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ABSTRACT: The strength of high-performance filaments is a complex
parameter which can not be fully described with a single value. The
Weibulf model is used to describe the intrinsic statistical nature of the
fracture strength. Possibilities and limitations of the Weibull model are
illustrated. The relationship between material properties and the pa-
rameters in the Weibull model is discussed.
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The increase in performance of high-modulus, high-strength
yarns not only puts stronger demands on the yarn manufacturing
process but also on the accurate description of the structure and
properties of the filaments composing the yarn. Notwithstanding
their simple geomefrical form, filaments can be characterized by a
large number of structural, mechanical, physical, and chemical
parameters. One of the most important filament properties is the
filament strength. Unlike physical parameters such as elastic mod-
ulus and thermal expansion coefficient, filament strength is a sta-
tistical parameter which can not be fully described by a single
value. The statistical distribution of filament strengths at the
monofilament [evel can usually be described by the so-called
Weibull model. In this paper some aspects of this Weibullian de-
scription of the filament strength are discussed.

The most important mathematical equations of the Weibull
model are summarized and illustrated. It is shown that the Weibull
parameters are not material constants. The relation between frac-
ture toughness of the filament material and the Weibull modulus is
discussed. Finally, the relation between the Weibull modulus and
the distribution of the size of the crack-nucleating defects is
described.

Mathematical Formulation

The statistical description of the filament strength started with
the work of Weibull [Z,2]. His model and later modifications of
this model are statistical models that are not related to the physical
nature of the fracture process. Implicit in the model in its simplest
form, as described here, is the assumption that failure is due to
sudden catastrophic growth of pre-existing defects. Each defect
corresponds to a certain local failure stress. Failure at the most
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serious defect (i.e., the defect with the lowest fracture stress) leads
to the immediate failure of the entire sample. The fracture process
is therefore of a perfectly brittle nature and hence independent of
time and environment. It is assumed that the defects are homoge-
neously distributed throughout the sample or, in the case of fila-
ments, along the filament. Furthermore, it is assumed that the
strength distribution along a filament is of the same form as be-
tween individual filaments.

In this mode! a filament is regarded as a single chain of imagi-
nary units of length L, each having a certain failure stress oy (Fig.
1). Let P, (o) be the probability of failure due to a stress ¢ for one
unit. Then the probability of survival of that unit equals 1 — Py (o).
For the entire serial chain of N units the cumulative failure proba-
bility equals Py with

Py(o) =1—[1 — Py(a)]¥ 1
or for very large N:
PN(U) =1 - exp[-"-N'Pl(o)] (2)

Since N is proportional to the length, L, of the filament, Eq 2
can be rewritten as

P=1~— expt—[’— ¢>(o)} (3
0

where ¢ (o) is an unknown function. On empirical grounds Weibull
assumed a power law relation for ¢(o):

$(0) = (a/a’)" 4

where o is the applied stress and ¢’ a constant scale parameter with
the same dimensions as used for the stress. The parameter m is
dimensionless and is called the Weibull modulus. Combining Eqs
3 and 4 yields the following equation for the cumulative failure
probability function, P (i.e., the fraction of units or samples which
fail at or below a stress o):
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FIG. 1—Schematic diagram of a fiber consisting of n units with fracture
stresses oy,
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FIG. 2—Cumulative failure probability versus applied stress for various
values of m (o, = 1, L = 1).
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FIG. 3—Cumulative failure probability versus applied stress JSor various
values of oy (m = 5, L, = 1),

which is usually written as

P=1- exp[-—L : <~°—>"’] (5)
9

where L is the gage length in meters and oy no longer has simple
units of stress.

Figures 2 and 3 show the cumulative failure probability versus
the applied stress for various values of m and oy respectively. From
these figures it is evident that a high value for m corresponds to a
narrow fracture stress distribution function.

In practice, rather than showing P versus ¢ it is advisable to plot
In(—In(1 — P)) ~ In(L) versus In(o), since this yields a linear
dependence with slope m; rearrangement of Eq 5 gives

In(—In(1 — P)) — [n{L) = m in(e) — m-Inog)  (6)

In Figs. 4 and S the curves of Figs. 2 and 3 are presented in such a
Weibul! plot. They show that the shape of the fracture stress distri-
bution is only determined by the magnitude of m and is indepen-
dent of ay.

A very useful feature of the Weibull plot is the possibility of plot-
ting fracture strength data obtained at various gage lengths on the
same curve. Figure 6 shows the caleulated failure probability ver-
sus the applied stress for three gage lengths (L = 1, L = 10, and
L = 100 respectively, while m and oy are kept constant). In the cal-
culations 20 strength measurements per gage length are assumed.
In this linear plot of P versus o the three sets of data form three
separate curves, When the data of Fig. 6 are presented in a Weibull
plot (Fig. 7), the data form a single straight line in accordance with
Eq 6.
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FIG. 4—Curves of Fig. 2 replotted in a Weibull plot.
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FIG. 5—Curves of Fig. 3 replotted in a Weibull plot.

P 1.0r
A L-100 / 10 1
0.5}
O T T T T
0.4 06 0.8 1 1.2
->»- stress

FIG., 6—Calculated cumulative failure probability curves versus the ap-
plied stress for three gage lengths (20 samples per gage length; m = 10,
g, = 1).

The cumulative faiture probability P; at a particular stress ¢ in
these Weibull plots is approximated by

P, = n/(1 + n) 7

where #; is the number of filaments that have fractured at or below
a stress o and n is the total number of filaments tested. This proce-
dure allows the plotting of all experimental data points on a
Weibull plot. It has been shown [3,4] that n;/(1 + n) is an accept-
able but conservative estimator for the fracture probability.

The failure probability density function f(o) (i.c., the normal-
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FIG. 7—Data of Fig. 6 replotted in a Weibull plot.

ized probability of a failure stress between ¢ and o + do) can be
obtained by differentiating Eq 5 and is given by

R R SO B

The probability density functions corresponding to the curves in
Figs. 2 and 3 are shown in Figs. 8 and 9.
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FIG. 8—Failure probability density functions corresponding to the
curves in Fig, 2.
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FIG. 9—Fuilure probability density functions corresponding to the
curves in Fig. 3.

The average fracture stress of filaments with gage length L is
given by

<o> =gy L™V T'(1 + 1/m) 9

where I is the gamma function. For the usual m values (m = 5
to 30) obtained for high-performance filaments: I' (1 + 1/m) =
0.95 + 0.03. Equation 9 shows that the average fracture stress is
not a constant but depends on the gage length. This fact has been
realized (but not understood) for a very long time. (Cf. Aristotle (c.
350 B.c.) on the length dependence of the strength of wooden
sticks and Leonardo da Vinci (c. A.p. 1500) on the strength of iron
wires [5]). The change in average fracture stress with gage length
follows directly from Eq 9 and is given by

< 0oy >/< gy > = (LZ/Ll)l/'" (10)
Such a length dependence does not only apply to the average frac-
ture stress but also to stresses at any failure probability level. The
decrease in average fracture stress with increasing filament length
is plotted in Fig. 10 for various values of m.

Equation 9 is only applicable over a limited length range. For
very long gage lengths (> 10 m) the chance of a low fracture stress
due to accidental damage (i.e., due to rare defects which are not
part of the normal defect population) becomes significant. Fur-
thermore, for very short gage lengths the predicted average frac-
ture strength goes to infinity. Clearly this is impossibie due to the
finite value of the theoretical strength of all materials. Further-
more, deformation and fracture in or near the clamps during test-
ing also put a much lower experimental limit on the maximum
measurable fracture stress {6].

The Weibull modulus is usually determined from a Weibull plot
as mentioned before. However, the Weibull modulus can also be
estimated from the variation coefficient of the fracture strength
(the standard deviation s divided by the average value), since

s [PA+2/m) — T + 1/m)]

= (11)
<o> ra+ t/m)

var. coeff, =

The variation coefficient is independent of the gage length L and of
a,. Figure 11 plots the Weibull modulus versus the variation coeffi-
cient in accordance with Eq 11. In the same figure the following
simple approximation of Eq 11 is indicated by the dashed line:
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FIG, 10—Decrease of average filament fracture stress with increasing
gage length for various values of m (< o> = latL = L)).
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m= 12/(s/<o>) (12)

This simple procedure of determining the Weibull modulus from
the variation coefficient yields a reasonably good estimate for m.
Weibull statistics can also be used to calculate the strength of an
ideal untwisted bundle in which there is no interfilament interac-
tion (the number of filaments in the bundle should be large, i.e:,
= 100). Assuming a linear elastic behavior up to the point of fail-
ure and realizing that at the maximum bundle stress dF/dl = 0,
the maximum bundle stress can be calculated {7] and given by

Omax bundle = Og (@ m)~1/m . L=1/m (13)

where e is the base of the natural logarithm. Combining Eqs 13 and
9 yields the following equation for the bundle efficiency, ¢ (i.e., the
ratio of the maximum bundle stress and the average filament
strength, both having the same length):

e=(em)y~Vm/T(1 + 1/m) (14)

Equation 14 shows that the bundie efficiency is independent of L
and gy and a function of the Weibull modulus only. The bundle
strength is always lower than the average filament strength. The
bundle efficiency is plotted as a function of m in Fig. 12. Figure 13
shows the calculated bundle stress-strain curve for a material with
a Weibull modulus m = 10; the fraction of broken filaments is also
shown (dashed line). The maximum bundle stress is obtained when
only 10% of the filaments have failed.

Finally, the following additional remarks should be made con-
cerning the mathematics of the model:

¢ In the principal Weibull equation described here (Eq S) there
is a finite (although small) probability of extremely low or ex-
tremely high fracture stresses. The occurrence of fracture at o = 0
can be prevented mathematically by incorporating a minimum
strength level o, in Eq S, yielding the so-called three-parameter
Weibull equation: '

o ™ O,\m
P=1-—exp E—L <-——--—> } for 0> 0, (15a)
0

and

P=0 for (156)
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FIG. 11—Weibull modulus versus the variation coefficient of the frac-
ture stress data. Solid line is the exact relationship (Eq 11). Dashed line is
the approximation (Eq 12).
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FIG. 12—~Bundle efficiency versus Weibull modulus.

The incorporation of the term g, affects the results of the Weibull
analysis only to a [imited extent. Experimentally, o, is very hard to
determine with any statistical significance, since its effect is only
noticeable on the lower strength tail of the strength distribution. In
this region the statistical uncertainty of the data is large. In prac-
tice g, is usually taken as o, = 0.

* The maximum fracture stress of any filament is limited by the
theoretical strength of the filament material. In this case the prob-
ability density function is truncated and the Weibull theory is no
longer applicable in its present form, It will be shown that if the
average filament strength approaches the theoretical strength of
the material, then the Weibull modulus approaches infinity.

® The theoretical limits to the value of the Wetbull modulus are
0 for the lower fimit and oo for the higher limit. A negative value for
the Weibull modulus leads to an increase in average fracture stress
with increasing filament length {or ‘‘a chain becomes stronger than
its weakest link™). This is impossible within the concepts of brittle
fracture. The maximum Weibull modulus value that can be mea-
sured experimentally is determined by the accuracy of the load at
which the filament fails, the accuracy of the diameter of the fila-
ment, and in particular the variability of the filament diameter
along a filament length [8]. These factors {imit the maximum ex-
perimental value of the Weibull modulus which can be determined
with statistical significance to about a value on the order of 100.

* The number of samples tested has a significant effect on the
accuracy of the Weibull modulus derived from the Weibull plot.
To illustrate this effect a computer simulation was performed in
which 1000 filament strength values were generated which had a
Weibullian distribution of known Weibull modulus. Of these 1000
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FIG. 13~Calculated bundel stress-strain curve for a linear elastic mate-
rial (solid line) and the cumulative failure probability (dashed line) during
testing of the bundle (m = 10).
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filament strength values subsets of various sizes (n) were selected at
random and the apparent Weibull modulus was determined for
each subset. The results are shown in Figs. 14a, 145, and 14c for
m =5, m = 10, and m = 15 respectively. The figures show that in
particular for small subset sizes there is a rather wide range of
“subset Weibull modulus” values. For example, take the case in
which the ““true’” Weibull modulus fot the total distribution is 5.
Figure 14a shows that for a subset of 20 strength measurements
there is about 5% chance of determining a Weibull modulus less
than 3.7, 50% chance of determining a Weibull modulus less than
4.6, and about 5% chance of determining a Weibull modulus in
excess of 6.8. More detailed analyses of the effects of sample size
on the accuracy of m and o can be found elsewhere [4,28-31].

Is the Weibull Modulus a Material Constant?

From the foregoing discussion it is clear that the Weibull modu-
lus is an important parameter as far as the description of filament
strength is concerned. It is demonstrated here that m is not a mate-
rial constant.

This follows directly from Fig. 15, which shows the Weibull
curves for three grades of optical silica filaments (data from [9]).
Fiber composition and testing conditions were identical; the fila-
ments only differed in the production route followed. Figure 15
shows that m can vary for a particular material from ~3 to ~100.
The data suggest that a high Weibull modulus corresponds to a
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FIG. 14— Weibull modulus versus number of samples tested (a: my,,, =
5; b: my,, = 10; ¢z my,,, = 15).
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F1G. 15—Weibull plot of fracture stress data for three grades of silica
fibers; gage length is 25 mm [9].

high o, value. Although this is not necessarily the case, it has often
been observed for brittle fibres {9-13]. A high Weibull modulus
indicates limited scatter in the fracture stress data. In general this
means that weak filaments are absent. Consequently the average
fracture stress increases and hence so does oy. It follows that if the
average fracture stress approaches the theoretical strength, then
the Weibull modulus should become very high (~ 100). For an iso-
tropic material the theoretical strength is about 10% of Young’s
modulus. This yields a theoretical strength for silica filaments of
6.3 GN m~2, The experimental average fracture stress of 6.0 GN
m~2 for the filaments with m = 98 supports the suggestion that
these filaments have indeed reached the maximum attainable
strength for silica filaments.

A second example is shown in Fig. 16, which shows the Weibull
plots for two rayon-based filaments. Once again it is clear that the
Weibull modulus is not 2 material constant. Figure 16 also shows
that a high Weibull modulus does not automatically mean that the
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FIG. 16—Weibull plot of fracture stress data for two types of cellulose

fibers. Super 3 is a low-modulus fiber. Cordenka ERM is a high-modulus
fiber.
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theoretical, and hence maximum, strength of a material is
teached. The high Weibull modulus for Rayon Super 3 filaments is
due to the rather plastic mode of deformation at high strains which
yields do/de = 0 for ¢ > 10%. In this rather plastic material the
local defects in the filament give rise to a range of fracture strains
rather than stresses. The fracture stress is more or less constant
and equal to the yield stress of the material,

In the case of filaments having the theoretical strength both the
Weibull moduli for fracture stress and for fracture strain should be
high (=100). Just using a criterion of a high Weibull modulus for
the strength data {14, 15] is clearly insufficient.

It should be stressed again that the Weibull theory remains a
statistical theory, which is not based on detailed physical models
for the fracture process. Therefore great care should be taken in
using Weibull plots to draw conclusions on the physics or mechan-
ics of the fracture process. Only if additional information is avail-
able can one use Weibull plots to support (not prove) new fracture
models.

Weibull Modulus and Fracture Toughness

Several publications have appeared in which a relation between
the Weibull modulus and the fracture toughness of a material was
suggested [16,17]. The general notion is that structural reliability
increases with increasing toughness. It has been argued by Kendall
et al. [18] that such a relation between m and K is fortuitous: If a
material behaves in a brittle, Griffith fashion then

o = Ki/Y J¢ (16)

where o; is the fracture stress, K, is the critical stress intensity fac-
tor, Y is a geometrical parameter, and ¢ is the characteristic di-
mension of the crack-initiating defect. The maximum fracture
strength in a set of fracture strength data therefore corresponds to
a minimum defect size ¢, and vice versa. Now imagine that the
toughness K| is increased while the material still follows the Grif-
fith equation (16). If the flaw sizes remain the same, then the mea-
sured strengths o,,,, and a,,;, for the same series of tests will both
increase by a factor K /K. Since for a normal set of Weibull
data from g samples (from Eqs 6 and 7):

In(In(g + 1)) — In(In(1 + 1/q))
m p=——t

(0 max/ Ormin) a7
it is clear that m is independent of K.

This prediction has been confirmed experimentally [18] from
strength data on ceramic “‘green bodies” (i.e., unfired but dried
specimens) and on similar specimens after firing. Notwithstanding
a 50-fold increase in K, the Weibull modulus remained constant at
m = 7. The change in K, results in a horizontal shift of the line in
the Weibull plot. The magnitude of the shift is In{(K./Kyp).

The above argument of a K-independent Weibull modulus is
only valid if the tougher material still fails in a truly brittle manner.
If, on the other hand, the increase in material toughness is ob-
tained by incorporating a (localized) plasticizing process, the frac-
ture toughness is no longer constant but depends on the crack
length. In this case defects with dimensions between ¢y, and ¢y
cause smaller differences in fracture stress than in a Griffith-type
material (Fig. 17). Such a change to a more Dugdale type of behav-
ior is even more advantageous than a straightforward increase in
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FIG, 17—Effect of (localized) plasticity on the variation in fracture stress
for a given range of defects (Curve K*); Curve K is for a brittle material.

K. Not only does this increase the average fracture stress but the
Weibull modulus is also higher. This mechanism was shown to op-
erate in zirconia-toughened alumina [79]. In this material local
phase transformation of the undercooled zirconia phase around
the crack tip leads to crack arrest phenomena and quasi-ductile
behavior. This gives a material with a high Weibull modulus (m =
20). Above the equilibrium phase transition temperature the
toughening mechanism does not operate and the Weibull modulus
drops to the value for the alumina reference specimens (m = 10).
However, such a mechanism might be hard to realize in a filament
because of its small diameter. On the other hand, the variation of
m with testing conditions (such as loading rate, temperature, and
environment) might give some qualitative information on changes
in the fracture process. :

Weibull Modulus and Defect Size Distribution

In the previous section it was shown that the variability in frac-
ture stress is due to the distribution of defect sizes. In this respect it
should be pointed out that the defect size should be regarded as an
effective or equivalent size rather than an absolute dimension. De-
tailed TEM studies on carbon filaments [20] have shown that the
orientation of the defect with respect to the graphite planes affects
the effective size rather strongly. For other filament materials the
position of the defect within the filament might also be important,
with defects in the center being less damaging than surface
defects.

The relation between the fracture strength distribution and the
defect size distribution for isotropic brittle materials has been stud-
ied by several authors [27-26]. An experimentally observed defect
size distribution function is given by [27)

brr—l

e p—n a—b/e
—ry c"e (18)

Sle) =

where ¢ is the semi-crack size, b is a scaling parameter, and n isa
parameter determining the shape of the distribution. The relation
between the shape parameter n and the Weibull modulus = then
becomes [21]

m=2n—2 (19)

Since the failure criteria in highly anisotropic materials are not
yet well-formulated, the above relations can not be applied in their
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present form to the strength data on polymeric filaments. Studies
on this problem are currently in progress.

Conclusions

It is shown that the Weibull theory provides a useful description
of the intrinsic statistical variation in the fracture stress of fila-
ments from high-performance materials. The Weibull modulus in
this theory is an important parameter which controls among others
the length dependence of the average fracture stress and the bun-
dle efficiency. The Weibull modulus is not a material constant but
reflects the shape of the defect population present in the material.
Some relations between the Weibull modulus and the fracture
toughness as well as the theoretical strength are discussed.
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