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Abstract

Motivated by the recent experiment [R. Lopes et. al., Phys. Rev. Lett. 119, 190404 (2017)] with

a homogeneous Bose gas, we investigate a homogeneous dilute Bose gas to calculate the quantum

depletion density. By means of the Cornwall-Jackiw-Tomboulis effective action approach within

an improved Hartree-Fock approximation, the condensed fraction is recovered in a simpler manner

and compared with corresponding findings in experimental data. Additionally, higher-order terms

are taken into account for several physical quantities, in particular for the chemical potential and

free energy density.
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I. INTRODUCTION

It is well-known that a number of atoms in a Bose gas will be condensed as the system

is cooled to the critical temperature [1, 2] and results in the formation of a Bose-Einstein

condensate (BEC). The literature on this exotic state of matter has been rapidly developing

since a BEC was created in experiments [3, 4]. In a dilute BEC, essentially all atoms occupy

the same quantum state and the condensate can be described in terms of a mean-field theory,

which is similar to the Hartree-Fock theory for atoms [5]. Theoretically, all of the atoms

will be in the ground state at zero temperature [6]. In this situation, the ground state is

described by a wave function, which is the solution of the Gross-Pitaevskii (GP) equation

[7, 8].

This absolute zero temperature can however never be reached due to quantum fluctuations

in the BEC, where some particles with nonzero momentum reside in excited states instead

of the ground state, even at zero absolute temperature [5]. These particles get pushed

out of the condensate. This phenomenon is called quantum depletion. The number of

atoms in the remaining condensate fraction due to quantum depletion was first studied

in 1947 by N. N. Bogoliubov [9] up to order 1/2 in the gas parameter by using the second

quantization formalism. The main idea is based on a quantum description, where the particle

operators are transformed into quasi-particle operators, yielding an explicit diagonalization
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of the quantum Hamiltonian. In 1997, using the Bogoliubov theory and the semiclassical

approach, the authors of Ref. [10] investigated the quantum depletion in a Bose gas confined

by a harmonic trap. In the case of a homogeneous Bose gas their result corresponded exactly

with Bogoliubov’s result. Recently, this result was reproduced by S. Stringari [11] within

the GP theory. However, all of the above methods involve the use of many complicated

calculations. The main purpose of the present paper is to provide a simpler method to recover

the condensed fraction in a dilute non-relativistic Bose gas with depletion and compare with

experimental data.

We set the stage for our calculations by starting with a dilute Bose gas described by the

following Lagrangian density [5],

L = ψ∗
(
−i~ ∂

∂t
− ~2

2m
∇2

)
ψ − µ |ψ|2 +

g

2
|ψ|4 , (1)

wherein ~, m and µ are respectively the reduced Planck constant, the atomic mass and the

chemical potential. The field operator ψ(~r, t) depends on both the coordinate ~r and time t.

The strength of the interaction between the atoms is determined by the coupling constant

g = 4π~2as/m, which is expressed in terms of the s-wave scattering length as by making

use of the Born approximation. Now, thermodynamic stability requires that g > 0, i.e., the

boson interactions are repulsive.

This paper is organised as follows. In Section II we calculate the gap and Schwinger-Dyson

(SD) equations for a single Bose gas in the improved Hartree-Fock (IHF) approximation by

first recapitulating the regular HF method and then calculating these expressions for the

Cornwall-Jackiw-Tomboulis effective potential with symmetry-restoring terms, hence the

name improved Hartree-Fock method. The condensed fraction is investigated in Section III

and the results are compared with both related approaches and experimental data. Ex-

plicit expressions for the chemical potential, the pressure and the free-energy density are

calculated. Finally, we present the conclusions and a future outlook in Section IV.

II. THE EQUATIONS OF STATE IN THE IHF APPROXIMATION

In this Section, we will establish the equations of state for a Bose gas, which are the

gap and Schwinger-Dyson (SD) equations. To do so, we first derive the Cornwall-Jackiw-

Tomboulis (CJT) effective potential in the IHF approximation. As was previously men-
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tioned, the condensed fraction is investigated at zero temperature in spite of the fact that

the CJT effective action approach is constructed for a finite temperature T > 0. The

temperature is set to be zero at the end of the calculations.

Let ψ0 be the expectation value of the field operator in the tree-approximation, the GP

potential is then taken from (1)

VGP = −µψ2
0 +

g

2
ψ4
0. (2)

Note that henceforth the system is considered without any external fields. Furthermore, the

non-macroscopic part of the condensate moves as a whole so that the lowest energy solution

ψ0 is real and plays the role of the order parameter. Minimizing the potential (2) with

respect to the order parameter, one arrives at the gap equation

ψ0(−µ+ gψ2
0) = 0, (3)

and hence, for the broken phase

ψ2
0 =

µ

g
. (4)

In order to factor in the HF approximation, the complex field operator ψ should first be

decomposed in terms of the order parameter ψ0 and two real fields ψ1 and ψ2, which are

associated with quantum fluctuations of the field [12], i.e.,

ψ → ψ0 +
1√
2

(ψ1 + iψ2). (5)

Plugging equation (5) into the Lagrangian density (1), the interaction Lagrangian density

in the HF approximation is obtained

Lint =
g

2
ψ0ψ1(ψ

2
1 + ψ2

2) +
g

8
(ψ2

1 + ψ2
2)2. (6)

In the tree approximation one has the gap equation (4) and the inverse propagator or Green’s

function

D−10 (k) =

 ~2k2
2m
− µ+ 3gψ2

0 −ωn
ωn

~2k2
2m
− µ+ gψ2

0

 , (7)

with ~k being the wave vector. The nth Matsubara frequency for bosons is defined as ωn =

2πn/β where β = 1/kBT and n ∈ Z with kB being the Boltzmann constant. By combining

the gap equation (3) and the inverse propagator (7), the latter reduces to

D−10 (k) =

 ~2k2
2m

+ 2gψ2
0 −ωn

ωn
~2k2
2m

 . (8)
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The Bogoliubov dispersion relation can be obtained by requiring that the determinant of

the inverse propagator (8) vanishes, i.e., detD−10 (k) = 0 [13]. The result is

E(tree)(k) =

√
~2k2
2m

(
~2k2
2m

+ 2gψ2
0

)
. (9)

For small wave vectors ~k, this equation is gapless and linear and indicates the spontaneous

U(1) symmetry breaking. Due to this symmetry breaking, Nambu-Goldstone bosons (pions)

are created. To continue our discussion, we introduce the CJT effective potential in the HF

approximation that can be read off from the interaction Lagrangian density (6) in the manner

that was pointed out in [14, 15],

V
(CJT)
β = −µψ2

0 +
1

2

∫
β

tr
[
lnG−1(k) +D−10 (k)G(k)− 11

]
+

3g

8
(P 2

11 + P 2
22) +

g

4
P11P22 +

g

2
ψ4
0 ,

(10)

for which the functions P11 and P22 are

P11 =

∫
β

G11(k) (11a)

P22 =

∫
β

G22(k) (11b)

The Matsubara integrals in these expressions are defined as follows∫
β

f(k) =
1

β

+∞∑
n=−∞

∫
d3~k

(2π)3
f(ωn, ~k) . (12)

Here G(k) is the propagator or Green’s function in the HF approximation, which can be

obtained by minimizing the CJT effective potential (10) with respect to the elements of the

propagator. Performing these calculations results in the following expression for the inverse

propagator

G−1(k) = D−10 (k) + Π, (13)

in which

Π =

 Π1 0

0 Π2

 , (14)

with the matrix entries Π1 and Π1 the self-energies that can be constructed from (11a) and

(11b), i.e.,

Π1 =
3g

2
P11 +

g

2
P22 (15a)
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Π2 =
g

2
P11 +

3g

2
P22 . (15b)

The gap equation in the HF approximation can now be found by minimizing the CJT

effective potential (10) with respect to the order parameter ψ0, i.e.,

− µ+ gψ2
0 + Π1 = 0. (16)

Combining equations (13)-(16), one has the inverse propagator in the HF approximation

G−1(k) =

 ~2k2
2m
− µ+ 3gψ2

0 + Π1 −ωn
ωn

~2k2
2m
− µ+ gψ2

0 + Π2

 , (17)

and consequently the dispersion relation in this approximation is

E(HF)(k) =

√(
~2k2
2m
− µ+ 3gψ2

0 + Π1

)(
~2k2
2m
− µ+ gψ2

0 + Π2

)
. (18)

Equations (16) and (18) show that the Goldstone theorem fails in this HF approximation.

To restore the Goldstone boson, we now employ the method developed in [16]. In this

way, a phenomenological symmetry-restoring extra term

∆V = −g
4

(P 2
11 + P 2

22) +
g

8
P11P22, (19)

will be added to the CJT effective potential (10). Let the inverse propagator in the IHF

approximation be denoted as D−1(IHF)(k), the CJT effective potential (10) now becomes

Ṽ
(CJT)
β =

1

2

∫
β

tr
[
lnD−1(IHF)(k) +D−10 (k)D(IHF)(k)− 11

]
+
g

8
(P 2

11 + P 2
22) +

3g

8
P11P22 − µψ2

0 +
g

2
ψ4
0. (20)

Similarly, by repeating step by step all of the calculations from the previous discussion for

the CJT effective potential in the IHF approximation (20), one arrives at the gap equation

− µ+ gψ2
0 + Σ1 = 0, (21)

and the SD equation

M2 = −µ+ 3gψ2
0 + Σ2, (22)

respectively. In these equations, the self-energies Σ1 and Σ2 are denoted by

Σ1 =
3g

2
P11 +

g

2
P22 (23a)
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Σ2 =
g

2
P11 +

3g

2
P22 . (23b)

Combining equations (20)-(23b), one can once again calculate the inverse propagator,

now in the IHF approximation,i.e.,

D−1(k) =

 ~2k2
2m

+M2 −ωn
ωn

~2k2
2m

 . (24)

Hence, the resulting dispersion relation is

E(IHF)(k) =

√
~2k2
2m

(
~2k2
2m

+M2

)
. (25)

Clearly, the Goldstone boson is restored in this approximation. This is precisely the reason

why this approximation is called the improved Hartree-Fock approximation.

The momentum integrals in the IHF approximation are obtained from equations (11a)

and (11b) after replacing G(k) by D(k). Using the following formula [17],

+∞∑
n=−∞

1

ω2
n + E2(k)

=
β

2E(k)

[
1 +

2

eβE(k) − 1

]
, (26)

and afterwards letting the temperature tend to zero, it is easy to check that in this limit

these momentum integrals have the form

P11 =
1

2

∫
d3~k

(2π)3

√
~2k2/2m

~2k2/2m+M2
(27a)

P22 =
1

2

∫
d3~k

(2π)3

√
~2k2/2m+M2

~2k2/2m
. (27b)

The gap and SD equations (21) and (22), together with the momentum integrals (27a)

and (27b) form the equations of state, which govern the variation of all quantities of the

system.

We will now look for the quantum fluctuations, and therefore calculate the condensed

fraction of the dilute Bose gas.

III. THE CONDENSED FRACTION OF A HOMOGENEOUS DILUTE BOSE

GAS

Let us first investigate the quantum depletion density in the IHF approximation. Note

that the pressure is defined as the negative of the CJT effective potential (20) at the mini-
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mum, i.e. satisfying both the gap and SD equations

P = −Ṽβ
∣∣∣∣
minimum

≡ −Ṽ(CJT)
β . (28)

Now, substituting equations (21) and (22) into (20), one has

Ṽ(CJT)
β = −µψ2

0 +
g

2
ψ4
0 +

1

2

∫
β

tr lnD−1(IHF)(k) (29)

+
1

2
(3gψ2

0 − µ−M2)P11 +
1

2
(gψ2

0 − µ)P22

+
g

8
(P 2

11 + P 2
22) +

3g

8
P11P22. (30)

One obtains the condensate density in the IHF approximation from differentiating the

pressure with respect to the chemical potential, i.e.,

n =
∂P
∂µ

. (31)

Combining equations (28)-(31), the condensate density is expressed in terms of the order

parameter ψ0 and the momentum integrals P11 and P22 [15],

n = ψ2
0 +

1

2
(P11 + P22). (32)

Similarly, the chemical potential can be expressed in terms of the bulk condensate density

n0

µ = gn0 + gP11. (33)

Physically, the first term in equation (33) is the chemical potential in the mean field theory

while the second one originates from the double-bubble diagrams in the IHF approximation.

The density of condensate depletion is defined as the number of particles in excited states

per unit volume [5]. Based on equation (32) one can easily see that the condensed fraction

for a homogeneous dilute Bose gas is

nex =
1

2
(P11 + P22). (34)

In order to simplify notation, we first introduce the following dimensionless quantities

ξ = ~2/
√

2mgn0 (35a)

φ0 = ψ0/
√
n0 (35b)
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κ = kξ (35c)

M = M/
√
gn0 , (35d)

with ξ the coherent healing length, φ0 the reduced order parameter, κ the wave vector

and M the effective mass. The momentum integrals (27a) and (27b) can be conveniently

rewritten as

P11 =
1

2ξ3

∫
d3~κ

(2π)3
κ√

κ2 +M2
(36a)

P22 =
1

2ξ3

∫
d3~κ

(2π)3

√
κ2 +M2

κ
. (36b)

The integrations over the dimensionless wave vector in equations (36a) and (36b) are ultra-

violet divergent. With dimensional regularization, these divergences can be avoided [12] and

the integrals can be solved. The integral Im,n is

Im,n(M) =

∫
ddκ

(2π)d
κ2m−n

(κ2 +M2)n/2
=

Ωd

(2π)d
Λ2εMd+2(m−n)Γ

(
d−n
2

+m
)

Γ
(
n−m− d

2

)
2Γ
(
n
2

) ,

where Γ(x) is the gamma function, Ωd = 2πd/2/Γ(d/2) is the surface area of a d−dimensional

sphere and Λ is a renormalization scale that ensures the integral has the correct canonical

dimension. This number is usually absorbed into the measure, hence it will not appear in

the results. Applying (37) to (36a) and (36b) with d = 3, one finds

P11 =
M3

6π2ξ3
(37a)

P22 = − M
3

12π2ξ3
. (37b)

To proceed further, we define the gas parameter ns = n0a
3
s. Inserting equations (37a), (37b)

and (33) into (21) and (22), one arrives at the gap equation

− 1 + φ2
0 +

2
√

2n
1/2
s

3
√
π
M3 = 0, (38)

and the SD equation

M2 = −1 + 3φ2
0 −

10
√

2n
1/2
s

3
√
π
M3, (39)

Note that for a dilute Bose gas, the gas parameter ns has to satisfy the condition ns � 1

[12]. Solving equations (38) and (39) and then expanding, one easily finds the dimensionless

effective mass

M =
√

2− 16
√

2

3
√
π
n1/2
s +O(ns) (40)
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and the reduced order parameter

φ2
0 = 1− 8

3
√
π
n1/2
s +O(n2

s). (41)

Finally, substituting (40) into (34) one finds the condensed fraction

nex
n0

= γn1/2
s −

128ns
3π

+
2048n

3/2
s

9π3/2
+O(n2

s), (42)

in which γ = 8
3
√
π
≈ 1.50. Note that here, in accordance with Ref. [9], n0 is assumed to be

the density of the condensate, which is the square of the expectation value (4) of the field

operator in the tree-approximation. The evolution of the condensed fraction versus the gas

parameter is shown in Fig. 1 [18].

Recently, Lopes et. al. have performed an experiment [19] in order to measure the

quantum depletion density of a dilute homogeneous Bose gas of 39
19K atoms as a function

of the gas parameter ns. The interaction strength was controlled by a magnetic Feshbach

resonance [20] with a particle density of n0 = 3.5 × 1011 cm−3 in the lowest hyperfine

state |F = 1,mF = 1〉. Within a 15% statistical error and with 20% systematic effects, the

authors found γ = 1.5(2). This work confirmed Bogoliubov’s result and, naturally, verified

our result. However, the higher-order terms can be easily retained in our calculations. As a

consequence, our results coincide more closely with the experimental data in the extremely

small gas parameter region.

Let us remark that, by plugging (40) and (41) into (33), one arrives at the expression for

the chemical potential in function of the gas parameter with the inclusion of higher-order

terms, i.e.,

µ = gn0

[
1 +

32

3

(ns
π

)1/2
− 512

3

ns
π

+
8192

9

(ns
π

)3/2
+O(n2

s)

]
. (43)

The two first terms in the bracket on the right-hand side of equation (43) have been found

in Ref. [12], confirming our result.

Finally, one other quantity of interest is the energy density, which is the Legendre trans-

form of the free-energy density F(µ), i.e.,

E(n) = F(µ) + µn

= µn− P .
(44)
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FIG. 1. (Color online) The condensed fraction nex/n0 of a homogeneous Bose gas as a function of

the gas parameter ns. The red line corresponds to Bogoliubov’s result and to the first term on the

right-hand side of equation (42). The blue line is the numerical solution for the condensed fraction.

The magenta dots are experimental data [19] together with a yellow error band.

In the last line of (44) we used the fact that F(µ) = −P . Substituting (29), (32) and (33)

into (28) one can express the pressure in term of the condensate density

P =
g

2
n2 + gnP11 −

g

2
P 2
11 −

1

2

∫
β

tr lnD−1(IHF)(k). (45)

Combining equations (44) and (45) yields the energy density

E =
g

2
(n2 + P 2

11) +
1

2

∫
β

tr lnD−1(IHF)(k). (46)

To proceed further, one has to calculate the last term on the right-hand side of (46). Using

11



the rule for the summation of Matsubara frequencies [17],

1

β

n=+∞∑
n=−∞

ln
[
ω2
n + E2(k)

]
= E(k) +

2

β
ln
[
1− e−βE(k)

]
, (47)

one can evaluate this integral, which we call the grand canonical energy density at zero

temperature

Ω ≡ 1

2

∫
β

tr lnD−1(IHF)(k)

=
1

2

∫
d3~k

(2π)3

√
~2k2
2m

(
~2k2
2m

+M2

)
,

(48)

or in dimensionless form

Ω =
gn0

2ξ3

∫
d3κ

(2π)3

√
κ2(κ2 +M2). (49)

Using equation (37), the integral can be performed explicitly. Hence, the grand canonical

energy density is

Ω =
gn0

30π2ξ3
M5. (50)

From equations (37a), (40), (46) and (50), the free energy density can be written in term of

the gas parameter

E = P0

[
1 +

128

15

(ns
π

)1/2
− 1792

9

ns
π
− 20480

27

(ns
π

)3/2]
, (51)

where P0 = gn2
0/2 is the pressure in bulk. In the right-hand side of Eq. (51), the first term

is the mean field energy and second one is due to the quantum fluctuations. The result

(51) exactly coincides with the corresponding one derived in Ref. [21, 22], which was first

obtained by Lee, Huang, and Yang in the late 1950s and was confirmed experimentally by

Navon et. al. [23] in 2011.

IV. CONCLUSION AND OUTLOOK

In this paper, we have explored the CJT effective action approach to investigate the

quantum fluctuations in a homogeneous dilute Bose gas within the framework of the IHF

approximation. The known result by Bogoliubov for the condensed fraction has been recov-

ered by means of a simple procedure. A comparison with experimental data shows that our

12



solution coincides almost exactly with the data, especially in the region ns < 0.0004 where

the gas parameter is extremely small. Moreover, the CJT effective action approach has

been employed to reproduce the relation for the chemical potential and ground state energy

of a dilute Bose gas, taking into account the quantum fluctuations. The results coincide

exactly with known results that were first calculated in Refs. [21, 22], and can therefore be

compared with the experimental result in [23].

It is also very interesting to explore these calculations for Bose-Einstein condensate mix-

tures. The interspecies interaction is expected to produce some novel results. In addition,

thermal fluctuations can be similarly investigated by means of the CJT effective action

approach. In addition, this procedure can also be employed to investigate the condensed

fraction of a Bose gas confined between two parallel plates and the resulting Casimir effect

[14].
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