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Summary 

An approach to the inverse problem of electromagnetic induction in 
spherically symmetric layered Earth models is described. In the first case 
single periodic variations alone are considered and it is assumed that the 
conductivity is uniform in a single thick shell which surrounds a perfectly 
conducting sphere. The conductivity and thickness of the shell are 
determined for each variation separately by using the observed value of 
the ratio of internal to external parts of the magnetic potential at the 
surface of the Earth. Results have been obtained by using a variational 
technique, for Sq variations, the 27-day variation and its harmonics, 
and the annual variation. In the second case several variations are used 
simultaneously to obtain a multilayered model. Finally the method is used 
to give an estimate of the maximum screening effect of the oceans. 

1. Introduction 

Time variations in the magnetic field observed at the surface of the Earth are 
produced by primary sources, which are located at both interior and exterior parts of 
the Earth. The magnetic variation field arising from external primary sources is 
mathematically separated into primary e and induced i components using the method 
of spherical harmonic analysis, or the surface integral formulae derived by Price & 
Wilkins (1 963). Estimates of the radial distribution of electrical conductivity can 
then be obtained from a study of the relation between these two components (Lahiri 
& Price 1939; Banks (1969), Bailey (1970), Parker (1970, 1972)). 

In the case of periodic primary fields, the induced currents are periodic and have 
the same frequency as the primary, but with modified amplitude and phase. The 
complex ratio i(w)/e(w) for any particular spherical harmonic at angular frequency w, 
is known as the response or transfer function, S. Bailey (1970) showed that with a 
complete knowledge of S at all frequencies in a spatial distribution represented by 
any one spherical harmonic, it is theoretically possible, with the assumption that the 
distribution of conductivity is spherically symmetric, to determine a unique con- 
ductivity profile for the Earth. Such complete data are impossible to obtain so that 
the problem is underdetermined, and a loss of uniqueness results. 

The results of Banks (1969) for the PIo harmonic have been used by Bailey (1970) 
and Parker (1970) to determine conductivity profiles in the mantle, and by Parker 

* This paper was presented at the I.A.G.A. Workshop on EIectromagnetic Induction, held at the 
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400 R. J. Jady 

(1972) to obtain bounds on the conductivity in the mantle and to test the observational 
data for self consistency. The data so far available appears inadequate to yield a 
profile which can be confidently thought to be that of the Earth. However useful 
information can be derived from the data, and the method presented here uses 
observed Sq response ratios for various spherical harmonics to obtain information 
about the conductivity in the top 600 km or so of the mantle, and response ratios 
corresponding to longer period magnetic variations to obtain information as far 
down as 2500 kin. 

2. Available data 

Several determinations of the response function have been made for variations at 
discrete frequencies, and these have been recently reviewed by Price (1970). It is only 
necessary to give a brief summary of the available results here. 

The earliest discrete response functions were obtained for the quiet day daily 
variation (Sq). The amplitude ratios and phase differences were obtained by Chapman 
(1919) for the P54, Pq3, P3', P21, inducing fields; that is variation fields of period 
6 hr, 8 hr, 12 hr, and 24 hr, respectively. Other more recent determinations of the 
response for the last three of these periods have been made by Hasegawa & Ota 
(1950), and Matsushita & Maeda (1965). There is some degree of variation, parti- 
cularly as far as phase differences are concerned. In the numerical work which 
follows, the average for each harmonic has been taken to minimize errors as far as 
possible. The values used are shown in Table 1. 

The difficulty, apart from the inadequate distribution of observatories, in analysing 
data at this high frequency end of the spectrum is that the data is affected to some 
degree by lateral inhomogeneities in conductivity, in particular because the oceans 
are highly conducting, any field induced in them from known primary fields, will in 
turn induce fields in the mantle which are not of the same form as the original inducing 
field. 

Clearly, care must be taken in interpreting results obtained from Sq and its 
harmonics. The general world-wide pattern of the data obtained from observatories 
does suggest that the spurious effects, while important, are not serious enough to 
make the data useless. This is supported by the consistent results obtained in Section 4 
for all determinations of the Sq responses. It seems natural to use the data that 
exists, bearing in mind that models which are derived need to be treated with caution. 
The alternative is to neglect Sq data until such time as the effect of the oceans and 
other lateral inhomogeneities can be removed from it. However, the importance of 
Sq in determining the features of the conductivity of the upper part of the mantle is 
too great for the Sq data to be neglected entirely. 

Longer period responses have been obtained. Eckhardt, Larner & Madden (1963) 
and Banks (1969), assumed a PIo inducing field and determined the response function 
for the 27-day variation, corresponding to the recurrence tendency of magnetic 
storms, and its harmonics. The assumption that this particular variation is in a PIo 
mode was based on a study of the form of the current system causing the variation. 

Table 1 

Mean for each harmonic of the amplitude ratio Snm andphase arg S: of the Sq responses 
n m arg S." 
2 1 0.370 13O.4 
3 2 0.444 15".1 
4 3 0.432 1Y.3 
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Conductivity of Earth models 401 

In addition to the periods mentioned above, the PIo response of the semi-annual 
variation, and the Pzo response of the annual variation due to ionospheric dynamo 
action have been obtained (Banks (1969,1972)). The assumptions that these variations 
are PIo and PZo harmonics need further examination, the data is quite inadequate to 
test them since only one or two stations were used. It is difficult to obtain estimates 
for periods much longer than this because the Earth is generating its own internal 
low frequency signals by dynamo action in the core, which contaminate the data for 
the 11-year variation and its 5.5-year subharmonic (Currie 1966). These very long 
period variations are essential because of their greater penetration depth, for extending 
our knowledge of the conductivity profile to even greater depths in the mantle. 

The magnetic variation spectrum in the frequency range 0.05-0.5 cpd has been 
analysed by Banks (1969) and the response function for this range calculated on the 
assumption that the variation field in this range is in a PIo mode. Banks' deter- 
mination appears to show that the phase of the response exceeds 180 degrees at  
frequencies greater than about 0.150 cpd. The fact that physically impossible values 
of the phase differences were found from the data indicates that this analysis is un- 
satisfactory. Probably the assumption of the form of the inducing field is invalid for 
the particular variations considered, and the variation field cannot be described by a 
PIo harmonic alone. It would be worthwhile repeating these calculations with more 
comprehensive data to obtain satisfactory results. 

3. Formulation of the problem 

Within the Earth, assumed to be a sphere of radius a with vacuum permeability, 
the magnetic vector potential A is toroidal and can be represented in terms of a 
scalar function T which satisfies a diffusion equation. If T is represented as a series 
of the form 

c a n  

n = l  m =  - n  
T = C C aRa(p,  t )  P,,YcosO) exp (irn4), (1) 

where (r, 8,4) are spherical polar co-ordinates, Pnm(cos 8) are the associated Legendre 
polynomials of degree n and order m, and p = r/a, it is found that the radial function 
R,,'" satisfies the differential equation 

a a ap ( p 2  $ R,,"') = n(n+ 1) Rnm+pZ a' pu - at R,'", 

obtained first by Lahiri & Price (1939). 
The conditions on B at the boundary of the sphere require that both the normal 

and tangential components be continuous. Eckhardt (1963) first pointed out that 
provided there are no radial electric currents, as in this case, it is possible to split the 
variation magnetic field into parts of external and internal origin for any subsphere of 
the Earth. Thus in virtue of the boundary conditions it can be shown that at the 
surface of the sphere and at any arbitrary radius within the sphere we have 

n(n + 1) 
P 

Rnm = nenm - (n + 13 inm 

(pRnm) = enm+inm. 
1 8  
P aP 
-- 

(3) 

These equations may be solved for the response ratio as a function of radial 
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distance and time, thus, 

There are two significant values that Snm may assume in its path in the complex plane; 
Snm = 0, and Snm = n/(n+ 1). In the first case p(d /ap)  Rnm = nR," and it can be seen 
from equation (3) that in"' = 0 and the response ratio corresponds to that at the 
surface of an insulating sphere. In the second case R," = 0, so that the radial com- 
ponent of magnetic field is zero, and the ratio corresponds to that at the surface of 
an infinitely conducting sphere. 

4. Thick shell surrounding sphere 

Initially a simple model is considered which consists of a single thick shell of 
uniform conductivity surrounding an inner sphere, periodic time variations alone are 
considered. The thickness and conductivity of the outer shell will be determined by 
the observed response at a single frequency. A series of such single layer over super- 
conductor models is useful in suggesting what general form the conductivity profile 
must take in the mantle. 

The problem is of the following boundary value type; the values of R,"' and its 
first derivatives are specified at p = 1, and are obtained from equation (3). The 
radial differential equation contains unknown parameters c the conductivity, and q 
the value of p at which the interface between the outer layer and the inner sphere 
occurs. The problem is to determine both and 4 such that the observed boundary 
values at the surface of the outer layer, and the appropriate values at the surface of 
the inner sphere are satisfied. In the numerical work which follows it was assumed 
that R,,"' = 0 at p = q corresponding to a superconducting inner sphere. The problem 
is unusual in that normally the boundary positions are fixed and the unknown para- 
meter u has discrete values for which there are non-trivial eigensolutions, in this case 
the lower boundary position has to be determined as part of the solution. 

Because the value of q for any particular variation is not known a priori, an 
initial value technique can be used in which the observed values of the radial function 
and its derivatives are used as initial values. The radial differential equation is inte- 
grated with an assumed conductivity, and the integration proceeds downwards until 
the real part of the response function exceeds n/(n+ 1). An improved estimate of the 
conductivity is obtained by the method indicated below, and the iterative process is 
carried on until the required accuracy is obtained for the boundary conditions at 
P =4- 

The following variational technique enables improved estimates of the con- 
ductivity to be obtained, it uses the fact that first order changes in the eigenfunction 
will give rise to only second order changes in the eigenvalue, so that with only a 
rough approximation to the eigenfunction R,"' the eigenvalue 0 can be obtained to a 
higher order of accuracy. 

The variational principle may be obtained as follows (Jady 1969); write the 
differential equation in the form 

d dp ( p2 $ R,") + {k2 u2 pz -n(n + 1)) R," = 0, 

where k2 = -iwpa. Multiply by R,,"'*, the complex conjugate of R," and integrate 
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Conductivity of Earth models 403 

with respect to p from p = q ,  to p = 1 ,  

Integrate the first term by parts to give 

1 

-n(n+l )  I IR/I'dp = 0, (7) 

from which it can be seen that all the terms are real except the first and the one 
containing Q. The first term vanishes, or the imaginary part is zero, at the lower 
limit if the sphere is perfectly conducting or insulating respectively. In the former 
case R,," = 0 at p = q, and in the latter (dldp) R,," = nR,"/q. Equating imaginary 
parts of equation (7) we have the following varidiona1 principle for (T 

9 

p= 1 

1 o =  

9 

Provided the conductivity in the layer is small, good approximations to Q can be 
obtained directly from this formula by using the radial function appropriate to a 
non-conducting layer to perform the integral. The values of q are obtained from the 
uniform core model of Chapman & Price (1930). In the case of a perfectly conducting 
inner sphere q is independent of m and is given exactly by the equation 

2n+1*  s,"' = - q  
n + l  (9) 

Even when the inner core is only finitely conducting this formula is still a good 
approximation and q is only weakly dependent on m. The values of q obtained for 
the P43, P3', and P21 harmonics are shown below 

9 

Pa3 0-934 
P g 2  0.928 

Pz' 0.889. 

In the non-conducting layer R,," satisfies 

R,,'" = a,,pn+finp-("+'), 

where a, and B, are in general complex constants determined from observations at 
the surface of the sphere. The integral in equation (8) may now be evaluated 
explicitly thus : 

4 
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404 R. J. Jady 

The values of Q obtained by evaluating the Rayleigh quotient in this manner are 
shown in Table 2, where values of Q and q obtained numerically with the iterative 
scheme described above, are shown for comparison. 

The computational procedure when the conductivity is not small, or the approxi- 
mation obtained by applying equation (8) once is not good enough, requires the 
solution of the pair of simultaneous equations for the real and imaginary parts of the 
radial function 

d P  
+2p - -n(n+ 1) P + a 2 p 2  wpoQ = 0, 

d2 P 
dP 

P2 ___ 
dP2 

J dQ 
dP 

+ 2 p -  -n(n+1)Q-a2p2wpoP = 0. P -  
, d 2 Q  

dP2 
By defining new variables 

where dashes den6te differentiation with respect to p ,  the equivalent set of first order 
initial value differential equations written in the form 

becomes 
Yr’ = YAPYYl9Y2Y Y 3 * Y 4 )  

Y,’  = Y3Y 

Y2‘ = Y49 

Y,’ = -2y,/p+n(n+ 1)yh2-a2 WP~YYz ,  

y4‘ = - 2y4/p + n(n + 1) y2 /pz  + a2 wpay,. 

The initial values of y,, y,, y,, and y4 are specified at p = 1. The equations are now 
in a form suitable for numerical integration by the Runge-Kutta method. 

The iterative process converged rapidly. The starting value of o was usually taken 
to be zero and in the case of Sq the value of (r which was obtained after one application 
of the variational principle was within at worst 9.5 per cent of its final value. The 
results which were obtained for the response functions of Sq and its harmonics are 
shown in Table 2. 

Table 2 
The conductivity Q and radius of inner core q for single layer models obtained with Sq 

responses 
(a) (b) (C) 

n m u (mho/m) (I u (mho/m) u (mho/m) 4 
2 1 0.0177 0.8685 0.0160 0.0175 0.8695 
3 2 0.0230 0.9050 0.0209 0.0210 0.9040 
4 3 0.0175 0.9185 0.0165 0-0164 0.9335 
5 4 

(4 (el 
n m a (mhojm) 4 0 (mholm) 4 
2 1 0.0151 0.8645 0.0321 0.9050 
3 2 0.0247 0.8960 0.0145 0.9110 
4 3 0.0143 0.8995 0.0207 0.9250 
5 4 0.0114 0.9065 

(a) Computed values using mean Sq responses. 
(b) Approximate values for (I using equation (1 1). 
(c) Matsushita & Maeda (1965). 
(d) Chapman (1919). 
(e) Hasegawa & Ota (1950). 
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FIG. 1. Single layer over superconductor models corresponding to the P z l ,  PS2, 
and P43 harmonics of Sq. 

The response functions determined by Matsushita & Maeda seem to give results 
which agree most closely with the results for the mean values of the Sq responses. 
It is striking how well the values of c accord with each other. These results indicate 
that on the basis of this single layer model the conductivity is low for at least 420 km 
depth from the surface, corresponding to the thinnest layer, and perhaps as far down 
as 850 km, corresponding to the thickest layer. The results for the mean Sq responses 
are shown in Fig. 1. 

and q are affected by possible errors in 
the determination of the response functions. The results for the 1Zhourly harmonic 
have been obtained assuming errors of 10 and 20 per cent in the magnitude of S and 
the phase of S separately. The results illustrated in Fig. 2 show that errors in the 
phase of the response are relatively unimportant to the values of c that are obtained, 
whereas errors in magnitude make substantial differences. On the other hand the 
values of q are affected by changes in both by roughly corresponding amounts, 

The conductivities determined by the longer period variations are shown in Fig. 3. 
The Sq results are included for comparison. It can be seen that the results derived 
for these longer period variations yields information about the conductivity to 
greater depths, and in the case of the annual variation, almost to the surface of the 
core. Results for the semi-annual variation using response estimates obtained by 
Banks from data of Eckhardt, Currie, and Banks, were difficult to obtain. It was 
necessary to assume the minimum value for the magnitude of the response in each 
case to obtain the results shown in Fig. 3. Even then the conductivity appears too 
high to be consistent with that required for the annual variation. 

It is clear that the conductivity required in the layer by all these Ionger period 
variations is greater than for the Sq variations. To be compatible with the Sq results 
and the harmonics of the 27-day variation, the higher condictivity rcquired by the 
latter must be located between about 600 and 950 km depth from the scrfxe. This 
provides further independent evidence of the existence of the steep rise in conductivity 

It is important to determine how both 
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FIG. 2. Variation of the P32 single layer over superconductor model assuming 
changes of 10 per cent (A), and 20 per cent 2(A) in phase, and magnitude of the 
response S. For clarity in the figure, only part of the vertical lines representing the 

superconductor have been drawn. 

which has been the subject of much discussion, and confirms the suggestion made by 
Price (1970) that the rise occurs at greater depths than the 400 or 500 km which have 
been proposed by other writers. 

The lWIo1 response curve obtained by Banks does show a change in slope at 
about 27/3 day period, possibly examination of single layer models for Banks’ data 
around this period would enable reliable estimates to be made of the location and 
nature of the rise. 

The path taken by the response function in the complex plane starting from the 
observed value at the surface of the Earth, and ending where it takes on its super- 
conducting ratio is shown as a typical case (ii) for the mean PJ2 variation in Fig. 4. 
The path is restricted to lie in the first quadrant and within a semicircle which passes 
through the origin and the point n/(n  + l), and is shown as a dashed line. Also shown 
is the path (i), calculated for the case of zero conductivity, the path in this case is a 
straight line moving directly away from the origin. The path for a conducting layer 
as it approaches the superconducting ratio, also tends to a straight line radiating from 
the origin. This is expected for as S approaches n/(n+ 1) the governing differential 
equation becomes the same as that when the conductivity is zero. 

5. Multilayer models 

The variational technique so far developed can be extended to the case in which 
the sphere is separated into concentric layers, in each of which the conductivity is 
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Radio1 distance (Earth radll) 

FIG. 3. Single layer over superconductor models corresponding to longer period 
variations, Sq results as in Fig. 1 are included for comparison. Dashed lines are 
results obtained with maximum estimated errors in IS/. For clarity in the figure, 
only part of the vertical lines representing the superconductor have been drawn. 

supposed constant. It is assumed that as in the previous model there is a super- 
conducting inner sphere. The modification required is straightforward; suppose that 
the layer of conductor just below the surface has conductivity a1 and its inner boundary 
is at ply the next layer has conductivity az and extends down to pz and so on. Equate 
the imaginary parts of equation (7) and we have for each discrete observed variation, 

1 PI 
d 

im R,,"'*- R,,"') lopa' = a1 j p21Rnm12dp+az p21Rp12dp+... 
P I  PZ 

( dp P = I  

1 P I  

d 
im R,,"'*- R,,"') lopa' = a1 j p21Rnm12dp+az jpzlRfl(Zdp+ ... 

P I  PZ 
( dp P = I  

'N-1 

+aN j P I ' R p 2  I &. (15) 

A one-layer model is determined by the observed response function of a single 
magnetic variation, a model with N layers requires N magnetic response functions to 
be specified. As the number of response measurements increases, the number of 
separate layers increases and the thickness of these layers becomes correspondingly 
less until in the limit the step profile becomes a smooth (unique) continuous profile. 

The computational procedure is essentially as for the single layer model, except 
that the boundary positions which separate the layers have to be specified beforehand. 
The integrals in equation (15) are evaluated for the N variations, with assumed 
values of ai and the resulting simultaneous equations solved for the coefficients ai. 
The integrals are recalculated with the new values of ai and the iterative process is 
continued. The process will always give solutions, but for certain choices of boundary 
positions negative values of a will be obtained, reflecting an inadmissable choice of 
boundary positions. 

Applications of the method have been made to obtain the broad features of the 
conductivity structure of the mantle using response functions of three widely-spaced 
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Rea: part S 

FIG. 4. Path of theP3’ response curve in the complex plane for (i) zero conductivity 
in the outer layer, (ii) single layer over superconductor model, (iii) maximum 
ocean effect. A portion of the restricting semicircle is shown with a dashed line. 

variations; the daily variation P32, 27 day PIo, and the annual variation P,’. Firstly 
the latter two were considered together, with the boundary between the two layers 
chosen arbitrarily at p = 0.8, roughly 1300 km depth from the surface, and then at 
p = 0.9, roughly 650 km deep. The results are shown in Fig. 5 .  Also shown is the 
effect of taking into account the 1Zhourly harmonic of Sq. The introduction of the 
low conductivity demanded by Sq leads to an increase in conductivity between 
p = 0.8 and p = 0.9 and a reduction in conductivity lower down. 

At first sight this is a suprising result, but it can be understood when it is realized 
that if the low conductivity indicated by the Sq variations extended to a depth nearly as 
great as that of the superconducting basement obtained in the single layer model for 
the 27-day variations, an almost infinite conductivity would have been required to 
satisfy the boundary conditions at the superconducting depth, and below this, because 
of the shielding effect of this high conductivity, the conductivity would have to be low, 
possibly zero to satisfy the boundary conditions for the annual variation. This 
demonstrates clearly, through the multiplicity of choice in making the divisions 
betwecn the conducting layers, the non-uniqueness of the problem. It is also easy to 
see how spikes can arise in conductivity modelling problems, as for example in seeking 
the conductivity profile of the Moon. 

A model determined by the three harmonics of Sq simultaneously could not be 
obtained. Whether the data at such close frequencies is imcompatible, or whether a 
special choice of boundary divisions is required, is not certain. Such a model would 
give useful information about the details of the conductivity profile within about the 
top 6CO km or so of the Earth’s radius, in particular evidence of conductivity changes 
associated with the seismic low velocity layer might be found. It was possible to 
produce models with any two out of the three Sq responses and several sets have been 
obtained, but as yet no obvious features from which conclusions might be draw have 
emerged. 
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FIG. 5.  Two layers over supcrconductor models determined by the 27 day P I o  and 
annual Pzo variations, and a three layer model (solid line) determined with the 

addition of the PS2 harmonic of Sq. 

6. Ocean effect 

The effect of the oceans on the magnetic response functions is difficult, because of 
the departure from spherical symmetry, to determine accurately, but will be greatest 
on hgh frequency variations. Their average world-wide effect can be represented 
approximately by replacing them in the model with a uniformly conducting thin shell. 
The maximum integrated conductivity may then be found for each magnetic variation 
by supposing that the conductivity underlying the shell is zero down to the super- 
conducting depth. Equation (15) enables the conductivity in the shell to be found 
readily. The values for the three harmonics of Sq are shown in Table 3 with the 
integrated conductivities of curve d and curve e, obtained by Lahiri & Price, for 
comparison. 

The maximum ocean effect determined by Sq are all less than curve e, but greater 
than curve d, and it would seem that 2.9 lo3 mho represents the maximum that would 
satisfy all three responses. This corresponds to a spherical shell with say the thickness 
of the mean depth of the oceans, but with conductivity 0.97 mho/m, which is about a 
quarter that of sea water. The path of the P32  response function with the maximum 
oceanic shell compatible with it is shown in Fig. 4. From the value observed at the 
surface of the Earth, the path describes a nearly circular arc until it reaches the real 
axis, and then moves along the real axis towards the point n/(n+ 1). 

7. Conclusions 

An eigenvalue approach to the problem of the conductivity of the mantle has 
enabled a simple model consisting of a single uniformly conducting layer overlying a 
superconducting basement to be derived for each discrete observed magnetic response 
function, including the annual variation, and the Sq variations. The use of the latter 
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has to be defended against the objection that lateral inhomogeneities in conductivity 
contaminate the response measurements at this high frequency end of the variation 
spectrum and so render the data useless. It is true that the data is contaminated to 
an unknown extent, but the consistency of the results for all the determinations of Sq 
responses is evidence that this data is usable, and that it is important in determining 
the conductivity of the upper part of the mantle. 

Table 3 

Maximum integrated conductivities of an oceanic shell compatible with each Sq response. 
Curve d and curve e are the integrated conductivities obtained by Lahiri & Price (1939) 

P43 P3* PZ1 curve d curve e 
Integrated 
conductivity 2.9 4.4 4.8 2.0 5 . 1  
(lo3 mho) 

More accurate data would naturally enable features of the profile that have been 
suggested from other studies to be distinguished with confidence, e.g. the conductivity 
change associated with the seismic low velocity layer. Nevertheless, even though as 
has been shown the conductivity is sensitive to changes in the magnitude of the 
response function, the conclusion from the Sq results is that at least the top 600 km 
of the mantle has low conductivity overall. The exact location and nature of the rise 
in conductivity which takes place below this cannot be determined with certainty by 
the longer period variations, except that a lower limit of 950 km is required by the 
27-day variations. At depths greater than this seemingly no spectacular changes take 
place and there is even a possibility of a fall in conductivity. 

Department of Mathematics, 
University of Exeter, 

Exeter 

References 

Bailey, R. C., 1970. Proc. R. Sac., A315, 185. 
Banks, R. J., 1969. Geophys. J. R.  astr. Soc., 17, 457. 
Banks, R. J., 1972. J. Geomag. Geoelectr., 24, 337. 
Chapman, S., 1919. Phil. Trans. R.  Soc., A218, 1 .  
Chapman, S. & Price, A. T., 1930. Phil. Trans. R. Soc., A229, 427. 
Currie, R. G., 1966. J. geophys. Res., 71, 4579. 
Eckhardt, D. H., 1963. J.  geophys. Res., 68,6273. 
Eckhardt, D. H., Larner, K. & Madden, T. R., 1963. J. geophys. Res., 68, 6279. 
Hasegawa, M. & Ota, M., 1950. Trans. Oslo Meeting Intern. Assoc. Terrest. 

Jady, R. J., 1969. 
Lahiri, B. N. & Price, A. T., 1939. Phil. Trans. R. SOC., A237, 509. 
Matsushita, S. & Maeda, H., 1965. J. geophys. Res., 70, 2535. 
Parker, R. L., 1970. Geophys. J.  R. astr. Soc., 22, 121. 
Parker, R. L., 1972. Geophys. J. R.  astr. SOC., 29,123. 
Price, A. T., 1970. 
Price, A. T. & Wilkins, G. A., 1963. Phil. Trans. R.  Sac., A256, 31. 

Magnetism Elec., Bull., 13, 426. 
Q.  Jl mech. appl. Math., 22, 65. 

Q. Jl R.  astr. Soc., 11, 23. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/36/2/399/618521 by guest on 21 August 2022


