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Abstract 

In an insurance context, one is often interested in the distribution 

function of a sum of random variables. Such a sum appears when 

considering the aggregate claims of an insurance portfolio over a cer­

tain reference period. It also appears when considering discounted 

payments related to a single policy or a portfolio at different future 

points in time. The assumption of mutual independence between the 

components of the sum is very convenient from a computational point 

of view, but sometimes not realistic. In Dhaene, Denuit, Goovaerts, 

Kaas, Vyncke (2001), we determined approximations for sums of ran­

dom variables, when the distributions of the components are known, 

but the stochastic dependence structure between them is unknown or 

too cumbersome to work with. Practical applications of this theory 

will be considered in this paper. Both papers are to a large extent an 

overview of recent research results obtained by the authors, but also 

new theoretical and practical results are presented. 

1 Introduction 

In Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2001) we presented an 

overview of the actuarial literature on the problem how to make decisions 

in case we have a sum of random variables with given marginal distribution 

functions but of which the stochastic dependence structure is unknown or 

too cumbersome to work with. We proved that the convex-largest sum of 

the components of a random vector with given marginals is obtained in case 
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the random vector (Xl, X2, ... , Xn) has the comonotonic distribution, which 

means that each two possible outcomes (Xl, X2, . .. , xn) and (Yl, Y2,·· ., Yn) of 

(Xl, X2, ... , Xn) are ordered componentwise. 

In this paper, we will present several applications of the concept of comono­

tonicity in the field of actuarial science and finance. The notations, assump­

tions and results used throughout this paper are presented in the above men­

tioned twin-paper and will not be repeated here. References to equations and 

theorems presented in the first paper will be denoted by adding a "T" to the 

relevant equation or theorem number. 

As a theoretical example of the concept of comonotonicity in an insurance 

context, consider a portfolio of n risks Xl, X 2 , . •• ,Xn , identically distributed, 

with cdf F and finite variance a 2 , say. If the risks are mutually independent, 

it is well-known that 

Var [Xl+X2: ... +Xn] =: ~O 
as n goes to infinity. If the risks are comonotonic, then 

[
Xl + X2 + ... + Xn] V [F-l(U) + F-l(U) + ... + F-l(U)] 2 

Var = ar = a, 
n n 

where U is uniformly distributed on [0,1]. Hence, in case of comonotonic 

risks, risk pooling has completely no risk reducing effect: adding an additional 

risk to the portfolio will not reduce the variance of the average risk. 

In general, the risks of an insurance portfolio (Xl, X2, ... , Xn) will not exhibit 

the extreme comonotonic dependence structure. However, in the presence of 

positive dependencies between the individual risks, assuming independence 

might lead to an underestimation of the probability of large total claims for 

the portfolio. In this case the technique of risk pooling might not be as 

effective as expected. On the other hand, resorting to comonotonicity is a 

conservative approach in case the structure of dependence is unknown to the 

actuary. 

In Section 2 we will give examples of comonotonic random variables oc­

curing in an actuarial or financial environment. In Section 3 we give some 

numerical examples how to construct convex lower and upper bounds for 

sums of random variables. The evaluation of cash-flows in case of a lognor­

mal discount process is considered in Section 4. In Section 5, we derive lower 

and upper bounds for the price of arithmetic Asian options. 
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2 Comonotonic random variables 

In this section, we will describe several situations in an actuarial or financial 

context where comonotonic random variables emerge. 

2.1 Options and insurance 

In a financial environment, the most straigthforward examples of comono­

tonicity occur when considering pay-offs of derivative securities. Such pay-off 

functions are strongly (positive or negative) dependent of the value of the 

underlying asset. This makes them useful instruments for hedging. 

To be specific, let A(t) be the value of a security at a future time t, t ~ O. 

Consider a European call option on this security, with expiration date T ~ 0 

and exercise price K. The pay-off of the call-option at time K is given by 

(A(T) - K)+. The pay-off of the portfolio consisting of the security and the 

call-option is given by (A(T), (A(T) - K)+), which is a comonotonic ran­

dom vector, since the pay-off of the option is a non-decreasing function of the 

value of the underlying security at the expiration date. Hence, the holder of 

the security who buys the call option increases his potential gains, at the cost 

of the option premium. One immediately finds that A(T) + (A(T) - K)+ 

stochastically dominates Xt. 
On the other hand, if the holder of the security decides to write the call op­

tion, the pay-off of his portfolio at time T is given by (A(T), - (A(T) - K)+). 

The pay-off - (A(T) - K)+ is a non-increasing function of A(T). One says 

that (A(T) , - (A(T) - K)+) is a "counter-monotonic" random vector: if 

one of the components increases, then the other one decreases, see e.g. Em­

brechts, McNeil & Straumann (2001). Writing the call option induces an 

immediate gain (the option premium), at the cost of reducing the maximal 

gain on the underlying security. A(T) - (A(T) - K)+ is stochastically dom­

inated by A(T). 

A European put option with the same characteristics has a pay-off equal to 

(K - A(T))+. In this case, the holder ofthe security who buys the put option 

has a portfolio pay-off (A(T), (K - A(T))+) which is a counter-comonotonic 

random vector. Buying the put-option reduces the maximal loss at the 

cost of the option premium. Note that A(T) is stochastically dominated 

by A(T) + (K - A(T))+. 

Holding the security and writing the put option leads to a portfolio pay­

off given by (A(T), - (K - A(T))+) , which is a comonotonic random vec-
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tor. This strategy induces an immediate gain (the option premium) but in­

creases the potential losses on the underlying security. A(T) - (K - A(T))+ 

is stochastically dominated by A(T). 

Let (Xl> X 2 , ..• ,Xn ) be an insurance portfolio of individual risks Xi which 

are not assumed to be mutually independent. As mentioned in the Introduc­

tion Section, in the presence of positive dependencies, the technique of risk 

pooling might not be as effective as expected. The insurer could reduce the 

aggregate risk of his portfolio by financial hedging techniques. He could buy 

a financial contract with payments Y such that Y and Xl + X2 + ... + Xn 

are comonotonic (or as comontonic as possible). Compensation will then be 

obtained as the pay-off of the financial contract will increase if the aggregate 

loss Xl + X2 + ... + Xn increases. As an example in case of hurricane and 

earthquake insurance, the insurer could buy call options on the CAT-index, 

the Index of Catastrophe Losses of the Chicago Board of Trade. These op­

tions will be exercised by the insurer in case the level of the CAT-index is 

sufficiently high. In this case, investors take the position of the traditional 

reinsurer. 

On the other hand, the insurer could also sell a financial contract with obli­

gations for him that are counter-monotonic with the aggregate loss Xl +X2 + 
... + X n . Compensation will then be obtained as his obligations related to 

the financial contract will decrease if the aggregate insurance loss increases. 

In the hurricane and earthquake example, the insurer could write put op­

tions on the CAT -index. These options generate a premium and will only be 

exercised if the CAT-index remains sufficiently low. 

As another example, consider an insurance which protects house-owners 

against the depreciation of their property. Assume that the insurance pay­

ment is defined as a non-increasing function of some general real estate index. 

The risks of such a portfolio are comonotonic: they are all a non-increasing 

function of the same random variable (the real estate index). Such a portfolio 

cannot be considered as a traditional "insurance portfolio" where increasing 

the number of policies reduces the volatility of the average risk. The in­

surer will have to use financial hedging techniques to cope with the risk of 

such a portfolio. He could e.g. buy put options on the real estate index. 

In this case, the income of the put options and the insurance portfolio pay­

ments are comonotonic. The insurer could also write call options on the 

real estate index. This strategy generates an income (the option premiums) 

for the insurer, while the option payments and the insurance payments are 

counter-mononotonic. 
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2.2 Life annuities - deterministic discount process 

Consider a life annuity ax on a life (x) which pays an amount of 1 at the end of 

each year, provided the insured is alive at that time. Let T be a non-negative 

continuous random variable representing the remaining lifetime of (x). The 

distribution function of T is denoted by FT(t) = tqx, (t 2: 0). Further, the 

ultimate age of the life table is denoted by w, this means that w - x is the first 

remaining lifetime of (x) for which w-xqx = I, or equivalently, Fil(l) = w-x. 

Assume that discounting is performed with a deterministic interest r. The 

present value at policy issue of the future payments is denoted by S and 

equals the sum of the present values of the payments in the respective years: 

rw-xl-l 

S = 2.:::: Xi (1) 
i=l 

where the random variables Xi are given by 

Xi = Vi I[T > i] (2) 

and where f.l is the ceiling function, i.e. f x l is the smallest integer greater 

than or equal to x. 

All Xi are non-decreasing functions ofthe remaining life time T, which means 

that the payment vector X is comonotonic. For any 0 < p < I, we find from 

Theorem T.1 that FXil(p) = Vi I (Fil(p) > i) = Vi I (i :::; fFil(p)l - 1). 

Hence, letting I:~=a Xi = 0 if a> b, we find from Theorem T.6: 

rw-xl-l rFi 1 (p)1-l 

Fi 1 (p) = 2.:::: Fil (p) = 2.:::: 0< p < I, (3) 
i=l i=l 

It is straightforward to verify that this expression also holds for p = 1. 

An expression for the inverse distribution function of S can also be derived 

in another way. Therefore, note that S can be written as 

The function 9 defined by 

rTl-l 

S = 2.:::: Vi. 

i=l 

rYl-l 

g(y) = 2.:::: Vi 

i=l 
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for all non-negative values of y, is non-decreasing and left-continuous. Ap­

plication of Theorem T.1leads to 

o<p<l. 

Hence, for any ° < p < 1, we find (3). 

An expression for the cdf of S follows from (T.45): 

{ 
rFi 1(p)1-1} 

Fs(x) = sup P E (0,1) I 8 Vi::; X . (5) 

2.3 Risk sharing schemes 

Let X be a non-negative random variable denoting the risk a person faces 

during the insurance period. An insurance contract is an agreement between 

this person (the insured) and the insurer where the insurer promises to pay 

an amount <p(X) in case the claim amount equals X, where <p is a non­

negative function, defined for all possible outcomes of X. Then X - <p(X) 
is the part of the claim retained by the insured. It is reasonable to require 

that <p(x) and x-<p(x) are non-decreasing functions on the set of all possible 

outcomes of X. This is equivalent to requiring that both risk sharing partners 

have to bear more (or at least as much) if the actual claim x increases. If the 

benefit function <p is differentiable, both requirements reduce to the condition 

o ::; <p' (x) ::; 1 for all possible outcomes x of X. 

From characterization (T.23) for comonotonicity one finds that if both 

partners of the risk sharing scheme (<p(X), X - <p(X)) have to bear more if 

the claim amount increases, then the random vector (<p(X), X - <p(X)) is 

comonotonic. 

Also the opposite can be proven: if the risk sharing scheme (<p( X), X - <p (X)) 
is comonotonic, then both partners have to bear more if the claim amount 

increases, except perhaps on a set with zero probability. Indeed, the comono­

tonicity of (<p(X), X - <p(X)) implies that there exists a support A of X such 

that the set {(<p(x), x - <p(x)) I x E A} is comonotonic. This implies that the 

functions <p(x) and x - cp(x) must be simultaneously non-decreasing or non­

increasing on A. Since the sum of the functions cp(x) and x - <p(x) equals 

the non-decreasing function x, we must have that the functions cp(x) and 

x - <p( x) are both non-decreasing on A. This proves the stated result. 
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As a first example of a risk sharing scheme, consider a deductible coverage 

(or stop-loss coverage) where the benefit function is defined by: 

cp(x) = (x - d)+ for some d 2: o. (6) 

It is straightforward to verify that (cp(X), X - cp(X)) = ((X - d)+, min (X, d)) 
which is a comonotonic random vector. 

In case of coinsurance (or quota share coverage), the benefit function is de­

fined by 

cp(x) = a x, a E [0,1]. (7) 

Since both a x and (l-a)x increase with x, the random vector (a X, (1 - a) X) 

is comonotonic. 

A coverage with a maximal limit is defined by 

cp(x) = min {x, d}, (8) 

In this case, (cp(X), X - cp(X)) = (min {X, d}, (X - d)+) which is comono­

tonic. 

Also coverages combining the three forms above, such as 

(9) 

can be seen to lead to a comonotonic risk sharing scheme. 

An example of a risk sharing scheme which does not lead to comonotonic 

risks is a policy with a franchise deductible where the benefit function is 

defined by 

cp(x) = x I(x 2: d), d 2: o. (10) 

We find that (cp(X), X - cp(X)) = (X I(X 2: d), X I(X < d)) which is in 

general not a comonotonic random vector. 

All the examples above describe risk sharing schemes between insurer and 

insured, but they can also be interpreted as risk sharing schemes between in­

surer and reinsurer. 

An example of a reinsurance scheme which does not necessarily lead to 

comonotonic risks is the largest claim reinsurance. Indeed, let the insur­

ance portfolio consist of n individual risks with claim amounts Y1 :::; Y2 :::; 

. .. :::; Yn respectively (the Yi are the order statistics corresponding to the 

risks in the portfolio). The risk taken by the reinsurer equals Yn , while the 

risk kept by the ceding insurer is Y1 + Y2 + ... + Yn - 1 . It is clear that 

(Yn , Y1 + Y2 + ... + Yn - 1 ) will in general not be comonotonic. 

7 



3 Convex bounds for sums of rv's 

In this section, we will illustrate the technique of deriving convex lower and 

upper bounds for sums of random variables, as explained in Dhaene, Denuit, 

Goovaerts, Kaas & Vyncke (2001), by some numerical examples. Especially, 

we will consider sums of normal or lognormal random variables. 

Recall that a random vector (Y1 , Y2 , . .. , Yn ) has the multivariate nor­

mal distribution if and only if every linear combination of its variates has a 

univariate normal distribution. Now assume that (Y1 , Y2 , . .. , Yn ) has a mul­

tivariate normal distribution. Let Y and A be linear combinations of the 

variates: Y = 'E~=1 aiYi and A = 'E~=1 f3iYi· Then also (Y, A) has a bivari­

ate normal distribution. 

Further, if (Y, A) has a bivariate normal distribution, then, conditionally 

given A = .x, Y has a univariate normal distribution with mean and variance 

given by 

E [Y I A = .x] = E [Y] + r (Y, A) O"y (.x - E [A]) 
O"A 

(11) 

and 

Var [Y I A =.x] = O"~ (1- r (y,A)2), (12) 

where r (Y, A) is Pearson's correlation coefficient for the couple (Y, A). 

Example 1 (sums of normal TV'S) 

Let Y1 ,Y2 be mutually independent N(O, 1) random variables. As the 

distribution function of (Y1 , Y2 ) is completely specified in this case, the dis­

tribution function of S = Y1 + Y2 is known. For illustrating purposes, we will 

compute convex order bounds for S. Therefore, we will consider conditioning 

random variables of the type A = Y1 + aY2 for some real a. The conditional 

distribution of Yl, given A = .A, is N (1;a2' 1::2 ) • 

This means that for the conditional expectation E[Y1IA] and for the random 

variable F-y;'IA(U), with U uniform(O,l) and independent of A, we get 

In line with E[Y1 + aY2 I A] == A, we also get 

aA -1 <1>-l(U) 
E[Y2 1 A] = --2 and FyIA(U) = E[Y2IA] + v'f+(L2. 

1 + a 2 1 + a2 
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Both FYiIA(U) and F~IA(U) have N(O, 1) distributions. Their U-dependent 

parts are comonotonous. For the comonotonic upper bound se, the im­

proved upper bound SU and the lower bound Sl as derived in Dhaene, De­

nuit, Goovaerts, Kaas & Vyncke (2001), we get 

S=Yl+Y2 

I+a 
Sl = E[Yi + Y2 I A] = 1 + a2 A 

S'" = 1 + a A + 1 + lal <]?-l(U) 
1 + a2 VI + a2 

se:1::. 2Y1 

N(0,2), 

N(O (I+a)2) 
, 1 +a2 ' 

N (0 (1 + a)2 + (1 + lal)2) 
, 1 +a2 ' 

f"V N(0,4). 

For some special choices of a, we get the following distributions for the lower 

and upper bounds Sl and Su: 

a=O 

a=I 

a= -1 

lal ---7 00 

N(O, 1) :Sex S :Sex N(O, 2), 

N(O, 2) :Sex S :Sex N(0,4), 

N(O, 0) :Sex S :Sex N(O, 2), 

N(O, 1) :Sex S :Sex N(0,2), 

where N(O, 0) corresponds to a probability mass 1 placed at the origin. 

Note that the actual distribution of S is N(O, 2), so the best convex lower 

bound (a = 1) and the best upper bound (a :S ° or a ---7 00) coincide with 

S. Of course taking lal ---7 00 gives the same results as taking A = 1'2. The 

variance of Sl can be seen to have a maximum at a = +1, a minimum at 

a = -1. On the other hand, Var[SU] also has a maximum at a = 1, and 

minima at a :S ° and a ---7 00. So the best lower bound in this case is attained 

for A = S, the worst for A and S independent. The best improved upper 

bound is found by taking A = Yt, A = 1'2, or any a < 0, including the case 

a = -1 with A and S independent; the worst, however, by taking A = S. 

To compare the variance of the stochastic upper bound SU with the vari-

ance of S boils down to comparing cov (FYi IA (U), F~ IA (U)) with cov (Y1, Y2 ). 

It is clear that, in general, the optimal choice for the conditioning random 

variable A will depend on the correlation of Yi and Y2. If this correlation 
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equals 1, any A results in S t su t Sc. In our case where Yi and Y2 are 

mutually independent, the optimal choice proves to be taking A == YI , which 

corresponds to a = ° or A == Y2 , which corresponds to a -7 00, thus ensuring 

that Sand su coincide. But also any a < ° leads to S t Su .... 

Example 2 (sums of lognormal rv's) 

As a second example, consider a simple special case of the theory dealt 

with in the next section. We present it here for the reader's convenience, 

just as an illustration. Take YI and Y2 independent N(O, 1) random vari­

ables. Look at the sum of Xl = eY1 +Y2 rv 10gnormal(O, 2), and X 2 = eY2 ro.J 

10gnormal(O, 1). S = Xl + X 2 can then be interpreted as the value at time 

2 of investing a unit amount at time 0 and one at time 1, where the in­

vestment returns in year 1 and 2 are given by YI and Y2 respectively. For 

the lower bound Sl, take A = YI + Y2 . Note that E[XIIA] = eA , while 

Y21A = ). rv N(~)', ~), hence 

where m(t; /-L, (]"2) = eiLt+~a2t2 is the N(/-L, (]"2) moment generating function. 

This leads to 

So the lower bound is 

The upper bound SC follows from (Xf, X~) t (eV2Z , eZ ) for Z ro.J N(O, 1). 

The improved upper bound su has as a first term again eA , and as second 

term e!A+~V2Z, with Z and A mutually independent. All terms occurring in 

the bounds given above are lognormal random variables defined in terms of 

A and Z, which are mutually independent, so the variances of the bounds 

are easy to compute. We have, as the reader may verify, 
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Hence, 

(E[S])2 

E[(SI)2] 

E[S2] = E[(su)2] 

E[(sc)2] 

Var[SI] 

Var[S] = Var[SU] 

Var[SC] 

e + 2e~ + e2, 
3 5 4 

e"2 + 2e"2 + e , 

e2+2e~+e4, 

e2 + 2e~+v'2 + e4 . 

64.374, 

67.281, 

79.785. 

So a close stochastic lower bound Sl for S is obtained by conditioning on 

Y1 + Y2 . The improved upper bound su for this case proves to be very good. 

Indeed, as S ::;cx su while the variances are equal, the improved upper bound 

su has the same distribution as S. This result could be expected because, 

conditionally given A = A, the random vector (Xl, X 2 ) is comonotonic. Re­

call that the lower bound will be the best if the conditioning random variable 

A resembles S as closely as possible, see Section T.5.3. Approximating eY2 

and eY1 +Y2 by I+Y2 and I+Y1 +Y2 respectively, we see that S i=::j 2+Yi +2}2, 

hence we could expect that taking Y1 + 2Y2 instead of Y1 + Y2 as our con­

ditioning random variable might lead to a better lower bound. This is not 

true however since the variance of the lower bound is 61.440 in this case. It 

proves that the optimal lower bound obtained by conditioning on random 

variables of type Y1 + aY2 is reached for a = 1.27 and the variance of Sl is 

then 66.082. T 

Example 3 (sums of conditionally independent TV'S) 

Consider a home fire insurance portfolio consisting of n risks Xi with 

Pr[Xi = 0] = 0.90, Pr[Xi = 1] = 0.04 and Pr[Xi = 2] = 0.06. Assume that 

the claim amounts depend on the weather conditions during the insurance 

year. Let A be a Bernoulli random variable which equals 1 (with probabil­

ity ~) in case of a dry hot summer, A equals 0 in the other case. Assume 

that we know the conditional distributions, given A, of the risks Xi : Let 

Pr[Xi = 0,1 I A = 0] = 0.94, 0.06 and Pr[Xi = 0, 2 I A = 1] = 0.82, 0.18. 
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Hence, a dry hot summer leads to higher claim frequencies and severities. 

Further, we assume that, given A = .x, the risks Xi are conditionally inde­

pendent. 

We find that Var [A] = ~ and Var [Xi] = 0.2544. The distribution of the 

comonotonic upper bound se follows from 

n 

se 4 L FXil(U) 4 n Xl, 
i=l 

from which we find that Var [se] = 0.2544 n 2 . 

The cdf of the lower bound Sl follows from 

Sl 4 n E (Xl I A) 4 n {0.06 (1 - A) + 0.36 A}. 

Hence, Var [Sl] = 0.02 n2 • Note that under the assumption that the Xi are 

mutually independent (which is clearly unrealistic in this case) , we find that 

the variance of S1. = xt+·· .+X~ is given by 0.2544 n which will be smaller 

than the variance of the lower bound if n > 12. 

The cdf of the improved upper bound su follows from 

SU 4 n FX:IA (U) 4 n Xl, 

so that we find that SU 4 se in this case. 

In order to compute the exact variance of S = Xl + ... + X n , note that 

Var [S] = Var [Sl] + E [Var [S I All. 

We find that Var [Xi I A] = {0.0564(1 - A) + 0.5904A}. We assumed that 

conditionally, given A = .x, the random variables Xi are mutually indepen­

dent. So we find E [Var [S I All = n E [Var [Xi I All = 0.2344 n. We finally 

get that Var [S] = (0.02n + 0.2344) n. Hence, 

Var(S) =1+11.72 

Var(SI) n 

indicating that the performance of the lower bound improves as the the size 

of the portfolio increases. Even for a relatively small portfolio, the lower 

bound seems to perform very well. T 

The results of the previous example can be generalized. Indeed, consider 

a portfolio of n risks Xi. Assume that for any possible outcome .x of A we 
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have that, conditionally given A = >.., the risks Xi are identically distributed, 

but not necessarily mutually independent. 

In this case, we find that ~~=1 Fi}(U) ~ ~~=1 Fi.IA(U) ~ nX1, where U 
and A are mutually independent and U is uniformly distributed on the unit 

interval. Hence, 

SC'!!:"SU'!!:" X - -n 1, 

For the lower bound Sl, we find 

Sl ~ n E [Xl I AJ, 

(13) 

(14) 

Let us now assume that conditionally, given A = >.., the risks Xi are iid. An 

expression for the variance of the sum S = Xl + ... + Xn is obtained as 

follows: 

Var[S] = Var [sl] +E[Var[S I A]] 

n2 Var [E [Xl I A]] + n E [Var [Xl I A]J, 

so that we find 

Var [se] _ 1 + ~~~f;~I~ll 
Var [8] - 1 + lE[Var[XlIAlJ 

n Var[E[XIIAll 

(15) 

which is an increasing function of the volume of the portfolio, with limiting 

value 1 + ~~~~;~I~ll. This means that the larger the portfolio, the worse the 

relative performance of the comonotonic (and the improved) upper bound. 

For the lower bound however, we find that 

___ V_ar-:-[S~] = 1 + .!. E [Var [Xl I All. 
Var [Sl] n Var [E [Xl I All 

(16) 

Hence, the more the variance ofthe individual risks Xi is caused by Var [E [Xl I A]], 

the better the lower bound will perform. For a sufficiently large portfolio, 

the lower bound Sl will perform very well. This is true in particular because 

equality of the variances of Sand Sl imply that they are equal in distribution. 

Defining z as the ratio wnj(wn + v) where w = Var[E[X1 I A]] and 

v = E[Var[X1 I All denote the between-variance and the within-variance 

respectively, we can rewrite (15) and (16) as 

Var[SC] = (z + (1- z)n) Var[S] and Var[SI] = zVar[S]. 

13 



The factor z E [0, 1 J can be interpreted as a measure for the goodness­

of-fit when S is replaced by E[S I AJ: The larger z, the better the lower 

bound performs. Maximum performance (i.e. z = 1) is achieved if n -? 00, 

W = Var[XIJ or v = O. For a portfolio of a given size n, we also have that 

the larger z, the better the comonotonic upper bound will perform. 

4 Provisions for future payment obligations­

Lognormal discount process 

4.1 Approximate evaluation of provisions 

Consider a series of deterministic payments aI, a2,··· ,an, of arbitrary sign, 

that are due at times 1,2,···, n respectively. We want to find an answer to 

the following question: "What is the amount of money required at time 0 

in order to be able to meet these future obligations (aI, a2,···, an)?" We 

will call this amount the provision, or depending on the situation at hand, 

the (prospective) reserve or the required capital. Of course, the level of the 

provision will strongly depend on the way how this amount will be invested. 

Let us assume that the provision will be invested such that it generates a 

stochastic return }j in year j, j = 1, 2, ... , n, i.e. an amount of 1 at time j -1 

will grow to eYj at time j. The discount factor over the period [0, iJ is then 

given by e-(Yl+Y2+··+Y;), because this stochastic amount will exactly grow to 

an amount 1 at time i. The distribution function of the random variable 

n 

S = L::ai e-(Yl+Y2+··+Y;). (17) 
i=l 

will help us to determine the provision Woo E.g. we could determine this 

provision as Wo = Fil(0.99), such that there is a 99% probability that we 

can meet our future obligations, which means that there is a 99% probability 

that after the last payment at time n, we will have a non-negative amount 

left. 

In this section, we will assume that the return vector (Yi, Y;, ... , Yn ) has 

a multivariate normal distribution. The random variable S is then a lin­

ear combination of dependent lognormal random variables. In any realistic 

return model, it is impossible to determine the distribution function of S 

analytically. Therefore, we will derive the convex upper and lower bounds 
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SC, SU and Sl of S. By defining random variables Xi and Y(i) by 

Y(i) 

Xi 

Y1 + Y2 + ... + y;, 
e-Y(i) , 

(18) 

(19) 

the stochastic provision S can be written as S = (llX1 + (l2X2 + ... + 

(lnXn' Note that if all (li are positive, then the support of S is situated 

in the region [Fs} + (0), Fs}(I)] = (0, +00), if all (li are negative, then 

[Fic1+(O), Fi}(I)] = (-00,0), and if the (li have mixed signs, then [F;1+(O), Pi} (1)] = 
(-00, +00). In the following Theorem, we derive approximations for (the 

distribution function of) the stochastic provision S, as explained in Dhaene, 

Denuit, Goovaerts, Kaas & Vyncke (2001). 

Theorem 1 Let S be given by (17), where the random vector (Y1 , Y2 ,'" , Yn ) 

has a multivariate normal distribution. Consider the conditioning random 

variable A = l:~=1 (3i Y;. Then the lower bound Sl, the improved upper 

bound su and the comonotonic upper bound sc are given by 

n 

Sl = L (li e -E[Y(i)]-ri crY(i) q,-1(V)+H1-rncrhi) , (20) 

i=l 

n 

S" L (li e-E[Y(i)]-ri crY(i) q,-l(V)+sign(O:i) V1- r;crY(i) q,-l(U), (21) 

i=l 

n 

'"""' (l. e-E[Y(i)]+sign(O:i) cry (i) q,-l(U) 
~ 2 , (22) 

i=l 

where U and V are mutually independent uniform(O,l} random variables, <P 

is the cdf of the N(O, 1) distribution and ri is defined by 

ri = r (Y(i), A) = cov [Y(i), A]. 
ITY(i) IT A 

(23) 

Proof. (a) From (11) and (12), we find that conditionally, given A = ).., 
the random variable -Y(i) is normally distributed with parameters f-Li = 

-E [Y(i)]- ri cr;~i) (A - E [AJ) and ITT = (1- rn IThi)' Hence, condition­

ally, given A = A, the random variable Xi is lognormally distributed with 
2 1 2 

parameters f-Li and ITi . As E [Xi I A = A] = eILi +"2 cri, we find 
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where the random variable V == 4> (A-,,-~[A]) is uniform(O,l). Hence, Sl = 

I:~=l E [aiXi I A] is given by (20). 

(b) From (T.75) we find that p-l (p) = a· elli+sign(ui) "-i ip-l(p) with 
, UiXiIA=A Z , 

J-Li and a i as defined in (a). This implies 

F- 1 (p) = a. e-E[Y(i)]-Ti "-Y(i) ip-l(V)+sign(u;) V1-T7"-Y(i) ip-l(p). 
UiXil A Z 

Hence, su = I:~=l P~~xiIA(U) is given by (21). 

(c) The random variable Xi is lognormally distributed with parameters 
-E [Y(i)] and ahi)' From (T.75), we find that P;'ii (p) = ai e-E[Y(i)]+sign(ui) "-Y(i) q,-l(p) , 

from which we find the expression (22) for se. • 

Note that in Dhaene, Denuit, Goovaerts, Kaas & Vyncke (2001), we 

proved that the bounds in the theorem above are ordered in the convex 

order sense: 

Sl ::;cx S ::;cx su ::;ex se. (24) 

In order to compare the cdf of S = ",n a· e-(Yl+Y2+"+Yi) with the cdf's 
L....-~=l Z 

of the convex order bounds Sl, su and se, we may look at their variances. So 

we need the correlations between the different random variables in each sum. 

We find the following results for the lognormal discount process considered 

in this section: 

[p-1 (U) p-l (U)] 
r Ui XilA ' Uj XjlA 

eeov[Y(i),Y(j)] - 1 
8ij ; 

J e"-~(i) - 1 J e"-~(j) - 1 

eTi.Tj"-Y(i)"-Y(j) - 1 
8ij ; 

JeT; "-~(i) - 1 JeT; "-~(j) - 1 

esign(Ui.Uj)"-Y(i)"-Y(j) - 1 

8ij J e,,-h) - 1 J e"-~(j) - 1 . 

(25) 

(26) 

where 8ij is used as shorthand notation for 8ign( aiaj). From these corre­

lations, we can for instance deduce that if all payments ai are positive and 

r [Y(i), Y(j)] = 1 for all i and j, then S ~ se. In practice, the discount fac­

tors will not be perfectly correlated. But for any realistic discount process, 
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r [Y(i), Y(j)] = r [Y1 + ... +}i, Y1 + ... + 1J] will be close to 1 provided 

that i and j are close to each other. This gives an indication that the cdf 

of se might perform well as an approximation for the cdf of S for such pro­

cesses. This is indeed the case as will be seen in the numerical illustrations 

in Section 4.4. 

A similar reasoning leads to the conclusion that the cdf of se will not perform 

well as a convex upper bound for the cdf of S if the payments ai have mixed 

signs. This phenomenon will indeed be observed in the numerical illustra­

tions in Section 4.4. 

Note that when S = ai e-Y(i), an optimal choice for the conditioning random 

variable A is given by A = Y(i), as this choice implies Sl .1:. s.1:. su .1:. se. 
It remains to derive expressions for the cdf's of Sl, su and se. 

4.2 The cdf and the stop-loss premiums of the bounds 

The quantiles of se follow from Theorems T.1 and T.6: 

n 

FS;?(p) = I:ai e-E[Y(i)]+sign(ai ) O"Y(i) q;-1(P), P E (0,1). (27) 

i=l 

The FXi are strictly increasing and continuous. From (T.48) we have that 

for FS;,t+(O) < x < Fs}(l), Fsc(x) follows implicitly from solving 

n 

I: ai e-E[Y(i)]+sign(ai) O"Y(i) q;-l(Fsc(x)) = x. (28) 

i=l 

From (T.82), we find the following expression for the stop-loss premium at 

retention d with Fs}+(O) < d < Fs;,l(l) for se: 

-d (1 - Fsc(d)). (29) 

Expressions for the cdf and the stop-loss premiums of Sl can be obtained 

by following the procedure as explained in (T.1D1) - (T.104). Indeed, from 

(20), we immediately find that the cdf of Sl can be determined from 

FSI (x) = [1 I (t ai e -E[Y(i)]-ri O"Y(i) q;-1(v)+H1-rt)O"h) :S x) dv, 

Jo i=l 
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while the stop-loss premiums follow from 

E [lS' - d)+l ~ l' (t,", e-E[y(i))-,< 'y", '-'(y)+l(1-'i)<l-", - d) + dv. 

Let us now consider the special yet important case that all ai ~ 0 and 

all Ti ~ o. These conditions ensure that Sl is the sum of n comonotonous 

random variables. Taking into account that A = I:~=I f3i Yi is normally 

distributed, we find that 

and hence, from (T.97) or also from Theorems T.1 and T.6, 

n 

Fs/(p) = L ai e-E[Y(i)]+ri aY(i) q,-l(p)+HI-rn ah), P E (0,1). (30) 

i=1 

From (T.99), we find that for any 0 < x < 00, Fs'(x) can be obtained from 

n L ai e-E[Y(i)]+ri aY(i) q,-l(FsI(x))+HI-rn ahi) = x. (31) 

i=1 

From (20) we see that Sl is the comonotonic sum of n random variables 

ai Zi where the Zi are lognormal distributed. Hence, from (T.82), we find 

the following explicit expression for the stop-loss premium at retention d > 0: 

n 

E [(SI - d)+] = L ai e-E[Y(i)]+~ahi)q, h O"Y(i) - q,-I (Fsl(d))] -d (1 - FSI (d)). 

i=1 

(32) 

Finally, we determine the cdf of Su. Since Fsu(x I V = v) is the cdf of a 

sum of n comonotonic random variables, we have 

n 

F-I (p) = '"' a. e-E[Y(i)]-ri aY(i) q,-l(v)+sign(ai) VI-rtaY(i) q,-l(p). (33) 
SUIV=v ~, 

i=1 

For Fsu1t=v(0) < x < Fsu1v=v(1), the conditional probabilities Fsu(x I V = 

v) also follow implicitly from 

n L ai e-E[Y(i)]-ri aY(i) q,-l(v)+sign(a;) vl-r;aY(i) q,-l(Fsu(xlV=v)) = x. (34) 

i=l 
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The cdf of SU then follows from 

Fsu(x) = 11 Fsu(x I V = v)) dv. (35) 

4.3 Continuous annuities 

Many of the previous derived results for the discrete case (sums of random 

variables) have a continuous counterpart (integrals of random variables). 

Consider e.g. the continuous temporary annuity S defined by 

(36) 

where {B (T), T 2: O} represents a standard Brownian motion, i.e. the process 

has independent and stationary increments, B(O) = 0 and for any T 2: 0, 

the random variable B( T) is normally distributed with mean 0 and variance 

T. Further, the drift 8 and the volatility a are non-negative real numbers. 

The payments are described by a(T) which is a non-negative and continuous 

function of T. 

Let Y(T) = 8T + aB(T) and X(T) = exp{ -Y(T)}. It can be proven that 

S ::;cx se, where the random variable se is defined by 

where, as usual, U is a uniform(O,l) random variable. 

The quantiles of se follow from 

(O<p<l), (38) 

which is a continuous counterpart of (T.39). The stop-loss premiums with 

retentions d > 0 follow from 

E[(se - d)+l = it a(T)e-or+lT2r/2<r> [aJT -<r>-l(Fsc(d))] dT - d(l- Fsc(d)), 

(39) 

where Fsc(d) can be obtained by solving F;;}(Fsc(d)) = d. See (T.82) for a 

discrete counterpart of this expression. 
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In the remainder of this subsection, we consider a constant annuity. 

Hence, we assume that a( r) == 1. In order to derive a lower bound in convex 

order for S, we consider the conditioning random variable A = J~ e-ST B(r)dr 

which is a linear transformation of a first order approximation of S. We have 

that A is normally distributed with mean 0 and variance 

a~ = Var[A] = lt lt e-S(T+V) min(r, v)drdv 

1 3 + 2& - 4eSt 

283 + 283 e2St ( 40) 

Since B ( r) is a Brownian motion process, the random variable Y ( r) I A = A 

is normally distributed with mean 

(41) 

and variance 

(42) 

with r(r) defined by 

.r(r) = cov[Y(r), A] = _1_ [1 -e-ST _ re-St ], r ~ t. (43) 
a AaVT a A VT 82 8 

Analoguously to (20), it can be shown that SI ~cx S where SI is defined by 

SI = E[S I A] = lt exp { -8r - r(r)aJTct>-l(V) + ~a2r(1- r2(r))} dr 

(44) 

with V = ct> ( A-O"~[AJ) standard uniformly distributed. 

The function f (r) = cov[Y (r), A] turns out to be a non-negative function, 

i.e. f (r) ?: 0 for 0 ~ r ~ t, since 1 (r) is continuous and 

1(0) 0 

I'(r) = ~ (e- ST - e-St ) > 0, r < t. 

Consequently, r(r) too is a non-negative function and the integrand in (44) is 

a decreasing function of V. This implies that SI is an integral of comonotonous 

random variables. Hence, the quantiles of SI follow from 

Fs/(p) = lt exp { -8r + r(r)aJTct>-l(p) + ~a2r(1- r2(r))} dr, (45) 
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for 0 < p < L The stop-loss premiums of Sl with retentions d > 0 follow 

from 

E[(SI - d)+] = it e-or+a2r/2<I> [r(r)o-JT" - <I>-l(Fsl(d))] dr - d(I - FSI(d)), 

(46) 

where FSI(d) can be obtained by solving F;/(Fsl(d)) = d. Similar results 

can be obtained in case a(r) is a more general function. 

4.4 Numerical illustrations 

4.4.1 Discrete annuities 

In this section, we will numerically illustrate the bounds we derived for S = 
I::~l ai e-(Yl +Y2+-+Yi). We will assume that the random variables Yi are 

i.i.d. and N(j..l, 0-2 ). The conditioning random variable A is defined as before: 

In this case, we find 

E [Y(i)] 

Var[Y(i)] = 

Var[A] 

20 

A = :L,8i Yi, 

i j..l, 

i 0-2 

i=l 

, 
20 

0-2 :L,8~, 
k=l 

cov [Y(i), A] 

o-Y(i) 0-A 

I:~=1 ,8k 

. /. ,,20 ,82 
V ~ L.Jk=l k 

(47) 

(48) 

(49) 

(50) 

(51) 

In our numerical illustrations, we will choose the parameters of the normal 

distribution involved as follows: 

j..l = 0.07 0- = 0.1 

We will compute the lower and upper bounds for the following choice of the 

parameters ,8i: 
20 

,8i = :L aje-iJ.t, i = 1"",20. 

j=i 
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Figure 1: The cdf's of S (dotted line), Sl (solid grey line), su (dashed line) 

and se (solid black line); positive payments. 

This choice makes A a linear transformation of a first order approximation 

to S. This can be seen from the following computation: 

20 20 j 

S = 2:: aje-jj.L- I:~=l(Yi-J.l) ~ 2:: aje-j J.l[l - 2::(1'i - f.l)] 

j=l j=l i=l 

20 j 20 20 

C - 2:: aje-jj.L 2:: Yi = c - 2:: Yi 2:: aje-jj.L, 

j=l i=l i=l j=i 

where C is the appropriate constant. By the remarks in section 4.1, Sl will 

then be "close" to S, provided (Yi - f.l) is sufficiently small, or equivalently, 

(j is sufficiently small. 

Figure 1 shows the cdf's of S, Sl, su and se for the following payments: 

ak = 1, k = 1, ... , 20. 

Since Sl ::;cx S ::;cx su ::;cx se, and the same ordering holds for the tails of 

their respective distribution functions which can be observed to cross only 
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6 10 12 14 16 18 20 

Figure 2: QQ-plot of the quantiles of Sl (0) and se (0) versus those of Sj 

positive payments. 

p Fs/(p) 'Fs I(P)' Fs}(p) 

0.95 15.4656 15.3868 16.3915 

0.975 16.7108 16.7233 17.9432 

0.99 18.3080 18.3942 19.9578 

0.995 19.4966 19.9644 21.4739 

0.999 22.2381 22.2271 25.0210 

Table 1: Quantiles of Sl and se versus those of Sj positive payments. 

once, we can identify the cdf's. The dotted line is the "exact" cdf of S, which 

was obtained by generating 10000 quasi-random paths. We see that the edf 

of Sl is very close to the distribution of S, which was to be expected because 

A is constructed such that it is "close" to S. Note that in this case Sl is 

a sum of comonotonic random variables, so its quantiles can be computed 

easily. The cdf of se also performs rather well as an approximation to the 

cdf of S. This can partially be explained by the fact that the dependency 

structure of the vector (Xl, ... , Xn) is locally quasi comonotonic. Indeed, if 

i is close to j, then r (Y(i), Y(j)) = mij!/) is rather close to 1. Hence, from 

(25) and (26), we find that r [Xi, X j ] is close to r [Fx}(U), Fx}(U)] if i is 

close to j. 

We find that the improved upper bound su is very close to the comono-

23 



\ 

10 15 20 25 

outcome 

Figure 3: Stop-loss premiums for Sl (solid grey line), S (dotted line) and sc 
(solid black line); positive payments. 

d E[(S! - d)+l 'E[(S - d)+l' E[(SC - d)+l 
0 10.8320 10.8346 10.8320 

5 5.8321 5.8346 5.8327 

10 1.4136 1.4141 1.5804 

15 0.1148 0.1156 0.2067 

20 0.0064 0.0042 0.0216 

25 0.0004 0.0003 0.0023 

Table 2: Stop-loss premiums for Sl, S and SC; positive payments. 

tonic upper bound Sc. This could be expected because Ti is close to Tj for any 

pair (i, j) with i and j sufficiently close. This implies that for any such pair 

(i, j) we have that cov (FilA (U), FXjllA (U)) is close to cov (Fx} (U), FXjl(U)). 

In order to have a better view on the behavior of the comonotonic upper 

bound sc (and of the lower bound Sl) in the tails, we consider a QQ-plot 

where the quantiles of sc (and of Sl) are plotted against the quantiles of S ob­

tained by simulation. The comonotonic upper bound sc (and the lower bound 

Sl) will be a good approximation for S if the plotted points (FSI (p), Ficl (p)) 
(and also (FSI(P), Fizl(p))) for all values of pin (0,1) do not deviate too 

much from the straight line y = x. From the QQ-plot in Figure 2, we can 

conclude that the comonotonic upper bound (slightly) overestimates the tails 
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Figure 4: The cdf's of S (dotted line), Sl (solid grey line), su (dashed line) 

and se (solid black line); positive and negative payments. 

of S, whereas the accuracy of the lower bound is extremely high. Table 1 

confirms these observations. 

Stop-loss premiums for Sl and se are compared in Figure 3. The upper 

and lower bound can be seen to be very close. Table 2 shows the stop-loss 

premiums for some retentions. 

Notice that some of the simulated stop-loss premiums are not in the 

theoretical range [E[(SI - d)+j, E[(se - d)+]]. This not only demonstrates 

the difficulty of estimating stop-loss premiums by simulation, but it also 

indicates the accuracy of the bounds. 

Next, we consider a series of negative and positive payments. Figure 4 

shows the cdf's of S, Sl, su and se for the following payments: 

{
-I, k = 1, ... ,5, 

O'.k = . 
1 k = 6, ... ,20. 

Note that the lower bound Sl is not a comonotonic sum in this case. We 

see that the lower bound Sl still performs very well as its cdf is almost 

indistinguishable from the cdf of S obtained by simulation. The comonotonic 

upper bound se performs very badly in this case. This could be expected 
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Figure 5: QQ-plot of the quantiles of Sl (0) and se (0) versus those of S; 

positive and negative payments. 

p F',:;./(p) 'Fs I(p)' Fs}(p) 
0.95 5.8849 5.8805 7.9282 

0.975 6.8400 6.8391 9.3450 

0.99 8.0881 8.0206 11.1716 

0.995 9.0321 9.1935 12.53998 

0.999 11.2519 11.3833 15.7310 

Table 3: Quantiles of Sl and se versus those of S; positive and negative 

payments. 

because couples such as (-Xs, X 6 ) are quasi counter-monotonic. Moreover, 

couples (-Xk' Xl) with k :'S 5 and l ~ 6 exhibit a kind of negative dependency 

structure. The improved upper bound performs better for this cash-flow with 

mixed signs. These observations are confirmed by the QQ-plots in Figure 5 

and Table 3. 

In Figure 6, we consider the same series of payments as in Figure 4. We 

consider the cdf of the lower and the improved upper bound for a different 

choice of the conditioning random variable A. We choose A as a linear trans­

formation of a first order approximation of - L~=l e-Y(j) which is the sum 
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Figure 6: The cdf's of S (dotted line), Sl (solid grey line), su (dashed line) 

and se (solid black line); positive and negative payments, other choice of A. 

of the negative terms in S. Hence, A == 2:~=1 e-jl" Y(j), or 

5 

(3i = L e-jl", i = 1, ... ,5 

j=i 

and (3i = 0 otherwise. The (simulated) cdf of S is the dotted line. The 

convex largest cdf is the comonotonic upper bound. Note that the lower 

bound performs worse in this case, which was to be expected because the 

"new" A is more different from S than the original one. The improved 

upper bound su performs much better in this case. This can partially be 

explained by the fact that conditionally on Xl + ... + X5 = A, we have that 

S = -Xl - ... -X5 +X6 + ... +X20 can be approximated by a comonotonic 

sum. In this respect one can expect that (a first order approximation of) the 

sum of the negative terms will be a good choice for the conditioning variable 

A of the improved upper bound. 
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Figure 7: The cdf's of Soo (dotted line), S:x, (solid grey line) and S~ (solid 

black line). 

4.4.2 Continuous annuities 

Consider the continuous (temporary) annuity with constant payment stream 

St = it exp [-8r - aB(r)] dr 

where B(r) represents a standard Brownian motion. For this annuity, an­

alytic results for the distribution function are known, see e.g. De Schepper, 

Teunen & Goovaerts (1994). In case the time horizon t reaches infinity, the 

distribution function of the perpetuity Soo can be calculated very easily since 

one can prove that S~l is Gamma distributed with parameters ;~ and ~2. 
The probability density function of the Gamma distribution with parameters 

a > 0 and b > 0 is defined by 

g(x; a, b) = br~a) exp { -bx } (~r-l, x> O. 

This result can be found in Dufresne (1990) and Milevsky (1997). Hence we 

can compare the distribution functions of the lower bound s:x, and the upper 
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p 

0.95 

0.975 

0.99 

0.995 

0.999 

23.5271 

25.9633 

29.1972 

31.6810 

37.6492 

23.6297 

26.1304 

29.4883 

32.0993 

38.4953 

25.7881 

29.1857 

33.8523 

37.5561 

46.8616 

Table 4: Quantiles of s:x, and S~ versus those of Soo, 

bound S~, as defined in section 4.3, with the exact distribution function 

of Soo, From (40) and (43) it follows that the variance of the conditioning 

variable A = Jooo e-OT B( T )dT simplifies to 

1 
Var[A] = -3' 

28 

while the correlation between Y (T) and A boils down to 

1 1- e-OT 

r(T) = . & 2 
UAvT £5 

Figure 7 shows the distribution functions of S:x" 8~ and Soo for 8 = 0.07 and 

U = 0.1. Again, the lower bound proves to be a very good approximation for 
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10 5.4099 

15 1.8354 

20 0.4787 

25 0.1172 

30 0.0294 

5.4457 

1.8626 

0.4961 

0.1270 

0.0342 

5.5210 

2.2405 

0.8152 

0.2973 

0.1134 

Table 5: Stop-loss premiums of S:x" S~ and Soo. 

the cdf of Soo. To assess the accuracy of the bounds in the tails, we plot their 

quantiles against those of Soo in Figure 8. The largest quantile (p = 0.995) 

of Sf:.o in this QQ-plot underestimates the exact quantile by only 1.3%. Table 

4 shows the numerical values for some high quantiles. 

The stop-loss premiums for different choices of d are shown in Figure 9 

and in Table 5. 
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5 Asian Options 

5.1 Definitions and some theoretical results 

Assume that we are currently at time O. Consider a risky asset (a non­

dividend paying stock) with prices described by the stochastic process {A(t), t ~ O} , 

and a risk-free continuously compounded rate 8 that is constant through 

time. In this section all probabilities and expectations have to be consid-

ered as conditional on the information available at time 0, i.e. the prices of 

the risky asset up to time O. Note that in general, the conditional expec-

tation (with respect to the physical probability measure) of e-~t A(t), given 

the information available at time 0, will differ from the current price A(O). 
However, we will assume that there exists a unique "equivalent probability 

measure Q" such that the discounted price proces {e-dt A(t), t ~ O} is a 

martingale under this equivalent probability measure. This implies that for 

any t ~ 0, the conditional expectation (with respect to the equivalent mar­

tingale measure) of e-~tA(t), given the information available at time 0, will 

be equal to the current price A(O). Denoting this conditional expectation 

under the equivalent martingale measure by EQ [e-~tA(t)], we have that 

t ~ o. (52) 

The notation FA(t)(X) will be used for the conditional probability that A(t) 
is smaller than or equal to x, under the equivalent martingale measure Q, 
and given the information available at time O. Its inverse will be denoted by 

FA(~)(P). 
The existence of an equivalent martingale measure is related to the absence 

of arbitrage in the securities market, while uniqueness of the equivalent mar­

tingale measure is related to market completeness. Two models where there 

exists such a unique equivalent martingale measure are the binomial three 

model of Cox, Ross & Rubinstein (1979) and the geometric Brownian motion 

model of Black & Scholes (1973). 

The existence of the equivalent martingale measure allows one to reduce 

the pricing of options on the risky asset to calculating expected values of the 

discounted pay-offs, not with respect to the physical probability measure, 

but with respect to the equivalent martingale measure, see e.g. Harrison and 

Kreps (1979) or Harrison and Pliska (1981). A reference in the actuarial 

literature is Gerber & Shiu (1996). 
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A European call option on the risky asset, with exercise price K and 

exercise date T generates a pay-off (A(T) - K)+ at time T, that is, if the 

price of the risky asset at time T exceeds the exercise price, the pay-off equals 

the difference; if not, the pay-off is zero. Note the similarity between such 

a pay-off and the payment on a stop-loss reinsurance contract. At current 

time t = 0 this call option will trade against a price given by 

(53) 

A European-style arithmetic Asian call option with exercise date T , n av­

eraging dates and exercise price K generates a pay-off (* L~:Ol A(T - i) - K) + 
at T, that is, if the average of the prices of the risky asset at the latest n 

dates before T is more than K, the pay-off equals the difference; if not, the 

pay-off is zero. Such options protect the holder against manipulations of the 

asset price near the expiration date. The price of the Asian option at current 

time t = 0 is given by 

Determining the price of an Asian option is not a trivial task, because in 

general we do not have an explicit analytical expression for the distribution of 

the average L~:Ol A(T - i). One can use Monte-Carlo simulation techniques 

to obtain a numerical estimate of the price, see Kemna and Vorst (1990) 

and F.J. Vazquez-Abad & Dufresne (1998), or one can numerically solve 

a parabolic partial differential equation, see Rogers & Shi (1995). But as 

both approaches are rather time consuming, it would be helpful to have 

an accurate, analytical easily computable bound of this price. In Jacques 

(1996) an approximation is obtained by replacing the distribution of the sum 

L~:Ol A(T - i) by a more tractable one. 

From the expression for the price of an arithmetic Asian call option, 

we see that the problem of pricing such options turns out to be equivalent 

to calculating stop-loss premiums of a sum of dependent random variables. 

This means that we can apply our previous results on bounds for stop-loss 

premiums in order to find accurate lower and upper bounds for the price 

of Asian options. Note that the lower bound that we will obtain is closely 

related to the lower bound derived by Rogers & Shi (1995). 
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5.2 Asian options, the general case 

Assume that at the current time 0, the averaging has not yet started. In this 

case the n variables A(T - n + 1), ... , A(T) are random. Upper bounds for 

AC(n, K, T) can be constructed as follows for any retentions Ki and K, with 

K= L~=lKi: 

AC(n,K,T) ~ e~6T E'> [(~A(T-i) -nK) J 
-liT n-l 

< ~ 2: EQ [(A(T - i) - nKi )+] 
i=O 

n-l 

.!. 2: e-lii EC (nKi , T - i). 
n i=O 

(55) 

The procedure above enables us to construct an unlimited number of upper 

bounds for the price of an arithmetic Asian call option as an average of the 

prices of underlying European call options. The theory of comonotonic risks 

will allow us to find the best, i.e. the smallest, upper bound constructed in 

this way. 

By introducing the notation se = L~:~ FA(~_i)(U), where U is a random 

variable which is uniformly distributed on the unit interval, we find from 

Theorem T.8 that for all exercise prices K we have 

(56) 

From Theorem T.7 we then find that for all K with FSc1+(O) < nK < FSc1(1), 

n-l 

~?= e- lii EC (F~#~)i) (Fsc(nK)), T - i) (57) 
t=O 

where a is determined by 

(58) 
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Hence, an upper bound for the price of the Asian option AC(n, K, T) with 

Fs;,l+(O) < nK < Fs}(l) is given by 

n-l 

AC(n,K,T):S ~ Le-8i EC(F;;(~~~)(Fsc(nK)),T-i) (59) 
n i=O 

We also find that for any retentions Ki and K with K = L~=l Ki, 

From (56), (57), (59) and (60) we find that the comonotonic dependency 

structure leads to the optimal upper bound for the price of an arithmetic 

Asian option which is weighted average of the prices of the underlying Euro­

pean call options as in (55). 

Note that if nK :S F;l+(O) or nK 2: F;l(l), the price of the Asian option 

can be determined exactly, see (T.52) and (T.53). In the first case, it is 

certain that the option will be in the money at the expiration date, while 

in the second case the option will be certainly out of the money, and hence 

worthless. 

The upper bound in (59) can be written in terms of the usual inverses FA(~-i). 

Indeed, one can prove that 

n-l 

AC(n, K, T) :S ~ L e-8iEC [FA(~_i) (Fsc(nK)) , T - i] 
t=O 

_e-8T [nK - F;l (Fsc(nK))] (1 - Fsc(nK)). 

Until now, we assumed that T - n + 1 > O. We will now turn to the case that 

T-n+ 1 :S o. Then we know the prices A(T-n+ 1), A(T-n+2),···, A(O), 

and only the prices A(l), ... , A(T) remain random. Therefore we obtain: 

AC(n,K,T) ~ e:T E" [(~A(T-i) -nK) J (61) 

~ e:T EQ [(~A(T -i) - (nK - ~A(T -i))) J 
Under this assumption we can apply the same method as above in order to 

obtain upper bounds for the price of the Asian option. Now we define se by 

34 



se = LL~l FA(~_i)(U). For F;1+(O) < nK - ~~:;, A(T - i) < Fs}(l), we 

obtain 

AG(n, K, T) oS ~ ~ e-" EG [F';:(~":) (fs, (nK - ~A(T - i)) ) , T - i] , 
(62) 

where a is determined by 

[ ( 
n-l )] n-l 

Fi}(a) Fsc nK - ~ A(T - i) = nK - ~ A(T - i). (63) 

Note that a similar procedure can be used to derive upper bounds for the 

price of arithmetic Asian put options. 

Using the theory explained in Section T.5.3, we can also derive lower 

bounds for the price of Asian options. This will be illustrated in the next 

section. 

5.3 Application in a Black & Scholes Setting 

In the model of Black & Scholes (1973), the price of the risky asset is de­

scribed by a stochastic process {A(t), t 2:: O} following a geometric Brownian 

motion with constant drift /-l and constant volatility 0": 

dA(t) -
A(t) = /-ldt + O"dB(t) , t 2:: 0, (64) 

with initial value A(O) > 0, and where {B(t), t 2:: O} is a standard Brownian 

motion. 

Under the equivalent martingale measure Q, the price process {A(t), t 2:: O} 
still follows a geometric Brownian motion, with the same volatility but with 

drift equal to the continuously compounded risk-free interest rate 8: 

dA(t) 
A(t) = Jdt + O"dB(t) , t 2:: 0, (65) 

with initial value A(O), and where {B(t), t 2:: O} is a standard Brownian 

motion in the Q-dynamics. Hence, under the equivalent martingale measure, 

we have that 

t 2:: O. (66) 
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This implies that under the equivalent martingale measure, the random vari­

ables ~~~ are lognormally distributed with parameters (8 - ~2) t and t(J"2 

respectively: 

FA(t) (x) = Pr [A(0)e(c5- U2
2

)t+Vta.p-l(U) ::; x] , 

where U is uniformly distributed on the interval (0,1). 

From (T.78) and (T.80), we find 

EC(K,T) = e-c5TEQ [(A(T) - K)+J 

A(O) <1> (d1) - K e-c5T <1> (d2 ) , 

where d1 and d2 are given by 

d _ In (A(O)j K) + (8 + (J"2 j2)T 
1- (J"vT 

and 

(67) 

(68) 

(69) 

(70) 

This formula is the famous Black & Scholes (1973) pricing formula for Euro­

pean call options. 

Within the Black & Scholes model, no closed form expression is available 

for the price of an arithmetic Asian call option. Therefore, we will derive 

upper and lower bounds for the price of such options. We will only consider 

the case that the averaging has not yet started. The other case can be dealt 

with in a similar way. 

From (56) and (T.82), we find the following comonotonic upper bound 

for the price of an Asian call option: 

AC(n,K,T) 
-c5T 

< _e -E [(se - nK)+J 
n 

A~O) I:e-c5i <I> [(J"VT - i - <1>-1 (Fsc(nK))] 

~=O 

_e-c5T K (1 - Fsc(nK)), (71) 

which holds for any K > O. Note that this upper bound corresponds to 

the optimal linear combination of the prices of European call options as 

mentioned in the previous section. 
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The remaining problem is how to calculate Fsc (nK). The latter quantity 

follows from 
n-l 

L FAC~-i) (Fsc(nK)) = nK, 
i=O 

or, equivalently, from (66) and Theorem T.1 we find that Fsc(nK) follows 

from 

Lower bounds for AC(n, K, T) can be obtained from Section T.5.3. There­

fore, consider the conditioning random variable A defined by 

n-l 

A = L e(r5-"n CT- j ) B(T - j). (73) 

j=O 

From (66) we find that, in the Q-dynamics, 

(74) 
i=O i=O 

Hence, A is a linear transformation of a first order approximation to 2:7~01 A(T­

i). The variance of A is given by 

n-l n-l 

2 ='"''"' (r5-"nC2T-j-k) . (T- ·T-k) 
(jA ~~e mm],. (75) 

j=O k=O 

We have that (B(T - n + 1), B(T - n + 2), ... , B(T)) has a multivariate 

normal distribution. This implies that given A = .>.., the random vari­

able B(T - i) is normally distributed with mean rT-i ~.>.. and variance 

(T - i) (1 - rLi) where 

cov (B(T - i), A) 2:~:~ e(r5-"22)CT-j) min (T - i, T - j) 
rT-2 = = (76) 

(j A VT - i (j A VT - i 
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We find that 

n-l 2 

A(O) L e(5-"2 TLi) (T-i)+lT TT-i ..j'J'Ci q,-l(U) (77) 

i=O 

where U is uniformly distributed on the unit interval. From this expression, 

we see that Sl is a comonotonic sum of lognormal random variables. Hence, 

from Section T.5.3 and (T.82), we find the following lower bound for the 

price of the Asian call option: 

-5T 
AC(n,K,T) ~ ~E[(SI-nK)+] 

A(O) ~ -5i if, [ ~. if,-l (F ( K))] --;;- ~ e '±' ()" TT-i Y 1 - Z - '±' Sl n 
.=0 

_e-5T K (1 - FSI(nK)) (78) 

which holds for any K > o. In this case, FSI (nK) follows from 

A(O) ~exp [(6 - ~\Li) (T - i) + ()" TT-iVT - i ([>-1 (FSI(nK))] = nK. 

(79) 

When the number of averaging dates n equals 1, the Asian call option 

reduces to a European call option. It is straightforward to prove that in 

this case the upper and the lower bounds (71) and (78) for the price of the 

Asian option both reduce to the Black & Scholes formula for the price of the 

European call option. 

5.4 Numerical illustration 

In this section we numerically illustrate the bounds for the price of Asian 

options in a Black & Scholes setting, as obtained in the previous section. We 

consider a time unit of one day. The parameters that were used to generate 

the results given in Tables 6, 7 and 8 are the same as in Jacques (1996): an 

initial stock price A(O) = 100, a risk-free interest rate of 9% per year, three 

values (0.2, 0.3 and 0.4) for the yearly volatility, and five values (80, 90, 100, 
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II K LB UB MC (s.e.) 

0.2 80 21.9212 21.9269 21.9233 (0.0468) 

90 12.6768 12.7204 12.6714 (0.0432) 

100 5.4609 5.5557 5.4726 (0.0329) 

110 1.6252 1.7072 1.6114 (0.0183) 

120 0.3317 0.3673 0.3336 (0.0080) 

0.3 80 22.2332 22.2720 22.2651 (0.0684) 

90 13.8521 13.9512 13.8473 (0.0609) 

100 7.4787 7.6229 7.4395 (0.0484) 

110 3.4826 3.6214 3.5405 (0.0346) 

120 1.4125 1.5105 1.4003 (0.0219) 

0.4 80 22.9646 23.0525 22.9694 (0.0880) 

90 15.3589 15.5115 15.3927 (0.0788) 

100 9.5113 9.7041 9.5987 (0.0665) 

110 5.4794 5.6720 5.5574 (0.0517) 

120 2.9608 3.1222 2.9519 (0.0377) 

Table 6: Lower (LB) and upper (UB) bounds for the price of an Asian option 

with T = 120 and n = 30, compared to Monte Carlo estimates (MC) and 

their standard error (s.e.). 

110 and 120) for the exercise price K. Note that the risk-free force of interest 

per day is given by 8 = ln~16~9), while the daily volatility II is obtained by 

dividing the yearly volatility by )365. 

In Table 6 we compare the upper and lower bounds (71) and (78) with 

Monte Carlo estimates (based on 50000 paths each) in case T = 120 and 

n = 30. Note that the quasi-random paths are based on antithetic variables 

in order to reduce the variance of the Monte Carlo estimate and that we 

generated different paths for each value of II and K. We also computed the 

standard error for each estimate. As is well-known, the (asymptotic) 95% 

confidence interval is given by the estimate plus or minus 1.96 times the 

standard error. On the other hand, the range between the lower bound and 

the upper bound contains the exact price with certainty. 

Despite the quite large number of paths (and consequently a long com­

puting time) and the variance reduction technique used, the 95% confidence 

interval is wider than the [LB,UBj-interval in 10 cases out of 15. This in­

dicates that the bounds should be preferred over simulation in this case. 
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(J K LB DB MC (s.e.) 

0.2 80 20.7841 20.7845 20.7839 (0.0297) 

90 11.0273 11.0599 11.0205 (0.0287) 

100 3.2013 3.3443 3.1984 (0.0196) 

110 0.3373 0.4080 0.3383 (0.0064) 

120 0.0116 0.0185 0.0128 (0.0011) 

0.3 80 20.8122 20.8268 20.8055 (0.0441) 

90 11.4929 11.6017 11.5160 (0.0410) 

100 4.5063 4.7221 4.4711 (0.0289) 

110 1.1516 1.3134 1.1458 (0.0150) 

120 0.1915 0.2503 0.1945 (0.0059) 

0.4 80 20.9708 21.0309 20.9719 (0.0581) 

90 12.2468 12.4384 12.2183 (0.0514) 

100 5.8157 6.1038 5.8711 (0.0393) 

110 2.2082 2.4582 2.2224 (0.0248) 

120 0.6783 0.8223 0.6802 (0.0135) 

Table 7: Lower (LB) and upper (DB) bounds for the price of an Asian option 

with T = 60 and n = 30, compared to Monte Carlo estimates (MC) and their 

standard error (s.e.). 

Moreover, the Monte Carlo estimate exceeds the lower bound 6 times. This 

might indicate that the lower bound is very close to the real price. The upper 

bound appears to perform better the more the option is in the money. 

In Table 7 we use the same parameters as in Table 6 but we change the 

expiration time to T = 60. Now, the 95% confidence interval is wider than 

the [LB,DB]-interval in 6 cases, but the Monte Carlo estimate exceeds the 

lower bound 7 times. So again, the lower bound must be very close to the 

real price. 

In Table 8 we change the expiration time back to T = 120 but we reduce 

the number of averaging days to n = 10. With these parameters, simulation 

performs really bad since the simulated confidence interval is wider than the 

real confidence interval in all cases. The Monte Carlo estimate again exceeds 

the lower bound 7 times. 

The upper bound performs better for the option with n = 10 than for the 

options with n = 30. This illustrates the fact that the dependency structure 

of the A(T - i) is more "comonotonic-like" if all points in time T - i are close 
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(J K LB DB MC (s.e.) 

0.2 80 22.1712 22.1735 22.1718 (0.0495) 

90 13.0085 13.0232 13.0219 (0.0460) 

100 5.8630 5.8934 5.8793 (0.0351) 

110 1.9169 1.9442 1.9411 (0.0211) 

120 0.4534 0.4665 0.4517 (0.0098) 

0.3 80 22.5656 22.5795 22.5524 (0.0720) 

90 14.3149 14.3475 14.2825 (0.0644) 

100 8.0101 8.0563 8.0009 (0.0522) 

110 3.9475 3.9928 3.9788 (0.0382) 

120 1.7297 1.7633 1. 7322 (0.0250) 

0.4 80 23.4194 23.4493 23.4137 (0.0933) 

90 15.9549 16.0045 15.9191 (0.0833) 

100 10.1735 10.2354 10.1853 (0.0705) 

110 6.1019 6.1643 6.0895 (0.0563) 

120 3.4683 3.5220 3.4844 (0.0431) 

Table 8: Lower (LB) and upper (DB) bounds for the price of an Asian option 

with T = 120 and n = 10, compared to Monte Carlo estimates (MC) and 

their standard error (s.e.). 

to each other. 

6 Conclusions 

In this paper, we demonstrated the usefulness of the concept of comonotonic­

ity for describing dependencies between random variables in several financial 

and actuarial applications. We showed that very tight upper bounds as well 

as lower bounds can be obtained using the techniques described in Dhaene, 

Denuit, Goovaerts, Kaas & Vyncke (2002). It is shown how the techniques 

can be used to determine provisions for future payment obligations, taking 

into account the stochastic nature of the return process. 

We also demonstrated that the same techniques based on the concept 

of comonotonicity can be used to derive tight bounds for the price of an 

arithmetic Asian option, which is essentially a stop-loss premium of a sum 

of strongly positively dependent random variables. 

The upper bounds are especially sharp in case the random components of 
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a sum are rather strongly positive dependent, as they are in many actuarial 

applications of a financial nature, where the consecutive summands contain 

a stochastic discounting component. On the other hand, the lower bounds 

perform very well even in a situation where the dependencies are not strongly 

positive. 

The tightness of the lower and upper bounds together with their easy 

computability makes them useful instruments for tackling several actuarial 

problems occuring in practice. 
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