The Condition of Polynomials in Power Form*

By Walter Gautschi

Abstract

A study is made of the numerical condition of the coordinate map $M_{\boldsymbol{n}}$ which associates to each polynomial of degree $\leqslant n-1$ on the compact interval $[a, b]$ the n-vector of its coefficients with respect to the power basis. It is shown that the condition number $\left\|M_{n}\right\|_{\infty}\left\|M_{n}^{-1}\right\|_{\infty}$ increases at an exponential rate if the interval $[a, b]$ is symmetric or on one side of the origin, the rate of growth being at least equal to $1+\sqrt{2}$. In the more difficult case of an asymmetric interval around the origin we obtain upper bounds for the condition number which also grow exponentially.

1. Introduction. Let $M_{n}: \mathbf{R}^{n} \rightarrow \mathbf{P}_{n-1}$ be the linear map associating to each vector $u^{T}=\left[u_{1}, u_{2}, \ldots, u_{n}\right] \in \mathbf{R}^{n}$ the polynomial

$$
p(x)=\sum_{k=1}^{n} u_{k} x^{k-1} \in \mathbf{P}_{n-1}, \quad n \geqslant 2 .
$$

For any $p \in \mathbf{P}_{n-1}$ we shall write $u_{p}=M_{n}^{-1} p$, where M_{n}^{-1} is the inverse map of M_{n}. We define the condition of the map M_{n}, relative to the compact interval $[a, b]$, by

$$
\begin{equation*}
\operatorname{cond}_{\infty} M_{n}=\left\|M_{n}\right\|_{\infty}\left\|M_{n}^{-1}\right\|_{\infty}, \tag{1.1}
\end{equation*}
$$

where the norms are $\|u\|_{\infty}=\max _{1 \leqslant k \leqslant n}\left|u_{k}\right|$ (in \mathbf{R}^{n}) and $\|p\|_{\infty}=\max _{a \leqslant x \leqslant b}|p(x)|$ (in $\mathbf{P}_{n-1}[a, b]$). We are interested in the growth rate of cond ${ }_{\infty} M_{n}$ as $n \rightarrow \infty$, and how this growth depends on the particular interval $[a, b]$ chosen.

The answer is relatively straightforward for symmetric intervals $[-\omega, \omega]$ and for intervals $[a, b]$ with $0 \leqslant a<b$, in which cases the condition number in (1.1) can be expressed explicitly in terms of $u_{T_{n-1}}$ (or $u_{T_{n-2}}$), where T_{m} denotes the Chebyshev polynomial of degree m on the appropriate interval (Theorems 3.1,3.2). It will follow, in particular, that on $[-\omega, \omega]$ and $[0, \omega], \omega>0$, the condition grows exponentially with n, and that the minimum growth occurs precisely when $\omega=1$, in which case $\operatorname{cond}_{\infty} M_{n}$ grows like $(1+\sqrt{2})^{n}$ on $[-1,1]$ and like $(1+\sqrt{2})^{2 n}$ on [0, 1]. This ought to be contrasted with the linear growth $\sqrt{2} n$ for the condition on $[-1,1]$ of polynomials represented in terms of Chebyshev polynomials [1].

For asymmetric intervals $[a, b]$ with, say, $a<0<b,|a|<b$, the problem appears to be considerably more complex, and we are no longer able to ascertain the exact growth rate of (1.1). Instead, we obtain two upper bounds for cond ${ }_{\infty} M_{n}$, one being asymptotically sharp in the extreme case $|a|=b$, the other in the extreme case $a=0$ (Theorem 4.1).

[^0]2. Preliminaries on the Coefficients of Chebyshev Polynomials. In the following we need estimates for the largest coefficients in $T_{n}(x / \omega)$ and $T_{n}^{*}(x / \omega)$, where T_{n} is the Chebyshev polynomial of the first kind and T_{n}^{*} the "shifted" Chebyshev polynomial $T_{n}^{*}(x)=T_{n}(2 x-1)$.

It is well known that

$$
\begin{equation*}
T_{n}\left(\frac{x}{\omega}\right)=\sum_{k=0}^{[n / 2]} c_{k} x^{n-2 k} \tag{2.1}
\end{equation*}
$$

where

$$
c_{k}=(-1)^{k} \frac{n}{2} \frac{(n-k-1)!}{k!(n-2 k)!}\left(\frac{2}{\omega}\right)^{n-2 k}, \quad 0 \leqslant k \leqslant[n / 2]
$$

For fixed t, with $0<t<1 / 2$, we put $k=t n$, and let $n \rightarrow \infty$. Using Stirling's formula, we find

$$
\left|c_{t n}\right| \sim \frac{n^{-1 / 2}}{2 \sqrt{2 \pi}} \frac{1}{\sqrt{t(1-t)(1-2 t)}}\left(\frac{2}{\omega}\right)^{n} e^{n g(t)}, \quad n \rightarrow \infty
$$

where

$$
g(t)=(1-t) \ln (1-t)-t \ln t-(1-2 t) \ln (1-2 t)-2 t \ln (2 / \omega), \quad 0<t<1 / 2
$$

From $g(0)=0, g(1 / 2)=-\ln (2 / \omega), g^{\prime}(t)=\ln \left[(1-2 t)^{2} \omega^{2} / 4 t(1-t)\right]$, it is seen that $g(t)$ has a unique maximum on $[0,1 / 2]$, assumed at

$$
t=t_{0}=\frac{1}{2}\left(1-\frac{1}{\sqrt{1+\omega^{2}}}\right)
$$

Since

$$
\left.g\left(t_{0}\right)=\ln \frac{1-t_{0}}{1-2 t_{0}}=\ln \left[1 / 2\left(1+\sqrt{1+\omega^{2}}\right)\right], \sqrt{t_{0}\left(1-t_{0}\right)\left(1-2 t_{0}\right.}\right)=1 / 2 \omega\left(1+\omega^{2}\right)^{-3 / 4}
$$

we thus find for the maximum coefficient of $T_{n}(x / \omega)$ the asymptotic approximation
(2.2) $\left\|u_{T_{n}(x / \omega)}\right\|_{\infty} \sim \frac{1}{\sqrt{2 \pi}} \frac{\left(1+\omega^{2}\right)^{3 / 4}}{\omega} n^{-1 / 2}\left(\frac{1+\sqrt{1+\omega^{2}}}{\omega}\right)^{n}, \quad n \rightarrow \infty$.

For $\omega=1$, this gives

$$
\begin{equation*}
\left\|u_{T_{n}}\right\|_{\infty} \sim \frac{2^{1 / 4}}{\sqrt{\pi}} n^{-1 / 2}(1+\sqrt{2})^{n}, \quad n \rightarrow \infty \quad(\omega=1) \tag{2.2'}
\end{equation*}
$$

which agrees with a result attributed to an (anonymous) referee in J. R. Rice [3, p. 304].
Since $T_{n}^{*}\left(x^{2}\right)=T_{2 n}(x)$, the analogous result for $T_{n}^{*}(x / \omega)$ is readily obtained from
(2.2) by replacing n by $2 n$ and ω by $\sqrt{\omega}$,
(2.3) $\| u_{T_{n}^{*}(x / \omega) \|_{\infty} \sim \frac{1}{2 \sqrt{\pi}} \frac{(1+\omega)^{3 / 4}}{\sqrt{\omega}} n^{-1 / 2}\left(\frac{2+\omega+2 \sqrt{1+\omega}}{\omega}\right)^{n}, \quad n \rightarrow \infty ~ . ~ . ~}^{n}$

For $\omega=1$, this gives

$$
\left\|u_{T_{n}^{*}}\right\|_{\infty} \sim \frac{2^{-1 / 4}}{\sqrt{\pi}} n^{-1 / 2}(3+2 \sqrt{2})^{n}, \quad n \rightarrow \infty \quad(\omega=1)
$$

In Table 2.1 we compare the true values of $\left\|u_{T_{n}(x / \omega)}\right\|_{\infty}$ with their asymptotic approximations in (2.2) for selected values of n and ω.

ω	$n=5$		$n=10$			$n=20$		$n=40$
	true	(2.2)	true	(2.2)	true	(2.2)	true	(2.2)
10	$5.00(-1)$	$9.36(-1)$	1.00	1.09	2.00	2.09	$1.06(1)$	$1.09(1)$
5	1.00	1.11	2.00	2.12	$1.06(1)$	$1.09(1)$	$4.02(2)$	$4.11(2)$
1	$2.00(1)$	$2.46(1)$	$1.28(3)$	$1.43(3)$	$6.55(6)$	$6.79(6)$	$2.12(14)$	$2.17(14)$
.2	$5.00(4)$	$9.65(4)$	$5.00(9)$	$7.17(9)$	$5.00(19)$	$5.59(19)$	$5.00(39)$	$4.82(39)$
.1	$1.60(6)$	$5.82(6)$	$5.12(12)$	$1.33(13)$	$5.24(25)$	$9.91(25)$	$5.50(51)$	$7.72(51)$

Table 2.1. The quality of the asymptotic formula (2.2)
We also note that

$$
\begin{equation*}
\left\|u_{T_{n}(x / \omega)}\right\|_{\infty} \geqslant\left\|u_{T_{n-1}(x / \omega)}\right\|_{\infty}, \quad n=1,2,3, \ldots, \omega \leqslant 1, \tag{2.4}
\end{equation*}
$$

where equality holds only for $n=1, \omega=1$. This follows easily from the three-term recurrence relation for Chebyshev polynomials and from the alternating character of the coefficients c_{k} in (2.1). The inequality in (2.4) holds for all $\omega \leqslant 2$, if n is restricted to $n \geqslant 2$, and it indeed holds for any fixed ω, if n is sufficiently large, as is seen from (2.2).
3. The Condition of M_{n} for Symmetric Intervals and for Intervals on One Side of the Origin. We shall always assume (without loss of generality) that our basic interval $[a, b]$ is centered to the right of the origin, so that $0 \leqslant|a| \leqslant b$. The Chebyshev polynomial T_{m}, adjusted to the interval $[a, b]$, will be denoted by $T_{m}[a, b]$,

$$
T_{m}[a, b](x)=T_{m}\left(\frac{2 x-a-b}{b-a}\right), \quad a \leqslant x \leqslant b
$$

Relative to any such interval $[a, b]$, the norm of the map M_{n} is easily seen to be

$$
\left\|M_{n}\right\|_{\infty}=\sum_{k=1}^{n} b^{k-1}= \begin{cases}\frac{b^{n}-1}{b-1}, & b \neq 1 \tag{3.1}\\ n, & b=1\end{cases}
$$

More delicate is the determination of $\left\|M_{n}^{-1}\right\|_{\infty}$, as this amounts to finding the norms of the linear functionals $\lambda_{k}: p \mapsto p^{(k-1)}(0) /(k-1)!, p \in \mathbf{P}_{n-1}[a, b], k=1,2, \ldots, n$. Indeed,

$$
\begin{equation*}
\left\|M_{n}^{-1}\right\|_{\infty}=\max _{1 \leqslant k \leqslant n}\left\|\lambda_{k}\right\|_{\infty} . \tag{3.2}
\end{equation*}
$$

While it is known [5, Satz 6.11] that, for $2 \leqslant k \leqslant n$, the extremal in $\mathbf{P}_{n-1}[a, b]$ for
the functional λ_{k} is a Zolotarev polynomial of degree $n-1$, it appears difficult, in the case of a general interval $[a, b]$, to pinpoint the parameter involved in the Zolotarev polynomial, and there may correspond different Zolotarev polynomials to different values of k. For these reasons the case of an arbitrary interval will be dealt with by other (less sophisticated and cruder) methods in Section 4.

For symmetric intervals $[-\omega, \omega], \omega>0$, on the other hand, the appropriate Zolotarev polynomials are known to be the Chebyshev polynomials T_{n-1} or T_{n-2}; indeed, $\left\|\lambda_{k}\right\|_{\infty}=\left|T_{n-1}^{(k-1)}[-\omega, \omega](0)+T_{n-2}^{(k-1)}[-\omega, \omega](0)\right| /(k-1)!, k=1,2, \ldots, n$, $n \geqslant 2$ [5, p. 167], and therefore,

$$
\max _{1 \leqslant k \leqslant n}\left\|\lambda_{k}\right\|_{\infty}=\left\|u_{T_{n-1}[-\omega, \omega]+T_{n-2}[-\omega, \omega]}\right\|_{\infty}
$$

Since $T_{n}[-\omega, \omega](x)=T_{n}(x / \omega)$, and T_{m} is an even or odd polynomial, depending on the parity of m, we thus have, in view of (3.1), (3.2):

Theorem 3.1. The condition number (1.1) on $[-\omega, \omega]$ is given by

$$
\begin{equation*}
\operatorname{cond}_{\infty} M_{n}=\frac{\omega^{n}-1}{\omega-1} \max \left\{\left\|u_{T_{n-1}(x / \omega)}\right\|_{\infty},\left\|u_{T_{n-2}(x / \omega)}\right\|_{\infty}\right\} \tag{3.3}
\end{equation*}
$$

where $\left(\omega^{n}-1\right) /(\omega-1)$ (here and in the sequel) is to be interpreted as having the value n if $\omega=1$.

It follows from (2.2) that for $\omega>1, \omega=1,0<\omega<1$, the condition of M_{n} for large n grows, respectively, like $\left(1+\sqrt{1+\omega^{2}}\right)^{n},(1+\sqrt{2})^{n},\left[\left(1+\sqrt{1+\omega^{2}}\right) / \omega\right]^{n}$ (disregarding a factor $n^{ \pm 1 / 2}$ and constant factors), so that the growth is smallest, asymptotically, when $\omega=1$. Selected numerical values of cond M_{n} are shown in Table 3.1.

ω	$n=5$	$n=10$	$n=20$	$n=40$
10	$1.11(4)$	$1.11(9)$	$2.11(19)$	$1.10(40)$
5	$7.81(2)$	$4.39(6)$	$2.17(14)$	$7.74(29)$
1	$4.00(1)$	$5.76(3)$	$5.45(7)$	$3.51(15)$
.2	$6.25(3)$	$6.25(8)$	$6.25(18)$	$6.25(38)$
.1	$8.89(4)$	$2.84(11)$	$2.91(24)$	$3.05(50)$

Table 3.1. The condition of M_{n} on $[-\omega, \omega]$
Another special case which can be disposed of similarly is the case of an interval $[a, b]$ with $0 \leqslant a<b$. Here (see, e.g., [4, p. 93]) $\left\|\lambda_{k}\right\|_{\infty}=\left|T_{n-1}^{(k-1)}[a, b](0)\right| /(k-1)$!, and we can state

Theorem 3.2. The condition number (1.1) on $[a, b]$, where $0 \leqslant a<b$, is given by

$$
\begin{equation*}
\operatorname{cond}_{\infty} M_{n}=\frac{b^{n}-1}{b-1}\left\|u_{T_{n-1}[a, b]}\right\|_{\infty} \tag{3.4}
\end{equation*}
$$

We note that the expression on the right of (3.4), even for an arbitrary interval $[a, b]$, is always a lower bound for cond ${ }_{\infty} M_{n}$, since

$$
\begin{equation*}
\left\|M_{n}^{-1}\right\|_{\infty}=\sup _{p \in \mathbf{P}_{n-1}[a, b]} \frac{\left\|M_{n}^{-1} p\right\|_{\infty}}{\|p\|_{\infty}} \geqslant \| u_{T_{n-1}[a, b] \|_{\infty}} . \tag{3.5}
\end{equation*}
$$

To illustrate Theorem 3.2, we consider the interval $[0, \omega], \omega>0$. Here, $T_{n-1}[0, \omega](x)=T_{n-1}^{*}(x / \omega)$, and depending on whether $\omega>1, \omega=1$, or $0<\omega<1$, Eq. (2.3) shows that the condition grows, respectively, like $(2+\omega+2 \sqrt{1+\omega})^{n}$, $(3+2 \sqrt{2})^{n}$ and $[(2+\omega+2 \sqrt{1+\omega}) / \omega]^{n}$, thus again slowest, asymptotically, when $\omega=1$. Selected numerical values are shown in Table 3.2.

ω	$n=5$	$n=10$	$n=20$	$n=40$
10	$3.56(4)$	$4.93(10)$	$1.80(23)$	$3.27(48)$
5	$5.00(3)$	$8.91(8)$	$3.67(19)$	$8.47(40)$
1	$1.28(3)$	$1.12(7)$	$7.34(14)$	$2.16(30)$
.2	$1.00(5)$	$3.20(11)$	$6.23(24)$	$3.02(51)$
.1	$1.42(6)$	$1.46(14)$	$1.53(30)$	$3.27(62)$

Table 3.2. The condition of M_{n} on $[0, \omega]$
4. The Condition of M_{n} on an Arbitrary Interval. We now wish to make some progress towards the more difficult problem of estimating cond ${ }_{\infty} M_{n}$ for an arbitrary right-centered interval $[a, b], 0 \leqslant|a| \leqslant b$. We content ourselves with establishing upper bounds for cond ${ }_{\infty} M_{n}$. (A trivial, but not very useful, lower bound can be had from (3.1) and (3.5).)

Our main tool is the following simple observation.
Lemma 4.1. Let $s^{T}=\left[s_{1}, s_{2}, \ldots, s_{n}\right]$ be any vector of n distinct nodes in $[a, b]$ and $V_{n}(s)$ the corresponding Vandermonde matrix

$$
V_{n}(s)=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{4.1}\\
s_{1} & s_{2} & \cdots & s_{n} \\
\cdots & \cdots & \cdots & \cdots \\
s_{1}^{n-1} & s_{2}^{n-1} & \cdots & s_{n}^{n-1}
\end{array}\right] \quad\left(a \leqslant s_{v} \leqslant b, v=1,2, \ldots, n\right)
$$

Then

$$
\begin{equation*}
\left\|M_{n}^{-1}\right\|_{\infty} \leqslant n\left\|V_{n}^{-1}(s)\right\|_{\infty} . \tag{4.2}
\end{equation*}
$$

Proof. Let

$$
p(x)=\sum_{k=1}^{n} u_{k} x^{k-1}, \quad a \leqslant x \leqslant b
$$

be an arbitrary polynomial of degree $\leqslant n-1$. From

$$
\sum_{k=1}^{n} s_{\nu}^{k-1} u_{k}=p\left(s_{\nu}\right), \quad \nu=1,2, \ldots, n
$$

or, equivalently,

$$
V_{n}^{T}(s) u=\pi, \quad u^{T}=\left[u_{1}, u_{2}, \ldots, u_{n}\right], \quad \pi^{T}=\left[p\left(s_{1}\right), p\left(s_{2}\right), \ldots, p\left(s_{n}\right)\right]
$$

one gets immediately

$$
\|u\|_{\infty} \leqslant\|u\|_{1} \leqslant\left\|\left[V_{n}^{-1}(s)\right]^{T}\right\|_{1}\|\pi\|_{1} \leqslant n\left\|V_{n}^{-1}(s)\right\|_{\infty}\|\pi\|_{\infty} \leqslant n\left\|V_{n}^{-1}(s)\right\|_{\infty}\|p\|_{\infty}
$$

hence (4.2).
It is tempting to optimize the bound in (4.2) by minimizing $\left\|V_{n}^{-1}(s)\right\|_{\infty}$ over all admissible node vectors s. Unfortunately, the corresponding optimal nodes are not known explicitly. We expect, however, the Chebyshev points on $[a, b]$ to provide a reasonably good alternative. In order to carry out the necessary computations, we need the following properties of Vandermonde matrices.

Lemma 4.2 (Shift property). Let $t=\left[t_{1}, t_{2}, \ldots, t_{n}\right]^{T}$ and $t-\mu=$ $\left[t_{1}-\mu, t_{2}-\mu, \ldots, t_{n}-\mu\right]^{T}$. Then

$$
\begin{equation*}
V_{n}^{-1}(t-\mu)=V_{n}^{-1}(t)\left(D_{n}^{-1} P_{n} D_{n}\right)^{T} \tag{4.3}
\end{equation*}
$$

where $D_{n}=\operatorname{diag}\left(1, \mu, \mu^{2}, \ldots, \mu^{n-1}\right)$ and P_{n} is the initial $(n \times n)$-segment of the Pascal triangle, that is

$$
D_{n}^{-1} P_{n} D_{n}=\left[\begin{array}{lllll}
1 & \mu & \mu^{2} & \mu^{3} & \cdots \tag{4.4}\\
0 & 1 & \binom{(2)}{1} \mu & \binom{(2)}{2} \mu^{2} & \cdots \\
0 & 0 & 1 & \binom{3}{1} \mu & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]_{(n \times n)}
$$

Proof. It is well known (see, e.g., [2]) that $V_{n}^{-1}(t)=\left[u_{\kappa \lambda}\right]$, where

$$
\prod_{\substack{\nu=1 \\ \nu \neq \kappa}}^{n} \frac{x-t_{\nu}}{t_{\kappa}-t_{\nu}} \equiv \sum_{\lambda=1}^{n} u_{\kappa \lambda} x^{\lambda-1}
$$

The elements $u_{\kappa \lambda}^{\prime}$ of $V_{n}^{-1}(t-\mu)$, therefore, are the coefficients of the polynomial

$$
\begin{aligned}
\prod_{\nu \neq \kappa} \frac{x+\mu-t_{\nu}}{t_{\kappa}-t_{\nu}} & =\sum_{\rho=1}^{n} u_{\kappa \rho}(x+\mu)^{\rho-1}=\sum_{\rho=1}^{n} u_{\kappa \rho} \sum_{\lambda=1}^{\rho}\binom{\rho-1}{\lambda-1} x^{\lambda-1} \mu^{\rho-\lambda} \\
& =\sum_{\lambda=1}^{n} x^{\lambda-1} \sum_{\rho=\lambda}^{n} u_{\kappa \rho}\binom{\rho-1}{\lambda-1} \mu^{\rho-\lambda},
\end{aligned}
$$

that is,

$$
u_{\kappa \lambda}^{\prime}=\sum_{\rho=\lambda}^{n} u_{\kappa \rho}\binom{\rho-1}{\lambda-1} \mu^{\rho-\lambda}
$$

This, written in matrix form, is precisely (4.3).

In the following two lemmas,

$$
\cos \theta_{\nu}, \quad \theta_{\nu}=\frac{2 \nu-1}{2 n} \pi, \quad \nu=1,2, \ldots, n
$$

denote the Chebyshev points on $[-1,1]$.
Lemma 4.3. If $t_{\nu}=\tau \cos \theta_{\nu}, \nu=1,2, \ldots, n, \tau>0$, then

$$
\begin{equation*}
n\left\|V_{n}^{-1}(t)\right\|_{\infty} \leqslant \frac{3^{3 / 4}}{4(\sqrt{2}-1)}(\tau+1)\left|T_{n}\left(\frac{i}{\tau}\right)\right| \quad(i=\sqrt{-1}) \tag{4.5}
\end{equation*}
$$

Proof. From [2, Theorem 5.2]** one has

$$
n\left\|V_{n}^{-1}(t)\right\|_{\infty} \leqslant \frac{(\tau+1) n}{2(\sqrt{2}-1)}\left|\frac{T_{n}(i / \tau)}{T_{n}(i)}\right|\left\|V_{n}^{-1}\left(\frac{1}{\tau} t\right)\right\|_{\infty}
$$

and from [2, Example 6.2]

$$
n\left\|V_{n}^{-1}\left(\frac{1}{\tau} t\right)\right\|_{\infty} \leqslant \frac{3^{3 / 4}}{2}\left|T_{n}(i)\right|
$$

Lemma 4.4. If $t_{\nu}=\tau\left(1+\cos \theta_{\nu}\right), \nu=1,2, \ldots, n, \tau>0$, then

$$
\begin{equation*}
n\left\|V_{n}^{-1}(t)\right\|_{\infty} \leqslant \frac{\tau}{\sqrt{1+2 \tau}} T_{n}\left(\frac{1}{\tau}+1\right) \tag{4.6}
\end{equation*}
$$

Proof. From [2, Eq. (4.1')] one obtains

$$
\begin{equation*}
n\left\|V_{n}^{-1}(t)\right\|_{\infty} \leqslant \frac{T_{n}(1 / \tau+1)}{\min _{1 \leqslant \nu \leqslant n}\left\{\frac{1 / \tau+1+\cos \theta_{\nu}}{\sin \theta_{\nu}}\right\}}, \tag{4.7}
\end{equation*}
$$

having used $\left|T_{n}^{\prime}\left(\cos \theta_{\nu}\right)\right|=n / \sin \theta_{\nu}$. An elementary calculation will show that

$$
f(\theta)=\frac{1 / \tau+1+\cos \theta}{\sin \theta}
$$

has a unique minimum on $0<\theta<\pi$ at $\theta=\theta_{0}$, where $\cos \theta_{0}=-\tau /(\tau+1)$. Thus

$$
\min _{0<\theta<\pi} f(\theta)=\frac{1 / \tau+1-\tau /(\tau+1)}{\sqrt{1-\tau^{2} /(\tau+1)^{2}}}=\frac{1}{\tau} \sqrt{1+2 \tau}
$$

from which (4.6) follows by virtue of (4.7).
Now the Chebyshev points on $[a, b]$ are given by
(4.8) $s_{\nu}=\frac{a+b}{2}+\frac{b-a}{2} \cos \theta_{\nu}=a+\frac{b-a}{2}\left(1+\cos \theta_{\nu}\right), \quad \nu=1,2, \ldots, n$.

Each of these two representations suggests an application of the shift property in Lemma 4.2, the first with $t_{\nu}=\tau \cos \theta_{\nu}, \mu=-(a+b) / 2$, the second with $t_{\nu}=\tau\left(1+\cos \theta_{\nu}\right)$, $\mu=-a$, where $\tau=(b-a) / 2$ in both. Observing also that

$$
\left\|V_{n}^{-1}(t-\mu)\right\|_{\infty} \leqslant\left\|V_{n}^{-1}(t)\right\|_{\infty}\left\|D_{n}^{-1} P_{n} D_{n}\right\|_{1}=(1+|\mu|)^{n-1}\left\|V_{n}^{-1}(t)\right\|_{\infty},
$$

and using Lemmas 4.3 and 4.4 to estimate $\left\|V_{n}^{-1}(t)\right\|_{\infty}$, we can easily estimate $\left\|V_{n}^{-1}(s)\right\|_{\infty}$ for the nodes in (4.8), hence $\left\|M_{n}^{-1}\right\|_{\infty}$ by Lemma 4.1, and finally cond ${ }_{\infty} M_{n}$, using (3.1). The result is stated as

Theorem 4.1. The condition number (1.1) on $[a, b]$, where $0 \leqslant|a| \leqslant b$, satisfies the inequality
(4.9) $\operatorname{cond}_{\infty} M_{n} \leqslant \frac{3^{3 / 4}}{4(\sqrt{2}-1)} \frac{2+b-a}{2+b+a} \frac{b^{n}-1}{b-1}\left(1+\frac{b+a}{2}\right)^{n}\left|T_{n}\left(\frac{2 i}{b-a}\right)\right|$, as well as the inequality
(4.10) $\operatorname{cond}_{\infty} M_{n} \leqslant \frac{b-a}{2(1+|a|) \sqrt{1+b-a}} \frac{b^{n}-1}{b-1}(1+|a|)^{n} T_{n}\left(\frac{2}{b-a}+1\right)$.

Theorem 4.1 holds for arbitrary intervals $[a, b]$, subject to $|a| \leqslant b$, but is of interest only in the case $a \leqslant 0<b$ of an interval containing the origin. It will be useful to characterize such an interval by its "degree of asymmetry"

$$
\alpha=(b+a) /(b-a), \quad 0 \leqslant \alpha \leqslant 1
$$

and its half-width

$$
\tau=(b-a) / 2
$$

in terms of which $b=(1+\alpha) \tau, a=-(1-\alpha) \tau$.
We first examine the extreme cases $\alpha=0$ (perfect symmetry) and $\alpha=1$ (perfect asymmetry), typified by the intervals $[-\omega, \omega]$ and $[0, \omega], \omega>0$. In the first case, by virtue of

$$
2\left|T_{n}\left(\frac{i}{\omega}\right)\right|=\left(\frac{1+\sqrt{1+\omega^{2}}}{\omega}\right)^{n}+\left(\frac{1-\sqrt{1+\omega^{2}}}{\omega}\right)^{n} \sim\left(\frac{1+\sqrt{1+\omega^{2}}}{\omega}\right)^{n}, \quad n \rightarrow \infty
$$

we find that the bound in (4.9) has the correct exponential growth rate as $n \rightarrow \infty$, which can be obtained from (3.3) and (2.2), while the bound in (4.10) grows at a larger exponential rate. (We say here that a sequence $\left\{c_{n}\right\}$ has exponential growth rate γ if $\left|c_{n+1} / c_{n}\right| \sim \gamma$ as $n \rightarrow \infty$.) The reverse is true in the second case, as can be seen from

$$
\begin{aligned}
2 T_{n}\left(\frac{2}{\omega}+1\right) & =\left(\frac{2+\omega+2 \sqrt{1+\omega}}{\omega}\right)^{n}+\left(\frac{2+\omega-2 \sqrt{1+\omega}}{\omega}\right)^{n} \\
& \sim\left(\frac{2+\omega+2 \sqrt{1+\omega}}{\omega}\right)^{n}, \quad n \rightarrow \infty
\end{aligned}
$$

and comparison with (3.4), (2.3). We, therefore, expect (4.9) to be sharper than (4.10) if the interval $[a, b]$ is more nearly symmetric (i.e., α small), and (4.10) better than (4.9) for more asymmetric intervals (α close to 1). That this is indeed the case can be seen by forming the ratio ρ of the exponential growth rates in (4.9) and (4.10), and expressing the result in terms of α and τ,

$$
\rho=\frac{1+\alpha \tau}{1+(1-\alpha) \tau} \lambda(\tau), \quad \lambda(\tau)=\frac{1+\sqrt{1+\tau^{2}}}{1+\tau+\sqrt{1+2 \tau}}
$$

One verifies that $\lambda(\tau)<1$ for all τ, with $\lambda(0)=\lambda(\infty)=1$, so that $\rho<1$ certainly if $1+\alpha \tau<1+(1-\alpha) \tau$, i.e., $\alpha<1 / 2$. Thus, (4.9) is asymptotically sharper than (4.10) whenever $\alpha<1 / 2$. The condition on α is best possible for $\tau \rightarrow \infty$, but too stringent for specific finite values of τ. If $\tau=1$, e.g., one finds (4.9) better than (4.10) whenever $\alpha<$ $.8216 \ldots$, and as $\tau \rightarrow 0$, (4.9) is always better.

We illustrate Theorem 4.1 in Figure 4.1, where we plot the exponential growth rates of the bounds in (4.9) and (4.10) for intervals of fixed half-width $\tau=1$, and asymmetries α varying from 0 to 1 . (The growth rates are $(1+\alpha)^{2}(1+\sqrt{2})$ and $(1+\alpha)(2-\alpha)(2+\sqrt{3})$, respectively.) The true asymptotic growth rate presumably interpolates somehow between the boundary values $1+\sqrt{2}$ and $2(2+\sqrt{3})$ (cf. the dashed line in Figure 4.1).

Figure 4.1. The asymptotic growth rates of the bounds in (4.9) and (4.10) for $a=-1+\alpha, b=1+\alpha, 0 \leqslant \alpha \leqslant 1$.

Acknowledgment. The author is indebted to Theodore J. Rivlin for pointing out the relevance of Zolotarev polynomials, which led to improved versions of Theorems 3.1 and 3.2.

Department of Computer Sciences

Purdue University
West Lafayette, Indiana 47907

1. W. GAUTSCHI, "The condition of orthogonal polynomials," Math. Comp., v. 26, 1972, pp. 923-924.
2. W. GAUTSCHI, "Norm estimates for inverses of Vandermonde matrices," Numer. Math., v. 23, 1975, pp. 337-347.
3. J. R. RICE, "A theory of condition," SIAM J. Numer. Anal., v. 3, 1966, pp. 287-310.
4. T. J. RIVLIN, The Chebyshev Polynomials, Wiley, New York, 1974.
5. A. SCHÖNHAGE, Approximationstheorie, de Gruyter, Berlin and New York, 1971.

[^0]: Received December 1, 1977; revised April 17, 1978.
 AMS (MOS) subject classifications (1970). Primary 41A10; Secondary 65D99, 65G05.
 Key words and phrases. Parametrization of polynomials, power basis, numerical condition.
 *Sponsored in part by the National Science Foundation under grant MCS 76-00842A01.

