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The concept of Ro in epidemic theory
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In epidemiology Ro denotes the average number of secondary cases of
an infectious disease that one case would generate in a completely
susceptible population. This concept is among the foremost and most
valuable ideas that mathematical thinking has brought to epidemic
theory. In this contribution, we first review the historical development
of Ro, from demography to epidemiology, proceed to give an exposition
of the recently formalised theory to define and calculate Ro for
structured populations, return to the interaction of demography and
epidemiology for an example of the use of the concept to study vaccina-
tion campaigns and finally we deal with statistical aspects of estimating
Ro. In the appendix we discuss some issues of current attention.
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1 Introduction

The birth of statistics and epidemic theory and the initial development of these fields,

are closely linked (for overviews see e.g. GREENWOOD, 1948, IRWIN, 1963). Arthur

Ransome wrote in 1868: "There is probably no more legitimate use of the instrument

of statistics than its application to the study of epidemic diseases".

The basic reproduction ratio (or number) Ro is one of the most important concepts

in epidemic theory:

Ro is the expected number of secondary cases produced by a typical infected

individual during its entire infectious period, in a population consisting of

susceptibles only.

It is used to study a number of different problems in infectious disease
epidemiology. First, the value of Ro characterises the ability of an infectious
organism to invade into a virgin population of susceptible individuals. The quantity

shows threshold behaviour. More precisely, if Ro < 1 the infection cannot establish

itself, and the outbreak of disease will only involve a very small number of

* j.a.p.heesterbeek@sc.agro.n1

VVS, 1996. Published by Blackwell Publishers, 108 Cowley Road, Oxford 0X4 1JF, UK and 238 Main Street, Cambridge, MA 02142,
USA.



90 J. A. P. Heesterbeek and K. Dietz

individuals. If Ro > 1 the infection can, at least initially, invade the population and

cause an epidemic in the sense that there is a positive probability of a large outbreak.

Second, and more importantly, Ro is a measure to gauge the amount of uniform effort

needed for a given control measure to eradicate an infection that has already become

established in the population (i.e., that is endemic), and it measures the amount of

effort needed to prevent an epidemic.

In this paper, we initially trace the historic development of Ro from demography to

epidemiology and indicate the parallels in the theoretical frameworks tocharacterise

it. We proceed to review the recent advances in the theory ofdefining, calculating and

estimating Ro for infectious diseases spreading in (mainly large) structured popula-

tions. In the appendix we give a flavouradmittedly biased by personal interestsof

current research concerning the threshold concept in epidemiology.

2 Origins in demographic theory

The threshold quantity Ro does not originate in epidemiology. The concept is first

mentioned by Richard Böckh, the Director of the Statistical Office of Berlin in his

statistical yearbook for 1884, published in 1886. He refers to lotale Fortpflanzung'

(total reproduction), by which he means the number of females born from one female

during her entire reproductive life. Based on a life-table for females for the year 1879,

he calculated that on average, 2.172 girls were born to one female in her reproductive

period ranging from 14 to 53 years of age.

It was DUBLIN and LOTKA (1925) and KUCZYNSKI (1928) who, also in demographic

context, formalised the calculation and introduced the notation Ro . They used the

term 'net reproduction rate per generation'. In LOTKA (1925), the term 'net fertility' is

still used to denote Ro and he correctly talks of it as a 'ratio'. See SAMUELSEN (1976)

for a detailed account of early confusion concerning the term (rate versus ratio

among other things).

Consider a large population. Let .Fd(a) be the survival function, i.e. the probability

for a new-born individual to survive at least to age a, and let b(a) denote the average

number of offspring that an individual will produce per unit of time at age a. The

survival function is related to the age-specific mortality p(a) via

Fd(a) = r P(a) da

The function b(.).Fd(.) is called the reproduction function. The expected future

offspring of a new-born individual, Ro, is given by the zeroth moment (hence the

index '0') of the reproduction function:

co

Ro = b(a)37; d(a) da (1)

If Ro > I, so if on average each female contributes more than one female to the next
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The concept of Ro in epidemic theory 91

generation, the population will grow. This characterisation of population growth is
based on the growth of subsequent generations of individuals.

One can also describe changes to population size in real-time. For this, let n(t,a) be
the age-distribution of the population at time t, i.e. faa: n(t, a) da is the number of
individuals with ages between al and a2. Consistency requires that

00

n(t, 0) = b(a)n(t , a) da

MCKENDRICK (1926) first showed that the age-distribution satisfies

On
+ = p,(a)n(t, a)at aa

(2)

(3)

with boundary condition (2). The equation was later rediscovered by VON FOERSTER

(1959). In a more general setting than we will consider here, one can interpret (3) as an
abstract Cauchy problem on some appropriate function space, and use the theory of
semigroups of operators on that space to characterise solutions (see WEBB, 1985,
METZ and DIEKMANN, 1986).

An alternative due to Lotka and Feller to the formulation (2), (3) is to describe the

same situation by an integral equation for the total birth-rate B(t), being the total
number of newborns produced per unit of time evaluated at time t. Note that
B(t) = n(t, 0). We obtain the so-called renewal equation

00

B(t) = b(a),Fd(a)B(t a) da (4)

where we have neglected the effects of a founder population. FELLER (1941) showed
that, under suitable weak conditions on b(a) and p(a), the solutions of (2), (3)
converge to a stable distribution of individuals over age (normalised with ñ(0) = 1)

h(a) = ii(0),Fd(a) e-Ta

in the sense that asymptotically for t- co

n(t, a) const ñ(a) e"

(5a)

(5b)

where r is the "intrinsic (or natural) rate of increase" of the population, which is the
unique real number satisfying the characteristic equation

1 = b(a).Fd(a)e-' da (6)

Condition (6) is easily obtained from (4) by substituting the Ansatz B(t) = ce". One
oVVS, 1996
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92 J. A. P. Heesterbeek and K Dietz

sees that the following relation holds between 'generation' and 'real-time' growth

Ro> lar> 0 (7)

We described two ways of characterising growth and decline of populations, the first

based on discrete generations, calculating the next generation (of females) from the

present one, and the second based on real-time population growth. We will see that in

epidemic theory, both approaches occur when characterising growth and decline of

the (sub)population infected with a given infectious disease. A disadvantage of the

second is that it as a rule leads to implicit characterisations of the growth rate, and

calculation of r therefore has to be done numerically. The two methods are equivalent

in the sense that Ro > 1 iff r > 0.

The approach discussed above is deterministic. More precisely, it is stochastic as

far as processes are concerned that operate on the level of individuals, but we use a

law-of-large numbers argument to describe the processes that result on the
population level by deterministic equations. Of the stochastic approaches, we only

mention the approximations based on the theory of branching processes (for

example, JAGERS, 1975) because of the close connections to the theory of
characterising Ro for structured populations (section 4). In the theory of branching

processes, the growth rate r is usually referred to as the Malthusian parameter.

3 Development of the concept in epidemic theory

In epidemiology the concept of Ro was first used in a rudimentary version by Ronald

Ross in 1911 in connection to his work on malaria. Ross received the Nobel prize for

medicine in 1902 for his discovery that the Plasmodium species that causes (bird)

malaria is transmitted from individual to individual by mosquitoes. Ross (1911)

argued that local eradication of malaria was possible by decreasing the density of

mosquitoes in the area. Prior to that it was generally believed that the malaria-
parasite would always survive as long as some mosquitoes were still present, and that,

since total eradication of mosquitoes was impossible, the disease could not be
eradicated by mosquito control. Ross showed, using a simple model, that a critical

mosquito density exists, below which malaria transmission cannot be maintained in

the population. Empirical corroboration was later obtained in India with the

discovery of neighbouring areas with and without malaria, and mosquito densities

respectively above and below the critical level. No clear statement can be found in

Ross (1911) that he interpreted this observation as the number of secondary cases

being greater than or less than one. In other words, Ross did not connect his idea to a

critical level of unity.
The next, and most fundamental, step in the development of Ro in epidemiology,

was taken in the seminal paper by Kermack and McKendrick in 1927. We will go into

details of their definition of R0 below. Neither Ross nor Kermack and McKendrick

attached a name or a symbol to their threshold concept. This was first done by

Macdonald, again in connection to malaria, who called it 'basic reproduction rate'
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The concept of Ro in epidemic theory 93

and denoted it by zo (MACDONALD, 1957). Dietz in 1975 and Anderson and May in the

influential Dahlem Workshop Proceedings from 1982, popularised the name 'basic
reproductive rate' and the symbol Ro in epidemiology. Wide appreciation of the
importance of Ro was certainly increased by a paper of Anderson and May in Nature
in 1979.

Up to the present day, only the symbol has been standardised in epidemic theory,
but Ro is still being called by many names. The most natural name would be 'basic
reproduction ratio' or 'basic reproduction number' as has been pointed out many
times before, since Ro is a dimensionless quantity and certainly does not deserve the
affix 'rate' which suggests a dimension lime- I '. Probably the cause of it all lies in
Macdonald's naming of the quantity. As noted in section 2, the same confusion arose
in the original demographic context. There, at least initially, Lotka showed
understanding of the intricacy by referring to 'ratio' and 'rate per generation', but
unfortunately the addition 'per generation' was quickly dropped for brevity.

McKendrick extended his work on age-structured populations to the description of
the spread of infectious diseases when the infectiousness of an infected individual is
not necessarily constant in time. A decade earlier, models like this had been studied
by Ross and HUDSON (1917), but not in this generality and without characterising
threshold behaviour. Kermack and McKendrick make the following assumptions:

1. a single infection triggers an autonomous process within the host (i.e., they have
viral and bacterial diseases in mind, where the agent generally multiplies so fast
within the host that additional doses acquired later have little influence; see
appendix A 1 for remarks on diseases caused by parasitic worms);

2. the disease results in either complete immunity or death;
3. contacts are according to the law of mass-action (i.e., the idea borrowed from

chemical reaction kinetics that says that the number of contacts between
susceptible and infective individuals per unit time per unit area, is proportional
to the product of the respective (spatial) densities); see appendices A4 and A5 for
other options;

4. all individuals are equally susceptible;

5. the population is closed, i.e. at the time-scale of disease transmission the inflow of
new susceptibles into the population is negligible;

6. the population size is large enough to warrant a deterministic description.

Let S(t) be the density of susceptibles in the population at time t (i.e., number of
susceptibles per unit area, not probability density). The assumption 1 allows an age-
representation for the state of the infection (infectivity) of an infected individual. The
time elapsed since infection is called the infection-age. The above assumptions lead to
the following integral equation

00

= S(t) A(r)S(1 r) dr (8)
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94 J. A. P. Heesterbeek and K. Dietz

where, by definition,

A(r) = expected infectivity of an individual with infection-age T

(cf. the renewal equation (4)). In analogy to the demographic context, we can

interpret A as the reproduction function, where offspring produced has to be

interpreted as new infections caused. In order to understand equation (8) one just has

to realise that, by the closedness of the population, -S(t) is precisely the incidence

i(t, 0),.i.e. the density of new infecteds arising per unit of time, evaluated at time t (and

so, S(t r) = i(t T, 0) = i(t, r) gives the incidence of infecteds that at time t have

been infected for a time r). We can reformulate (8) in terms of the incidence i(t T) of

individuals that became infected at time t r by writing

ai ai
(9)

i(t, 0) = S(t) f A(r)i(t T, 0) dr (10)

o

cf. system (2-3). The integral equation formulation is more convenient for our

purpose. The expression A(t) := fr A(r)i(1,r)dr is called the force of infection. It is

the per capita probability per unit of time to become infected.

Example: The function A is typically zero during the latency period, then rises to a

maximum and declines to reach zero upon recovery. Various other shapes (e.g., a

function which rises again from low values after the first maximum in the case of

HIV) are encountered. Typically, the graph of A does not look like (a combination

of) decreasing exponentials, but this is nevertheless what underlies ordinary

differential equation models. If we choose

A(r) = fie-'77- (II)

(8) reduces to an ordinary differential equation by calculating the total density of

infectives present at time t, 1(t) := rooe-7(1-7-)(,-) dr and differentiating. We obtain

n(t) = -,(3S(t)I(t)

1(t) = OS(t)I(t) ryl(t) (12)

which is often called the Kermack-McKendrick system. This name is inaccurate for

two reasons: first, it is only a very special case of their actual model (9), (10), and

secondly, the system (12) can already be found in Ross and HUDSON (1917) where

differential mortality due to the infection is also taken into account; so, if anything,

(12) should be called the Ross-Hudson system.

To characterise growth or decline of the infective population we have the same

two routes as in the demographic theory. Since we wish to characterise Ro, we can
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The concept of Ro in epidemic theory 95

start by replacing S(t) in (8) by the constant So, the density of the population at the
start of the epidemic when every individual is susceptible. We take So to be the
demographic steady state population density in the absence of the infection. Our
equations are now linear and like in the demographic theory, one can show that the
linearised (8) has solutions of the form S(1). i(t, 0) = ce with A > 0 if and only
if Ro > 1 where

Ro = So A(r) dr (13)

(cf. equation (1)). The real-time growth rate A in the exponential phase of the
epidemic is found as the unique real root of the characteristic equation obtained by
substituting the 'Ansatz' into (8)

00

1 = So A(r) CAT dr

0

(14)

cf. equation (6). Since this generally is an implicit relation for A we see the advantage
of the generation approachwhere we do get an explicit expressionover the real-
time approach. This is even more so in the case of structured populations. Of course,
one has to show that growth in generation-time corresponds to growth in real-time.
In this case one has Ro > 1 a A > 0 by the positivity of A.

In the special case (11) we find from (13), Ro = OS0/-y, which we could have written
down right away, since each infective makes on average 9S0 successful transmissions
per unit of time, and does this for on average 1/ry time-units. In the same case we
find from (12) that A = (3S0 -y. This is the only case where a direct relation between
Ro and the real-time growth rate A exists, other than through the relation
Ro 1 > 0 A > 0. In general, the ordering of Ro-values need not correspond to
the ordering of A-values (only in real-time does it matter whether one 'reproduces'
early or late).

For recent reviews of theoretical developments see the papers in MOLLISON (1995).

Remark 1 Stochastic basis of A. One can either view A as a deterministic function
describing infectivity, or as a true expectation. In METZ (1978), the stochastic basis of
A is clarified, to highlight the fact that at the individual level there is stochasticity in
the progression of the disease. Let the 'type' of an individual with respect to disease
progression be x, taking values in some space X. One could let x be the total length of
the infectious period. Let a(r,, x) be the infectivity of an individual with infection-age
T and type x, and let m(-) be some probability measure for the different possible
progressions of the disease within hosts. Then

A(r) = ja(r,x)m({dx})

VVS. 1996
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For example, if x denotes length of infectious period, (11) is obtained in the special

case that m({dx}) = f(x) dx with fix) = e-"Yx and a(r, x) = 0 when r < x and

a(r, x) = 0 when T >-x, and X = IR+. This reflects the traditional approach that

individuals are infective for an exponentially distributed period of time (with

parameter 7) and have a constant infectivity 13 during that period.

Remark 2 Stochastic models. The application of branching processes to epidemic

theory was stressed in NEYMAN and Scum-. (1964); see appendix A2. The

characterisation of invasion thresholds in a stochastic setting was first studied by

WHITTLE (1955); see also BALL (1995), BARBOUR (1994), and the contributions by

F. G. Ball and W. S. Kendall to the discussion of MOLLISON, ISHAM and GRENFELL

(1994). Under the assumptions listed above (apart from 6), let s(t) and i(t) be the

fractions of the population susceptible and infective, respectively, and let N be the

total population size. Whittle argues that the initial stages of the invasion, i.e. the

process describing Ni(t), can be approximated by a linear birth-death-process with

birth rate Os(0) and death rate -y. The following threshold result holds: if 0s(0) < -y,

the outbreak of infection will involve only a very small number of individuals; if

3s(0) > -y, a large outbreakO(N) individualswill occur with probability

approximately 1 (0s(0)h )-4°), and a small outbreak-0(1) individualswith

probability approximately (0s(0)/7)). Thus, even for Ro > 1 the result can still be

only a minor epidemic with positive probability. See BALL (1983) and METZ (1978) for

details. NASELL (1995) also discusses threshold results for stochastic epidemic models.

4 Ro for structured populations

Suppose that not all individuals are equally susceptible, but that certain traits (e.g.,

age, gender, genetic composition, whether or not one suffers from another disease)

have a marked influence. Of course one then has to specify these traits, their dynamics

and their frequency in the susceptible population.

Let the individual's trait be characterised by a variable taking values in some

state space Q c Iftm. Let S = S() denote the density function of susceptibles,

describing the steady demographic state in the absence of the disease (we emphasise

that SO is not a probability density function, its integral equals the total population

size in the steady demographic state). Note that one now immediately has a valid

question concerning the definition of Ro . It is possible to characterise the expected

number of new cases of type E Q caused by infectives of type n E Q, along the lines

of section 3, for any combination of traits (C ri). However, it is not immediately clear

how the resulting numbers should be averaged. The aim is for the average to (i) have

the original biological interpretation of Ro, and (ii) show the same threshold

behaviour. The abstract methodology to solve this averaging problem for

deterministic models is described in DIEKMANN, HEESTERBEEK and METZ (1990).

In order to have a common formulation for both static and dynamic traits it is

most convenient to parametrise by the trait an individual has at the moment it

©VVS, 1996
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The concept of Ro in epidemic theory 97

becomes infected (we will also write 'at birth'). Let now A be a function of three
variables defined by

A (T, e, n) = the expected infectivity of an individual that was infected T units of time
ago while having trait value y towards a susceptible with trait value e

(15)

then exactly the same reasoning which led to (8) yields, in the case of a closed
population,

00

aS as
(16)

Q 0

where A is again the force of infection. Note that in the case of a single trait, taking
just one value (16) collapses to (8). So the structure remains essentially the same as in
(8), but the way to proceed is slightly more involved. We have to deal with distributed
quantities and replace straightforward multiplication by an operator mapping a
function onto a new function.

Instead of the real-time process (16), we consider the associated generation process
as in sections 2 and 3. We regard generations of infected individuals. The first genera-
tion consists of the initial infected individuals in the population; the second genera-
tion consists of all infections caused by members of this first generation irrespective of
their timing, etcetera. Let 0 denote the distribution over the trait space Q of the
present generation. The next generation of infecteds with type is then given by

00

(K(S)0) () = S() A(r, e, 71) dr 0(77) dr,

0

(17)

which tells us both how many secondary cases arise from the generation 0 and how
these new cases are distributed over Q. We will call K(S) the next-generation operator.
In the special case Q = {1, , m}, K(S) is an m x m-matrix; in the case of a single
trait taking only one value, (17) collapses to the KermackMcKendrick value for Ro,
equation (13).

Since S and A are non-negative, we usually interpret K as a positive operator on the
Banach space L1(Q) of integrable functions. This has pleasant consequences. Let the
spectral radius of K be denoted by r(K). By the positivity of K, r(K) is an eigenvalue of
K (the dominant eigenvalue), and as a ruleunder certain irreducibility conditions
one has for an initial generation 0, convergence to a steady distribution

K(S)"(/) c(0)r(K)'Od for n oo (18)

where IN is the positive eigenfunction corresponding to r(K), and c(0) is a scalar
which is positive whenever is non-negative and not identically zero. So, if we iterate
the next-generation operator, the distribution of infected individuals over all trait
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values stabilises to the form described by ipd, while numbers are multiplied by r(K)

from generation to generation. In other words, od describes the distribution of the

'typical' infected individual and r(K) is the number of secondary cases. If we

normalise II OdIl = 1, 1/),/ is the probability distribution for the trait value at the

moment of infection. Thus we are led to define

Ro = r(K) = the spectral radius/dominant eigenvalue of K(S)

In general, the spectral radius of an infinite dimensional operator is difficult to

compute explicitly. In one case, however, it is a triviality: when the operator has one-

dimensional range. Biologically this corresponds to the situation where the

distribution (over Q) of the 'offspring' (i.e., the ones who become infected) is

independent of the particular trait value of the 'parent' (i.e., the one who transmits the

infection). Assume that

00

jA(r,C.71)cl-r = a(e)b(71)
(19)

o

then one easily finds od = Sa and

Ro = r(K) = f b(77)S(97)a(n)cfri
(20)

An obvious mathematical generalisation of this so-called separable mixing is to

assume that K(S) has a finite dimensional range. For this see DIEKMANN,

HEESTERBEEK and METZ (1990).

To prove a threshold theorem that relates this Ro defined on a generation basis to

the development of the epidemic in real-time (both in the linearised version) is now no

longer a triviality as in the homogeneous case. The basic idea is to show that the

linearised real-time equation (16) has an exponentially growing solution with a

positive growth-rate if and only if Ro >1. The linearised version of (16) has a solution

of the form r; (t, 6) = 7(6) eA' if and only if TO is an eigenfunction of the operator

KA defined by

00

(K1,0)() = So() j j A(r,, n) CAT dr OM dn

12 0

(21)

Note that Ko is the next-generation operator corresponding to the linearisation. One

uses various positivity arguments to show from the family of operators defined by

(21) that there exists a unique real A > 0 characterising real-time growth if and only if

r(Ko) = Ro > 1. See HEESTERBEEK (1992) for details of the proof (where we note that

the additional conditions given there for part of the proof are not sufficient, as was

pointed out by Grimmer and Desch (pers. communication), but that this shortcoming

is reparable).
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The concept of Ro in epidemic theory 99

5 Modelling A

The major modelling effort involved for a question pertaining to a specific host/
infection system is to make precise how the infectivity kernel A depends on individual
types, on infection-age, and to make precise how A changes as the type and infection-
age of the infected individual change over time. The dependence of A of a given
infected individual on the types of susceptibles is purely through the frequency of
contacts (for example, if the type denotes gender, we could specify other contact rates
for homosexual and heterosexual contacts). What is needed is to express the ideas/
wishes about a given infection and the way it progresses in the host into a sub-model
to try and derive a suitable infectivity kernel A. As is typical for structured population
models, the process of obtaining A involves detailed stochastic modelling of events at
the individual level, because on this level one often has possibilities to experimentally
measure or estimate parameters. A law-of-large-numbers argument brings us back to
the deterministic setting at the population level. Building these submodels is in
general a difficult task. The expected infectivity is not only concerned with how
infectious an infected individual with given type and infection-age is as a function of
infection-age, the outcome in a way of the internal struggles with the immune system,
but it is also important to which type of susceptibles he is infectious in what degree
and how many contacts to these susceptibles occur per unit time.

A fruitful approach to determine A is to model the underlying changes in an
infected individual's type by a Markov process on Q. In A (r, e, 71), ri refers to the type
of an infected individual, say individual 'x', at the moment it contracted its own
infection. Let b(C 0) denote the infectivity and let p(r,, 0, n) be the conditional
probability that x is still alive at time T and that the type of x is 0 at that time, given
that it was n at time 0. Then the expected infectivity towards es of x at time T since
infection is

and for K(S) we find

00

(K(S)0(e) 0)p(r,, 0, do) o(n) dr dy

a 0 12

(22)

(23)

If type-value is static, p(r, 9,77) = 6(0 77) (where 6 denotes the Dirac-delta
'function') and we see that `b' is equal to 'A'. One then sees the convenience of having
parametrised A with the state at birth of the infecting individual, since the
development of the theory of section 4 works for either case with the above
interpretation. An algorithm for calculating Ro for discrete-time epidemic models
with Q = {1, , m} and Markovian dynamics in type-change can be found in DE
JONG, DIEKMANN and HEESTERBEEK (1994).
©VVS, 1996
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For the remainder of this section we concentrate on age as trait. There are many

reasons to incorporate age-structure in infectious disease models. For example,

patterns of social behaviour and sexual activity correlate with age. The seriousness of

many infectious diseases correlates with the infected's age and susceptibility and

infectivity are often age-related. Data on the distribution of the random variable 'age

at infection' contain information about the prevailing force of infection in an endemic

situation.
We follow tradition and denote the types in this case by letters a and a. The stable

age-distribution of susceptibles in the absence of infection is given by equation (5a)

and now reads S(a) = S(0) Cr° .fd(a). Let h(r, a, a) be the average infectivity of an

individual of age a and infection-age T towards an individual of age a. Then

A(r, a, a) = r, a, a + r),d(a
+ r)

where the quotient simply describes the probability that the individual has not died

since becoming infected (we neglect death from disease-related causes). It makes

sense to decompose b as

b(r, a, a + r) = r(r, a)c(a, a + r)

Here c denotes the contact coefficient, i.e. for a population with age-density n(a), the

expected number of contacts per unit of time between individuals of ages a and a

equals c(a, a)n(a)n(a). The factor r(r, a) denotes the probability of transmission,

given a contact between a susceptible and an infective, and given that the infected

individual was itself infected T time-units ago while having age a.

Ro is the dominant eigenvalue of the next-generation operator

00 00

(K(S)0(a) = S(0) Cra Fd(a) b(r, a, a + r) 0(a) da dr (24)

o o

If we separate the influence of the attributes of the infective and the type of the

susceptible involved in the contact by assuming

b(r,, a, a) = fla)g(r, a)

then this leads to a one-dimensional range for K and we find

00 00

Ro = S(0) I g(r,, a + T)Fd(a + r) e'f(a) da dr (25)

o o

More generally, one can consider

b(r, a, a) = fk(a)gk(T, a)

k=1
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and find Ro as the dominant eigenvalue of the n x n-matrix M with entries

00 CO

My = S(0) , a + r).fd(a 7-) e-Tafj(a)da dr
o o

As a concrete example of such a "finite dimensional range" situation, decompose the
age axis into n non-overlapping intervals II , . , In, and assume that c(a, a) = cu for
a E h, a E ././ (see DIEKMANN, 1995). Now let xi denote the characteristic function of a
set I, and take fk = xi, and

gk(r, a) = ir(r, a) E ckjx4(a +
.J=1

For an application of reproduction ratios to the study of control methods, consider
an infection that is endemic in a population with an age-distribution that is stable
relative to the time-scale of disease transmission. In that case, the force of infection is
constant over time, A(t, .) = AO and

S(a) = S(0) e'..Fd(a).97i(a)

where A with

describes the probability that an individual is not infected before reaching age a,
given that the individual will not die before reaching age a (i stands for infection).

The incidence of new cases is described by ft- (from equation (16)), which can be
rewritten here as the consistency condition

0000

A(a) = S(0) I r, a, a + 7).Fd(a e(a)A(a)da dr
o o

This is a nonlinear integral equation for the unknown A. (Note that linearisation at
A E 0 and the transformation 0(a) e'9d(a)A(a) lead us back to the eigenvalue
problem for K(S).)

If b satisfies relation (26), then necessarily A(a) = Ek thfk(a) with & an eigen-
vector corresponding to eigenvalue one of the matrix M(0) with entries

00 00

= S(0) , + r).5rd(a e-EkOk du, /a. da dr
o o

For the special case ofn non-overlapping age-intervals, with fk = one has that
114 is the force of infection for individuals in interval 4 and M(0) can be interpreted as
the so-called WAIFW-matrix ("Who Acquires Infection From Whom") introduced
by Anderson and May as an approach to linking this theory to population data
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(see ANDERSON and MAY, 1991, and GREENHALGH and DIETZ, 1994, for detailed treat-

ment). One should realise that data (from e.g. serological studies or age-stratified case

records) will at most allow the estimation of the force of infection vector 0. These n

values found from data do not allow one to reconstruct the n2 entries of matrix M(0).

Additional assumptions on the structure of mixing between age-classes are needed.

See ANDERSON and MAY (1991, chapter 9) and GREENHALGH and DIETZ (1994).

We finally look at the use of reproduction ratios in the evaluation of vaccination

strategies. The idea is to calculate a reproduction ratio R for invasion into a

population of susceptibles in a demographic steady state where a vaccination

schedule v is in operation. Schedule v can lead to eradication of the infection if R, < 1

can be accomplished. Let

.Fv (a)

denote a vaccination 'survival function', i.e. the conditional probability that an

individual of age a that is alive and not yet infected, is susceptible (and not made

immune by vaccination). Then

= S(0) g(r, a + r)37,1(a + r) e' (a)f (a) da dr

o o

and one can calculate whether or not a particular vaccination schedule, as described

by gr(a), leads to R, < 1. Assuming among other things short disease duration one

can simplify this formula to, DIETZ and SCHENZLE (1985),

R, =
r p (a),,,(a) e-ra.Fi(a) da

f2(a).Fd(a) e-ra2),-,(a) da

As an example of the use of such a formula, suppose we vaccinate at age a,. What is

the minimum proportion q of the population to be covered to obtain R, < 1? We put

R, = 1 and solve for the proportion q to find

rf2(a).Fd(a) e-rc' da rf2(a),d(a) e-m.Fi(a) da
= rf2(a),d(a) e-ra da

This expression can be evaluated by estimating the various ingredients from

population data.

6 Statistical aspects of estimating R0

A survey on problems of estimating R0 is given by DIETZ (1993). Four approaches are

discussed for estimating Ro:

using data about individual parameters
from the initial growth rate of the epidemic

co VIM 1996
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based on the final size of an epidemic
using data from equilibrium situations

An attempt to estimate Ro on the basis of the individual parameters is only
meaningful for diseases where contacts are clearly defined such that they can be
counted. This requirement excludes infectious diseases like measles or cholera where
the spread is either airborne or due to contamination of food and/or water.
Therefore, attempts to determine Ro from individual parameters have been restricted
to vectorborn infections based on estimates of the number of human blood meals
which one vector takes per unit of time and the number of vectors contacting one
human host per unit of time and to sexually transmitted diseases based on estimates
of the number of new partners per person per unit of time and the number ofcontacts
per partner. The most important diseases for which such attempts have been carried
out are malaria as a representative of vectorborn infections and AIDS as an example
for sexually transmitted diseases.

In rare situations where a new disease is introduced into a susceptible population
one can observe the initial rate of growth of the epidemic and derive an estimate of Ro
from the rate of initial growth provided one has further information about the
distribution of the infectious period. For a detailed application of this approach to
AIDS see CAIRNS (1995).

Often it is not possible to observe the time dependent course ofan epidemic. One is
restricted to count the number of individuals infected during the epidemic and to
estimate the final proportion of individuals still susceptible in the population. From
this information one can calculate the initial proportion of susceptibles. The
following formula provides an estimate of Ro for a homogeneously mixing
population:

In uo In 7.40,,,

do uo0

where 140 denotes the initial and tic° the final proportion of susceptibles. It is
important to note that one must not neglect that initially the population usually is not
totally susceptible because this would lead to a severe underestimation of Ro .

In practice one is faced with the problem of estimating Ro in equilibrium situations
where the prevalence of the infection stays more or less constant over time. If the
population is homogeneously mixing, the force of infection is identical for all ages
and is proportional to Ro I. This expression can then be used to estimate Ro if one
knows the force of infection and the constant of proportionality which equals the
overall death-rate. If the contact matrix for different ages can be factored like in
Equation (19) above then the estimation of Ro only involves the estimation of the age-
dependent force of infection on the basis of data that are all censored either from the
left or from the right: For each individual it is only known whether for a given age the
infection has not yet taken place (right-censored) or that the infection has taken place
at some unknown time in the past (left censored). In a discussion paper to the Royal
©INS, 1996
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Statistical Society, KEIDING (1991) presented a nonparametric method to estimate the

age-specific prevalence and the corresponding smoothed force of infection. He

applies this method to a data set for hepatitis A in Bulgaria and obtains Ro = 3.8. The

nonparametric method makes use of the left-continuous derivative of the convex

minorant of a suitably defined empirical distribution function (GROENEBOOM and

WELLNER, 1992). In general, however, as has been pointed out in the previous section,

the contact rates do depend both on the age of the infective and on the age of the

susceptible individual so that the information about the age specific force of infection

is not sufficient to identify the contact matrix. This basic problem leads to intrinsic

uncertainties about the magnitude of R0 because different assumptions about the

mixing matrix are compatible with the observed force of infection (GREENHALGH and

DIETZ, 1994). Lower and upper bounds can be determined which may be sufficient for

practical applications.
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Appendices

A.1. Parasitic worms. If one regards infections caused by parasitic worms
(helminths), assumption 1 (section 3) of Kermack and Mc Kendrick no longer
applies since as a rule, these disease agents do not multiply within the principal host.
Disease is caused by a rise in parasite levels within the host and this rise must come
from frequent re-infection. For helminth infections, 'infection-age' is not a relevant
measure to gauge disease progress. Infectivity in the principal host is therefore not
described by a function of infection-age, but by a function of the number of adult
parasites that the host harbours. See ANDERSON and MAY (1991), and ROBERTS,
SMITH and GRENFELL (1995) for recent reviews, and ADLER and KRETZSCHMAR
(1992) for a comparison of different modelling approaches. The threshold concept is
the expected number of (female) adult parasites produced per (female) adult
parasite under optimal conditions (in the absence of density dependent constraints).
In the simplest case, models are formulated in terms of mean parasite burdens
neglecting individual variation in parasite burdenand the threshold quantity for
invasion can be easily derived, see ANDERSON and MAY (1991) (and the references
given there). See HEESTERBEEK and ROBERTS (1995) for a more formal approach and
ROBERTS and HEESTERBEEK (1995) for applications of this. For models that take
individual variation in parasite burden into account, no general theory to
characterise invasion yet exists, see BARBOUR (1994) for some interesting problems
that can arise.

One has to be careful in characterising invasion thresholds for macroparasites
where sexual reproduction of a female and a male adult is required, e.g. in
schistosomes, before eggs can be produced to further the infection. Since invasion
thresholds are characterised in a low (parasite) density limit, not every female parasite
will be able to 'find' a mate (compare the Allee-effect in ecology, see e.g., HALLAM and
LEVIN, 1986). Therefore, in the invasion-limit, the expected number of (female) adult
parasites produced per (female) adult parasite is zero. This has been pointed out by
NASELL (1985), and was first described by MACDONALD (1965) who used the effect in
estimating the amount of control effort needed. If sexually reproducing parasites are
picked up in clumps by the principal host from the environment (e.g., if the host
actively acquires parasites by ingestion) the 'Macdonald-effect' may be avoided.
However, in some cases parasites are acquired passively by the host (e.g., by skin
penetration during watercontact for schistosomes) and typically not in clumps. An
appropriate generalisation of the Ro-concept is not available for this type of
infection.

A.2. Branching processes. Parameters similar to Ro determine the asymptotic
behaviour in branching processes with general state space. See JAGERS and NERMAN
(1984). The approximation of epidemic spread by a branching process goes back to
BARTLETT (1955) and to KENDALL (1956), who basically treats the RossHudson
model (12) with constant infectivity. See also NEYMAN and Scorr (1964). The work of
Kendall was generalised in METZ (1978) to the KermackMcKendrick model with
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variable infectivity; see also BALL (1983). In BALL and DONNELLY (1995), branching

process approximations to stochastic epidemic models are treated extensively.

It has been pointed out by JAGERS (1992) and notably SHURENKOV (1992) that in

Markov renewal theory, a more natural measure for generation growth, to relate to

the real-time growth described by the Malthusian parameter, is the so-called Perron

root. The Perron root p(K) of our next generation operator is defined as

1

00

p(K):=
sup t E IR+ : E 1" A(")(e, -) is a-finite for each E Q

n =o

where A"(, 77) := frA(T,,e, n) dr where kernel-multiplication is defined in the usual

way. The following relation holds: p(K) < r(K), with equality ifamong other

things-0 is compact (SHURENKOV, 1992). One could regard Ro = r(K) as a measure

of global change on 0, and p(K) as a measure of more local change. In case of a non-

compact trait space, the Perron root could lead to a 'better' description of epidemic

spread than the spectral radius (which overestimates generation growth in that case),

but the latter is often 'easier' to compute. One example where the Perron root could

prove relevant is in certain models of helminth infections.

A.3. Periodic environment. Recently there is much interest in characterising invasion

in a periodic environment. Consider the case 0 = {1, ... , n). The stability of the

infection-free steady state of the real-time linearised system describing the infection

dynamics, can be determined from the sign of the dominant Floquet multiplyer of the

system. In HEESTERBEEK and ROBERTS (1995), this threshold quantity is described

together with two others defined in terms of matrices related to the next-generation

matrix K. Branching processes and the Malthusian parameter in periodically varying

environments have been studied by JAGERS and NERMAN (1985).

A.4. Sexually transmitted diseases. For sexually transmitted infections, certainly in

human populations, the practice that individuals form longer lasting partnerships can

have a large influence on the spread of the infection (DIETZ and HADELER, 1988,

DIETZ, 1989). If the formation andseparation of partnerships is taken into account in

a model for the spread of an infection, one can no longer meaningfully define the

next-generation operator as above in terms of an infectivity function A that only

depends on the infection-age. However, one can
characterise and calculate Ro for pair

formation models of structured populations, by describing changes in infection-state

and partnership state by a Markov process on a given state space. See DIETZ (1989)

for the basic idea, DIEKMANN, DIETZ
and HEESTERBEEK (1991) for the more general

theory, and DIETZ, HEESTERBEEK and TUDOR (1993) for an application to the spread of

HIV. In a model with different types of pairs (rather than different types of

individuals)e.g. long lived and short lived pairsit can be shown that one can get

different results when interpreting Ro as referring to individuals or to pairs (see

KRETZSCHMAR et al., 1994).
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Recently there is much interest in the effects of concurrent partnerships. These
effects are investigated with stochastic network models, see ALTMANN (1995) for
details and references and a characterisation of Ro .

For applications to sexually transmitted diseases the idea of a small core-group of
highly active individuals that can drive the epidemic in the other larger but less active
groups is important (see YORKE, HETHCOTE and NOLDE, 1978, for initial development
and JACQUEZ, SIMON and KOOPMAN, 1995, for a review and discussion of the relation
to epidemic thresholds).

A.5. Small contact structures. BECKER and DIETZ (1995) derive explicit formulas for
reproduction numbers of households and of individuals for arbitrary vaccination
strategies in arbitrarily structured communities of households. The derivation of
these formulas is based on two key ideas: Firstly, individuals and households are
classified according to the number of susceptibles available at the time of infection
either of the individual or of the household. Because of the usually small sizes of
households, one cannot ignore the depletion of the number of susceptibles as one
usually does in deriving formulas for Ro in large populations. Secondly, it is assumed
that the infection is highly infectious within a household. This assumption
considerably simplifies the formulas because the final size distribution of the number
of secondary cases within one household is simply given by the number of
susceptibles in the household. For many diseases this is a realistic approximation.
The threshold parameters are used to derive the levels of immunity required for the
prevention of major epidemics in the community. For a community of households of
equal size it is found that random vaccination of individuals is better than
immunising all members of a corresponding fraction of households. When house-
holds have varying sizes, immunising all members of large households can be better
than a corresponding vaccination coverage of randomly selected individuals.

A main point about the existence of small structures in a community like pairings,
households or circles of acquaintances is that within these smaller structures repeated
contacts of the same individuals cannot be neglected and the effect of these contacts,
that infectious material is 'wasted' on individuals one has already infected before, has
to be discounted in calculating both thresholds and final sizes. Recently, two
approaches have been developed. In one, Ball, Mollison and Scalia-Tomba look at
stochastic models for a population divided into n subgroups of size m. Instead of the
regular approach to take m large, they take m to be small (household size) and
consider branching process approximations and coupling methods with n--- oo . They
derive thresholds for invasion and final size distributions (see Ball's discussion of
MOLLISON, ISHAM and GRENFELL, 1994).

In the second approach, DIEKMANN, DE JONG and METZ (1995) look at a
community where every individual has a circle of k acquaintances to whom it has
contacts and these k are a random sample from the (infinite) population. The major
part of that paper is devoted to characterising final size distributions. They consider
the following situation (the notation we use is as in remark 1). The infectious output
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of an infected individual (normalised to equal the probability per unit of time of

transmission) is assumed to be uniformly distributed among its k acquaintances. Let

a(r, x) be this output for an individual of 'type' x that was infected T time-units ago.

The expectation for the probability that a specific acquaintance of this particular

infected individual is not yet infected by it at time T is

F(r) = JeScm({dx})

The overall probability of transmission from the particular infective to one of its

acquaintances during its entire infectious period is then defined by Q := 1 F(oo).

To calculate Ro realise that during the invasion phase any newly infected individual

has among its k acquaintances precisely one infected or immune acquaintance

(namely the one it was infected by). Hence there are k 1 acquaintances left to infect

and Ro = (k 1)Q. In the special case described in remark 1, constant infectious

output 0 and an exponentially distributed infectious period with exponent -y, they

find

k 1

Ro = k
-y + Olk

One sees that for k oo they obtain the usual mass-action threshold quantity under

the given assumptions, Ro = In the general case they recover the Kermack

McKendrick formula for k oo

00

Lim Ro = A(r) dr
k-400

0

where A(r) is as in remark 1.
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