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The conformal transformation on a space with
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Introduction

It is known that the conformal transformation group $G$ of a space $M$ with
a Riemannian metric $g$ coincides with the isometry group of $1\psi$ with some
Riemannian metric $g^{\prime}$ conformally related to $g$, provided that the Weyl con-
formal tensor never vanishes on $j\psi[4]$ . Some of studies of conformal trans-
formations, $e$ . $g.$ , study of the group structure of conformal transformation
groups, are therefore reduced to studies of isometries. So topics on conformal
transformations may be limited to the case where $M$ is conformally flat or
to the relation between conformal transformations and properties of $M$ which
are not conformally invariant, $e$ . $g.$ , the property to be symmetric, to which
E. Cartan refered in his very first paper on “ a remarkable class of Rieman-
nian spaces ”. (It was proved in [7], [11] that a locally symmetric space
does not admit an infinitesmal non-homothetic conformal transformation unless
it is conformally flat.) In this paper we shall examine the relation between
conformal transformations and the property that the Ricci tensor of $M$ is
parallel, and establish:

THEOREM. Let $g$ and $g^{\prime}$ be two complete Riemannian metrics on a manifold
$M(2<\dim M=n)$ , such that the Ricci tensor of each of them is parallel. If $g$

and $g^{\prime}$ are conformally related, they are homothetically related or (some connected
component of) $M$ with the metric $g$ (and with $g^{\prime}$ also) is isometric to the sphere.

Two Riemannian metrics $g$ and $g^{\prime}$ on the same manifold are by definition
conformally [homothetically] related if there exists a scalar $\phi$ on 1M such that
$g^{\prime}=\phi g$ [and $\phi$ is a constant]. $\emptyset$ is called the associated function.

COROLLARY 1. Let $M,$ $2<n$ , be a complete connected Riemannian space
whose Ricci tensor is parallel. Then, if $M$ admits a conformal transformation,
one of the three cases occurs: 1) il is an isometry, 2) it is homothetic and $M$ is
isometric to the euclidean space, 3) $1\psi$ is isometric to the sphere.

COROLLARY 2. A connected symmetric space does not admit a non-homothetic
conformal transformation if it is not isometric to the sphere.

As special cases of the theorem we already know the following three
theorems which are necessary for the proof of Theorem and Corollary 1.
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$T_{HE\circ REM}$ Y. Let $M(2<\dim M)$ be a complete connected Einstein space.
If a conformal transformation of $M$ belonging to the identity component of the
conformal transformation group is not homothetic, $M$ is then isometric to the
sphere (Yano-Nagano [12]).

THEOREM T. Under the hypothesis of Theorem, assume that the Ricci tensor
$R$ of $g$ satisfies the condition: (S) $R$ has two eigenvalues $e$ and $f$ of multiplicity
$m$ and $n-m$ respectively with $f\leqq e,$ $0\leqq m<n$ and $(n-m-1)e+(m-1)f=0$ , and that
an analogous condition for $g^{\prime}$ is satisfied except that the non-negative eigenvalue
may be of multiplicity $n$ . (The eigenvalues and the multiplicities may be different
from those of $R.$ ) Then $g$ and $g^{\prime}$ are homothetically related (Tanaka [7]).

An eigenvalue $e$ of multiplicity $m$ of $R$ is an eigenvalue of the $(1,1)$ -type
tensor $\mathscr{J}^{j}R_{jk}(p)$ whose eigenspace is of dimension $m,$ $p$ being a point of $M$.
Since $R$ is parallel, $e$ and $m$ are independent of $p$ . It will hardly be necessary
to explain the meaning of eigenvectors of $R$ , the equality $m=0$ , etc., only it
should be understood that $f$ is negative in case $m=0$ and that $f=e$ means
$R=0$ . The sphere corresponds to $m=n,$ $0<e$ .

THEOREM K. If a complete connected Riemannian space admits a non-
isometric homothetic transformation, it is isometric to the euclidean space (Koba-

yashi [4] and Yano-Nagano [13]).

The hypothesis of Theorem will be preserved throughout this paper, $M$

being of class $C^{\infty}$ . $M$ will be assumed to be connected. The proof will be
accomplished separately in three cases.

1. The first case.

In this paragraph we shall establish the theorem in case the Ricci tensor
of any of the given metrics $g$ and $g^{\prime}$ is not a positive number times the
metric tensor. To that end we shall show that the Ricci tensors satisfy the
condition (S) stated in Theorem T.

Since the Ricci tensor $R$ is parallel we have [6, (6.7), p. 313]

$\nabla_{h}C_{ijk}^{h}=0$ ,

$C$ being Weyl’s conformal tensor. An analogous equation for $g^{\prime}$ holds good
also. From these equations one can easily deduce

(1.1) $(n-3)C^{a_{ijk}}\nabla_{a}\rho=0$ ,

where $\rho$ is defined by $\exp(2\rho)=\phi=the$ associated function, using the relation
[6, (5.2), p. 304] between the Levi-Civita connections of $g$ and $g^{\prime}$ and the
well known identities [6, (5.2) p. 306] satisfied by $C$. Since $C$ is zero in
case $n=3$ , (1.1) always implies

(1.2) $C^{a_{ijk}}\nabla_{a}\rho=0$ .
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When $M$ with the metric $g$ is Einsteinian, the condition (S) is clearly
satisfied. We should remember that the Ricci tensor $R$ has been assumed
not to be positive definite. Thus we assume that $R$ has at least two different
eigenvalues. Given an eigenvalue $a$ of $R$ , a distribution $\alpha$ is defined so that,
$\alpha(p)$ is the eigenspace of $R(p)$ corresponding to $a,$ $p$ being an arbitrary point
of $M$ Since $R$ is parallel, $\alpha$ is well defined and $\alpha(p)$ is invariant under the
homogeneous holonomy group. Therefore, given any two eigenvalues $x$ and
$y$ of $R,$ $x\neq y$ , and two corresponding eigenvectors $X$ and $Y$ at a point, we find
that
(1.3) $K_{ijk}^{h}X^{i}Y^{k}=0$ ,

where $K$ is the Riemannian curvature tensor. Substituting (1.3) and the de-
finition of $C$ [ $7,$ $(5.17)$ , p. 306] into $C^{a_{ijk}}\nabla_{a}\rho\cdot X{}^{t}Y^{k}=0$ derived from (1.2), we
get $((n-1)(x+y)-r)(Y^{h}\nabla_{h}\rho)=0$ at $p$ , where $r$ is the scalar curvature. When $\rho$

is not constant on $M$, without loss of generality we may assume that $\nabla\rho(p)\neq 0$

at a point $p$ and $Y^{h}\nabla_{h}\rho\neq 0$ at $p$ , because the tangent space at $p$ is spanned
by the eigenvectors of the linear transformation $\mathscr{J}^{j}(p)R_{jk}(p)$ . Then we obtain
(1.4) $(n-1)(x+y)=r$ .

In particular we find that $R$ has just two different eigenvalues. Denoting
by $\mu$ the multiplicity of $x$ we have $\chi l\chi+(n-\chi l)y=r$. From (1.4) it follows that
$(n-\mu-1)x+(\mu-1)y=0$ . Putting $e=\max(x,y)$ and $f=\min(x, y)$ , one will readily
find (S) satisfied by $R$, and in the same way by $R^{\prime}$ . Thus Theorem $T$ can be
applied and allows us to conclude that $g$ and $g^{\prime}$ are homothetically related.

2. The second case.

This paragraph is devoted to the demonstration of the theorem in case
the Ricci tensor of $g$ is a positive multiple of $g$ and $M$ with $g^{\prime}$ is also Ein-
steinian. $M$ is then compact by Myers’ and Ambrose’s theorem [1]. Putting
the associated function $\emptyset=\exp(2\rho)$ , we have [6, (5.8), p. 305]

(2.1) $R_{ij}^{\prime}=R_{ij}-(n-2)S_{ij}-\lambda g_{ij}$ ,
where
(2.2) $S_{ij}=\nabla_{i}\nabla_{j}\rho-\nabla_{t}\rho\nabla_{j}\rho$

and
(2.3) $\lambda=\Delta\rho+g^{ab}\nabla_{a}\rho\nabla_{b}\rho$ ,
$\Delta$ being the Laplacian, $i$ . $e$ .

$\Delta\rho=g^{ab}\nabla_{a}\nabla_{b}\rho$ .
$R$ and $R^{\prime}$ being scalar multiples of the metric tensor $g$, so is S. Hence

the vector field $u$ defined by $u_{i}=\nabla_{i}$ exp(-p) is an infinitesimal conformal
transformation [13] on $M$. Since $M$ is compact, $u$ generates a one-parameter



The conformal transformation on a space with parallel Ricci tensor. 13

group of conformal transformations. (Brinkmann seems to know this fact;
he proved [2] that $g^{\prime}$ is obtained from $g$ by some conformal transformation
of $M.$ ) It cannot contain a non-isometric homothetic transformation by Theo-
rem K. Hence $M$ is isometric to the sphere by Theorem $Y$, unless $u$ is a
Killing vector. If $u$ is a Killing vector it is parallel by the definition of $u$ .
Since the Ricci tensor is definite, $u$ must then vanish, whence $\rho$ is a constant.
In other words $g$ and $g^{\prime}$ are homothetically related.

3. The third case.

Now the demonstration of our main theorem is complete. But we shall
here give another proof, which may be interesting, for the case where one
of the Ricci tensors, say $R^{\prime}$ of $g^{\prime}$ , is a positive multiple of $g^{\prime}$ and $M$ with $g$

is not Einsteinian. It suffices to show that $g$ and $g^{\prime}$ are homothetically related
under the assumption of simple-connectivity of M. $M$ is compact, and is the
Riemannian product of two Einstein spaces by de Rham’s theorem [5] and
the arguments in 2. Let $N$ be one of them whose scalar curvature is non-
positive. We consider $N$ as a subspace of $M$. In particular $N$ is compact
and simply connected. The injection of $N$ into $M$ induces a l-form $w$ from
the l-form $=d(\exp(-\rho))$ on $M$, and a Riemannian metric from $g$, which we
shall denote by $g$ also. Let $v$ be the dual vector of $w,$

$i$ . $e$ . $v^{a}=g^{\alpha_{\beta}}w_{\beta}$ . As in
2, $v$ is easily seen to be an infinitesimal conformal transformation:

$iS_{v}g=2\nu g$ ,

$\nu$ being a scalar. Since the scalar curvature $s$ of $N$ is constant, we have
[9, (3.5), p. 160]

$(\delta-1)g^{\beta}a\}\nabla_{a}\nabla_{\beta}\nu=-\nu s$ , $\delta=\dim N$ .
$\delta$ is greater than 1, because $N$ is compact and simply connected. There-

fore we find
$\Delta\nu^{2}=2g^{\alpha_{\beta}}(\nu_{\alpha}\nu_{\beta}-s\nu^{2}/(\delta-1))$ , $(\nu_{a}=\nabla_{\alpha}\nu)$ ,

is non-negative. By Bochner’s lemma [10], $\nu^{2}$ is constant, which means $v$ is
homothetic and so isometric. (Kurita and Yano [9, p. 279] found this fact
for the case $2<\delta.$) Since $s$ is non-positive, $v$ must be parallel by Bochner’s
theorem [10]. Therefore $v$ is a harmonic vector field, which must thus vanish
because $N$ is simply connected. From (2.1), we thus obtain

$R_{ij}^{\prime}X^{i}X^{j}=R_{ij}X^{i}X^{j}-\lambda g_{ij}X^{i}X^{j}$

for any vector $X$ parallel to $N;i$ . $e.$ , given any curve $r$ joining the origin of
$X$ to a point of $N$, the parallelism of $X$ along $r$ carries $X$ to a vector tangent
to $N$. If $X\neq 0$ , the left hand side is positive, while the first them in the
right hand side is negative. So $\lambda$ must be negative on $M$. Hence, by (2.3),
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$\Delta\rho$ is negative on $M$, from which we conclude that $\rho$ is constant on $M$ by
means of Bochner’s lemma.

Acknowledgements. The author expresses his thanks to Professor K.
Yano for his encouragements and suggestions. He is also grateful to Mr. N.
Tanaka for informations on his results and other facts.

University of Tokyo.

Bibliography

[1] W. Ambrose, A theorem of Myers, Duke Math. J., 24 (1957), 345-351.
[2] H. W. Brinkmann, Einstein spaces which are mapped conformally on each other,

Math. Ann., 94 (1925), 119-145.
[3] S. Kobayashi, A theorem on the affine transformation group of a Riemannian

manifold, Nagoya Math. J., 9 (1955), 39-41.
[4] T. Nagano, On conformal transformations of Riemannian spaces, J. Math. Soc.

Japan, 10 (1958), 79-93.
[5] G. de Rham, Sur la r\’eductibilit\’e d‘un espace de Riemann, Comment. Math.

Helv., 26 (1952), 328-344.
[6] J. A. Schouten, Ricci-Calculus, Springer, 1954.
[7] T. Sumitomo, On some transformations of Riemannian spaces, Tensor, 6 (1956),

136-140.
[8] T. Tanaka, Conformal connections and conformal transformations, to appear in

Trans. Amer. Math. Soc.
[9] K. Yano, The theory of Lie derivatives and its applications, North-Holland

Publ. Co., 1957.
[10] K. Yano and S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies,

32 (1953).
[11] K. Yano and T. Nagano, Some theorems on projective and conformal transfor-

mations, Indag. Math., 19 (1957), 452-458.
[12] K. Yano and T. Nagano, Einstein spaces admitting a one-parameter group of

conformal transformations, to appear in Ann. of Math.
[13] K. Yano and T. Nagano, The de Rham decomposition, isometries and affine

transformations in Riemannian spaces, to appear.


	The conformal transformation ...
	Introduction
	THEOREM. Let ...
	THEOREM T. ...
	THEOREM K. ...

	1. The first case.
	2. The second case.
	3. The third case.
	Bibliography


