and 7.

B ×B ΩR = 0, ΩS = 0

(m×m) R (ton) S (ton) FS

2.3× 2.3 304 100 3.04

2.4× 2.4 333 100 3.33

2.5× 2.5 363 100 3.6

Tab.6: FS based on deterministic approach

B ×B ΩR = 0.146, ΩS = 0 ΩR = 0.146, ΩS = 0.15

(m×m) µR (ton) S (ton) FS µR (ton) S (ton) FS

2.3× 2.3 303 93.2 3.25 303 85 3.56

2.4× 2.4 332 102.2 3.25 332 93.3 3.56

2.5× 2.5 362 111.4 3.25 362 101.7 3.56

Tab.7: FS based on probabilistic approach

Observe from Table 6 and 7, as might be expected, uncertainties of R and S are signifi-

cantly affected to the values of FS. If uncertainties are fully involved in basic parameters,

probabilistic R and S, the footing size of 2.5×2.5m or larger would meet the design criterion

and could be used safely.

It should be emphasized that conventional approaches simplify the solution by considering

the uncertain parameters to be constant and defining for structure resistance thorough the

use of deterministic safety factor. In reality, soil is neither isotropic nor homogeneous such

that their uncertainties could not be ignored. Following the conventional design approach,

an FS of 3 or more is not considered too conservative to apply for the allowable bearing

capacity.

Example 3 – bored pile : A bored pile ø 800mm in diameter is embedded in the soil

profile shown in Fig. 9. The column load is of value 300 ton and FS = 2.5 . The ultimate

load, based on frictional resistance (Qf) and end bearing (Qb) in clay could be obtained
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from following equations :

Qult = Qf + Qb ,

Qult =
∑

(α L φp S u) = 9 Ap Su ,
(20)

where α is the reduction coefficient, Su is the undrained shear strength which is referred to

the SPT-N value, φp is the pile circumference (2.5m), L is the thickness of soil layer and

Ap is the base area of pile (0.5m2). Based on conventional approaches, the procedures to

determine for the desirably embedded length are illustrated in Table 8.

Fig.9: Soil Profiles

Soil From To L N Su α Qf Qb

Layers (m) (m) (m) (blow/ft) (ton/m2) (ton) (ton)

1 3 9 6 — 1 1 15 —

2 9 14 5 — 2 0.97 24 —

3 14 17 3 — 3 0.87 20 —

4 17 36 19 30 20.4 0.4 390 —

5 36 45.5 9.5 45 25 0.34 203 113

Tab.8: Procedures to determine for desirably embedded lengths

The ultimate load is found to be 652 + 113 = 765 ton and allowable load corresponding

to FS = 2.5 would be 306 ton.

For probabilistic approaches, the limit of ultimate load is considered for reliability ana-

lyses. Recall Eq. (2), the limit state function and the structural response can be written as

in Eq. (21).

q(x) = α1 L1 φp1 Su1 + α2 L2 φp2 Su2 + α3 L3 φp3 Su3 +

+ α4 L4 φp4 Su4 + α5 L5 φp5 Su5 + 9 Ap Su5 − 300 .
(21)

Therefore, the structural response could be represented by the first term in the right hand

side of Eq. (21). For the sake of simplicity, the parameter α, L, φp and Ap are assumed to
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be constant. Substituting deterministic values in Eq. (22), then the performance function

could be shown as :

Ri = (1 × 6 × 2.5)Su1i + (0.97 × 5 × 2.5)Su2i + (0.87 × 3 × 2.5)Su3i +

+ (0.4 × 19 × 2.5)Su4i + (0.34 × 9.5 × 2.5)Su5i + (9 × 0.5)Su5i .
(22)

Based on these data, the randomness of structural response may be characterized by Monte

Carlo simulation technique through Eq. (22). The number of simulations is 1024 (210).

For a confidence interval of 99% the gamma distribution could be accepted by both the

Chi-Square and K-S test for the Goodness-of-Fit tests. Then the randomness of structural

response, in terms of Qult, could be characterized by µR = 769 ton and ΩR = 0.107 . For

the fitted distribution of structural responses is gamma, the limit of ΩR using the concept

of equivalent normal distribution becomes 0.204 (pf = 10−6). Where ΩR of the structural

system is lower than the limit of ΩR, 0.107 < 0.204, the structure could be used safely with

the target failure probability.

7. Conclusions

1. The classical reliability analyses in terms of normal structural response (R) and load

effect (S) show that there should be an asymptotic coefficient of variation of structural

response (ΩR) for the corresponding target reliability (pf).

2. The asymptotic limit value of coefficient of variation is inversely proportional to the safety

index. For instance, the asymptotic ΩR of 0.157, 0.210 and 0.269 would correspond to pf

of 10−10, 10−6 and 10−4, respectively.

3. If ΩR is below this limit the structure could resist safely with the corresponding acceptable

level of pf. Otherwise, the expected structural reliability could not be achieved. The

central safety factor (FS) for a particular value of pf could be determined from the

quadratic relationship between ΩR and ΩS.

4. The concepts of asymptotic coefficient of variation could be extended for non-normal

variates using the concepts of equivalent normal distribution. If the target pf is 10−6,

the corresponding asymptotic ΩR is 0.120, 0.204, 0.210 and 0.295 when the randomness

of structural response is characterized by lognormal, gamma, normal and the Weibull

distribution, respectively.

5. The applicability of the proposed concept for non-normal variates is shown in several

numerical examples, i.e. deep and shallow foundation. It could be observed from these

examples that the relationship among basic variables for structural response could be

either non-linear.

6. For the case of a non-linear or complex relationship statistics of the structural response

could be obtained by Monte Carlo simulation technique. Then the fitted distribution

of structural responses could be confirmed by the Goodness-of-Fit tests, i.e. Chi-Square

and K-S.

7. For non-normal structural response, fitted distributions could be obtained easily with

CESTTEST Software. Then the limit of structural response corresponding to failure

probability could be determined by using the concept of equivalent normal variates.

8. The conventional approach simplifies the solution by considering uncertain parameters to

be constant and performing for structural response thorough the use of deterministic FS.
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The design criterions would not account of information on how soil parameters influence

the safety factor.

9. In fact, soil is neither isotropic nor homogeneous such that their uncertainties could not

be ignored. The value of structural response is depended mainly on the variation of

soil parameters and type of distributions. Therefore, the deterministic FS could not

guarantee enough safety for structural system. In some cases, an FS of 3 or more is not

considered too conservative to apply for the allowable capacity of the structural usage.
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