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Abstract – Recently, there have been several concerted international efforts – the BRAIN initiative, 

European Human Brain Project and the Human Connectome Project, to name a few – that hope to 

revolutionize our understanding of the connected brain. Over the past two decades, functional 

neuroimaging has emerged as the predominant technique in systems neuroscience. This is 

foreshadowed by an ever increasing number of publications on functional connectivity, causal 

modeling, connectomics, and multivariate analyses of distributed patterns of brain responses. In this 

article, we summarize pedagogically the (deep) history of brain mapping. We will highlight the 

theoretical advances made in the (dynamic) causal modelling of brain function – that may have escaped 

the wider audience of this article – and provide a brief overview of recent developments and interesting 

clinical applications. We hope that this article will engage the signal processing community by 

showcasing the inherently multidisciplinary nature of this important topic and the intriguing questions 

that are being addressed.  

Index terms – dynamic causal modelling ·  effective connectivity ·  functional connectivity ·  resting state 

·  fMRI ·  graph ·  Bayesian · intrinsic dynamics  
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I. INTRODUCTION 

In this review, we will use several key dichotomies to describe the evolution and emergence of 

modelling techniques used to characterize brain connectivity. Our review comprises three sections. We 

begin with an historical overview of the brain connectivity literature – starting with the fundamental 

distinction between functional segregation and integration. In so doing, we introduce a key difference 

between functional and effective connectivity – and emphasize their relationship via underlying models 

of distributed processing. In the second section, we consider various causal modelling techniques that 

are used to infer directed brain connectivity. With the help of a unified framework – based on (neuronal) 

state-space models – we show how (with a succession of simplifying approximations) standard models 

of connectivity can be derived, and how various measures of statistical dependencies arise from a 

generative (state-space) model of neuronal dynamics. In the last section, we focus on the application of 

dynamic causal modelling to endogenous neuronal activity and simulations of neuronal fluctuations 

based upon the connectome. This section describes a series of recent (and rapid) developments in 

modelling distributed neuronal fluctuations – and how this modelling rests upon functional 

connectivity. We will try to contextualize these developments in terms of some historical distinctions 

above that have shaped our approaches to connectivity in functional neuroimaging. 

 

Notation: We use lowercase italics, 𝑥, for scalars and lowercase bold letters for vectors 𝐱 and vector 

functions, 𝐱(𝑡), where each element represents a time-dependent state. Matrices are shown as uppercase 

bold, 𝐗. In this paper, ∗ corresponds to a convolution operator, † denotes the complex conjugate 

transpose,   denotes expectation and ~ denotes discrete time lagged variables.  Fourier transforms of 

variables are in (italic) uppercase such that  𝐅𝐓(𝐱(𝑡)) = 𝑿(𝜔). We use F(∙) to denote a variational free 

energy functional. 

II. AN HISTORICAL PERSPECTIVE ON BRAIN CONNECTIVITY 

The notion of connectivity has long history in brain imaging, which can be traced back to the 

debates around classicism, modularity and connectionism. In the recent past, a common notion 

among neuroscientists was that many of the brains functions were predetermined by its 

structure and its structure was programmed by our genes. This view emphasized functional 

segregation and localizationism; tracing its history back to the days of phrenology (from Gall in 18th 
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century). Functional localization implies that a function can be localized in a cortical area. This 

is more general than functional segregation, which suggests that a cortical area is specialized 

for some aspect of neural processing and that this specialization is anatomically segregated 

within the cortex. This is similar to an understanding of how computers work; where each part has 

pre-assigned function that cannot be substituted for by other parts. However, in the past decades this 

view has changed, with clear evidence that the neural pathways in our brain are flexible, adaptable and 

connected; able to be molded by changes in our environment or by injury or disease. In short, the brain 

is quintessentially plastic and can adapt and adopt new functionalities through necessity. This 

understanding rests on the notion of connectionism (a term first coined by Donald Hebb in 1940’s), 

with the central idea that brain function can be understood as the interaction among simple units; for 

example, neurons connected by synapses which give rise to a connected whole that changes over time. 

Connectionism is closely related to (hierarchical) distributed processing, a perspective that has been 

substantiated by the work of Hubel and Wiesel (Nobel prize in 1981) on how information is processed 

in visual cortex. They found that visual system comprises simple and complex cells arranged in 

hierarchical fashion. This sort of finding underwrites the focus on neural network implementations 

based on hierarchical distributed constructs – leading to recent exciting developments in machine 

learning (e.g., hierarchical Bayesian inference[1] and deep learning algorithms [2]).  

These ideas emerged in functional brain imaging as functional segregation and functional 

integration. Since their inception, there has been a sustained trend to move from functional segregation 

(and the study of regionally specific brain activation) towards functional integration (and the study of 

its connectivity). Functional localization implies that a function can be localized to a cortical area, 

whereas segregation suggests that a cortical area is specialized for some aspects of perceptual or motor 

processing, and that this specialization is anatomically segregated within the cortex. The cortical 

infrastructure supporting a single function may then involve many specialized areas whose union is 

mediated by the functional integration among them. In this view, functional segregation is only 

meaningful in the context of functional integration and vice versa. There are several descriptions of 

neuronal processing that accommodate the tendency for brain regions to engage in specialized functions 

(i.e., segregation) and the tendency to coordinate multiple functions (i.e., integration) through coupling 
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specialized regions. This functional integration is a dynamic, self-assembling process, with parts of the 

brain engaging and disengaging over time – that has been described by appealing to dynamical systems 

theory; for example, self-organized criticality[3], pattern formation and metastability [4]. 

This review pursues another key theme; namely, the distinction between functional and 

effective connectivity. This dichotomy relies on the definition of connectivity (i.e. functional 

integration) per se. The former uses a pragmatic definition of connectivity, based on (Pearson) 

correlations and rests on statistical dependencies between remote neurophysiological events. But this 

approach is problematic when dealing with distributed neuronal processes in the brain that are mediated 

by slender (axonal) neuronal connections or wires. A more mechanistic explanation of observed 

responses comes from the definition of effective connectivity that refers explicitly to the influence that 

one neural system exerts over another. [5] proposed that “effective connectivity should be understood 

as the experiment and time-dependent, simplest possible circuit diagram that would replicate the 

observed timing relationships between the recorded neurons”. This speaks to two important points: 

effective connectivity is dynamic (activity-dependent), and depends on a model of directed interactions 

or coupling – which we will focus on in this review. Having said this, an interesting development in 

functional connectivity now considers temporal dynamics – referred to as dynamic functional 

connectivity [6]. However, these developments fall short of furnishing a causal explanation of 

the sort provided by (model-based) effective connectivity. This is because functional 

connectivity is essentially a description of second order data features, which precludes a 

mechanistic explanation of neurophysiological timeseries. Recent applications of dynamic 

causal modelling to ongoing (seizure) activity – in epilepsy – rest explicitly on dynamic 

functional connectivity to estimate the underlying fluctuations in effective connectivity or 

cortical gain control [7, 8]. In summary, the operational distinction between functional and effective 

connectivity is important because it determines the nature of the inferences made about functional 

integration and the sorts of questions that can be addressed with a careful consideration of intricate 

interrelationship between effective and functional connectivity [9, 10]. 

Put simply, functional connectivity is a measure of statistical dependencies, such as 

correlations, coherence, or transfer entropy. Conversely, effective connectivity corresponds to the 
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parameter of a model that tries to explain observed dependencies (functional connectivity). In this sense, 

effective connectivity corresponds to the intuitive notion of directed causal influence. This model-based 

aspect is crucial because it means that the analysis of effective connectivity can be reduced to model 

comparison; for example, the comparison of a model with and without a particular connection to infer 

its contribution to observed functional connectivity. In this sense, the analysis of effective connectivity 

recapitulates the scientific process, because each model corresponds to an alternative hypothesis about 

how observed data were caused. In our context, these hypotheses pertain to causal models of distributed 

brain responses. Later, we will consider analytical expressions that link effective and functional 

connectivity and show that the latter can be derived from the former, whereas the converse is not true. 

In summary, we have considered the distinction between functional segregation and integration 

in the brain and how the differences between functional and effective connectivity shape the way we 

characterize connections – and the sorts of questions that are addressed to empirical data. In the next 

section, we look at the relationship between functional and effective connectivity and expand on the 

causal aspect of effective connectivity. Interested readers are directed to our previous review [10] on 

brain connectivity for a more detailed discussions. 

 

III. CAUSAL ANALYSES OF DYNAMICAL SYSTEMS 

The brain is a dynamic and self-organizing organ with an emergence dynamics. This dynamics can be 

seen at multiple spatial and temporal scales; for example, there are tens of thousands of synaptic 

connections to a single neuron, which can fire dozens of times every second. Furthermore, this 

connectivity itself changes over multiple spatial and temporal scales. The spatial scale we are interested 

in, as measured by fMRI, is the macroscopic level; where we are interested in distributed processing or 

connectivity among neural systems where each neural region or source comprises millions of neurons. 

As we have previously noted, the direction of information transfer or directed coupling is important. 

Figure 1 illustrates the fact that changes in connectivity over time underlie the causal relationship among 

neuronal systems. In Figure 1, we show a graph with undirected edges among 10 nodes, where each 

node can be regarded as a proxy for a neuronal system (in general these nodes could also be network 

devices in a communication network – exchanging say emails). Alternatively, if the links represent a 
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distance metric, and nodes represent organisms, this could represent a model of how infections are 

disseminated). In this example, the graph evolves over time. Although the edges of the graph are 

undirected at each instance, adding a temporal aspect to this evolving graph enables one to infer directed 

information1 flow. For example, if we were interested in causal coupling between nodes 1 and 2 (shown 

as red in Figure 1). We see that the activity in node 1 affects the activity in node 2, where we will 

assume this influence endures over time. As we see node 1 is connected to node 2 via intermediate 

nodes: 4, 8, and 5 (shown as blue edges) at time 𝑡 − 𝛿𝑡; 9, 10 and 7 at time 𝑡; and 3 at time 𝑡 + 𝛿𝑡. This 

means, node 1 can affect node 2 in the future. However, the converse is not true, in that the activity in 

node 2 cannot affect the future of node 1. This asymmetry is a signature of causality (i.e., temporal 

precedence) and rests on accounting for the arrow of time. This is why, as we will see below, the 

statistical models used for characterizing effective connectivity are usually based on differential 

equations (or difference equations in discrete time), and therefore explicitly take time into account. This 

simple example emphasizes the importance of temporal fluctuations in connectivity, even in undirected 

graphs.  However, we do not want to give the impression that temporal precedence is necessary to infer 

causal relationships. Temporal  precedence is an important aspect – and many definitions of causation 

require cause to precede effect [12, 13]; for example, directed functional connectivity measures based 

on Yule-Walker formulations (vector autoregressive models). However, temporal precedence alone 

cannot distinguish effective connectivity from spurious dependencies caused by unknown factors. As 

an example, the barometer falls before the rain but it does not cause the rain. The type of causality that 

we will be concerned with is based on control theoretic concepts, where the causes (either exogenous 

experimental inputs or endogenous random neural fluctuations or both) produce effects (neural activity) 

that are observed empirically through hemodynamics as blood oxygen level dependent (BOLD) signal.  

This form of causality is closely related to probabilistic and graphical framework of causal calculus [14] 

(See Box 1) – although there is a clear distinction between the two approaches that we will return to 

later. 

 

                                                 
1 Although we have not used the word ‘information’ here in a strictly information theoretic sense but there is a 
straightforward analogy between electrical impulses in neural systems and the classic communications theory 

picture of source, channel, and receiver [11]. 
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Box 1:  

Simpson – Yule Paradox 

The Simpson – Yule paradox, or simply Simpson’s paradox, [15-17] – for more recent 

discussion see [18-20] – refers to the disconcerting situation in which statistical relationships between 

variables (say 𝑥 and y) are reversed or negated by the inclusion of an additional variables (𝑧). A 

famous example of this paradox is when the University of California Berkeley came under 

investigation in 1975 for gender bias in graduate admissions. The graduate admissions statistics 

revealed that men applying were more likely to be admitted than women. But when data were 

analysed for each department separately, the reverse was true; in that no department was statistically 

significant in favour of men. The resolution of this paradox turned out to be that women applied for 

more competitive departments – with low success rates – in relation to men who went for less 

competitive majors with a greater chance of being accepted. The main point is that conclusions based 

on data are sensitive to the variables we choose to hold constant and that is why the `adjustment 

problem’ is so critical in the analysis of observational studies. Even now, no formal procedure has 

emerged that tells us whether adjusting for variable 𝑍 is appropriate for the given study – setting aside 

intractable criteria [21] based on counterfactuals [22]. However, Simpson’s paradox is easily resolved 

with causal graphs. A simple graphical procedure  provides a general solution to the adjustment 

problem [23]. This procedure is shown in Figure 2 and summarized as follows: 

Objective: Check if 𝑧1 and 𝑧2 are sufficient measurements.  

1) 𝑧1 and  𝑧2  should not be descendants of 𝑥 

2) Delete all non-ancestors of { 𝑥, y, z } 

3) Delete all edges from 𝑥 

4) Connect any two parents sharing a child 

5) Strip arrow-heads from all edges 

6) Delete 𝑧1 and 𝑧2. Check if 𝑥 is disconnected from y in the remaining graph, then 𝑧1 and 𝑧2 are 

appropriate measurements. 

[Figure 2 reproduced and redrawn with permission from [23]].  

Figure 2 is placed here (inside the box) 
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We will use state-space models to describe the basic concepts here and demonstrate that causality based 

on temporal precedence can be regarded as a special case of causality based on state-space graphs. In 

what follows, we will look at several measures of causality in functional neuroimaging literature (which 

refer largely to fMRI but also hold for other modalities like EEG, MEG and local field potentials). 

These measures can be cast in terms of a generalization of state-space models, based on stochastic 

differential equations. 

A. State-space modelling of neuronal dynamics 

The most natural framework for modelling distributed and coupled neural activity is to use state-space 

models. State-space modelling has its origin in control engineering but the term state-space was first 

used by Kalman [24] and can be traced back to von Bertalanffy who introduced general systems theory 

to biology in the 1940’s and 50’s. We start with a generic description of coupled neuronal dynamics2 in 

terms of differential equations of the form  

�̇� = 𝑓(𝐱(𝑡), 𝛉, 𝐮(𝑡)) + 𝐰(𝑡),    (state equation)     (1) 

𝐲(𝑡) = ℎ(𝐱(𝑡), 𝛉) + 𝐞(𝑡),    (observation equation)     (2) 

where  x(t)=[x1(t), x2(t),…xn(t)]T represents a vector of 𝑛 hidden state variables (where each state 

could correspond to a vast number of neurons in a cortical area, source or spatial mode), �̇�(𝑡) represents 

the change in those state variables, 𝛉 are the underlying (connectivity) parameters which are assumed 

to be time-invariant, 𝐲(𝑡) is the observed BOLD signal, whereas 𝐰(𝑡) (resp. 𝐞(𝑡)) are state noise (resp. 

observation or instrument noise) which makes this differential equation random.  The (random) 

endogenous fluctuations3 𝐰(𝑡) on the motion of the hidden neuronal states represent the unknown 

influences (for example spontaneous fluctuations) that can only be modelled probabilistically. The 

neuronal states are hidden as they cannot be measured directly. The function 𝑓 defines the motion of 

the coupled dynamical system that is determined by inputs 𝐮(𝑡), which we consider to be deterministic 

                                                 
2 Strictly speaking, the hidden states include both neuronal and haemodynamic states; however, for simplicity, 

we will ignore haemodynamic states in this paper. 
3 One of our reviewer rightly pointed out that, in this exposition, we have limited ourselves to additive form of 

endogenous fluctuations that precludes the more general treatment of state-dependent neuronal fluctuation, of 

the sort 𝑓(𝒙(𝑡), 𝜽, 𝒖(𝑡), 𝒘(𝑡)), which are used in modelling many complex, volatile systems [25] including the 

brain [26]. 
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(but could also have stochastic component) and known. Inputs usually pertain to experimentally 

controlled variables, such as change in stimuli (a visual cue or an auditory signal) or instructions during 

an fMRI experiment (we will see later that this exogenous input is absent in ‘resting state’ fMRI). This 

description of neuronal dynamics provides a convenient model of causal interactions among neuronal 

populations, as it describes when and where exogenous experimental input 𝐮(𝑡) perturbs the system 

and how (hidden) states influence changes in other states. Note that we have assumed that the form of 

the system dependencies 𝑓 (and the connectivity parameters 𝛉) are time invariant, which means that we 

are assuming that the structural properties of the system will remain fixed over time (i.e., over the length 

of data acquisition). 

We have not discussed the nature of the state and the observation noise process, which we will 

consider in the last section. For now, we will assume they possess usual noise properties; i.e., they are 

independent and identically distributed (i.i.d.). We will describe a more general framework for analytic 

(non-Markovian) random fluctuations in the last section. A key simplification in this form of modelling 

is that we have lumped together many microscopic neuronal states to form hidden states 𝐱(𝑡) that are 

abstract representations of neuronal activity (c.f., a mean field approximation). In reality the equations 

of motion – and the observer equation – describe very complicated interactions among millions of 

neurons. The formulation above corresponds to the amplitude of macroscopic variables or order 

parameters4 summarising the dynamics of large neuronal populations. Essentially, this means that the 

individual neurons become ordered showing a coordinated dynamic pattern that can be described with 

the concept of order parameters. This sort of formulation  can be motivated by basic principles [27]; for 

example, the centre manifold theorem [28] and the slaving principle [29, 30] that apply generally to 

coupled dynamical systems. 

 

 

                                                 
4 In statistical physics the order parameter is a variable that indicates in which phase you are in; for example in a 

phase transition between liquid and gas, the order parameter may be the density. 
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B. State-space modelling and effective connectivity 

The state and the observation equations in (1) and (2) are generic representations; hence there 

are several forms that the mappings or functions 𝑓 and ℎ can take. In turn, these define the sort of 

inference that can be made – and the nature of causal relationships that can be identified from these 

models. We will see in this section that almost all models in neuroimaging can be seen as a special case 

of these equations. 

Dynamic causal modelling 

Although the application of general state-space models in neuroimaging has been around for 

decades, the explicit use of state-space models based on differential equations can be traced to [31], 

who first introduced a nonlinear neural mass model for EEG data. However, the most widely used and 

comprehensive framework – that uses Bayesian statistics to make model and parameter inference – is 

dynamic causal modelling (DCM) [32]. DCM, when first introduced used ordinary differential equation 

(ODE) but was later extended to state-space models based on stochastic and random differential 

equations[33, 34]. The most widely used DCM is based on Taylor expansion of (1) to its bilinear 

approximations, namely: 

�̇�(𝑡) = (𝐀 + ∑ 𝐁𝑗𝐽𝑗=0 𝐮𝑗)𝐱(𝑡) + 𝐂𝐮(𝑡) +  𝐰(𝑡),       (3)    

 

where 𝐀 = 𝜕𝑓𝜕𝐱 , 𝐁 = 𝜕2𝑓𝜕𝐱𝜕𝐮  and  𝐂 = 𝜕𝑓𝜕𝐮  with 𝛉𝑛 = {𝐀, 𝐁, 𝐂}. The matrix 𝐀 is known as the Jacobian (or 

Laplace-Beltrami operator) describing the behaviour – i.e. the effective connectivity – of the system 

near its fixed point (𝑓(𝒙𝒐) = 0), in the absence of the fluctuations 𝐰(𝑡) and the modulatory inputs 𝐮(𝑡). 

The matrices 𝐁𝑗 encode the change in effective connectivity induced by the 𝑗th input 𝐮𝐣(𝑡) and 𝐂 

embodies the strength of the direct influences of inputs 𝐮(𝑡)on neural activity. In fMRI, the mapping 

from hidden states to the observed BOLD data 𝑦(𝑡)is based on a haemodynamic model, which 

transforms hidden neuronal states of each population or region into predicted BOLD responses – using 

a previously established biophysical model [32, 35, 36]. This haemodynamic model is based on four 

ordinary differential equations and five haemodynamic parameters  𝛉ℎ, such that 𝛉 = {𝛉𝑛, 𝛉ℎ}. The 

haemodynamic model describes how neuronal activity engenders vasodilatory signals that lead to 
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increases in the blood flow, which in turn changes the blood volume and deoxyhemoglobin content that 

subtends the measured signal. 

The bilinear approximation to our general state-space model of neurophysiological dynamics 

furnishes a probabilistic model that specifies the probability of observing any time series given the 

parameters. This is known as a likelihood model and usually assumes the observed data are linear 

mixture of the model predictions and Gaussian observation noise. By combining this likelihood model 

with prior beliefs (specified in terms of probability distributions) we have, what is called in Bayesian 

statistics, a generative model. This allows one to use standard (variational) procedures to estimate the 

posterior beliefs about the parameters and, crucially, the model itself. Herein lies the real power of 

dynamic causal modeling; namely, the ability to compare different models of the same data. This 

comparison rests on the model evidence, which is simply the probability of the observed data, under 

the model in question (and given known or designed exogenous inputs). The evidence is also called the 

marginal likelihood because one marginalizes or removes dependencies on the unknown quantities 

(hidden states and parameters). The model evidence can simply be written as: 

 𝑝(𝐲|𝑚, 𝐮) = ∫ 𝑝(𝐲, 𝐱, 𝛉|𝑚, 𝐮)𝑑𝐱𝑑𝛉.       (4) 

 

Model comparison rests on the evidence for one model relative to another (see Penny et al. 2004 for a 

discussion in the context of fMRI). Model comparison based on the likelihood of different models 

provides the quantitative basis for all evidence-based hypothesis testing. Usually, one selects the best 

model using Bayesian model comparison, where different models are specified in terms of priors on the 

coupling parameters. These are used to switch off parameters by assuming a priori that they are zero 

(to create a new model). In DCM, priors used are so-called ‘shrinkage-priors’, because the posterior 

estimates shrink towards the prior mean. The size of the prior variance determines the amount of 

shrinkage. With a null model 𝑚0 and an alternate model 𝑚1 Bayesian model comparison rests on 

computing the logarithm of the evidence ratio:  

 ln ( 𝑝(𝐲|𝑚1)𝑝(𝐲|𝑚0, )) = ln 𝑝(𝐲|𝑚1) − ln 𝑝(𝐲|𝑚0) 



 12 

             ≈ F(𝐲, 𝛍1) − F(𝐲, 𝛍0).        (5) 

where F(.) is the free energy which provides an (upper bound) approximation to Bayesian model 

evidence. Note that we have expressed the logarithm of the marginal likelihood ratio as a difference in 

log-evidences. This is the preferred form, because model comparison is not limited to two models, but 

can cover a large number of models, whose quality can be usefully quantified in terms of their log-

evidences. A relative log-evidence of three corresponds to a marginal likelihood ratio (Bayes factor) of 

about 20 to 1, which is considered strong evidence in favor of one model over another [37]. An 

important aspect of model evidence is that it includes a complexity cost (which is not only sensitive to 

the number of parameters but also to their interdependence). This means that a model with redundant 

parameters would have less evidence, even though it provided a better fit to the data (see Penny et al. 

2004). In most current implementations of dynamic causal modeling, the log-evidence is approximated 

with a (variational) free-energy bound that (by construction) is always less than the log-evidence. As 

we see in (5), this bound is a function of the data and (under Gaussian assumptions about the posterior 

density) some proposed values for the states and parameters. When the free-energy is maximized (using 

gradient ascent) with respect to the proposed values, they become the maximum posterior or conditional 

estimates, 𝛍 and the free-energy, F(𝐲, 𝛍1) ≤ ln 𝑝(𝐲|𝑚) approaches the log-evidence. We will return 

later to Bayesian model comparison and inversion of dynamic causal models. At the moment, we 

consider some alternative models. The first is a discrete-time linear approximation to (1), which is the 

basis of Granger causality. 

 

Vector autoregressive modelling 

 

In contrast to DCM – where causality is based on control theoretic constructs, (multivariate) 

autoregressive models [38-40] use temporal precedence for inferring causality in BOLD time series 

[41].  This is known as directed functional connectivity in neuroscience. It is straightforward to see that 

one can convert a state-space model – or DCM – into a vector autoregressive model, with a few 

simplifying assumptions. Using a linear approximation to the state-space model of (1) and assuming 

that we can measure the neuronal states directly (i.e., 𝐲(𝑡) = 𝐱(𝑡)), then we can write 𝐲(𝑡) = �̃�𝐱(𝑡 − 𝛿) + 𝐳(𝑡),            (6) 
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which can be written as  

𝐘 = 𝐘�̃�𝑇 + 𝒁,   

 

where �̃� = exp(𝛿𝐀) and 𝐳(𝑡) = ∫ exp(𝜏𝐀)𝑤(𝑡 − 𝜏)𝑑𝜏𝛿0  . The second equality expresses the resulting 

vector autoregression model as a simple general linear model, with explanatory variables, 𝐘 that 

correspond to a time-lagged (time x source) matrix of states. Here, the unknown parameters comprise 

the autoregression matrix �̃�. Note that the innovations, 𝐳(𝑡) are now a mixture of past fluctuations in 𝐰(𝑡) that are remembered by the system. There is clear distinction between fluctuations 𝐰(𝑡) that 

drives the hidden states (1) compared to the innovations 𝐳(𝑡) in (6) that underlie autoregressive 

dependencies among observation 𝐲(𝑡). There is an important point to note here. Because the re-

parameterisation of the effective connectivity in (3) uses a matrix exponential, the autoregressive 

coefficients �̃� in (6) are no longer the parameters of the underlying effective connectivity among 

neuronal states. This means that any model comparisons – based on classical likelihood ratio tests such 

as BIC – will be making inferences about the statistical dependencies modelled by the autoregressive 

process and not about the causal coupling as in DCM. This is why connectivity measures based on 

autoregressive coefficients – e.g., Granger causality [42] – are regarded as directed functional 

connectivity as opposed to effective connectivity. A further distinction is that most Granger causality 

applications either ignore haemodynamic convolution, or assume that haemodynamics are identical and 

noiseless (David et al. 2008). An important aspect of Granger causality measures based on 

autoregressive formulations (we provide analytic links between the two below) is that they can become 

unreliable in the presence of  measurement noise and more so when underlying dynamics is dominated 

by slow (unstable) modes – quantified by the principal Lyapunov exponent [43].  However, there are 

several recent advances in the Granger causality literature which speak to these limitations [44-46]. 

Structural Equation Modelling 

Structural equation modelling (SEM) [47] is another generic approach developed primarily in 

economics and social sciences [48, 49] and used in the (structural) neuroimaging for the first time in 

[50]. We can again see that SEM is a special case of (1) by appealing to the (adiabatic) assumption that 
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neuronal dynamics have reached equilibrium at each point of observation – or, in other words, the 

dynamics are assumed to occur over a time scale that is short relative to the fMRI sampling interval. In 

terms of implementation, we can force this condition by having very strong shrinkage priors in DCM. 

With this assumption we can reduce the generative model of (3) so that it predicts the observed 

covariance among regional response over time instead of predicting the time series itself. 

Mathematically, this means that we assume 𝐲(𝑡) = 𝐱(𝑡) and 𝐮(𝑡) = 0 and �̇�(𝑡) = 0.  This simply 

means that 𝐱(𝑡) = 𝐲(𝑡) = −𝐀−1𝐰(𝑡) which implies that 

𝚺𝒚 = 𝐀−1𝚺𝑤(𝐀−1)𝑇,            (7) 

where  𝚺𝑦 = 〈𝐲(𝑡)𝐲(𝑡)𝑇〉 and  𝚺𝑤 = 〈𝐰(𝑡)𝐰(𝑡)𝑇〉. Note that we do not have to estimate hidden states, 

because the generative model explains observed covariances in terms of random fluctuations and 

unknown coupling parameters. The form of (7) has been derived from the generic generative model. In 

this form, it can be regarded as a Gaussian process model, where the coupling parameters become, 

effectively, parameters of the covariance among observed signals due to the hidden states. We can also 

give an alternate formulation of SEM in terms of path coefficients but we skip this for brevity – for 

details see [51]. 

Although, SEM has been used in fMRI literature, SEM provides a description of static 

dependencies; hence it is not suitable for fMRI (and EEG/MEG) timeseries, where the characteristic 

time constants of the neuronal dynamics and haemodynamics are much larger than the exogenous inputs 

that drive them. This means that testing for context-sensitive changes in effective connectivity becomes 

problematic in event-related designs. For example, [52], used simulated fMRI timeseries from a 

realistic network model, for two task conditions, in which the anatomical connectivity is known 

and can be manipulated. The results suggested that caution is necessary in applying SEM to 

fMRI data, and illustrate that functional interactions among distal network elements can appear 

abnormal, even if only part of a network is damaged. 

Another issue, when using SEM to infer effective connectivity, is that we can only use models 

of low complexity  – usually, (acyclic) models that have no recurrent connections [53]. This is because 

fitting the sample covariance means that we have to throw away a lot of information in the original time 

series. Heuristically, the ensuing loss of degrees of freedom means that conditional dependencies among 
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the estimates of effective connectivity are less easy to resolve. In machine learning literature, structural 

equation modeling can be regarded as a generalization of inference on linear Gaussian Bayesian 

networks that relaxes the acyclic constraint. As such, it is a generalization of structural causal modeling, 

which deals with directed acyclic graphics (see next section). This generalization is important in the 

neurosciences, because of the ubiquitous reciprocal connectivity in the brain that render it cyclic or 

recursive.    

Next, we turn to the description of time series based on second order statistics and show that 

they can analytically be derived from the state-space model of (1).   

 

Coherence, cross spectra and correlations 

 

Hitherto, we have only considered procedures for identifying effective connectivity from fMRI 

time series. However, an important question remains: is there an analytical relationship between 

functional and effective connectivity? Figure 3 addresses this question schematically by showing how 

various measures of statistical dependencies (functional connectivity) are interrelated – and how they 

can be generated from a dynamic causal model. This schematic contextualises different measures of 

functional connectivity and how they arise from (state-space) models of effective connectivity. In other 

words, measures that are typically used to characterize observed data can be regarded as samples from 

a probability distribution over functions, whose expectation is known. This means that one can treat 

normalized measures – like cross-correlation functions and spectral Granger causality – as an explicit 

function of the parameters of the underlying generative process.  

In this schematic we have included common (descriptive) measures of functional connectivity 

that have been used in fMRI. These include the correlation coefficient (the value of the cross correlation 

function at zero lag), coherence and (Geweke) Granger causality [54]. These measures can be regarded 

as standardised (second-order) statistics based upon the cross covariance function, the cross spectral 

density and the directed transfer functions respectively. In turn, these are determined by the first-order 

(Volterra) kernels, their associated transfer functions and vector autoregression coefficients. For readers 

not familiar with Volterra kernels, the use of Volterra kernels provides an alternative to the conventional 

identification methods by expressing the output signal as high-order nonlinear convolution of the inputs. 
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It can simply be thought of as a functional Taylor expansion and can be regarded as power series with 

memory (see [55]for detailed discussion).Crucially, all these representations can be generated from the 

underlying state-space model used by DCM. Let us examine these relationships further. First, there is a 

distinction between the state-space model (upper two boxes) – that refers to hidden or system states – 

and representations of dependencies among observations (lower boxes) – that do not. This is important 

because although one can generate the dependencies among observations from the state-space model, 

one cannot do the converse. In other words, it is not possible to derive the parameters of the state-space 

model (e.g., effective connectivity) from transfer functions or autoregression coefficients. This is why 

one needs a state-space model to estimate effective connectivity or – equivalently – why effective 

connectivity is necessarily model-based. Second, we have seen in previous sections that SEM and 

autoregressive representations can be derived from (bilinear and stochastic) DCM in a straightforward 

manner (under certain assumptions). The convolution kernel representation in Figure 3 provides a 

crucial link between covariance-based second-order measures – like cross covariance, cross correlation 

– and their spectral equivalents, like cross spectra and coherence. Figure 3 also highlights the distinction 

between second order statistics (lower two rows) and models of the variables per se (upper three rows). 

For example, convolution and autoregressive representations can be used to generate timeseries (or their 

spectral counterparts), while cross covariance functions and autoregression coefficients describe their 

second-order behaviour. This is important because this second-order behaviour can be evaluated 

directly from observed timeseries. Indeed, this is the common way of measuring functional connectivity 

in terms of (second-order) statistical dependencies.  We also highlight the dichotomy between time and 

frequency representations (measures within the light Gray box). For example, the (first-order Volterra) 

kernels in the convolution formulation are the Fourier transform of the transfer functions in frequency 

space (and vice versa). Similarly, the directed transfer functions of the autoregressive formulation are 

based upon the Fourier transforms of the autoregression coefficients. Another distinction is between 

representations that refer explicitly to random (state and observation) noise and autoregressive 

representations that do not. For example, notice that the cross-covariance functions of the data depend 

upon the cross-covariance functions of state and observation noise. Conversely, the autoregression 

formulation only invokes (unit normal) innovations (although the autoregression coefficients are an 

implicit function of both state and observation noise covariance functions). In the current setting, 
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autoregressive representations are not regarded as models, but simply ways of representing 

dependencies among observations. This is because (hemodynamic) responses do not cause responses – 

hidden (neuronal) states cause responses. 

Crucially, all of the above formulations of statistical dependencies contain information about 

temporal lags (in time) or phase delays (in frequency). This means that, in principle, all measures are 

directed – in the sense that the dependencies from one region to another are distinct from the 

dependencies in the other direction. However, only the autoregressive formulation provides directed 

measures of dependency – in terms of directed transfer functions or Granger causality. This is because 

the cross-covariance and spectral density functions between two timeseries are antisymmetric. The 

autoregressive formulation can break this (anti) symmetry because it precludes instantaneous 

dependencies by conditioning the current response on past responses. Note that Granger causality is – 

in this setting – a measure of directed functional connectivity [56]. This means that Granger causality 

(or the underlying autoregression coefficients) reflects directed statistical dependencies – such that two 

regions can have strong autoregression coefficients or Granger causality in the absence of a direct 

effective connection. Finally, there is a distinction between (second order) effects sizes in the upper row 

of dependency measures and their standardised equivalents in the lower row. For example, coherence 

is simply the amplitude of the cross spectral density normalised by the auto-spectra of the two regions 

in question. Similarly, one can think of Granger causality as a standardised measure of the directed 

transfer function (normalised by the auto-spectra of the source region).  

We also note another widely used measure of functional dependencies, known as 

mutual information [57] that quantifies the shared information between two variables – and can 

reflect both linear and nonlinear dependencies. For example, if two time-series are independent, 

there is no shared information and hence the mutual information is zero. Mutual information 

can be calculated relatively simply – under the assumption that time series are Gaussian – from 

coherence in the frequency domain as [58-60] 

  𝜗𝑖𝑗 = 12𝜋 ∫ log (1 − 𝐶𝑖𝑗(𝜔)) 𝑑𝜔,𝜔2𝜔1         (8) 

 

where 𝐶𝑖𝑗(𝜔) is the coherence – as defined on Figure 3 – between the two time series  𝑖 and 𝑗.   
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In summary, given a state-space model, one can predict or generate the functional connectivity 

that one would observe, in terms of cross-covariance functions, complex cross-spectra or autoregression 

coefficients (where the latter can be derived in a straightforward way from the former using the Yule-

Walker formulation). In principle, this means that one could either use the sampled cross-covariance 

functions or cross-spectra as data features. It would also be possible to use the least-squares estimate of 

the autoregression coefficients – or indeed Granger causality – as data features to estimate the 

underlying effective connectivity. We will describe such schemes in the next section. 

C. Summary 

 

This section has tried to place different analyses of connectivity in relation to each other. The 

most prevalent approaches to effective connectivity are dynamic causal modeling, structural equation 

modeling, and Granger causality. We have highlighted some of the implicit assumptions made when 

applying structural equation modeling and Granger causality to fMRI time series. In the remainder of 

this review, we will focus on generative models of distributed brain responses and consider some of the 

exciting developments in this field. 

 

IV. BIOPHYSICAL MODELLING OF NEURONAL DYNAMICS 

Biophysical models of neuronal dynamics are usually used for one of two things: either to 

understand the emergent properties of neuronal systems or as observation models for measured neuronal 

responses. We discuss examples of both. In terms of emergent behaviors, we will consider dynamics 

on structure [61-69] and how this behavior has been applied to characterizing autonomous or 

endogenous fluctuations in fMRI [70-73]. This section concludes with recent advances in dynamic 

causal modeling of directed neuronal interactions that support endogenous fluctuations. Some 

subsections below are based on our previous review [10]. 

 

A. Intrinsic dynamics, criticality and bifurcations 

The use of resting state fMRI [74, 75] or studies based on BOLD signal correlations while the 

brain is at rest are widespread [76]. These patterns are thought to reflect anatomical connectivity [77] 
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and can be characterized in terms of remarkably reproducible spatial modes (resting-state or intrinsic 

networks). One of these modes recapitulates the pattern of deactivations observed across a range of 

activation studies (the default mode; [78]). Resting state fMRI studies show that even at rest, 

endogenous brain activity is self-organizing and highly structured. The emerging picture is that 

endogenous fluctuations are a consequence of dynamics on anatomical connectivity structures with 

particular scale-invariant characteristics [70, 71, 79, 80].These are well-studied and universal 

characteristics of complex systems and suggest that we may be able to understand the brain in terms of 

universal phenomena [81]. Universality is central to the hypothesis that the cerebral cortex is poised 

near a critical point, where only one variable, a control parameter determines the macroscopic behavior 

of the system [82, 83]. This is an important issue because systems near phase-transitions show universal 

phenomena [84-88]. Near the critical point, correlations between neurons would occur across all scales, 

leading to optimized communication [89]. Experimental evidence for this notion has accumulated over 

the past decades, where power laws and scaling relationships have been found in human neuroimaging 

timeseries [90, 91]. However, it should be noted that with more attention on this new direction, 

there are a variety of distributions; e.g., stretched exponential, Rayleigh, double exponential 

and lognormal that are found in neurophysiological timeseries [26, 92, 93]. Hence there may be 

a need to carefully disambiguate the causes of these heavy-tailed distributions found in the 

brain and behaviour. From the dynamical system perspective, endogenous dynamics are thought to 

be generated by the dynamic instabilities that occur near bifurcations; i.e., dynamics that accompany a 

loss of stability when certain control parameter(s) reach a critical value [26, 94-96]. The eigenmodes of 

neuronal (effective) connectivity that define the stability of the resting state gives rise to scale-free 

fluctuations that emerge from the superposition of the few modes that decay slowly. These slowly 

fluctuating (unstable) modes have Lyapunov exponents that are close to zero. This occurs when systems 

approach transcritical bifurcations (or stochastic Hopf bifurcations when the eigenvalues are complex 

[97, 98] and show critical slowing [93]). Put simply, this means that the ensuing networks are defined 

by trajectories that have fixed points close to instability. This means that the neuronal fluctuations 

persist over longer time scales to generate the patterns responsible for the emergence of intrinsic brain 

networks. The amplitudes of these eigenmodes or patterns correspond to the order parameters described 

in Section III (B). The (negative) inverse of the Lyapunov exponent corresponds to the characteristic 
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time constant of each mode, where each mode with a small exponent (large time constant) corresponds 

to an intrinsic brain network or resting state networks (RSN). 

B. Causal modelling of neuronal dynamics 

The past decade has seen the introduction of graph theory to brain imaging. Graph theory 

provides an important formulation for understanding dynamics on structure. Developments in this area 

have progressed on two fronts: namely, to understand connections between graphs and probability 

calculus and the use of probabilistic graphs to resolve causal interactions. The probabilistic graph 

framework goes beyond classical constructs by providing powerful symbolic machinery and notational 

convenience (e.g., the use of dependency graphs to resolve Simpson’s paradox: see Box 1). Within this 

enterprise one can differentiate at least two streams of work: one based on Bayesian dependency graphs 

or graphical models called structural causal modeling [99], and the other based on causal influences 

over time, which we consider under dynamic causal modeling. Structural causal modeling originated 

with structural equation modeling [47] and uses graphical models (Bayesian dependency graphs or 

Bayes nets), in which direct causal links are encoded by directed edges. These tools have been largely 

developed by Pearl [22] and are closely related to the ideas of  [100-102]. An essential part of network 

discovery in structural causal modeling is the concept of intervention; namely, eliminating connections 

in the graph and setting certain nodes to given values. Structural causal modelling lends a powerful and 

easy-to-use graphical method to show that a particular model specification identifies a causal effect of 

interest. Moreover, the results derived from structural causal modelling do not require specific 

distributional or functional assumptions like multivariate normality, linear relationships etc. However, 

it is not the most suitable framework to understand coupled dynamical systems, because it is limited in 

certain respects. Crucially, it only deals with conditional independencies in directed acyclic graphs 

(DAG). This is problematic because brains perform computations on a directed and cyclic graph. Every 

brain region is connected reciprocally (at least poly-synaptically), and every computational theory of 

brain function rests on some form of reciprocal or reentrant message passing. Another drawback is that 

the causal calculus of structural causal modelling ignores time. Pearl argues that a causal model should 

rest on functional relationships between variables. However, these functional relationships cannot deal 

with (cyclic) feedback loops. Pearl [14] argues for dynamic causal models when attempting to identify 
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hysteresis effects, where causal influences depend on the history of the system. Interestingly, the DAG 

restriction can be finessed by considering dynamics and temporal precedence within structural causal 

modeling. This is because the arrow of time can be used to convert a directed cyclic graph into an 

acyclic graph when the nodes are deployed over successive time points. This leads to structural equation 

modeling with time-lagged data and related autoregression models, such as those employed by Granger 

causality described above. As established in the previous section, these can be regarded as discrete time 

formulations of dynamic causal models in continuous time. 

 

Structural and dynamic causal modeling 

 

As established above, in relation to the modelling of fMRI timeseries, dynamic causal modeling 

refers to the (Bayesian) inversion and comparison of models that cause observed data. These models 

are usually state-space models expressed as (ordinary, stochastic, or random) differential equations that 

govern the motion of hidden neurophysiological states. These models are generally equipped with an 

observer function that maps from hidden states to observed signals (see (1)). The basic idea behind 

DCM is to formulate one or more models of how data are caused in terms of a network of distributed 

sources. These sources talk to each other through parameterized connections and influence the dynamics 

of hidden states that are intrinsic to each source. Model inversion provides estimates of their parameters 

and the model evidence. 

We have introduced DCM for fMRI using a simple state-space model based on a bilinear 

approximation – extensions to for e.g. nonlinear [103] and two state [104] DCM, among others, are also 

available and are in use – to the underlying equations of motion that couple neuronal states in different 

brain regions [32]. Most DCMs consider point sources both for fMRI and MEG/EEG data (c.f., 

equivalent current dipoles) and are formally equivalent to the graphical models used in structural causal 

modeling. However, in dynamic causal modeling, they are used as explicit generative models of 

observed responses. Inference on the coupling within and between nodes (brain regions) is generally 

based on perturbing the system and trying to explain the observed responses by inverting the model. 

This inversion furnishes posterior or conditional probability distributions over unknown parameters 

(e.g., effective connectivity) and the model evidence for model comparison [105]. The power of 
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Bayesian model comparison, in the context of dynamic causal modeling, has become increasingly 

evident. This now represents one of the most important applications of DCM and allows different 

hypotheses to be tested, where each DCM corresponds to a specific hypothesis about functional brain 

architectures [106-112]. DCM has been mostly used for (task based) fMRI and electrophysiological 

dynamics (EEG/MEG/LFPs) but most recent advances have focused on the modelling of intrinsic brain 

networks in the absence of exogenous influence – known as ‘resting state’ fMRI [74]. In the remainder 

of this section, we will briefly review these developments besides discussing these new mathematical 

models we will also showcase some of their clinical applications to neurodegenerative diseases, like 

Parkinson’s disease. 

  

C. Dynamic casual modelling of intrinsic networks 

There has been an explosion of research examining spontaneous fluctuations in fMRI signals 

(see Figure 4). These fluctuations can be attributed to the spontaneous neuronal activity, which is 

usually ignored in deterministic models of responses to (designed) experimental inputs. Deterministic 

DCMs are cast as multiple input multiple output (MIMO) systems, where exogenous inputs perturbed 

the brain to produce an observed BOLD response. In absence of external inputs – as in the case of 

resting state fMRI – neuronal networks are driven by activity that is internal to the system [113].  The 

generative model for resting state fMRI timeseries has the same form as (3) but discounts exogenous 

modulatory input. It is to be noted that we can still include exogenous (or experimental) inputs, 𝑢(𝑡)  in our model. These inputs drive the hidden states —and are usually set to zero in resting 

state models. It is perfectly possible to have external, (non-modulatory) stimuli, as in the case 

of conventional functional neuroimaging studies. For example, in [114] we used an attention 

to visual motion paradigm to illustrate this point. Figure 5 provides a schematic of the resulting 

stochastic dynamic causal model. In contrast to the previous section, we will adopt a generalized 

framework in which state noise 𝑤(𝑡) and observation noise 𝑒(𝑡) are analytic (i.e., non-Markovian). 

This simply means that generalized motion of the state noise 𝐰(𝑡) = [𝐰(𝑡), �̇�(𝑡), �̈�(𝑡) … ] is well 

defined in terms of its higher-order statistics. Similarly, the observation noise �̃�(𝑡) =[𝐞(𝑡), �̇�(𝑡), �̈�(𝑡) … ] has a well-defined covariance (for a more detailed discussion see [115]. 
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Consequently, the stochastic part of the generative model in Equation (1) can be conveniently 

parameterised in terms of its precision (inverse covariance). This allows us to cast (1) as a random 

differential equation instead of stochastic differential equation; hence eschewing Ito calculus [34, 116]. 

Interested readers will find a theoretical motivation for using analytic state noise in [34]. Under linearity 

assumptions, (1) can be written compactly in generalized coordinates of motion: 

𝐃�̃�(𝑡) = 𝑓(�̃�, �̃�, 𝛉) + �̃�(𝑡),                     (9)

 �̃�(𝑡) = ℎ̃(�̃�, 𝛉) +  �̃�(𝑡),   

 

where 𝐃 is the block diagonal temporal derivative operator, such that the vectors of generalized 

coordinates of motion are shifted as we move from lower-orders of motion to higher-orders [115]. For 

resting state activity, (9) takes a very simple linear form: 

𝐃�̃�(𝑡) = 𝐀�̃�(𝑡) + 𝐂�̃�(𝑡) +  �̃�(𝑡).        (10) 

This is an instance of a linear dynamical system with quasi-deterministic behaviour [117, 118]. Put 

simply, the linear dynamical system described by (10) is insensitive to the initial conditions; hence, it 

can only exhibit a limited repertoire of behaviour: linear systems can contain closed orbits, but they will 

not be isolated, hence no limit cycles – either stable or unstable – can exist, which precludes chaotic 

behaviour. Technically speaking, if 𝛌 represents the eigenvalues of the Jacobian 𝜕�̃�𝑓 = 𝐀, that is 𝛌 =𝛎†𝐀𝛎, where † denotes the generalized inverse, then the Lyapunov exponents ℜ(𝛌) of this linear 

dynamical system will always be negative. In general, the Jacobian is not symmetrical (causal effects 

are asymmetric); hence the modes and eigenvalues take complex values. For the detailed treatment of 

the special case of symmetrical connectivity – in which the eigenmodes of functional and effective 

connectivity become the same – see [119]. It is also worth noting that these eigenmodes are also 

closely related to (group) independent component analysis (ICA) except with a rotation based 

on higher order statistics – for details see [120]. 

There are currently two schemes to invert models of the form (9). They differ in what data 

features they use for the parameter estimation. The first inverts data in the time domain and the model 

is used to predict the timeseries per se. This is referred to as stochastic DCM [116]. The second approach 
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makes predictions in the frequency domain and is based on fitting second-order data features like cross-

spectra. This is referred to as spectral DCM [114, 121]. We will briefly review both schemes and 

illustrate their clinical applications. For a schematic illustration of dynamics causal modelling of 

intrinsic dynamics, please see Figure 6. Figure 7 presents a comparison of the two schemes 

Stochastic dynamic causal models 

Stochastic DCM entails inverting a model of the form given by (10) in the time domain, which 

includes state noise. This requires estimation of not only the model parameters (and any 

hyperparameters that parameterise the precision of generalised random fluctuations), but also the 

hidden states, which become random (probabilistic) variables. Hence the unknown quantities to be 

estimated under a stochastic DCM are  𝛙 = {�̃�(𝑡), 𝛉, 𝛔}, where 𝛔 refers to any hyperparameters 

describing random fluctuations. In terms of temporal characteristics, the hidden states are time-variant, 

whereas the model parameters (and hyperparameters) are time-invariant.  

There are various variational schemes in literature that can invert such models. For example, 

dynamic expectation maximization (DEM) [122] and generalized filtering (GF) [34]. There is a subtle 

but important distinction between DEM and generalised filtering. DEM calls on the mean field 

approximation described above i.e., it assumes 𝑞(𝛙) = 𝑞(�̃�(𝑡))𝑞(𝛉)𝑞(𝛔), whereas generalized 

filtering, as the name suggest, is more general that it does not make this assumption. Both schemes, 

however, assume a fixed form Gaussian distribution for the approximate conditional posterior densities 

(the Laplace approximation). Generalized filtering considers all unknown quantities to be conditionally 

dependant variables i.e., 𝑞(𝛙) = 𝑞(�̃�, 𝛉, 𝛔), and produces time-dependent conditional densities for all 

unknown quantities. The time-invariant parameters and hyperparameters are cast as time-variant with 

the prior constraint that their temporal variation is small. In brief, this online scheme assimilates log-

evidence at each time point, in the form of variational free energy and provides time-dependant 

conditional densities for all unknown quantities. This is in contrast to schemes, like DEM (or 

deterministic model inversion using variational Laplace) with mean field approximations that 

assimilates all the data before computing the free energy.  
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Figure 8 shows an exemplar data analysis reported in [123] that used stochastic DCM to 

quantify effective connectivity changes in Parkinson’s disease. Depleted of dopamine, the dynamics of 

the Parkinsonian brain impact on both ‘action’ and ‘resting’ motor activity. Deep brain stimulation 

(DBS) has become an established means of managing these symptoms, although its mechanisms of 

action remain unclear. Kahan et al. modeled the effective connectivity – using stochastic dynamic causal 

modelling – underlying low frequency BOLD fluctuations in the resting Parkinsonian motor network. 

They were particularly interested in the distributed effects of DBS on cortico-subcortical connections. 

Specifically, they showed (see Figure 8) that subthalamic nucleus (SN) deep brain stimulation 

modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the 

cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect 

subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents 

were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were 

strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia 

afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain 

stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect 

afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. These 

findings highlight the distributed effects of stimulation on the resting motor network and provide a 

framework for analyzing effective connectivity in resting state functional MRI with strong a priori 

hypotheses. 

Spectral dynamic causal models 

Although the stochastic models in (10) and their inversion in the time domain provide a useful 

means to estimate effective connectivity, they also entail the estimation of hidden states. This poses a 

difficult inverse problem that is computationally demanding; especially when the number of hidden 

states becomes large. To finesse this problem, a DCM based upon a deterministic model that generates 

predicted cross-spectra was explored [114, 121]. This scheme provides a constrained inversion of the 

stochastic model by parameterising the spectral density neuronal fluctuations. This parameterisation 

also provides an opportunity to compare parameters encoding neuronal fluctuations among groups. The 

parameterisation of endogenous fluctuations means that the states are no longer probabilistic; hence the 
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inversion scheme is significantly simpler, requiring estimation of only the parameters (and 

hyperparameters) of the model. The ensuing model inversion in the spectral domain is similar in spirit 

to previous approaches described in [26, 98, 124]. Put simply, while generalised filtering estimates 

time-dependent fluctuations in neuronal states producing observed data, spectral DCM simply estimates 

the time-invariant parameters of their cross spectra. Effectively, this is achieved by replacing the 

original timeseries with their second-order statistics (i.e., cross spectra). This means that instead of 

estimating time varying hidden states, we are estimating their covariance. In turn, this means we need 

to estimate the covariance of the random fluctuations using a scale free (power law) form for the state 

noise (resp. observation noise) that can be motivated from previous work on neuronal activity [125-

127]: 𝒈𝐰(𝜔, 𝛉) = 𝛂𝐰𝜔−𝛃𝐰  

𝒈𝐞(𝜔, 𝛉) = 𝛂𝐞𝜔−𝛃𝐞 .          (11) 

Here 𝒈𝐱(𝜔) = 𝑿(𝜔)𝑿(𝜔)† represents the complex cross spectra, where 𝑿(𝝎) is the Fourier transform 

of the 𝐱(𝑡), {𝛂, 𝛃} ⊂ 𝛉 are the parameters controlling the amplitudes and exponents of the spectral 

density of the neural fluctuations and 𝜔 = 2𝜋𝑓 is the angular frequency. This models neuronal noise 

with generic 1/𝑓𝛾 spectra that characterizes fluctuations in systems that are at nonequilibrium steady-

state. A linear scaling regime of the spectral density in double logarithmic coordinates – implicit in (11) 

– is not by itself indicative of a scale free, critical process unless 𝛾 is less than 1.5 (and the regime scales 

over several orders of magnitude). For the human EEG, this is generally not the case: above 10 Hz, 𝛾 = 

2.5 and above 70 Hz 𝛾 is usually greater than 3.5, which is consistent with a Poisson process (see [128] 

and [129]). However, at low frequencies (less than 1.5 Hz) the slope is shallower and it is likely that 

the amplitude or power envelopes of faster frequencies are scale-free [130, 131] or another heavy-tailed 

distribution [132]. Using the model parameters, 𝛉 ⊇ {𝐀, 𝐂, 𝛂, 𝛃}, one can simply generate the expected 

cross spectra as follows: 

𝐲(𝑡) = 𝛋(𝑡) ⊗ 𝐰(𝑡) + 𝐞(𝑡),  
𝛋(𝑡) = 𝜕𝐱𝑔 exp(𝑡 𝜕𝐱𝑓),  
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𝒈𝐲(𝜔, 𝛉) = |𝑲(𝜔)|2𝒈𝐰(𝜔, 𝛉) + 𝒈𝐞(𝜔, 𝛉),       (12) 

where 𝑲(𝜔) is the Fourier transform of the system’s (first order) Volterra kernels  𝛋(𝑡), which are a 

function of the Jacobian or effective connectivity (see Figure 3). The unknown quantities 𝛙 = {𝛗, 𝛉, 𝛔} 

of this deterministic model can now be estimated using standard Variational Laplace [133]. The 

resulting inversion provides the free energy bound on the log evidence log 𝑝(𝒈𝐲(𝜔)|𝑚) and 

approximate conditional densities 𝑞(𝛙) ≈ 𝑝(𝛙|𝒈(𝜔), 𝑚). Here 𝒈𝐲(𝜔) represents the predicted cross 

spectra that can be estimated, for example, using an autoregressive (AR) model.  

 

An example from ageing 

 

Finally, in Figure 9 we show an example from recent work on ageing [134] that used spectral 

DCM. Well-being across the lifespan depends on the preservation of cognitive function. It was 

hypothesized that successful cognitive ageing is determined by the connectivity within and between 

large-scale brain networks at rest. Spectral DCM was used to explain the spectral characteristics of 

resting state fMRI data from 602 healthy adults in a cohort across ages 18-88 (www.cam-can.org).  The 

location of the key cortical regions in each network was identified by spatial ICA, using the Group 

ICA [120] to extract 20 low-dimensional components. Then the three well-established functional 

networks: the salience network (SN), dorsal attention network (DAN) and default mode network 

(DMN) were identified by spatially matching to pre-existing templates [135]. Effective connectivity 

was assessed within and between these three key large-scale networks; although for brevity we have 

only included more interesting results for the between network connectivity in this review. In brief, a 

two‐step process is used here, in which ICA is used to identify linearly coherent networks, and then 

the (potentially non-linear) relationship among these networks is tested within a causal modelling 

framework using spectral DCM. This approach has been used several times in both task and rest fMRI 

data [136-138].  

Using multiple linear regression, it was found  that about 30% of age variance can be predicted 

(r = .544, p < .001) by i) increased inhibitory self-connections in SN and DMN networks, ii) decreased 

effective connectivity from the DAN network to SN network, and iii) increased haemodynamic decay 

http://www.cam-can.org/
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times for all networks (Figure 9, panel B). Subsequently a classical multivariate test (canonical variates 

analysis) was used to ask to what degree the DCM parameters predict cognitive performance, shown in 

panel C.  For between-network analysis, the corresponding canonical vector suggested that high 

performance across a range of cognitive tasks (high scores of general intelligence (Cattell), face 

processing (Benton Faces), memory (story recall), multitasking (Hotel) and response consistency 

(inverse of response variability of on simple motor task)) was associated with less self-inhibition of the 

networks and a smaller influence of DMN on SN (r = 0.447, p<0.001). In other words, about 20% of 

the variance in performance – across a range of cognitive tasks studied – could be predicted from 

changes in effective connectivity between networks. To further investigate whether the relationship 

between cognitive performance and connectivity was age-dependent, moderation analysis was used. It 

was found that the interaction between age and connectivity values (age x connectivity profile) 

predicted a significant proportion of variance in cognitive performance, (T(398) = 3.115, p (one-tailed) 

<0.001). The direction of the interaction was such that increasing age strengthened the relationship 

between cognitive and connectivity profiles. This can be seen in panel D, where the relationship 

between cognitive performance and connectivity profile becomes stronger for older age-groups. This is 

an interesting study that used spectral DCM to dissociate neuronal from vascular components of the 

fMRI signal to find age-dependent and behaviorally-relevant differences in resting-state effective 

connectivity between large-scale brain networks. Taken together, the results suggest that maintaining a 

healthy resting state connectivity becomes increasingly important for older adults in order to maintain 

high levels of domain-general cognitive function, and may play a critical role in the mechanisms of 

healthy cognitive ageing. 

 

D. Summary 

 

In summary, both spectral and stochastic DCM furnish estimates of the effective connectivity 

that underlie intrinsic brain networks. These estimates are based on BOLD data acquired at rest, using 

different inversion schemes. We suppose that these resting state networks emerge from the dynamical 

instabilities and critical slowing near transcritical bifurcations. In this setting, neuronal activity is 

modelled with random differential equations, which can be estimated using stochastic inversion 
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schemes (like generalized filtering in stochastic DCM), or by deterministic schemes modelling observed 

functional connectivity (specifically the cross spectral densities modelled by spectral DCM). 

 

V. DISCUSSION 

The limitations and challenges of dynamic casual modelling and the implicit scoring of large 

numbers of models have been addressed in a number of critical reviews (e.g. [139, 140]). Their key 

conclusions highlight several issues: firstly, although the modelling assumptions underlying DCM are 

motivated by neuroanatomical and neurophysiological constraints, their plausibility is difficult to fully 

establish. For example, in DCM for fMRI, physiological details of the neurovascular coupling are 

potentially important. Many DCMs neglect the potential influence of inhibitory activity on the 

hemodynamic response, and call on a simplistic account of the metabolic cascade that relates synaptic 

activity and neuronal metabolism to the vasodilatation. In principle, these are issues that can be resolved 

using Bayesian model comparison. In other words, if a more complex and complete model is supported 

by the data, one can always optimize the DCM. Examples of this include recent trends towards more 

detailed physiological modelling. For example, [141] propose several extensions, such as an adaptive 

two-state neuronal model that accounts for a wide range of neuronal time courses during stimulation 

and post-stimulus deactivation; a neurovascular coupling model that links neuronal activity to blood 

flow in a strictly feedforward fashion; and a balloon model that can account for a vascular uncoupling 

between blood flow and blood volume due to viscoelastic properties of venous blood vessels.  

There are also questions about the robustness of the statistical (approximate Bayesian) inference 

techniques employed in DCM. For example, it has been argued: i) that the number of parameters and 

the complexity of the models preclude robust parameter estimation [140, 142],  ii) Bayesian model 

comparison cannot compare DCMs, in the sense that it cannot falsify them and iii) selecting a model 

based on the model evidence does not ensure that it will generalize. All these concerns stem from 

frequentist thinking and are dissolved within a Bayesian framework (see [139] for detailed discussion). 

There are also several – well founded – technical concerns about the variational Bayes (VB) schemes 

employed in DCM. For example, the objective function based on the free energy functional is prone to 

local maxima that can result in inconsistent parameter estimations and model comparisons (e.g., across 

trials or subjects). There are several experimental studies, e.g. [143-147] that have addressed the 
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reproducibility of DCM and provide reassuring experimental validation. There is an issue of 

overconfidence usually associated with VB schemes, due to the potentially biased inference that results 

from mean-field and Laplace approximations to the posterior density. This issue has been addressed by 

simulation studies that compare the results of VB to standard (e.g., Gibb’s) sampling methods. The 

failures of approximate Bayesian inference are usually mitigated by formulating the inversion problem 

in a way that eschews brittle nonlinearities. 

Given issues highlighted above one obvious alternative is to use either ‘exact’ inference 

schemes like Markov Chain Monte Carlo or nonparametric methods based on Gaussian processes. 

Recently both have been explored for inverting Bayesian hierarchical models. For example in [148] 

Gaussian processes optimization was used for model inversion, [149] explored several gradient-free 

MCMC schemes (for e.g. random walk based Hasting’s sampling, adaptive MCMC sampling and 

population-based MCMC sampling) and in [150] more robust gradient-based MCMC schemes (for e.g. 

Hamiltonian and Langevin MCMC sampling) were extensively studied. However, these alternative and 

promising inference methods are still in an early phase of development and validation phase – and will 

require exhaustive experimental studies to establish their validity.    

Clearly, most of these issues transcend DCM per se and speak to the challenges facing any 

modelling initiative that has to contend with ‘big data’ and a large model or hypothesis spaces.  These 

challenges have focussed recent research on contextualizing the inversion of models of single subjects 

using (empirical or hierarchical) Bayesian models that distinguish between within and between-subject 

effects on the one hand, and the scoring of large model spaces with techniques like Bayesian model 

reduction on the other. This is an active research field with developments nearly every month. 

Now to conclude, in this review, we used several distinctions to review the history and 

modelling of macroscopic brain connectivity. We started with the distinction between functional 

segregation and integration. Within functional integration, we considered the key distinction between 

functional and effective connectivity and their relationship to underlying models of distributed 

processing. Within effective connectivity, we have looked at structural and dynamic causal modeling, 

while highlighting recent advances in the dynamic causal modeling of resting state fMRI data. 

We close with a few words on recent large scale projects in neurosciences; for example, the 

American BRAIN initiative and European Human Brain Project. These initiatives reflect an increasing 
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appreciation of the importance of neuroscience and the challenges of understanding how our brains 

work. Furthermore, they represent initiatives that exploit remarkable advances in computer science and 

neuroimaging at many different scales (from the molecular to multi-subject) – and the modelling (and 

mining) of the resulting data. The experience of the systems neuroscience community, with the big data 

on offer from neuroimaging, is reflected in this review. This experience highlights the importance of 

formal models of how data are generated – and the computational schemes used to evaluate and invert 

these models. We are just embarking on a difficult journey to uncover the governing principles of how 

brains work and their functional (computational) architectures. Perhaps it is fitting to end on an 

encouraging quote from Abdus Salam (Nobel prize in physics, 1979) here: “Nature is not economical 

of structures – only of principles”. 
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VII. FIGURE LEGENDS 

Figure 1 

This schematic depicts a graph with undirected edges comprising 10 nodes, where each node can be 

considered as a neuronal system. We have sketched the evolution of this graph over three time points 

(under the assumption each node retains a memory of past influences). Nodes 1 and 2 (shown in red) 

are the nodes whose causal relationship is of interest. The key point of this example is that fluctuations 

in undirected coupling can induce directed dependencies. 
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Figure 2 

No legend 

Figure 3 

This schematic illustrates the relationship among different formulations of dependencies within 

multivariate timeseries – of the sort used in fMRI. The upper panel illustrates the form of a state-space 

model that comprises differential equations coupling hidden states (first equation) and an observer 

equation mapping hidden states 𝐱(𝑡) to observed responses 𝐲(𝑡) (second equation). Dynamic causal 

models are summarised by a Taylor (bilinear) approximation. Crucially, both the motion of hidden 

states and responses are subject to random fluctuations, also known as state 𝐰(𝑡) and observation 𝐞(𝑡) 

noise. The form of these fluctuations are modelled in terms of their cross-covariance functions 𝚺(𝑡) of 

time t or cross-spectral density functions 𝐠(𝑡) of (radial) frequency 𝜔, as shown in the lower equations. 

Given this state-space model and its parameters 𝛉 (which include effective connectivity), one can now 

parameterise a series of representations of statistical dependencies among successive responses as 

shown in the third row. These include convolution and autoregressive formulations shown on the left 

and right respectively – in either time (pink and orange) or frequency (light green) space. The mapping 

between these representations rests on the Fourier transform, denoted by (dotted line) and it’s inverse. 

For example, given the equations of motion and observer function of the state-space model, one can 

compute the convolution kernels that, when applied to state noise, produce the response variables. This 

allows one to express observed responses in terms of a convolution of hidden fluctuations and 

observation noise. The Fourier transform of these convolution kernels 𝛋(𝑡) is called a transfer 

function 𝑲(𝑡). Note that the transfer function in the convolution formulation maps from fluctuations in 

hidden states to response variables, whereas the directed transfer function in the autoregressive 

formulation 𝑺(𝑡) maps directly among different response variables. These representations can be used 

to generate second-order statistics or measures that summarise the dependencies, as shown in the third 

row; for example, cross-covariance functions and cross-spectra. The normalised or standardised 

variants of these measures are shown in the lower row and include the cross-correlation function (in 

time) or coherence (in frequency). The equations show how various representations can be derived from 
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each other. All variables are either vector or matrix functions of time or frequency. For simplicity, the 

autoregressive formulations are shown in discrete form for the univariate case (the same algebra applies 

to the multivariate case but the notation becomes more complicated). Here, 𝐳(𝑡) is a unit normal 

innovation. Finally, note the Granger causality is only appropriate for bivariate timeseries.  

Figure 4 

Citations rates for resting state resting state fMRI studies. These citations were identified by searching 

for “fMRI*” and “resting state”. Source: Web of Science. 

Figure 5 

This schematic illustrates the forward (dynamic causal) model for modelling intrinsic or endogenous 

fluctuations. The endogenous fluctuations (the state noise), is the driving input to the state-space model 

of effective connectivity, which is a function of the current neuronal states 𝐱(𝑡), and the connectivity 

parameters, 𝛉 that define the underlying structure or functional architecture of the model, and the 

random fluctuations 𝐰(𝑡). The driving fluctuations cause change in neural activity that, in turn, can be 

observed using the observer function ℎ, after addition of observation noise 𝐞(𝑡). The associated 

functional connectivity (e.g. cross-covariance function) can be calculated easily from this forward or 

generative model (see Figure 3) for any given parameters.  

Note: The effective connectivity matrix shown is actually a structural connectivity matrix of famous 

macaque/CoCoMac (as pointed out by one of the reviewers) – we used it here – we use it here as a 

schematic for effective connectivity. 

Figure 6 

This schematic shows dynamic causal model that embodies the best effective connectivity – identified 

using Bayesian model inversion (left top panel) – among hidden neuronal states that explains the 

observed functional connectivity, 𝚺(𝑡), among haemodynamic responses. This is explanation as 

possible because the cross-spectra contain all the information about (second-order) statistical 

dependencies among regional dynamics. Bayesian model inversion furnishes posterior estimates for the 
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parameters of each model and provides the associated log model evidence, in terms of a variational free 

energy bound. Since the mapping from functional connectivity to effective connectivity is not bijective 

(there may be many combinations of effective connectivity parameters that induce the same functional 

connectivity), one can use Bayesian model comparison (top right panel) to score competing models.  

The model with highest model evidence can then be selected. Alternatively one can use Bayesian model 

averaging to average across all possible models (bottom left panel). 

Figure 7 

This schematic illustrates the distinction between stochastic and spectral dynamic causal modelling.  

See text for a detailed description of how these schemes are used to model intrinsic network dynamics. 

Figure 8 

This figure summarizes the effect of subthalamic nucleus deep brain stimulation (STN DBS) on 

coupling in the motor basal ganglia circuit. Given the marked clinical effect of STN DBS in patients 

with Parkinson’s disease, Kahan et al., (2014) used stochastic DCM to estimate the coupling between 

key nodes of the basal ganglia network, and whether this coupling is changed by DBS. (A) A network 

was specified based on human and animal literature, and priors were placed on the nature of the coupling 

(excitatory or inhibitory), based on the neurochemical systems known to mediate neuronal connections. 

The literature-based anatomical model of the motor cortico-striato-thalamic loop was further simplified 

by removing the pallidal nodes and summarizing polysynaptic connections (thick arrows joining the 

putamen, STN and thalamus). Red arrows constitute excitatory coupling, blue arrows inhibitory 

coupling. Placing priors on the direction of coupling was enabled using the two-state DCM in the left-

hand panel. *The indirect pathway comprised two connections; the striato-STN and STN-thalamus 

connections (indicated with the dashed grey arrows). (B) Model inversion yielded coupling parameters 

‘on’ and ‘off’ DBS, demonstrating significant DBS-related changes in extrinsic (between-node) 

coupling throughout the network. Paired t-tests revealed significant differences between extrinsic 

coupling on and off stimulation. *P < 0.05, **P < 0.001 (Bonferroni corrected for multiple 

comparisons). (Upper panel) Cortico-striatal, direct pathway, and thalamo-cortical connections were 

potentiated by DBS, whereas (lower panel) STN afferents and efferents were attenuated. Note the 
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difference in scale between upper and lower panels. This is because the STN was modeled as a hidden 

node that was not measured with fMRI. (C) Using a series of regression models, the modulatory effects 

of DBS on connectivity where shown to predict the clinical improvements seen in the patient cohort. 

The results are summarized graphically here. [See Kahan et al., (2014) for more details]. 

 

Figure 9 

Regions of interest defined using spatial independent component analysis. A) Spatial distribution of 

three independent components (IC) using group ICA (n = 602) identified as the default mode network 

(DMN in blue), the dorsal attention network (DAN in red) and salience network (SN in yellow), and 

the peaks of their corresponding nodes (green circles). Temporal correlation is between (the first 

eigenvariate of) the ensuing time-series across all nodes and networks. FEF – frontal eye-fields, SPL – 

superior parietal lobe, vmPFC – ventromedial prefrontal cortex, PCC – parietal cingulated cortex, IPL 

– intraparietal lobe, dACC – dorsal anterior cingulated cortex, AI – anterior insula, r – right, l – left, all 

– SVD of all voxels, across all nodes, within a given network. B) Coefficients for how well a) effective 

connectivity (white), b) neuronal (green) and c) haemodynamic (red) parameters predict age. DCM 

parameters with bars (95% confidence intervals) that exclude zero are considered as significant 

predictors. C) Between network canonical variates analysis. Heliograph of variate loadings for the first 

canonical variate, where the relative sizes of correlations are indicated by the relative length of the bars 

(the dark is positive, the white is negative). These reflect the statistical relationship between variables 

of effective connectivity (Connectivity profile) and cognitive performance (Cognitive profile) (r = .440, 

p < .001). Variables with low contribution (r < .3) are shown as bars with dashed outline. Half-maximum 

strength of correlation is indicated by the dashed rings (outer is r = +0.5, inner is r = -0.5). D) 

Corresponding bivariate canonical correlation for three age groups. The relationships between 

connectivity and cognitive profiles are more pronounced for older subjects, suggesting that performance 

in older adults reflect a preserved connectivity.  
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State-space model 𝐱 𝑡 = 𝑓 𝐱(𝑡), 𝛉 + 𝐰 𝑡𝐲 𝑡 = ℎ 𝐱(𝑡), 𝛉 + 𝐞 𝑡𝚺𝐰 t = 𝐰 𝑡 𝐰(𝑡 − 𝜏)𝑇 and 𝚺𝐞 𝑡 = 𝐞 𝑡 𝐞(𝑡 − 𝜏)𝑇
E.g., Bilinear DCM:  𝐱 𝑡 = 𝐀 +  𝑗 𝐮𝑗𝐁𝑗 𝐱 + 𝐂𝑢 + 𝐰(𝑡)

Vector autoregressive model (VAR)
(assuming 𝐱 𝑡 = 𝐲 𝑡 )𝐲 𝑡 = 𝑖=1𝑁 𝑎𝑖𝐲(𝑡 − 𝑖) + 𝐳 𝑡

Convolution kernel𝐲 𝑡 = 𝛋 𝜏 ∗ 𝐰 𝑡 + 𝐞 𝑡𝛋 𝜏 = 𝜕𝐱ℎ . exp (𝜏 𝜕𝐱𝑓)

Cross covariance𝚺 𝜏 = 𝐲 𝑡 . 𝐲(𝑡 − 𝜏)𝑇= 𝛋 𝑡 ∗ 𝚺𝐰 𝑡 ∗ 𝛋 −𝑡 + 𝚺𝐞 𝑡

Cross correlation

𝑐𝑖𝑗(𝜏) = Σ𝑗𝑘(𝜏)𝛴𝑗𝑗(0)𝛴𝑘𝑘(0)

Convolution theorem𝒀 𝜔 = 𝑲 𝜔 𝑾 𝜔 + 𝑬 𝜔𝑲 𝜔 = FT 𝛋 𝜏

Cross spectral density𝒈𝐲 𝜔 = 𝒀 𝜔 𝒀 𝜔 †= 𝑲 𝜔 .𝒈𝐰 (𝜔).𝑲 𝜔 † + 𝒈e(𝜔)

Coherence

𝐶𝑖𝑗(𝜔) = 𝑔𝑗𝑘(𝜔) 2𝑔𝑗𝑗(𝜔)𝑔𝑘𝑘(𝜔)

Directed transfer functions𝒀 𝜔 = 𝑺 𝜔 .𝒁 𝜔𝑺 𝜔 = (𝐈 − 𝑨(𝜔))−1

Granger causality

𝐺𝑗𝑘(𝜔) = −ln 1 − 𝑆𝑗𝑘(𝜔) 2𝑔𝑗𝑗(𝜔)

Auto-regression coefficients 𝐀 =  𝐘𝐓  𝐘 −1  𝐘T  𝐘= 𝛒−𝟏 𝛒1, … 𝛒𝐩 𝑇

Auto- correlation𝑐𝑖𝑖 = (𝐈 −  𝐀)−𝟏(𝐈 −  𝐀𝑻)−𝟏

Spectral representations

Structural equation models (SEM)
(assuming 𝐱 𝑡 = y 𝑡 and  𝐲 𝒕 = 0 𝐮 𝑡 = 0 ) 𝐲 𝑡 = 𝐀𝐲(𝑡) + 𝐰 𝑡 = 𝚯− 𝐈 𝐲(𝑡) + 𝐞 𝑡𝐲 𝑡 = 𝚯𝐲 𝑡 + 𝐞 𝑡

Convolution theorem𝒀 𝜔 = 𝑨 𝜔 .𝒀 𝜔 + 𝒁 𝜔
A 𝜔 = FT 𝑎1, 𝑎2. . 𝑎𝑁

(Inverse) Fourier Transform

Transformation under assumptions

 𝒀 = 0𝑦(𝑡 − 1) 0𝑦(𝑡 − 2) 𝑦(𝑡 − 1) 0⋮ ⋱ ⋱
 𝐀 = 0𝑎1 0𝑎2 𝑎1 0⋮ ⋱ ⋱
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