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functions H, called the duality space of X and Y, is studied in this paper. The algebraic structure of U

is closely related to the eigenvalues and eigenvectors of the transition matrices of X and Y. Often as

for example in physics (interacting particle systems) and in biology (population genetics models) dual

processes arise naturally by looking forwards and backwards in time. In particular, time-reversible

Markov processes are self-dual. In this paper, results on the duality space are presented for classes of
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Wright±Fisher model with ®xed population size N.
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1. Introduction

The concept of duality is a powerful tool in the stochastic theory of interacting particle

systems (Liggett 1985). Often dual processes arise when some system is considered

forwards and backwards in time. In particular, time-reversible Markov processes are self-

dual. Our aim in this paper is to link the theory of duality to ®nite population genetics

models. Duality has been used by Donnelly and Kurtz (1996a,b) as well as by Krone and

Neuhauser (1997a,b). These workers have concentrated on particle system models and

genetics models arising from the limiting diffusion which is appropriate for large

populations. In this paper a more general concept of duality is used and the results apply

to ®nite population models.

Suppose that X � (X t) t2T and Y � (Yt) t2T are Markov processes with state spaces

(E1, F 1) and (E2, F 2) respectively. Let B(E1 3 E2) denote the set of all bounded

measurable functions on E1 3 E2. The following de®nition of duality is due to Liggett

(1985). Similar de®ning equations for duality have been used by Sudbury and Lloyd (1995).

De®nition 1.1. The process X is said to be dual to Y with respect to H 2 B(E1 3 E2) if
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Ex H(X t, y) � E y H(x, Yt) (1)

for all x 2 E1, y 2 E2 and t 2 T, where Ex denotes the expectation given that the process X

starts in X0 � x and E y denotes the expectation given that the process Y starts in Y0 � y.

Let fRtg t2T and fStg t2T denote the semigroups of X and Y respectively, i.e.

Rt f (x) � Ex f (X t) and St g(y) � E y g(Yt) for all functions f on E1 and g on E2 such

that the expectations exist. Each function H 2 B(E1 3 E2) induces a family of functions

H(:, y) 2 B(E1), y 2 E2 and a family of functions H(x, :) 2 B(E2), x 2 E1. Hence the

semigroups induce operators on B(E1 3 E2) which are denoted again by Rt and St for

simplicity and are de®ned by Rt H(x, y) :� Ex H(X t, y) and St H(x, y) :� E y H(x, Yt).

Equation (1) becomes then simply

Rt H � St H 8t 2 T : (2)

For given processes X and Y the set

U � U (X , Y ) :� fH 2 B(E1 3 E2)jX is dual to Y with respect to Hg (3)

of all functions H satisfying (1) is of special interest in this paper. If X is dual to Y with

respect to H, then Y is dual to X with respect to F given by F(y, x) :� H(x, y). Hence,

U (X , Y ) is isomorphic to U (Y , X ). Obviously U is a linear subspace of B(E1 3 E2). Call U

the duality space of X and Y. One major interest is to characterize U, e.g. to ®nd a basis of U

(in terms of the processes X and Y) or expressions for the dimension of U. The space U

might be very large, e.g. U � B(E1 3 E2) for the simple case when X and Y are both

constant.

If the state spaces E1 and E2 are countable, then each H 2 B(E1 3 E2) corresponds to a

bounded matrix with entries Hij � H(i, j), i 2 E1, j 2 E2. Hence, for Markov processes X

and Y with countable state spaces, (1) is equivalent toX
k2E1

ðik(t)H kj �
X
l2E2

Hil pjl(t) 8i 2 E1, j 2 E2, t 2 T ,

where ðik(t) :� P(X t � kjX 0 � i) and pjl(t) :� P(Yt � ljY0 � j) are the transition prob-

abilities of X and Y respectively. It is convenient to write this in matrix notation

Ð t H � H P9t 8t 2 T , (4)

where Ð t :� (ðik(t))i,k2E1
and Pt :� ( pjl(t)) j, l2E2

are the transition matrices of the

processes X and Y respectively and P9t denotes the transpose of Pt. For time-homogeneous

Markov processes with T � N0 :� f0, 1, 2, . . .g, (4) is equivalent to ÐH � HP9, where Ð
and P are the corresponding one-step transition matrices. Note that, in this case, ÐH 2 U

and HP9 2 U, if H 2 U . Equation (4) is a `̀ countable state-space version'' of the

semigroup representation (2) and can be considered as a more algebraic de®nition of the

duality, but the more measure-theoretic de®nitions (1) and (2) are certainly more general.

Nevertheless, as our interest here is focused on Markov processes with countable or even

®nite state spaces, (4) links the concept of duality directly to the theory of (linear) algebra
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which turns out to be quite helpful. Two simple examples of duality are presented now. The

®rst is an example with in®nite countable state space, and the second is a corresponding

®nite state-space version.

Examples. Fix p 2 (0, 1) and de®ne q :� 1ÿ p.

(1) Let X � (X t) t2N0
be a random walk on E :� N0 with transition probabilities

ð00 :� 1 (absorption at 0) and ði,i�1 � 1ÿ ði,iÿ1 :� p for all i 2 N. Further let

Y � (Yt) t2N0
be a random walk on N0 with transition probabilities p00 :� p, p01 :� q

(re¯ection at 0 with probability q) and pi,i�1 � 1ÿ pi,iÿ1 :� q for all i 2 N. Then for each

H : N0 3 N0 ! R it follows that

(ÐH)ij �
X1
k�0

ðik H kj � H0 j if i � 0,

qHiÿ1, j � pHi�1, j if i . 0,

�
and

(HP9)ij �
X1
k�0

Hik pjk � pHi0 � qHi1 if j � 0,

pHi, jÿ1 � qHi, j�1 if j . 0:

�
Thus ÐH � HP9, i.e. H 2 U for example for the function H : E2 ! R given by

H(i, j) :� 1 if i < j,

0 otherwise,

�
Hÿ1(i, j) �

1 if i � j,

ÿ1 if i � jÿ 1,

0 otherwise:

8<: (5)

The duality space U is generated by the matrices Ðn H , n 2 N0.

(2) It is now obvious how to construct an example with ®nite state space

E :� f0, . . . , Ng. Let X be a random walk on E with transition probabilities ð00 :� 1

(absorption at 0), ði,i�1 � 1ÿ ði,iÿ1 :� p for all i 2 f1, . . . , N ÿ 1g, ðN ,Nÿ1 :� q and

ðNN :� p (re¯ection at N with probability q). Further let Y � (Yt) t2N0
be a random walk

on E with transition probabilities p00 :� p, p01 :� q (re¯ection at 0 with probability q),

pi,i�1 � 1ÿ pi,iÿ1 :� q for all i 2 f1, . . . , N ÿ 1g and pNN :� 1 (absorption at N). In other

words, Y looks like X viewed in reverse, i.e. pij � ðNÿi,Nÿ j. Then again ÐH � HP9 for the

function H : E2 ! R de®ned as in (5). The duality space U is generated by the matrices

Ðn H , n 2 f0, . . . , Ng. Especially dim U � N � 1.

Remark. A simple example with state space E � [0, 1) (Brownian motion with absorption at

0 and Brownian motion with re¯ection at 0) has been described by Liggett (1985). The

analogy to the above random walk example with countable state space is obvious.

2. Haploid population models

We consider ®rst the haploid population models with non-overlapping generations and ®xed

population size N 2 N introduced by Cannings (1974; 1975).
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2.1. The forward process

Looking forward in time this leads to the so-called descendant process or forward

process (X (i)
n )n2N0

, where X (i)
n denotes (by de®nition) the number of descendants in

generation n of the individuals 1, . . . , i of generation 0. The transition probabilities are given

by

ð jk :� P(X
(i)
n�1 � kjX (i)

n � j) � P(í1 � � � � � í j � k) (6)

(Cannings 1974), where íi denotes the number of offspring of individual i. Note that

E(X
(i)
n�1jX (i)

n � j) �
X

k

kP(í1 � � � � � í j � k) � E(í1 � � � � � í j) � j,

i.e. (X (i)
n )n2N0

is a martingale which converges almost surely to a random variable X (i)
1 as n

tends to in®nity such that (X (i)
n )n2N0[f1g is still a martingale. Let ð(n)

ij :� P(X (i)
n � j) denote

the n-step transition probabilities of the forward process.

Lemma 2.1. The following conditions are equivalent.

(a) There exists a constant n 2 N such that inf0<i<N (ð(n)
i0 � ð(n)

iN ) . 0.

(b) P(X (i)
1 2 f0, Ng) � 1 for all i 2 f0, . . . , Ng.

(c) limn!1inf 0<i<N (ð(n)
i0 � ð(n)

iN ) � 1.

(d) The states 1, . . . , N ÿ 1 are transient.

Remark. The next lemma shows that these conditions are satis®ed except for the trivial model

í1 � 1.

Proof. `̀ (a) Þ (b)'': from (a) it follows that á :� 1ÿ inf 0<i<N (ð(n)
i0 � ð(n)

iN ) , 1. The

homogeneity of the forward process (X (i)
n )n2N0

yields

P(0 , X (i)
nm , N ) �

XNÿ1

j�1

P(0 , X (i)
nm , N jX (i)

n(mÿ1) � j)P(X
(i)
n(mÿ1) � j)

�
XNÿ1

j�1

P(0 , X ( j)
n , N )P(X

(i)
n(mÿ1) � j)

�
XNÿ1

j�1

(1ÿ ð(n)
j0 ÿ ð(n)

jN )P(X
(i)
n(mÿ1) � j)

< áP(0 , X
(i)
n(mÿ1) , N )

for all m 2 N. By induction on m it follows that P(0 , X (i)
nm , N ) < ám. Note that X (i)

nm

converges almost surely and hence also in distribution to X (i)
1 as m tends to in®nity. Thus

P(0 , X (i)
1, N ) < limm!1ám � 0 and therefore P(X (i)

1 2 f0, Ng) � 1.
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`̀ (b) Þ (c)'': obviously

lim
n!1(ð(n)

i0 � ð(n)
iN ) � lim

n!1(P(X (i)
n � 0)� P(X (i)

n � N ))

� P(X (i)
1 � 0)� P(X (i)

1 � N )

�(b)
1

for all i 2 f0, . . . , Ng. As the state space f0, . . . , Ng is ®nite, (c) is obtained.

`̀ (c) Þ (a)'': this is trivial.

`̀ (b) Û (d)'': obviously

P(X (i)
n 2 f0, Ng finally) � P

[
n2N0

fX (i)
n 2 f0, Ngg

 !

� lim
n!1P(X (i)

n 2 f0, Ng)

� P(X (i)
1 2 f0, Ng)

and hence

P(0 , X (i)
n , N infinitely often) � P(0 , X (i)

1, N ):

If all the states 1, . . . , N ÿ 1 are transient, then by de®nition the left-hand side of the

above equation is equal to zero. Hence the right-hand side of the equation has to be equal

to zero and (b) is established. Assume now that (b) is satis®ed. Then for each

j 2 f1, . . . , N ÿ 1g
P(X (i)

n � j infinitely often) < P(0 , X (i)
n , N infinitely often)

� P(0 , X (i)
1, N )�(b)

0,

i.e. j is transient. u

Lemma 2.2. If P(í1 � 1) , 1, then the conditions of Lemma 2.1 are satis®ed, i.e. the states

1, . . . , N ÿ 1 are transient, the states 0 and N are absorbing and X (i)
1 takes only the two

values 0 and N with probability qi :� P(X (i)
n � 0 ®nally) and 1ÿ qi respectively.

Proof. For all i 2 f1, . . . , N ÿ 1g it follows that

XN

j�i�1

ðij � P(í1 � � � � � íi . i) . 0,

i.e. from a state i 2 f1, . . . , N ÿ 1g some state j . i is reachable with positive probability.
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As the state space is ®nite there exists a constant n 2 N such that ð(n)
iN . 0. Hence condition

(a) of Lemma 2.1 is satis®ed. The rest of the lemma follows immediately. u

Remark. If P(í1 � 1) , 1, then i � E(X
(i)
0 ) � E(X (i)

1) � N (1ÿ qi), i.e. for all haploid models

(except the trivial one) the extinction probability is given by qi � 1ÿ i=N.

2.2. The backward process

For n, r 2 N0 with n < r let R(r)
n denote the number of ancestors of all the individuals of

generation r in generation r ÿ n, i.e. n generations backwards in time. This leads to the so-

called backward process (R(r)
n )n2f0,:::,rg with transition probabilities (Cannings 1974, Theorem

11; Gladstien 1978, Examples)

pij :� P(R
(r)
n�1 � jjR(r)

n � i)

� N

j

� ��
N

i

� �( ) X
m1,:::,m j2N

m1�����m j�i

E
í1

m1

� �
� � � í j

m j

� �� �
,

where i, j 2 f0, . . . , Ng. An application of the principle of inclusion and exclusion

(also known as the sieve formula of Sylvester) leads to the simpler but alternating

summation

pij � N

j

� ��
N

i

� �( )Xj

l�0

(ÿ1) jÿ l j

l

� �
E

í1 � � � � � í l

i

� �� �
: (7)

3. Duality in haploid population models

Let Ð � (ðij)i, j2f0,:::,Ng denote the transition matrix of the forward process and let

P � ( pij)i, j2f0,:::,Ng denote the transition matrix of the backward process.

Theorem 3.1. There exists a non-singular symmetric left upper triangular matrix H such that

ÐH � HP9, i.e. the forward process is dual to the backward process with respect to H.

Remark. The matrix H � (Hij)i, j2f0,:::,Ng is given by

Hij :� N ÿ i

j

� ��
N

j

� �
� N ÿ j

i

� ��
N

i

� �
�
Yiÿ1

k�0

N ÿ jÿ k

N ÿ k
�
Yjÿ1

k�0

N ÿ iÿ k

N ÿ k
: (8)

These entries have the following probabilistic interpretation. Put i black and N ÿ i white

balls in a box. Choose j balls randomly without replacement. Then Hij is the probability that
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all the j chosen balls are white (hypergeometric distribution). The inverse of H is a

symmetric right lower triangular matrix with entries

(Hÿ1)ij � (ÿ1)i� jÿN i

N ÿ j

� �
N

i

� �
� (ÿ1)i� jÿN j

N ÿ i

� �
N

j

� �
:

Proof. Obviously H is a symmetric left upper triangular matrix with

det H � (ÿ1)N (N�1)=2
YN
i�0

Hi,Nÿi � (ÿ1)N (N�1)=2
YN
i�0

N

i

� �ÿ1
" #

6� 0:

Two proofs are presented now. The ®rst is a straightforward calculation based on (6)

and (7) for the transition probabilities. The second is based on a more general probabil-

istic method which turns out in Section 4 to work also for other (two-sex) classes of

models.

Alternative 1. Fix i, k 2 f0, . . . , Ng and let Ci :� í1 � � � � � íi denote the number of

children of the individuals 1, . . . , i of generation 0. Obviously

(ÐH)ik �
XN

j�0

ðij H jk

�
XNÿk

j�0

P(Ci � j)
N ÿ j

k

� ��
N

k

� �

� E
N ÿ Ci

k

� �� ��
N

k

� �
:

(9)

On the other hand it follows from (7) that

(HP9)ik �
XN

j�0

Hij pkj

�
XNÿi

j�0

N ÿ i

j

� ��
N

j

� �( )
N

j

� ��
N

k

� �( )Xj

l�0

(ÿ1) jÿ l j

l

� �
E

Cl

k

� �� �

� N

k

� �ÿ1XNÿi

l�0

E
Cl

k

� �� �XNÿi

j� l

(ÿ1) jÿ l N ÿ i

j

� �
j

l

� �

� N

k

� �ÿ1XNÿi

l�0

E
Cl

k

� �� �
N ÿ i

l

� �XNÿi

j� l

(ÿ1) jÿ l N ÿ iÿ l

jÿ l

� �
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� N

k

� �ÿ1XNÿi

l�0

E
Cl

k

� �� �
N ÿ i

l

� �
(1ÿ 1)Nÿiÿ l

� N

k

� �ÿ1

E
CNÿi

k

� �� �

� 1

�
N

k

� �( )
E

N ÿ Ci

k

� �� ��
N

k

� �
,

as CNÿi � í1 � � � � � íNÿi � N ÿ (íNÿi�1 � � � � � íN )�d N ÿ (í1� � � � � íi) � N ÿ Ci.

Hence ÐH � HP9.

Alternative 2. Fix i, k 2 f0, . . . , Ng and n, r 2 N0 such that n < r. Consider the event

E, that there exist in generation n exactly k ancestors, i.e. R(r)
rÿn � k, but none of these k

ancestral individuals is descended from one of the individuals 1, . . . , i of generation 0. In

order to prove the theorem the probability of E is now calculated in two different ways.

Obviously

E �
[N
j�0

fR(r)
rÿn � k and X (i)

n � j, but none of these j descendants belongs to the k ancestorsg

and from the exchangeability of the model it follows that

P(E) �
XN

j�0

P(R(r)
rÿn � k)P(X (i)

n � j)
N ÿ k

j

� ��
N
j

� �

� P(R(r)
rÿn � k)

XN

j�0

ð(n)
ij H jk :

On the other hand

E �
[N
j�0

fR(r)
rÿn � k and R(r)

r � j,

but none of these j ancestors belongs to the individuals 1, . . . , ig
and therefore (under the assumptions of the model)

P(E) �
XN

j�0

N ÿ i
j

� ��
N
j

� �( )
P(R(r)

r � j, R(r)
rÿn � k)

�
XN

j�0

Hij P(R(r)
r � j, R(r)

rÿn � k):
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Division by P(R(r)
rÿn � k) yields

PN
j�0ð

(n)
ij H jk �

PN
j�0 Hij p

(n)
kj , i.e. Ðn H � H(Pn)9. u

Remarks. The matrix H given in (8) is not the only one which satis®es the equation

ÐH � HP9. Cannings (1974) and Gladstien (1976, 1977, 1978) showed that ÐH � HP9 for

the matrix H with entries

Hij :� i

j

� ��
N

j

� �
�
Yjÿ1

k�0

iÿ k

N ÿ k
, (Hÿ1)ij � (ÿ1)iÿ j i

j

� �
N

i

� �
: (10)

Their proof is a simple modi®cation of that given for Theorem 3.1. For haploid models the

matrix (10) is in some sense more natural to consider. The probablistic interpretation is

obvious, but we shall point out later that the matrix in (8) is useful for two-sex models as

well, while the matrix (10) will not satisfy ÐH � HP9 for those models any longer.

Whenever a non-singular matrix H exists such that ÐH � HP9, then the eigenvalues of

Ð are identical with those of P. As for the haploid models considered here, P is triangular;

these eigenvalues are given by ëk � pkk , k 2 f0, . . . , Ng. This is the method used by

Cannings and by Gladstien to calculate the eigenvalues (and eigenvectors) of Ð for these

models.

In any case there exists a non-singular matrix X such that XÐ � JX , where the matrix J

is the so-called spectral form or generalized Jordan form of Ð (Gabriel 1996, p. 79). From

Theorem 3.1 it follows that P9 is similar to the same spectral form J, i.e. there exists a

non-singular matrix Y such that P9Y � YJ . Now, if ÐH � HP9, then JXHY � XÐHY �
XHP9Y � XHYJ , i.e. XHY 2 C(J ), where C(J ) :� fH jJH � HJg denotes the so-called

centralizer of J. Thus the duality space U � fH jÐH � HP9g is via H 7! XHY isomorphic

to the centralizer of J. As the structure of the spectral form J is quite simple, this provides

a general method to characterize the duality space. The following theorem deals with the

special case when J � D is diagonal.

Theorem 3.2. If Ð (or equivalently P) is diagonalizable, then the duality space U is

isomorphic to V03 � � � 3 VN, i.e.

U � V0 3 � � � 3 VN ,

where the Vk :� fx 2 RN�1jÐx � ëk xg, k 2 f0, . . . , Ng are the right eigenspaces of Ð. In

particular, dim U �PN
k�0dim Vk > N � 1.

Remark. By Theorem 3.1 there exists a non-singular matrix H such that ÐH � HP9. If x is a

right eigenvector of P9 for ëk, then ÐH x � HP9x � Hëk x � ëk Hx, i.e. H x is then a right

eigenvector of Ð for ëk. Hence W k :� fx 2 RN�1jP9x � ëk xg is via x 7! H x isomorphic to

Vk and U � 3N
k�0W k under the conditions of Theorem 3.2.

Proof. As P (and hence P9) is diagonalizable, there exists a non-singular matrix Y such that

P9Y � YD, where D is diagonal with entries d kk � ëk . Obviously the duality space

U � fH jÐH � HP9g, is via á(H) :� HY isomorphic to the space V :� fH jÐH � HDg.
Now consider the map â: V ! 3N

k�0Vk de®ned by â(H) � (v0, . . . , vN ), where vk denotes
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the kth column of H. Note that H 2 V , i.e. ÐH � HD if and only if Ðvk � ëkvk , i.e.

vk 2 Vk for all k 2 f0, . . . , Ng. Thus â is an isomorphism and hence U �á V �â 3N
k�0Vk .

u

Example. For the trivial model í1 � 1 it follows that Ð � P � I , Vk � RN�1 and hence

dim U �PN
k�0dim Vk �

PN
k�0(N � 1) � (N � 1)2, which follows also directly from

ÐH � H � HP9 for all H.

From now on we assume that P(í1 � 1) , 1.

Corollary 3.3. If the non-unit eigenvalues are distinct, then Ð is diagonalizable and

dim U � N � 3.

Proof. Let 1 � ë0 � ë1 . ë2 . � � � . ëN denote the eigenvalues and Vk, k 2 f0, . . . , Ng, the

corresponding eigenspaces of Ð. The eigenspace V0 (� V1) is generated by the two vectors

v0 :� (1, . . . , 1)9 and v1 :� (q0, . . . , qN )9, where the qi :� P(X (i)
n � 0 ®nally), i 2

f0, . . . , Ng are the extinction probabilities. Note that qN � 0 and hence v0 and v1 are

linear independent. For k 2 f2, . . . , Ng choose an eigenvector vk for ëk. If X denotes the

matrix with columns vk , then it follows that ÐX � XD, i.e. Ð is diagonalizable. The

previous theorem yields dim U �PN
k�0dim Vk � 2� 2�PN

k�21 � N � 3. u

Examples. For the haploid Moran model the eigenvalues are given by ëk �
pkk � 1ÿ k(k ÿ 1)=N2. For the haploid Wright±Fisher model the eigenvalues are given by

ëk � pkk � (N )k Nÿk , where (N )0 :� 1 and (N )k :� N (N ÿ 1) � � � (N ÿ k � 1) for all

k 2 N. Hence the non-unit eigenvalues are distinct and dim U � N � 3 for both models.

From Theorem 3.2 it seems to follow that ®nding a basis of U is (at least) as dif®cult as

®nding the right eigenvectors of Ð or P9. Some results for the eigenvectors have been given

by Gladstien (1978). The following theorem gives detailed information about the structure

of the duality space U.

Theorem 3.4. If the non-unit eigenvalues are distinct, then the N � 3 matrices H1, H2,

H3 and Ðn H , n 2 f0, . . . , N ÿ 1g, built a basis of U, where H is given as in (8) or (10),

(H1)ij :� ä0 j, (H2)ij :� qiä0 j, (H3)ij :� 1ÿ ä0 j and äij denotes the Kronecker symbol.

Proof. Obviously H1, H2, H3 2 U. Further H 2 U and hence Ðn H 2 U for all n 2 N0. By

Corollary 3.3 it is suf®cient to verify that the N � 3 matrices H1, H2, H3 and Ðn H,

n 2 f0, . . . , N ÿ 1g are linear independent. This is satis®ed if the N matrices Ðn H ,

n 2 f0, . . . , N ÿ 1g are linear independent. Assume that this is not the case. Then there exist

constants an, n 2 f0, . . . , N ÿ 1g such that
PNÿ1

n�0 anÐn H � 0. As H is non-singular it follows

that g(Ð) :�PNÿ1
n�0 anÐn � 0. Hence the minimal polynomial mÐ of Ð satis®es

grad mÐ < grad g � N ÿ 1,
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but Ð is diagonalizable and the non-unit eigenvalues ë2, . . . , ëN are distinct. Hence

mÐ �
YN
k�1

(xÿ ëk)

and grad mÐ � N . This is obviously a contradiction. u

In any case the matrices (8) and (10) belong to U and these two are linear independent

as the ®rst has a left upper triangular structure and the second has a left lower triangular

structure. The entries of both matrices have a probabilistic interpretation via an urn model,

where balls are sampled without replacement. One might think about a similar urn model

where the balls are sampled with replacement. The corresponding matrices are then given

by

Hij :� i

N

� � j

(11)

and

Hij :� 1ÿ i

N

� � j

: (12)

Both matrices are `̀ Vandermonde'' matrices and hence non-singular. Unfortunately for

most models these two matrices do not belong to U. A nice exception is the Wright±Fisher

model.

Proposition 3.5. For the Wright±Fisher model the matrices (11) and (12) belong to U.

Proof. The proof is given for the matrix (12) here. For the other matrix the proof is similar.

Fix i, k 2 f0, . . . , Ng. Obviously

(ÐH)ik �
XN

j�0

ðij H jk

�
XN

j�0

P(X
(i)
1 � j) 1ÿ j

N

� �k

� E 1ÿ X
(i)
1

N

� �k
 !

� NÿkE((N ÿ X
(i)
1 )k)

� Nÿk
XN

j�0

E((N ÿ X
(i)
1 ) j)S(k, j),
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where S(k, j) denotes the Stirling numbers of the second kind. The variable N ÿ X
(i)
1 counts

the number of individuals in generation 1, which are not descended from one of the

individuals 1, . . . , i of generation 0. In the Wright±Fisher model this variable is binomially

distributed with the parameters N and 1ÿ i=N . The factorial moments are therefore given by

E((N ÿ X
(i)
1 ) j) � (N ) j(1ÿ i=N ) j. Thus it follows that

(ÐH)ik �
XN

j�0

1ÿ i

N

� � j

S(k, j)(N ) j N
ÿk �

XN

j�0

Hij pkj � (HP9)ik ,

where the formula pij � S(i, j)(N ) j N
ÿi for the transition probabilities of the backward

process has been used. Thus ÐH � HP9, i.e. H 2 U . u

Remark. Another proof of the above proposition is based on the following observation. The

matrix H given in (8) belongs to U. Hence also ÐH 2 U , but from (9) it follows that

(ÐH)ik � E N ÿ X
�i �
1

k

� � !�
N

k

� �
� 1ÿ i

N

� �k

,

as N ÿ X
(i)
1 is binomially distributed with the parameters N and 1ÿ i=N .

4. Duality in two-sex population models

Consider a two-sex population model with non-overlapping generations n 2 N0. Assume

a ®xed number of N pairs of individuals consisting of a male and a female. The N pairs

of a generation n produce N daughters and N sons altogether, and these 2N children

form the N pairs of the next generation n� 1 at random. Let í(n)
i and ì(n)

i denote the

number of daughters and sons of the pair i in generation n. The offspring vectors

(í(n)
1 , ì(n)

1 , . . . , í(n)
N , ì(n)

N ) are requested to be independent and identically distributed for

different generations and to satisfy
PN

i�1í
(n)
i � N �PN

i�1ì
(n)
i . Write íi for í(0)

i for

convenience.

4.1. The forward process

Fix i 2 f0, . . . , Ng and choose i pairs from the generation 0. A pair is called a descendant

pair if at least one individual is descended from one of these i pairs of generation 0. Let X (i)
n

denote the number of descendant pairs in generation n 2 N0. The transition probabilities of

the forward process (X (i)
n )n2N0

are given by
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ð jk : � P(X
(i)
n�1 � kjX (i)

n � j)

� E
C j

C j � Dj ÿ k

 !
N ÿ C j

k ÿ C j

 !�
N

Dj

 ! !
,

where C j :� í1 � � � � � í j and Dj :� ì1 � � � � � ì j denote the number of daughters

and the number of sons respectively of the pairs 1, . . . , i of generation 0. Unfortunately

the forward process is not a martingale any more (as is the case for the haploid models)

but from the structure of the transition probabilities it follows that (X (i)
n )n2N0

is at least

a submartingale. Thus X (i)
n converges again almost surely to some random variable X (i)

1
as the time n tends to in®nity. Lemma 2.1 is still valid for the two-sex models. It is

not dif®cult to verify that there exists a constant n 2 N such that ð(n)
iN . 0 for all

i 2 f0, . . . , Ng. Hence all the states 1, . . . , N ÿ 1 are transient and X (i)
1 takes the two

values 0 and N with probability qi and 1ÿ qi respectively, where qi :� P(X (i)
n � 0 ®nally)

denotes the extinction probability.

4.2. The backward process

The backward process (R(r)
n )n2f0,:::,rg has transition probabilities

pij :� P(R
(r)
n�1 � jjR(r)

n � i) � N

j

� ��
N

i

� �2
( )Xj

l�0

(ÿ1) jÿ l j

l

� �
E

Cl

i

� �
Dl

i

� �� �
,

i, j 2 f0, . . . , Ng (MoÈhle 1994, Lemma 5.3).

Lemma 4.1. The forward process is dual to the backward process with respect to H given in

(8).

Proof. For all i, k 2 f0, . . . , Ng

(ÐH)ik �
XN

j�0

ðij H jk

�
XN

j�0

E
Ci

Ci � Di ÿ j

� �
N ÿ Ci

jÿ Ci

� ��
N

Di

� � !
N ÿ j

k

� ��
N

k

� �( )

� E
N ÿ Ci

k

� �
N ÿ Di

k

� ��
N

k

� �2
( ) 

3
XN

j�0

Ci

Ci � Di ÿ j

� �
N ÿ k ÿ Ci

jÿ Ci

� ��
N ÿ k

Di

� �( )!
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� E
N ÿ Ci

k

� �
N ÿ Di

k

� �� ��
N

k

� �2

:

A similar calculation to that in the ®rst proof of Lemma 3.1 shows that the last expression is

equal to (HP9)ik . u

Remarks. The above proof corresponds to the ®rst alternative given for the haploid models

in Lemma 3.1. The second proof of Lemma 3.1 works also for the two-sex models, if pairs

(instead of individuals) are considered, but note that in general ÐH 6� HP9 for the matrix

(10) because of the de®nition of a `̀ descendant pair''. Both proofs break down for the

matrix (10).

Theorem 3.2. and Corollary 3.3 are still valid for the two-sex models and they can in

principle be used to characterize the duality space for two-sex models. Unfortunately for the

two-sex models the transition matrix P is usually not triangular and hence more or less

nothing is known about the eigenvalues. For a large class of two-sex population models, e.g.

for the two-sex Wright±Fisher model, the non-unit eigenvalues seem to be all non-negative

and distinct, but the author was not able to verify this conjecture analytically.

Finally, a modi®cation of Proposition 3.5 for the two-sex Wright±Fisher model is

presented.

Proposition 4.2. For the two-sex Wright±Fisher model the matrix H � (Hij)i, j2f0,:::,Ng with

entries Hij � (1ÿ i=N )2 j belongs to U.

Proof. This is a straightforward modi®cation of the corresponding proof for the haploid

Wright±Fisher model. Note that for the two-sex Wright±Fisher model N ÿ X
(i)
1 is binomially

distributed with the parameters N and (1ÿ i=N )2 and that the backward process has

transition probabilities pij � S(2i, j)(N ) j N
ÿ2i. u

5. An application of the duality: stationary distribution

The duality is a powerful property for analysing the corresponding processes. As an example

the behaviour of the processes for n!1 is analysed here. It turns out that the ancestral

process has a stationary distribution and that there is a one-to-one correspondence between

the stationary distribution and the extinction probabilities of the forward process. The choice

k :� N in the duality equation XN

j�0

ð(n)
ij H jk �

XN

j�0

Hij p
(n)
kj

leads to

P(X (i)
n � 0) � E

N ÿ Rn

i

� �� ��
N

i

� �
: (13)
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The iNth component of the matrix (Pn)9 � Hÿ1Ðn H is given by

P(Rn � i) � p
(n)
Ni �

XN

k, l�0

(Hÿ1)ikð
(n)
kl H lN

�
XN

k�0

(Hÿ1)ikð
(n)
k0

� N

i

� � XN

k�Nÿi

(ÿ1)i�kÿN i

N ÿ k

� �
P(X (k)

n � 0)

� N

i

� �Xi

j�0

(ÿ1)iÿ j i

j

� �
P(X (Nÿ j)

n � 0):

(14)

By de®nition the limit qi :� limn!1P(X (i)
n � 0) exists for each i 2 f0, . . . , Ng. Hence by

(14) also the limit pi :� limn!1P(Rn � i) exists for each i 2 f0, . . . , Ng. Further

XN

i�0

pi �
XN

i�0

lim
n!1P(Rn � i) � lim

n!1

XN

i�0

P(Rn � i) � 1:

Thus there exists a random variable R �RN such that

P(R � i) � pi � lim
n!1P(Rn � i) 8i 2 f0, . . . , Ng:

Obviously the distribution of R is a stationary distribution of the backward process. Letting

n!1 in (13) and (14) leads to

qi � E
N ÿR

i

� �� ��
N

i

� �
�
XNÿi

j�0

N ÿ j

i

� ��
N

i

� �( )
pj (15)

and

pi � P(R � i) � N

i

� �Xi

j�0

(ÿ1)iÿ j i

j

� �
qNÿ j, (16)

where i 2 f0, . . . , Ng. This is a one-to-one correspondence between the extinction

probabilities qi of the forward process (X (i)
n )n2N0

, i 2 f0, . . . , Ng and the stationary

distribution p :� ( p0, . . . , pN ) of the backward process.

Remark. For all haploid models (except the trivial one) the extinction probabilities are given

by qi � 1ÿ i=N. From (16) it follows that p1 � P(R � 1) � 1. This means that, after going

suf®ciently far backwards in time, one eventually reaches the most recent common ancestor

of the population. This is also well known from the so-called coalescent theory (Kingman

1982a,b,c; TavareÂ 1984). For the two-sex models the behaviour is quite different, as pairs

instead of individuals are considered. The forward process (X (i)
n )n2N0

is then only a
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submartingale and hence in general only the inequality qi < 1ÿ i=N is satis®ed. In fact for

many models as for example for the two-sex Wright±Fisher model the strict inequality

qi , 1ÿ i=N holds for i 2 f1, . . . , N ÿ 1g. For the two-sex Wright±Fisher model it is

further known (MoÈhle 1994, Theorem 4.5) that limN!1qi � xi
0, where x0 � 0:2032 is the

smallest ®xed point of the probability generating function s 7! eÿ2(1ÿs) of a Poisson random

variable with parameter 2 in the interval [0, 1]. The stationary distribution of the backward

process is asymptotically normal (MoÈhle 1994, Theorem 9.2), i.e.

RN ÿ E(RN )

fvar(RN )g1=2
ÿ!d

N!1
N (0, 1) (17)

or equivalently

RN ÿ N (1ÿ x0)

N 1=2
ÿ!d

N!1
N 0,

x0(1ÿ x0)

1� 2x0

� �
: (18)

Nevertheless, the coalescent-theory is still applicable for two-sex models if genes instead of

pairs or individuals are considered (MoÈhle 1998).
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