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The Condition of Polynomials in Power Form*

By Walter Gautschi

Abstract.   A study is made of the numerical condition of the coordinate map Mn which

associates to each polynomial of degree <n - 1 on the compact interval [a, ft] the n-vec-

tor of its coefficients with respect to the power basis.   It is shown that the condition

number IIA^II^IIAÎ" 11^ increases at an exponential rate if the interval [a, b] is symmet-

ric or on one side of the origin, the rate of growth being at least equal to 1 + \J2.   In

the more difficult case of an asymmetric interval around the origin we obtain upper

bounds for the condition number which also grow exponentially.

1.   Introduction.   Let Mn: R" —► P^, be the linear map associating to each vec-

tor uT = [«,, u2, ... , un] 6 R" the polynomial

p(x)=  f. "fc**~lep„-i>      n>2.
fc = i

For any p£Pn_, we shall write u = M~xp, where M~x is the inverse map of Mn.

We define the condition of the map Mn, relative to the compact interval [a, b], by

(1-1) ™nd„M„ = \\Mn\\JM71\\„,

where the norms are WuW^ = max,<fc<n \uk\ (in R") and HpH^ = maxa<x<b |p(x)|

(in Pn_, [a, b]). We are interested in the growth rate of cond^ Mn as n —► °°, and

how this growth depends on the particular interval [a, b] chosen.

The answer is relatively straightforward for symmetric intervals [-co, co] and for

intervals [a, b] with 0 < a < b,  in which cases the condition number in (1.1) can be

expressed explicitly in terms of uT       (or uT      ), where Tm denotes the Chebyshev

polynomial of degree m on the appropriate interval (Theorems 3.1, 3.2).  It will follow,

in particular, that on [-co, to] and [0, co], co > 0, the condition grows exponentially

with n, and that the minimum growth occurs precisely when cj = 1, in which case

condœ Mn grows like (1 + s/2f on [-1, 1] and like (1 + y/2)2n on [0, 1].  This

ought to be contrasted with the linear growth \¡2n for the condition on [—1, 1] of

polynomials represented in terms of Chebyshev polynomials [1].

For asymmetric intervals [a, b] with, say, a < 0 < b, \a\ < b, the problem ap-

pears to be considerably more complex, and we are no longer able to ascertain the ex-

act growth rate of (1.1).   Instead, we obtain two upper bounds for cond^ Mn, one

being asymptotically sharp in the extreme case \a\ = b, the other in the extreme case

a = 0 (Theorem 4.1).
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344 WALTER GAUTSCHI

2.  Preliminaries on the Coefficients of Chebyshev Polynomials.   In the following

we need estimates for the largest coefficients in Tn(x/o7) andT^x/tS), where Tn is the

Chebyshev polynomial of the first kind and T* the "shifted" Chebyshev polynomial

T*(x) = Tn(2x - 1).

It is well known that

(2,, r. (i) -   Z  v—.

where

For fixed r, with 0 < t < lA, we put k = tn, and let w —► °°.  Using Stirling's formula,

we find

'"      2V2F Ví(i -0(1-20 V^y

where

^(f) = (1 -1) In (1 - f) - t In f - (1 - 20 In (1 - 20 - 2t ln(2/co),      0 < t < \h.

From g(0) = 0, gty) = -In (2/co), g'(t) - In [(1 - 202co2/4i(l - f)], it is seen that

g(t) has a unique maximum on [0, lA], assumed at

1
i-fo-2    1-

Vl + w2

Since

l-<b
*(f0) = In r—^-  = In [Î4(l + Vl + co2)], V'oU "'oXl " 2f0) = fcw(l + co2)"3'4,

we thus find for the maximum coefficient of T„(x/co) the asymptotic approximation

on  ,1 11 !       (1 + ^2)3/4   -yj l+Vl+co2^"
(2-2) Il«r„(x/W)IL - ^= -(jr— » %-13-/ -    » —-•

For co = 1, this gives

(2.2') ll«rIL~ ^pn-^l+v^r,      n-»«    (co = 1),

which agrees with a result attributed to an (anonymous) referee in J. R. Rice [3, p. 304].

Since T*(x2) = T2n(x), the analogous result for T*(x/cS) is readily obtained from

(2.2) by replacing n by 2n and co by Vc3,

_JL iu^l„-*(2+^o + vr+^Y_

For co = 1, this gives
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THE CONDITION OF POLYNOMIALS IN POWER FORM 345

(2.3') ||iir.IL ~ l=r «-"/2(3 + 2j2f,      « — -   (co = 1).
n \Jtt

In Table 2.1 we compare the true values of ||«r (w^ll^ with their asymptotic approxi-

mations in (2.2) for selected values of n and co.

n = 5 n = 10 /i = 20 /j = 40

10

5

1

.2

.1

true (2.2) true (2.2) true (2.2) true (2.2)

5.00(-l) 9.36(-l) 1.00 1.09 2.00 2.09 1.06(1) 1.09(1)

1.00 1.11 2.00 2.12 1.06(1) 1.09(1) 4.02(2) 4.11(2)

2.00(1) 2.46(1) 1.28(3) 1.43(3) 6.55(6) 6.79(6) 2.12(14) 2.17(14)

5.00(4) 9.65(4) 5.00(9) 7.17(9) 5.00(19) 5.59(19) 5.00(39) 4.82(39)

1.60(6) 5.82(6) 5.12(12) 1.33(13) 5.24(25) 9.91(25) 5.50(51) 7.72(51)

Table 2.1.  The quality of the asymptotic formula (2.2)

We also note that

(2.4) H"r„(*/W)IL > H"7Vf-i(W~>      « = l,2,3,...,w<l,

where equality holds only for n = 1, co = 1.  This follows easily from the three-term

recurrence relation for Chebyshev polynomials and from the alternating character of the

coefficients ck in (2.1).  The inequality in (2.4) holds for all co < 2, if n is restricted to

n > 2, and it indeed holds for any fixed co, if n is sufficiently large, as is seen from

(2.2).

3.  The Condition of Mn for Symmetric Intervals and for Intervals on One Side of

the Origin.  We shall always assume (without loss of generality) that our basic interval

[a, b] is centered to the right of the origin, so that 0 < \a\ < b.  The Chebyshev poly-

nomial Tm, adjusted to the interval [a, b], will be denoted by Tm [a, b],

Tm[a,b](x) = Tm(^azA),      a<x<b.

Relative to any such interval [a, b], the norm of the map Mn is easily seen to be

(irr-    fr*1-

k=x In, b = l.

More delicate is the determination of HM"1!!,», as this amounts to finding the norms of

the linear functionals Ak: p I-»- p(k_1)(0)/(A: - 1)!, p G P„_, [a,b],k = 1,2, ... ,n.

Indeed,

nn II^IL^    max   ||Xfc||„.
\3-¿) Kk<n

While it is known [5, Satz 6.11] that, for 2 < k < n, the extremal in P„_, [a, b] for
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346 WALTER GAUTSCHI

the functional Xfc is a Zolotarev polynomial of degree n - 1, it appears difficult, in the

case of a general interval [a, b], to pinpoint the parameter involved in the Zolotarev

polynomial, and there may correspond different Zolotarev polynomials to different val-

ues of k.   For these reasons the case of an arbitrary interval will be dealt with by other

(less sophisticated and cruder) methods in Section 4.

For symmetric intervals [-co, co], co > 0, on the other hand, the appropriate

Zolotarev polynomials are known to be the Chebyshev polynomials   Tn_x or Tn_2; in-

deed, \\XJ\_ = ir^^I-co, co](0) + T^i-co, co](0)|/(fc - 1)!, k = 1, 2,... , n,

n > 2 [5, p. 167], and therefore,

max   ||Xfc| ,T„_1[-cj,cjl+rn_2[-cj,wlM~-

Since Tn[-co, co](x) = Tn(x/co), and Tm is an even or odd polynomial, depending on

the parity of m, we thus have, in  view of (3.1), (3.2):

Theorem 3.1.   The condition number (1.1) on [-co, co] is given by

CO
(3.3) cond^M^   w_ max i\\u „ IKTn_xix/cj)"<*> ""Tn_2ixlu)\\~>}>

where (co" - l)/(co - 1) (here and in the sequel) is to be interpreted as having the value

n if co = 1.

It follows from (2.2) that for co > 1, co = 1, 0 < co < 1, the condition of Mn for

large n grows, respectively, like (1 + yjl + co2)", (1 + \/2)n, [(1 + y/l + co2)/co]"

(disregarding a factor n±Vl and constant factors), so that the growth is smallest, asymp-

totically, when co = 1.  Selected numerical values of cond Mn are shown in Table 3.1.

10

5

1

.2

.1

« = 5 10 n = 20       n = 40

1.11(4) 1.11(9) 2.11(19) 1.10(40)

7.81(2) 4.39(6) 2.17(14) 7.74(29)

4.00(1) 5.76(3) 5.45(7) 3.51(15)

6.25(3) 6.25(8) 6.25(18) 6.25(38)

8.89(4) 2.84(11) 2.91(24) 3.05(50)

Table 3.1.  The condition of Mn on [-co, co]

Another special case which can be disposed of similarly is the case of an interval

[a, b] with 0 <a <b.  Here (see, e.g., [4, p. 93]) ||XfcIL = U^1' [«• ¿](0)l/(*-l)!,

and we can state

Theorem 3.2.  The condition number (1.1) on [a, b], where 0 < a < b, is given

by

(3.4)
b" - 1

cond„ M„ =-r mm.
b- 1 •n-l \a,b]

We note that the expression on the right of (3.4), even for an arbitrary interval

[a, b], is always a lower bound for cond^ Mn, since
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THE CONDITION OF POLYNOMIALS IN POWER FORM 347

(3.5) WMn
-ii

sup
pGP„_,[a,ô]

W^pW.
>

-l\a,b\\

To illustrate Theorem 3.2, we consider the interval [0, co], co > 0.   Here,

Tn_x [0, co](x) = T*_x(x/œ), and depending on whether co>l,co=l,or0<co<  1,

Eq. (2.3) shows that the condition grows, respectively, like (2 + co + 2\/l + co)",

(3 + 2\/2)n and [(2 + co + 2>/l + co)/co]", thus again slowest, asymptotically, when

co = 1.   Selected numerical values are shown in Table 3.2.

10

5

1

.2

.1

n = 5 n = 10       n = 20 n = 40

3.56(4) 4.93(10) 1.80(23) 3.27(48)

5.00(3) 8.91(8) 3.67(19) 8.47(40)

1.28(3) 1.12(7) 7.34(14) 2.16(30)

1.00(5) 3.20(11) 6.23(24) 3.02(51)

1.42(6) 1.46(14) 1.53(30) 3.27(62)

Table 3.2.  The condition of Mn on [0, co]

4.   The Condition of Mn on an Arbitrary Interval.  We now wish to make some

progress towards the more difficult problem of estimating cond^ Mn for an arbitrary

right-centered interval [a, b], 0 < |a| < b.  We content ourselves with establishing upper

bounds for cond^ Mn.  (A trivial, but not very useful, lower bound can be had from

(3.1) and (3.5).)

Our main tool is the following simple observation.

Lemma 4.1.  Let sT = [sx,s2, ... , sn] be any vector ofn distinct nodes in

[a, b] and Vn(s) the corresponding Vandermonde matrix

(4.1)    Vn(s)

Then

(4.2)

„M-l        „n-1 .«-1

(a < sv<b,v= 1,2, ... ,n).

II^"1L<»HVWIL-

Proof.   Let

p(*)= Z ukx
k=l

k-l a<x <b,

be an arbitrary polynomial of degree <« - 1.   From
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348 WALTER GAUTSCHI

Y   sv  luk=Pisv)>       v=l,2,...,n,
k = l

or, equivalently,

V^(s)u = tt,    uT = [ux,u2, ... ,un],    ttt = [p(sx),p(s2), ... ,p(sn)],

one gets immediately

ML <IM, <B[J71(«)lrll1IWI, <nWV7x(s)WJML <nWV7x(s)WjmL,

hence (4.2). D

It is tempting to optimize the bound in (4.2) by minimizing lll7"1^)!!«, over all

admissible node vectors s.   Unfortunately, the corresponding optimal nodes are not

known explicitly.  We expect, however, the Chebyshev points on [a, b] to provide a

reasonably good alternative.   In order to carry out the necessary computations, we need

the following properties of Vandermonde matrices.

Lemma 4.2 (Shift property).     Let t = [r,, t2, ... , tn]T and t - p =

[tx -p,t2-p,...,tn- p] T.   Then

(4.3) V-\t -p)= V-x(t)(D7xPnDn)T,

where Dn = diag(l, p,p2, ... , p"~x) and Pn is the initial (n x n)-segment of the Pas-

cal triangle, that is

1        p       p2 p3

o     i     (2)ju     (32)p2    ■■

ooi        O     ••

0       0       0 1

(4.4) D-lPnDn =

J(nX«)

Proof   It is well known (see, e.g., [2]) that Vn   (f) = [ukX] , where

n     x -1„
x-i

Il  J-TTJ =   E »k\X
v = l   'k       lv        \ = i

The elements ukX of V~x(t - p), therefore, are the coefficients of the polynomial

x + p - tvn ifip- £ **♦«'--£.„ i (îil)«".
V+K K " P=l P=l X=l    V '

\ = l a=X VV        l/

P-X

that is,

u'k\ = Z   uK
p = \

p-1
p\\- 1

.P-*

)m"-x.

This, written in matrix form, is precisely (4.3). D
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THE CONDITION OF POLYNOMIALS IN POWER FORM 349

In the following two lemmas,

cos 6V,    sv=~^—ff>      v=l,2,...,n,

denote the Chebyshev points on [- 1, 1 ].

Lemma 4.3. If tv = r cos 6V, v = 1, 2, ... , n, t > 0, then

(4-5) «IIV (OIL <
33/4

(7+1)
4(V2~- 1)

Proof.   From [2, Theorem 5.2] ** one has

Tl- (i = V-i>

"ll^_1(0IL

and from [2, Example 6.2]

<
(t + l)n

2(V2 -1)

TnaiT)

Tnii)
?m

?M 33/4
< V ir„(0l.

Lemma 4.4. If tv = t(1 + cos 6V), v = 1,2, ... ,n,T> 0, then

(4.6) »IIV7X (OIL<
1

VTT2Í   "\t

Proof.   From [2, Eq. (4.1')] one obtains

+ 1

(4.7)
«ll^_1(0H.< Tn{Hr + 1)

nun
Ku<n

1/t + 1 + cos

sin

having used |7^'(cos 0„)| = n/sin 9V.  An elementary calculation will show that

1/t + 1 + cos 6
fid)

sin

has a unique minimum on 0 < 6 < it at 0 = 0O, where  cos 0O = -t/(t + 1).   Thus

,„,. 1/T +  1  - r/(7 +  1) 1       nr-r-x-
min     f{6) = =^tt = 7 V1 + 2r ,

o<e<rr VI- 72/(r + l)2        T

from which (4.6) follows by virtue of (4.7). D

Now the Chebyshev points on [a, b] are given by

(4.8) sv = «±A + Azii  cos ev = a + ^- (l + cos Bv),      v « 1, 2, ... , «.

Each of these two representations suggests an application of the shift property in Lem-

ma 4.2, the first with tv = t cos Bv, p = - (a + ¿0/2, the second with tv = t(1 + cos 6V),

p = -a, where t = (b - a)/2 in both.   Observing also that

"^(f-fOIL <Uvnlit)\\JD7xPnDn\\x = (i + lniy-'llViOlL,

"Theorem 5.2 in [2] is stated for n even; the same theorem, however, also holds if n is odd.
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350 WALTER GAUTSCHI

and using Lemmas 4.3 and 4.4 to estimate UK"1 (OIL > we can easily estimate IIF^'OOIL

for the nodes in (4.8), hence IIM"1!!^ by Lemma 4.1, and finally cond^ Mn, using (3.1).

The result is stated as

Theorem 4.1.   The condition number (1.1) on [a, b], where 0 < |a| < b, satis-

fies the inequality

(4.9)   cond   Mn< -ß- 17ÍA77JL ÈlTll   L + Jl±£.V   T  (JL)
00    "      4(V2- 1)  2 + b+a   b-1     V 2   )     '"\b-aj

as well as the inequality

<4J0> cond- M" « 2C + ^TT7 T^T « + w<»!r. + >) •

Theorem 4.1 holds for arbitrary intervals [a, b], subject to |a| < b, but is of in-

terest only in the case a < 0 < b of an interval containing the origin.  It will be useful

to characterize such an interval by its "degree of asymmetry"

a = (b + a)/(b -a),      0 < cv < 1,

and its half-width

T = (b- d)/2,

in terms of which b = (1 + a)r, a = -(1 - cy)t.

We first examine the extreme cases a = 0 (perfect symmetry) and a = 1 (perfect

asymmetry), typified by the intervals [-co, co] and [0, co], co > 0.  In the first case,

by virtue of

we find that the bound in (4.9) has the correct exponential growth rate as « —► °°,

which can be obtained from (3.3) and (2.2), while the bound in (4.10) grows at a lar-

ger exponential rate.  (We say here that a sequence {cn} has exponential growth rate y

if k„+ ,/cn| ~ 7 as n —► °°.)  The reverse is true in the second case, as can be seen

from

2T  (1 + i) = //2 + co + 2yTT7o"\"    | (2 + co - 2yTTlo"\"

2 + co + 2VT+7ÖV
co /

and comparison with (3.4), (2.3).  We, therefore, expect (4.9) to be sharper than (4.10)

if the interval [a, b] is more nearly symmetric (i.e., a small), and (4.10) better than

(4.9) for more asymmetric intervals (cv close to 1).  That this is indeed the case can be

seen by forming the ratio p of the exponential growth rates in (4.9) and (4.10), and ex-

pressing the result in terms of a and t,

1  +<XT ... ... 1  + y/l  + T2P     , , ,,-r- Ht),    M?) =-—, .
1 + (1 - á)T i + T + s/TTTt
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THE CONDITION OF POLYNOMIALS IN POWER FORM 351

One verifies that X(t) < 1 for all r, with X(0) = X(<») = 1, so that p < 1 certainly if

1 + cut < 1 + (1 - ol)t, i.e., a < Vi.  Thus, (4.9) is asymptotically sharper than (4.10)

whenever a < Vi.  The condition on a is best possible for t —* °°, but too stringent for

specific finite values of t.  If t = 1, e.g., one finds (4.9) better than (4.10) whenever a <

.8216 ... , and as r —► 0, (4.9) is always better.

We illustrate Theorem 4.1 in Figure 4.1, where we plot the exponential growth

rates of the bounds in (4.9) and (4.10) for intervals of fixed half-width t = 1, and asym-

metries a varying from 0 to 1.   (The growth rates are (1 + a)2(l + y/2) and

(1 + a)(2 - a)(2 + \/3), respectively.) The true asymptotic growth rate presumably interpo-

lates somehow between the boundary values 1 + \/2 and 2(2 + y/T) (cf. the dashed

line in Figure 4.1).

10

8

6

4

2

0
0 .2 .4 .6 .8 1.0   «

Figure 4.1.  The asymptotic growth rates of the bounds

in (4.9) and (4.10) for a = -1 + a, b = 1 + a, 0 < a < 1.
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