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THE CONJUGACY PROBLEM FOR GRAPH PRODUCTS
WITH CENTRAL CYCLIC EDGE GROUPS

K. J. HORADAM

ABSTRACT. A graph product is the fundamental group of a graph of groups.

Amongst the simplest examples are HNN extensions and free products with

amalgamation.

Graph products with cyclic edge groups inherit a solvable conjugacy prob-

lem from their vertex groups under certain conditions, the most important of

which imposed here is that all the edge group generators in each vertex group

are powers of a common central element. Under these conditions the conju-

gacy problem is solvable for any two elements not both of zero reduced length

in the graph product, and for arbitrary pairs of elements in HNN extensions,

tree products and many graph products over finite-leaf roses. The conjugacy

problem is not solvable in general for elements of zero reduced length in graph

products over graphs with infinitely many circuits.

1. Introduction. A solvable conjugacy problem (S.C.P.) is generally not in-

herited by graph products of groups with S.C.P. (see Miller [8]). If attention is re-

stricted to graph products with cyclic edge groups, more may be said. It is unlikely

that this restriction can be lifted (cf. [6, p. 387; 7, p. 114]). Finite groups, finitely

generated free groups, finitely generated nilpotent groups, one-relator groups with

torsion or nontrivial centre and certain small cancellation groups all have S.C.P.,

so there is a wealth of potential vertex groups which may be used in constructing

such graph products.

In [4] the author shows that a recursively presented graph product with cyclic

edge groups over a finite graph inherits S.C.P. from its vertex groups if the sets

of cyclic generators in them are "semicritical", thus generalising [5, 7] for HNN

extensions and free products with amalgamation. However, semicriticality is a

very restrictive condition, which does not hold if all the cyclic generators in a

vertex group are powers of a common element. Such cases occur often enough: the

celebrated Baumslag-Solitar non-Hopfian groups fall in this category.

Here this complementary case is considered. Not surprisingly, a further condition

is imposed on the sets of cyclic generators: that they are central in their respective

vertex groups. This is suggested by the direct proof that the Baumslag-Solitar

groups have S.C.P., and by [2, §3]. It is comparatively straightforward to show

that the conjugacy problem is solvable for any two elements in the graph product

of which at least one has nonzero reduced length (Theorem 3.1). For elements of

zero reduced length the problem is much more difficult, reducing to the question

of whether a specific recursively enumerable (r.e.) set is recursive (Theorem 3.3).
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This condition holds for graph products over trees and for many over finite-leaf

roses (Corollary 3.6), but fails in general for graphs with infinitely many circuits.

The reader is referred to [9] for the theory of computability and to [10] for the

theory of graph products.

I wish to thank Dr. Verena Huber-Dyson, Professor Chuck Miller and Dr. John

Stillwell for several very helpful discussions.

2. Graph products. The following notation is based on [10, §5], but graphs

with single, rather than double, edges are used. A graph of groups (G, D) consists

of a nonempty connected directed graph D — (E, V) where the edge set E and

vertex set V are disjoint, with source and terminus maps s,t:E^> V, respectively;

a vertex group Gv for every v in V; an edge group Ge for every e in E; and a pair

of group monomorphisms Ae: Ge^>Gte (denoted g i—> ge and A^: Ge>-^Gse (denoted

g i—> ge). The fundamental groupoid of (G,D) will be denoted 7 and the graph

product (fundamental group) will be denoted G*.

The conjugacy problem for G* is considered here in terms of the more general

conjugacy problem for 7. For a discussion of the word and conjugacy problems

for groupoids see [3, 4]. Note that there the graph product is defined in terms of

a slightly different graph, but after accounting for this the results of [3, §3; 4, §2]

translate directly.

DEFINITION 2.1. (a) The graph D is recursive if

(i) E and V are recursive sets.

(ii) s,t:E—+ V are partially recursive (with domain E).

(b) The graph of groups (G, D) is recursively presented if

(i) D is recursive.

(ii) Gv has a recursive presentation Vv, uniformly given from V.

(iii) Ge has a recursive presentation Ve, uniformly given from E.

(iv) Ae and Ag are partially recursive Ve, uniformly given from E.    G

If (G,D) is recursively presented it follows that 7 is a recursively presented

groupoid [3, 3.5] and there is an algorithm to decide whether or not an arbitrary

element of J is a loop. The conjugacy problem for 7 then reduces to the question

of whether there is an algorithm to determine whether or not an arbitrary pair of

loops in 7 are conjugate in 7.

Hereafter it will be assumed that 7 is (presented as) the fundamental groupoid

of a recursively presented graph of groups (G, D) such that each edge group Ge is

presented as a cyclic group on a single generator ke.

DEFINITION 2.2. For each v in V, define Hv Ç Gv to be

Hv = {kee:te = t>} U {fcf: se = v}.    O

The following conditions will also be imposed on 7.

CONDITIONS 2.3. (i)  Hv is recursive Vf, uniformly given from V.

(ii) Gv has S.C.P. Vt>, uniformly given from V.

(iii) There exists (known) cvVv, uniformly given from V, such that Hv Ç (cv) Ç

c(Gv), the centre of Gv.

(iv)   (c„) has solvable extended word problem (S.E.W.P.) in Gv\fv, uniformly

given from V.    O

These conditions imply that the order 0(cv) of cv for each v, and the powers k\

is of cte and k\ is of cse can all be calculated.
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DEFINITION 2.4. If e G E, let e represent the directed edge e traversed in the

opposite direction (so ë = e) and define pe = q^ and qe = p¿ by k% = c*i and

k% = c\'e. (If e = e¿ for some index % then pe will be written p¿, and so on.)    D

Under 2.3, the E.W.P. for (kee) in Gte and (kf) in Gse is uniformly solvable from

E, so the word problem for 7 is solvable [3, 3.6], and the process of finding a

cyclically reduced loop conjugate to a given loop in 7 is algorithmic.

3. Conjugacy in fundamental groupoids.

THEOREM 3.1. Under 2.3 the conjugacy problem is solvable for any two ele-

ments of 7 (and hence of G*) of which at least one has nonzero reduced length.

PROOF. By [3, 2.6] it is necessary only to consider distinct pairs of nontrivial

cyclically reduced loops g = aiei ■ ■ ■ anen and h — biei ■ • ■ bnen where n > 1, e¿ G

{e,e_1:e G E} and a¿ and 6¿ lie in the same vertex group G¿ (say). Let k be

the minimum positive integer such that n = qk and the sequence ei,..., e„ is the

sequence e\,...,ejfc repeated q times. Then, because the Hi are central, g ~j h if

and only if there exist j, 1 < j < q, and an integral solution (ri,... ,rn) to the

system of equations

(*) k+la~l =yri's^x~ri    in <?¿, 1 < i < n,

where / = jk, the subscripts are taken modulo n, and Xi = kee(k%) and y% = k^(kee)

if e¿ = e(e_1). Each left-hand term in (*) may be tested by 2.3(iv) in turn to see

if it lies in the required cyclic group; if one of them does not, g <ft? h. Otherwise,

calculate successively the integers í¿ with |í¿| a minimum, for which the ¿th left-

hand term equals c*\ Set s¿ = Pi(qi) if x¿ = kt(K) and ui = Qi(Pi) ̂  Vi — ̂ t(K)-

Then g ~ j h if and only if the set of simultaneous linear congruences

ii = ii„r„ - sin    modO(ci),

ti = Ux-iri-i — s^i    mod0(c¿), 2 < i < n

(setting 0(cí) — 0 if c¿ has infinite order) has an integral solution (n,..., rn). This

is decidable.    D

The conjugacy problem for elements of zero reduced length is not so tractable.

Suppose g in Gv and h in Gw are of zero reduced length and, if v = w, g ^cv h.

Then g ~y h if and only if there exist an edge-sequence ê = ei,..., e„ in D with

e¿ € {e,ë:e G E}, tti = se¿+i = Vi+i (say), 1 < i < n, and integers (ri,...,rn)

such that g = xi1, y^'Si — x^, 2 < i < n, and ynn — h, where Xi = k^(kl) and

yi = kee(kee) if a = e(e). If g <£ (a) or h £ (cra+i) then g /y h. Therefore, suppose

g = cf and h = c„+1 for known a and ß. Thus g ~j h if and only if there exist

an edge-sequence ê and an integral solution (fj,..., rn) to the simultaneous linear

congruences

a = pir!    modO(ci),

(**) < qi-iTi-i = pin    modO(ci),2<i<n,

qnrn = ß    modO(c„+1),

where O(c^) = 0(cf+1) always. Such an edge-sequence may be assumed irreducible

(e¿+i 7¿e¿, 1 < i < n — 1) without loss of generality.

Investigation of (**) requires further notation. The greatest common divisor of

integers ni,... ,rifc will be denoted [ni,... ,rifc].
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DEFINITION 3.2. Let U(v,w) be the set of irreducible undirected edge-sequences

from v to w in D. Let Z denote the integers and Zm the integers modulo m. Define

P(v, w) on ê =» ei,..., en in ll(v, w) to be

(i)  P(v,w)(e)   =   (piGi(ê)/G(e),   qnGn(ê)/G(ê))   e   Z x Z where G¿(e)   =

n}=2 9i-i U]=i+i Pj, 1 < * < n, and G(ê) = [Gi(ê),..., G„(ê)], if O(fc) = 0, 1 <
i < n,

(ii) P(v,w)(ê) — ]Yj=i(ïjx3mo^rn <= Zm where m = [mi,...,m„], p¿ =

p*0(ci)/m%, qt = q*0(ci+i)/mi, [p*,m¿] = [g*,m¿] = 1 and x¿ is a fixed solu-

tion of p*Xi = lmodm¿, 1 < i < n, if 0(/c¿) = m¿ > 2, 1 < ¿ < n,

(iii) P(v,w)(e) = (0,0) G Z0(Cl) x Z0(Cn+l), otherwise.    D

Since E is recursive, so is U(v,w) for each pair (f,w), and P(v,w) is partially

recursive. Hence lmP(v,w) is r.e. but not necessarily recursive.

THEOREM 3.3. Under 2.3 the conjugacy problem for 7 (and hence G*) is solv-

able if and only if Im P(v, w) is uniformly recursive for all v, w inV.

PROOF. If for some 1 < i;'< », p¿ = 0 mod 0(c¿), the general solution to (**) is

given by a = 0 modO(ci), ß = 0modO(cn+i), and the identities of Gi and Gn+i

are conjugate by any edge-sequence joining vi to vn+i. If 0(kj) — 0 and 0(h) > 2

for some e3,e\ in ê then O(ki) = 1 for some e, in ê, hence p¿ = 0modO(c¿).

If 0(ki) = 0 so pi ^ 0, 1 < i < n, the general solution to equations (2 — n) in

(**) is given by

n=tGi(ê)/G(ê),        l<i<n, ieZ,

so for ¡7 = c" and h = c£ it follows that g ~j h iî and only if there exists some ê

in U(v,w) such that (a,/3) = (tpiGi(ê)/G(ê),tqnGn(ê)/G(ê)) for some í in Z; that

is, if and only if there exists a divisor t of [a, /?] such that (a/t, ß/t) G Im P(v, w).

If 0(fc¿) = m¿ > 2 so pi ^ 0 mod 0(c¿), 1 < t < n, the general solution to (**)

is given by

Í't \
ri = t(mi/m) I J | q*j_iXj    xi    modm¿, 1 < i < n,

v=2      ;

where a — tO(ci)/m, ß — sO(cn+i)/m and s = t(Y["=l q*Xj) modm. Thus g ~y h

if and only if there exists some ê in U(v,w) such that a = tO(cv)/m, ß — sO(cw)/m

and s = txmodm, where x G P(v,w)(ê).    D

Whether Im P(v,w) is recursive or not depends on D but more importantly on

the exponent set {pe,qe:e G E}. The following example shows that for every D

there exists at least one class of graph products over D satisfying 2.3 with S.C.P.

COROLLARY 3.4. Let D be a recursive graph, let Ge = Gv — Z for all e in E

and v inV, and let Ae and A-g be multiplication by a fixed integer m / 0 for every

e. Then 7 (and hence G*) has S.C.P.

PROOF. lmP(v,w) = {(m,m)} for every (v, w) so is uniformly recursive.    D

However, the more that is known about the edge-sequences of D, the more likely

it is that a decision on the recursiveness of Im P(v, w) can be made.

COROLLARY 3.5. If D is a tree and 2.3 is satisfied then 7 (and hence G*) has

S.C.P.
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PROOF. For any vertices v,w in D, U(v,w) consists of the unique undirected

arc from v to w in D, and since E is recursive, this arc may be found uniformly

from v and w.    D

COROLLARY 3.6. Under 2.3 if D is a finite-leaf rose (withV — {0}, say), and
provided that O(co) = 0 implies \p3q3,PkQk] = 1 for every pair of edges e3 ^ ek in

E, then 7 (and hence G*) has S.C.P.

PROOF. If either O(co) > 2 or O(co) = 0 and [p3q3,Pkqk] — 1 for every pair

of edges e3 ■£ e^ in E, then any edge-sequence ê in U(v,w) may be replaced in

(**) by the minimal edge-sequence with the same exponent sum on each edge-pair

{e,e} appearing in ê. If D has edges ei,...,e„ and O(co) = 0, then from 3.3

g~?hi£ and only if (a/[a,ß},ß/[a,ß}) = (T\ti TMELi Qi'), where °i > 0
and Pi = Pi/[pi,qi] (qi/[Pi,qi\) when Q¿ = ql/[pl,ql] (pi/[Pi,qi\)- If O(c0) > 2
then from 3.3, g ~j h if and only if a = tO(co)/m, ß = sO(co)/m and s =

*nj=i{^¿^j)ff)'mo^mi where a3 > 0, for some m = [mtl,... ,m¿,] and Rlj =

Pk (l*k) when zy = xk (Vk) and p*kxk = lmodmfc (q*kyk = lmodmfc) if e^. =

ek (ëfc). Both these conditions are decidable for known finite n.    D

The case of the finite-leaf rose under differing conditions has been investigated

by Anshel [1].

If D is a one-leaf rose (i.e. G* is the HNN extension (G,e:relG, e~1cpe = cq)

where G is a recursively presented group with S.C.P., c G ç(G) and (c) has S.E.W.P.

in G) then the relative primitivity condition of 3.6 is vacuous and G* has S.C.P.

These HNN extensions include the Baumslag-Solitar non-Hopfian groups, so they

do not, in general, inherit conjugacy separability from G. They should be compared

with other HNN extensions with S.C.P. (e.g. in [2, 5, 6]).

Corollary 3.5 may not be extended to graphs in general.

COROLLARY 3.7. There exists an infinite graph satisfying the conditions of 2.3

which has unsolvable C.P. for elements of zero reduced length.

PROOF. Let D be the graph with E = Z+ = {n G Z:n > 1};V = Z+ U
{0}; t(n) = 0,Vn > l;s(2n) = s(2n - 1) = n,Vn > 1. Set Ge = Gv = Z,W G

v, e G E; let 7r: Z —» Z be the recursive function n(i) = p%, the ¿th prime, and

let i>: Z —» Z be a one-to-one recursive function such that Im ip is r.e. but not

recursive [9, 5.2.V(a)]. Define An(l) = 1, Añ(l) = fl-o^n), Vn > 1 and cv = 1 Vu.

From 3.3, for g and h in Go, g ~j h iff there exist distinct integers ii,...,in

such that (a/[a, 0[, ß/[a, ß}) = (U]=i P^yUU p£(fc;)) where k3 = 2i3{2i3 - 1}

when k* = (2i3 - l){2i3}, and a3 > 0, 1 < j < n. If the prime decomposition

of a/[a,ß] is pj1 .. .p\k then g ~j h only if {p¡15... ,p¡k} Ç Iran o ip; i.e. only if

{li,..., Ik} Ç Im iß, which is undecidable.    D

By 3.4 it is clear that the existence of countably many distinct circuits in a graph

is not sufficient to prevent the graph product having S.C.P., though in view of 3.7

the C.P. is generally unsolvable for elements of zero reduced length. Each case

should be tested separately. Finite graphs may be more amenable.

CONJECTURE. Under 2.3 if D is finite, 7 has S.C.P.
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