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THE CONJUGATE RESIDUAL METHOD FOR CONSTRAINED 

MINIMIZATION PROBLEMS 

DAVID G. LUENBERGER 

1. Introduction. The method of conjugate gradients [ l]-{5], a particular version 

of the general class of conjugate direction methods, was originally developed for 

solving a linear system of equations 

(1.1) Ax = b, 

where A is an .n x n symmetric, positive defini te matrix, x is an unknown n-vector 

and bis a fixed n-vector. The conjugate gradient method can be viewed as a descent 

procedure for the problem : 

Minimize 

( 1.2) (x , Ax) - 2(x , b); 

and through this viewpoint the method can be generalized so as to apply to the 

solution of general unconstrained minimization problems. For these general 

problems conjugate gradient methods are among the most effective first order 

descent procedures. 

Minimization problems subject to constraints cannot be treated directly by 

the conjugate gradient methods although they have often been employed indirectly 

through the artifice of introducing penalty functions or of suitably projecting the 

descent directions onto the constraint surface. The major motivation for the 

research presented in this paper is to develop a conjugate direction procedure that 

is capable of handling constraints directly. This quickly leads one to consider 

equations of the form (1.1) with the matrix A symmetric and nonsingular but not 

necessarily positive definite. For, consider the simple problem: 

Minimize 

(1.3) (u, Qu)- 2(c, u) 

subject to 

Bu= d, 

where Q is an n x n symmetric, positive definite matrix, B is an m x n matrix of 

rank m < n. The n-vector u is unknown and c and d are fixed n- and m-vectors 

respectively. By introducing an m-dimensional Lagrange multiplier this problem 

is found to be equivalent to that of solving the linear vector equation 

(1.4) 



Denoting the (n + m) x (n + m) matrix in (1.4) by A we see that A is symmetric, 

nonsingular, but not positive definite. 

Of course, (1.1) can be modified to the equivalent form 

(1.5) A 2x =Ab, 

where now A 2 is positive defini te, but this stratagem requires roughly twice the 

computational effort of methods which could be applied directly if A itself were 

positive defini te [3]. 

In this paper we discuss methods requiring essentially the same computational 

effort as those employed if A is positive definite. An alternative approach to this 

problem, which salvages the standard conjugate gradient algorithm, is considered 

in [6]. 

2. The method of conjugate residuals. 

DEFINITION. Given an n x n matrix A, a pair of n-vectors x, y is said to be 

A-orthogonal if (x, Ay) = O. 

We now develop an iterative technique for solving 

(2.1) Ax = b 

which has the same important characteristics as the method of conjugate gradients 

but which in addition is applicable in the case where A is symmetric but not 

necessarily positive definite. The procedure is a descent procedure in that a 

sequence of approximate solutions x 1 , x 2 , · · · , xn is generated with the property 

that the objective functional 

(2.2) E(x) = IIAx- bll 2 

decreases monotonically. Furthermore, as is common with descent procedures, 

the approximation xk+ 1 is generated from xk by moving from xk ina certain direc­

tion Pk to a minimum point of E in this direction. In other words, xk+ 1 = xk + rxkpb 

where ak is chosen to minimize E. The novel feature of the method given below 

is of course the method for selecting the direction vectors Pk. 

ln the procedure the direction vectors are chosen to be an A 2 -orthogonalized 

version of the residuals rk = b - Axk. This is similar to the method of conjugate 

gradients but now since the gradient of the underlying functional E at xk is - 2Arb 

and not - 2rk, we refer to the scheme as conjugate residuals. 

Here is the fundamental iteration scheme. 

Conjugate residual scheme. Select x 1 arbitrarily. Set p 1 = r 1 = b - Ax1 , and 

repeat the following steps omitting (2.3a, b) on the first step. 

Ifak_ 1 =F 0, 

(2.3a) 

If ak_ 1 = 0, 

(2.3b) 
Pk = Ark - 'YkPk- 1 - OkPk - 2, 

(Ark, A 
2

Pk - d 
'Yk = (p A2 )' 

k-t' Pk-1 



(2.3c) 

(2.3d) 

We prove below that the process defined by (2.3) converges to the unique 

solution of (2.1) in n steps or less. Furthermore, the residuals r 1 , r 2 , · • · form an 

A-orthogonal sequence and the direction vectors p 1 , p2 , · · · form an A2-ortho­

gonal sequence. 

If the ma tri x A is positive defini te, then for each k, ak > 0 and hence (2.3b) 

is never used. In this case the procedure can be regarded as one of the family of 

general conjugate gradient methods discussed by Hestenes [2]. However, even 

in the positive definite case this method has not been explicitly pointed out and 

in terms of total computation it is as efficient as ali standard procedures. 

DEFINITION. Corresponding to the symmetric matrix A, a vector x is said 

to be singular if (x, Ax) = O. 

If Ais not positive defini te, ak may be positive, negative or zero. The condition 

ak = 0 corresponds, as shown below, to singularity of the residual rk. 

THEO REM 1. The following relations hold for the method of conjugate residuals: 

(a) (pi, A 2p) = 0, i # j, 

(b) (ri, Ap) = 0, i > j + 1, 

(c) 

(d) 

(e) a;- 1 # 0 implies (rb Ap;) = (r;, Ar;), 

{3; = -(ri,Ari)/(r; _ 1 ,Ar;-d, 

(f) a;- 1 = 0 and ri # 0 implies ai# 0, 

(g) ri =/= 8 implies Pi =/= 8 (8 denotes zero vector). 

Proof The proof is by induction. The vectors r 1 , p 1 = r 1 and r2 satisfy these 

relations since: 

(a) If r 1 is singular, 

r2 = r 1 = p 1 and (r 1 ,Ard =O. 

(b) If r 1 is not singular, 

(r 1 , Ar1 ) = (p 1 ,Ar2 ) = (r 1 ,Ard- a 1(p1 ,A2p 1) 

= 0 by (2.3c). 

Now assume that these relations are true for the first k - 1 steps, i.e., through 

rb Pk - l , ak-l, f3k - l. There are now two distinct cases of interest: ak-l =/= 0 and 

ak_ 1 = O. We must show that rk+ 1 and Pk can be added to these relations in either 

case. 

Case 1. ak - l =1= O. To prove (e) we have immediately 

(rb Apk) = (rb Ark) - f3k(rb APk- d = (rb Ark) 



by the induction hypothesis (b). Also, 

(rb Ark) = (rb Ark_ 1) - ak _ 1(rkl A 2pk _1) 

whence, by (d) , 

which gives the formula for f3k· 

To prove (a) we write 

(pbA
2
pJ = (rk,A

2
pi)- f3k(Pk-t,A

2
Pi). 

For i < k -- 1 the first term on the right vanishes because of the induction 

hypotheses {c) and (b) and the second term vanishes by (a). For i = k- 1 the 

two terms cancel. 

To prove (b) we write 

(rk+ 1 , Api) = (rk, Api) - ak(Apb Api). 

For i < k the right side vanishes by (b) and (a). For i = k the two terms on the 

right cancel. 

To prove (c) we have obviously, for j > 1, 

j-1 

(2.4) rj = P1 - L aiAPi 
i = 1 

and hence settingj = k and using (2.3a), we have 

k- 2 

Pk = Pt - L aiAPi - ak - 1APk- 1 - f3kPk - 1· 
i= 1 

Th us, in view of the induction hypothesis (c) and ak_ 1 '# 0 we obtain Apk-l E [p1 , 

P2, · · · , Pk]· 
To prove (d) we write 

(rk+ 1 , ArJ = (rk , Ari) - ak(Apb ArJ 

For i < k the first term on the right vanishes by the induction hypothesis. The 

second term also vanishes for i < k by the second part of (c) and (a). For i = k 
the right side becomes, by (e), 

(rb Ark) 
(rb Ark) - ( 2 ) (A pb Ark). 

Pk, A Pk 

But this vanishes because (pk, A2pk) = (rk - f3kPk - 1, A
2

pk) = (rb A
2
pk). 

To prove (g) suppose Pk = 8. Then 

rk = f3kPk- 1 · 

But by (e) and (b) this implies {3k = 0 and hence rk = 8. 

Case 2. ak_ 1 = O. To prove (f) we note that by (2.3b), 

(2.5) (rb A pk) = (rk, A 
2
rk) - 'Yk(rb A pk - d - bk(rb Apk _2). 



The second two terms on the right are zero by the hypothesis (b), and hence if 

rk =1= 8 we have ak =/: O. This proves that there cannet be generated two consecutive 

singular points in the procedure. 

To prove (a) we write 

(pk, A
2
pJ = (Ark , A

2
Pi)- Yk(pk - 1, A

2
pi)- bk(Pk - 2, A

2
PJ 

For i = k - 1, i = k - 2 the terms on the right cancel. For i < k - 2 we have 

by the induction hypothesis on (c) that A 2 pi E [p 1 , p2, · · · , Pk - 1] and hence by 

(b) the first term vanishes. The ether two terms vanish by (a). 

The proof of (b) is the same as for Case 1. 

Now if ak- t = 0, then we have cxk- 2 =/: 0 and also (rk-t, Apk_ 1) =O. Since 

(rk-1,APk- 1) = (rk - 1,Ark- d- Pk- 1(rk- 1,APk- 2), it follows, using (b), that 

(rk_ 1 , Ark _1) = 0, and by (e) , we have Pk - 1 = O. (Equivalently, ak _1 = 0 if and 

only if rk _ 1 is singular.) 

To prove (c) we note that since Pk - 1 = 0 we have Pk- 1 = rk-t and since 

ak _1 = 0 we have rk = rk _ 1. Thus, by (2.3b), 

Pk = Apk- 1 - YkPk-t - bkPk-2 

which proves (c). 

To prove (d) we write 

(rk + 1 , ArJ = (rb Ari) - cxk(Apb ArJ 

For i < k, this vanishes by the same argument as Case 1. For i = k we note that 

rk = rk- t = Pk- 1 and hence the first term vanishes by the induction hypothesis 

on (d) and the second term vanishes by (a). 

Part (g) follows immediately from (2.5). This completes the proof of Theo rem 1. 

We now state the fundamental minimization property of the method of 

conjugate residuals. 

THEOREM 2. For each k the point xk+ 1 minimizes thefunctional E(x) = IIAx- bll2 

over the linear variety x 1 + [pt, P2, · · · , Pk]. 

Proof This follows immediately from the projection theorem and the fact 

that rk+t is A-orthogonal to the subspace [p1 ,p2, ·· ·, Pk]. 

THEOREM 3. The method of conjugate residuals converges in n steps or less to 

the unique solution of Ax = b. 

Proof From part (g) of Theorem 1 we see that the sequence Pt , p2, · · · does 

not termina te un til a solution is obtained. Furthermore, by the A 2-orthogonality 

of the p;'s this sequence is linearly independent. The result then follows from 

Theorem 2. 

To summarize the results derived in this section, the method of conjugate 

residuals progresses in a fashion entirely analogous to that of conjugate gradients 

by genera ting A 2 -orthogonal direction vectors and minimizing Il A x - b 11
2 over 

increasing subspaces. If at sorne stage the residual rk should be singular, then the 

next direction vector Pk is equal to rk and the functional E cannet be reduced by 

moving in that direction since xk is already at the minimum along that line. The 

next direction Pk+ 1 is then generated by a special formula and this new direction 

will not be singular. Thus singular directions occur only as isolated members of 

the sequence Pt, p2 , • · · , Pn · The process converges within n steps. 



3. Computational requirements. An important feature of the method of 

conjugate residuals, which sets it apart from other schemes for handling the non­

positive definite case, is that only a single multiplication of a vector by a matrix 

is required at each step. To see this, suppose that Pk - 2 , Apk_ 2 , Pk- 1 , Apk- 1 , rk have 

been stored. Th en we have the following. 

Case 1. ak _ 1 :::1= O. 

Step la. Calculate Ark. This requires one matrix multiplication. 

Step lb. Calculate {Jk> Pk from (2.3a). 

Step le. Calculate Apk from Apk = Ark - [JkAPk- 1 , and then o:b xk+ 1 from 

(2.3c). 

Step ld. Calculate rk + 1 from rk + 1 = rk - akAPk· 

Case 2. ak-l = O. In this case, rk_ 1 is singular and it follows from part (e) of 

Theorem 1 that Pk- 1 = 0 and hence Pk - l = rk_ 1 . Also since ak- 1 = 0 we have 

rk = rk - l. Thus Ark = Apk - l is on hand. 

Step 2a. Calculate A 2rk = A(APk - d. This requires one multiplication of a 

vector by a matrix. 

Step 2b. Calculate Yb bk and Pk from (2.3b). 

Step 2c. Calcula te Apk from Apk = A 2 rk - ykAPk- 1 - bkAPk- 2 and then 

o:b xk + 1 from (2.3c). 

Step 2d. Calculate rk+ 1 = rk - akAPk. 

Note that the storage requirements are really not as large as indicated since 

Pk - 2 , Apk _2 are only needed in the singular case and then Pk-l = rk _ 1 = rk, so 

extra storage is available. 

4. A triangulation method. In this section we show that the nonsingular part 

of the scheme of conjugate residuals can be implemented by performing only a 

sequence of line searches (i.e., one-dimensional minimization problems) and resi­

dual evaluations, without explicitly computing inner products. Although this 

procedure is of little value for solving a linear equation, its obvious generalization 

to nonlinear equations is of substantial importance. 

The method is more or less a straightforward extension of the method of 

parallel tangents (PART AN) which implements the method of conjugate gradients 

when A is positive defini te [7], [8]. The short derivation of the method given here 

is of sorne independent interest in view of the lengthy standard derivations. Our 

derivation exploits the results of Theorem 1. 

Triangulation procedure. Given an arbitrary x 1 let p1 = r 1 and determine x 2 

as the point minimizing E(x ) = II Ax - bll2 along the line x 1 + ap 1 , - oo <a < oo . 

After that the process is defined by induction. Having determined x 1 , x2 , · · · , xk> 

put 

where flk is determined to minimize E(yk). Then let 

where wk is determined to minimize E(xk+ t). 

We shall show that the triangulation procedure described above is equivalent 

to the method of conjugate residuals in the nonsingular case. If during the process 



a residual rk should become singular, the process breaks down and recovery must 

be made in sorne other fashion. 

THEOREM 4. The method of triangulation, in the nonsingular case, is equivalent 

to the method of conjugate residuals. 

Proof The proof is by induction. The statement is obviously true for the first 

step. Suppose it is true for x 1 , x 2, · · · , xk. For simplicity and without loss of 

generality we assume that x 1 = 8. According to the method of conjugate residuals 

the point xk+ 1 is chosen so as to minimize the functional E over the subspace 

[p 1 , p2 , · · · , Pk - 1 , rk]. Furthermore, by the orthogonality relations of the method 

this is equivalent to minimizing E over the subspace determined by Pk - l and rk. 

This in turn is equivalent to fin ding a point xk + 1 in that plane such that the residual 

there, rk+ 1 = b - Axk+ 1 , is A-orthogonal to both rk and Pk-t. 

Consider the points xk - 1 and Yk· The residuals at these points, rk-l, b - Ayk, 

are bothA-orthogonal to rb the first by the induction hypothesis and part (d) of 

Theorem 1, the second because Yk is the minimizing point of E in the direction rk. 

Therefore, by linearity, the residual at any point along the line through xk-l and 

Yk is A-orthogonal to rk. 

1t is therefore only necessary to find a point on this line where the residual is 

A-orthogonal to Pk - l. This clearly can be accomplished by minimizing E along the 

line. 

5. Application to constrained minimization problems and nonlinear equations. 

Consider the nonlinear equation 

(5.1) F(x) = 8, 

where Fis a mapping from En into En and 8 is the zero vector in En. We restrict 

attention to the case where the matrix offirst partial derivatives F'(x) is symmetric. 

As a primary motivating example consider the constrained minimization 

problem: 

Minimize 

(5.2) f(u) 

subject to 

H(u) = 8, 

where fis a nonlinear functional on Em and H is a nonlinear mapping from Em to 

EP, where p < m. If u0 is the solution of (5.2) and the rank of H'(u0 ) is equal to p, 

then, as is weil known, there is a 10 E EP such that (u0 , 10 ) is a solution of the 

simultaneous equations 

(5.3) 
f'(u) + l'H'(u) = 8, 

H(u) = 8. 

The system (5.3) is of the type (5.1) with n = m + p. 

The procedures developed here also have application to minimization prob­

lems involving inequality constraints, but this topic is deferred to another paper. 

Solution of(5.1) is, of course, equivalent to minimizing the form tf;( x) = Il F(x) ll 2 

and indeed this is the approach taken here. Standard methods of minimization, 



however, require the direction vectors to be selected on the basis of the gradient. 

In the case of problem (5.2) this in turn would require knowledge of second deriva­

tives off and H. By employing the philosophy of the conjugate residual method, the 

descent directions are based on the residuals F(x ). 

We shall briefiy discuss three ways in which the conjugate residual scheme can 

be generalized to nonlinear problems. These are identical in spirit to the standard 

methods for adopting the conjugate gradient procedure to nonlinear problems 

and hence we shall not pursue the details. 

A. If one is willing to assume the availability of F'(x ) , then the local approx­

imation A "' F'(x ) can be used in the formulas (2.3). The conjugate gradient 

analogue of this procedure has been developed by Daniel [9] , [10] . 

B. Multiplication of a vector by the matrix A can be approximated by the 

difference of two residuals by the formula 

F(xk + y) - F(xk) ~ Ay 

which is exact in the linear case (the step size can of course be adjusted for best 

results). Sin ce, in the linear case, the conjugate residual scheme can be imple­

mented with a single A multiplication, soin the nonlinear case it can be approxi­

mated by taking a single extra step. We give here the procedure corresponding to 

Case 1 of§ 3, the other case being a direct analogue. Assume xk, Pk-l, qk - l, rk are 

at hand, where Pk+ 1 is the actual direction vector used to get xk , q k _ 1 is an artificial 

vector used to approximate Apk-l , and rk = F(xd. Then: 

Calculate an approximation sk to Ark by 

(5.4a) 

Calcula te 

(5.4b) 

Calcula te 

(5.4c) 

Calcula te 

(5.4d) 

A more refined procedure would be to calculate Pk from (5.4a) and (5.4b) and 

then search along the direction Pk for a point minimizing Il F(x)ll2 initia ting the 

search at the point predicted by (5.4c) . For details on such line searching tech­

niques and the analogue of this procedure for conjugate gradients, see [11]. 

C. The method of triangulation can be employed directly since it simply 

entails evaluation of the residual and line searching. There is a slight difficulty 

if a singular pointis encountered. In this case a good procedure is probably to take 

a gradient step and then start again. As in B above the gradient can be approxi­

mated by F(xk + rk) - F(xk). 



There are a few general remarks that apply to the application of any of the 

above schemes when applied to nonlinear equations. The first consideration is the 

necessity for occasionally restarting the process. The methods of conjugate gra­

dients and conjugate residuals that we have discussed are not self-correcting. 

Specifically, if the initial direction vector should for sorne reason be in error, the 

usual conjugate properties of the subsequently generated direction vectors will not 

hold and the process may not termina te in a fini te number of steps. This implies, 

in particular, that even if a nonlinear equation is exactly linear in a region containing 

the solution, any of the nonlinear versions of conjugate residuals (or conjugate 

gradients) may not converge in a fini te number of steps. For this reason, it is good 

practice to restart these procedures every n steps orso. In view of this comment, 

the ploy of taking a gradient step and restarting when encountering a singular 

point does not seem unattractive. 

The second comment relates to the detection of singular points. In a nonlinear 

problem, a singular direction (or a nearly singular direction) is characterized by a 

hait or near stoppage of the descent process. In other words, if a singular pointis 

approached, the values of the objective functional II F(x )ll 2 will converge to sorne 

positive value. However, since the desired value of this objective functional is 

known to be zero, such a singularity is easily identified and the singularity pro­

cedure or a gradient step can be employed to move away and continue the descent. 
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