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Simple finite connected graphs G � (V, E) of p≥ 2 vertices are considered in this paper. A connected detour set of G is defined as
a subset S⊆V such that the induced subgraph G[S] is connected and every vertex of G lies on a u − v detour for some u, v ∈ S. 'e
connected detour number cdn(G) of a graph G is the minimum order of the connected detour sets of G. In this paper, we
determined cdn(G) for three special classes of graphs G, namely, unicyclic graphs, bicyclic graphs, and cog-graphs for Cp, Kp,
and Km,n.

1. Introduction

For basic definitions of the concepts of graphs we refer to
[1–4], and for detour distance and related terminologies in
graphs, we refer to [5–7]. Let G � (V, E) be a connected
simple graph of p vertices and q edges. We assume that p is
finite and p(G)≥ 2. For u, v ∈ V(G) the length of a maxi-
mum u − v path is called detour distance D(u, v). A u − v
path of lengthD(u, v) is called u − v detour. For vertex v ∈ V
the detour eccentricity eD(v) is defined by

eD(v) � max D(u, v) : u ∈ V{ }. (1)

'e detour radius radDG and the detour diameter
diamDG (or D(G)) of G are defined as

radDG � min eD(v) : v ∈ V􏼈 􏼉,
diamDG � max eD(v) : v ∈ V􏼈 􏼉. (2)

A vertexw ∈ V(G) is said to lie on a u − v detourQ ifw is
a vertex of V(Q) including u and v. A detour set (denoted
d.s.) is a subset S ofV(G) such that every vertex v ofG lies on
an x − y detour of some x, y ∈ S. 'e detour number dn(G)
of G is defined by

dn(G) � min |S| : S is a d.s. of G{ }. (3)

A detour basis of G is a d.s. of G of order dn(G).
If S is a detour set of G and the induced subgraph G[S] is

connected, then S is called connected detour set (denoted
c.d.s.) of G. 'e connected detour number of G denoted as
cdn(G) is defined as

cdn(G) � min |S| : S is a c.d.s. of G{ }. (4)

A connected detour basis of G is a c.d.s. of order cdn(G)
(see [8, 9]).

A simple connected (p, q) graph G with p≥ 3 is called
unicyclic graph iff p � q. 'e graph G is called bicyclic iff
q � p + 1.

'e concept of connected detour number was in-
troduced and studied by Santhakumaran and Athisayana-
than in [9]. 'ey determined cdn for some special graphs
such as Kp, Cp, Km,n, trees, and Hamilton graph. 'ere are
many research papers on connected detour number and
edge detour graphs (see [10–14]). Moreover, the concept of
connected detour number and other related concepts have
interesting applications in the channel assignment problem
in radio technologies. 'is motivated us to determine
connected detour number for other classes of graphs.
'erefore, in this paper we determine the connected detour
numbers for unicyclic graphs and bicyclic graphs. Moreover,
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the class of graphs called cog-graphs Gc will be explained and
determined the cnd(Gc) if G is a complete graph, tree, cycle
graph, and complete bipartite graph.

2. The Connected Detour Number of
Unicyclic Graphs

Let G be a connected graph of order p≥ 3 and C the
unique cycle in G, and let C be of length l≥ 3. It is clear that
C has no chords, and every vertex of G, which is not on C,
is either a cut-vertex or an end-vertex. We shall determine
the connected detour number of such graphs in terms of
l and p. Let n be the number of vertices of C that are not
cut-vertices. Denote T(G) � v ∈ V(G) : v is either a cut−{

vertex or an end − vertex} and T(G) � V(G) − T(G). 'en,
n � |T(G)| and |T(G)| � p − n.

If l � p, then G � Cp so cdn(G) � 2. If p> l, then G
contains at least one cyclic cut-vertex. If n � 0, that is every
vertex of C is a cut-vertex, then by 'eorem 1.4 [Ref. 2]
cdn(G) � p. From now on, we assume p> l.

Proposition 1. LetG be a connected unicyclic graph of order
p≥ 4, and with l− cycle, l � 3. #en, cdn(G) � p − 1 iff
n � 1 or 2.

Proof. If n � 1, then G contains exactly one vertex which is
not a cut-vertex. It is clear that there is a detour joining the
other two vertices of the triangle and v lies on it. 'us,
cdn(G) � p − 1. If n � 2, let u1 and u2 be cycle vertices which
are not cut-vertices. Clearly, there is no path in G between
two vertices of T(G) that contains u1 or u2 (see Figure 1).
'us, every c.d.b. B of G must contain either u1 or u2.
'erefore, cdn(G)≥p − 1. If u3 is the third vertex of the
triangle and u1 ∈ B, then u2 lies on the u1 − u3 detour.
'erefore, cdn(G)≤p − 1. Hence, cdn(G) � p − 1.

To prove the converse, let cdn(G) � p − 1, and B(G) is
a c.d.b. of G, then B(G) contains two vertices of the 3− cycle,
one of them is a cut-vertex (∵p≥ 4). 'us, in view of
'eorem 1.4 [9], the 3− cycle has one or two vertices in T(G),
that is, n � 1 or 2. Hence, the proof is completed. □

Theorem 1. Let G be a connected unicyclic graph of order
p≥ 5 and with l− cycle, l≥ 4. #en, cdn(G) � p − 1 iff the
induced subgraph G[T(G)] consists of exactly n components.

Proof. Letm be the number of components of G[T(G)]. Let
m � n, then since for every c.d.b., B(G) and G[B(G)] are
connected, every connected component of G[T(G)] con-
tains at least one cycle cut-vertex, and G[T(G)] ⊂ G[B(G)],
then G[B(G)] contains at least n − 1 vertices from T(G).
'erefore, |B(G)| � p − n + (n − 1) � p − 1.

Conversely, let cdn(G) � p − 1, and B(G) is a c.d.b. ofG.
Since G[B(G)] is connected and G[T(G)] consists of m
components and G[T(G)] ⊂ G[B(G)], then G[B(G)] con-
tains at least m − 1 vertices from T(G). Because B(G) is
a connected detour set of minimum order, then B(G)
contains exactly m − 1 vertices from T(G). 'us,

cdn(G) � |B(G)| � |T(G)| +m − 1. (5)

From the hypothesis

cdn(G) � p − 1 � |T(G)| + |T(G)| − 1 � |T(G)| + n − 1.

(6)
'erefore, m � n.
Hence, the proof of the theorem is completed. □

Example 1. For the unicyclic graph G in Figure 2, we have
m � n � 4, so cdn(G) � p − 1.

Now, we have the following result for the connected
detour number of the unicyclic graph with exactly one cycle
cut-vertex.

Proposition 2. LetG be a connected unicyclic graph of order
p≥ 4 and with exactly one cycle cut-vertex, say v, then
cdn(G) � p − l + 2, where l is the length of the unique cycle C
of G.

Proof. Let u be a vertex of C adjacent to v. 'en, there is
a u − v detour consisting of all the vertices of C.

'us, T(G)∪ u{ } is a c.d.s. of order |T(G)| + 1 � [p −
(l − 1)] + 1 � p − l + 2.

It is clear that there are no x − y detour containing
vertices of T(G) for every pair x, y ∈ T(G). 'erefore,
T(G)∪ u{ } is a connected detour basis of G, and hence
cdn(G) � p − l + 2.

For connected unicyclic graphs having more than one
cycle cut-vertex, we need the following definition. □

Definition 1. Let G be a connected unicyclic graph of order
p≥ 4 and with at least two cycle cut-vertices, and let C be the
unique cycle of length l≥ 4. Moreover, let m be the number
of components of the induced subgraph G[T(G)]. 'ese
components divide the cycle vertices which are not cut-
vertices into m nonempty subsets A1, A2, . . . , Am, in suc-
cessive order around C, as illustrated in Figure 3.

Example 2. Consider the unicyclic graph G shown in
Figure 3.'e set of cycle vertices which are not cut-vertices is
W(G) � w1, w2, . . . , wn􏼈 􏼉. It is clear that n � 11, m � 4, and
l � 18. 'e setW(G) is partitioned into A1 � w1, w2􏼈 􏼉, A2 �

w3, w4, w5, w6, w7􏼈 􏼉, A3 � w8􏼈 􏼉, and A4 � w9, w10, w11􏼈 􏼉.
'e c.d.n. for unicyclic graphs havingmore than one cut-

vertex is determined by the following theorem.

Theorem 2. Let G be a connected unicyclic graph of order
p≥ 5 and with at least two cycle cut-vertices, and the induced

u1

u2

u3

Figure 1
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subgraphG[T(G)] consists ofm components.#en, cdn(G) �
p − α if and only if

α � max Ai
􏼌􏼌􏼌􏼌 􏼌􏼌􏼌􏼌 : i � 1, 2, . . . , m􏽮 􏽯. (7)

Proof. Let α be as defined in (7) for the graph G, and let S be
a c.d.b. for G. By 'eorem 1.4 of Ref [9], S contains the set
T(G). Since the induced subgraph G[S] is connected, then S
must contain all the vertices of at least (m − 1) subsets from
A1, A2, . . . , Am􏼈 􏼉. Since S is of minimum order, then S does
not contain the subset from A1, A2, . . . , Am􏼈 􏼉 that has
maximum order, say Ar. It is clear that there are two vertices
x, y ∈ T(G)∪ ∪i≠rAi􏼈 􏼉 which are adjacent on C; hence, there
is an x − y detour containing all the vertices of C. 'erefore,
S � T(G)∪ ∪i≠rAi􏼈 􏼉.

'us, cdn(G) � |S| � |T(G)| + (􏽐mi�1|Ai| − |Ar|) � p −
|Ar| � p − α.

To prove the converse, let cdn(G) � p − β and let S′ be
a c.d.b. of G. If β is not equal to max |Ai| : 1≤ i≤m􏼈 􏼉, then
either S′ is not of minimum order or the induced subgraph
G[S′] is disconnected, contradicting the definition of con-
nected detour basis.

'us, β � max |Ai| : 1≤ i≤m􏼈 􏼉, and hence the proof of
the theorem is completed. □

Remark 1. Clearly α � 1, iffm � n. 'us,'eorem 1 follows
from 'eorem 2.

3. The Connected Detour Numbers of
Connected Bicyclic Graphs

A (p, q) graph is bicyclic if and only if q � p + 1.'us, ifG is
a connected bicyclic graph, then G contains either three
cycles having some edges in common or contains exactly two
cycles having no edges in common. 'e connected detour
number for a block bicyclic graph is determined by the
following result.

Proposition 3. Let G be a 2-connected bicyclic graph of
order p≥ 5 as shown in Figure 4. #en,

(i) cdn(G) � 2, iff m � n≥ 1 and k≥ 1.
(ii) cdn(G) � 3, if m, n, k≥ 1 and they are different.

Proof.

(i) If m � n, then there are two x − w1 detours, name-
ly,(x, v1, v2, . . . , vn, y, wk, wk− 1, . . . , w2, w1) and
(x, u1, u2, . . . , um, y, wk, wk− 1, . . . , w2, w1). It is clear
that each vertex of G lies on one of the two x − w1

detours. 'us, x,w1􏼈 􏼉 is a c.d.b. of G, so cnd(G) � 2.

Conversely, if m≠ n, say m> n and k≠m, n, then G
does not contain adjacent vertices u, v such that u, v{ }

is a detour set. Hence, the proof of Part (i) is
completed.

(ii) If m, n, and k are different, say m> n> k, then it is
clear that w1, x, v1􏼈 􏼉 is a connected detour set of G.
So, cdn(G)≤ 3. In view of Part (i), cdn(G)≥ 3. 'us,
cdn(G) � 3. Hence, the proof of the proposition is
completed. □

Remark 2. IfG is a 2-connected bicyclic graph of order p≥ 4
with a cycle C and with exactly one chord, that is, an edge
joining nonadjacent vertices of C, then cdn(G) � 2.

'is section is divided into two subsections according to
the types of the bicyclic graphs.

3.1. #e Connected Detour Numbers of Bicyclic Graphs of
#ree Cycles. Now assume that G is a connected bicyclic
graph of order p≥ 9 with one or more cut-vertices and with
three cycles, that is, three x − y paths which are internally
vertex disjoints denoted by Q1, Q2, and Q3 as shown in
Figure 5. We assume without loss of generality that
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Figure 3: Unicyclic graph illustrating Def. 1.

Figure 2
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m≥ n≥ k≥ 1. Let T be the set of all cycle vertices which are
not cut-vertices in G, and let T � V(G) − T.

We shall determine the connected detour number for
three kinds of bicyclic graphs of three cycles.

Case 1. Assume that each Qi, 1≤ i≤ 3, contains at least one
cut-vertex other than x and y. Moreover, let T′ be the set of
all cycle cut-vertices in G. 'en, we have the following
proposition which determines the c.d.b. of such kind of
bicyclic graph G.

Proposition 4. Let G be a connected bicyclic graph of three
cycles and with one or more cut-vertices on eachQi, i � 1, 2, 3,
other than x and y as explained above and shown in Figure 5.
#en,

cdn(G) � |T| + |S|, (8)

where S is a subset of T of minimum order such that the
induced subgraph G[T′ ∪ S] is connected.

Proof. Since T′ ⊂ T and G is connected, then the induced
subgraph G[T∪ S] is connected. Because each Qi, 1≤ i≤ 3,
contains a vertex of T, then [T∪ S] contains x or y and each
Qi contains two adjacent vertices from [T∪ S]. 'erefore,
every vertex of the x − y paths lies on an u − v detour for
some u, v ∈ [T∪ S]. 'us, [T∪ S] is a c.d.s. of G. Moreover,
from the minimalist of S we deduce that [T∪ S] is a c.d.b. of
G. 'erefore, cdn(G) � |T| + |S|. Hence, the proof is
completed.

'e following example illustrates Proposition 3.2. □

Example 3. Consider the bicyclic graph G shown in
Figure 6.

It is clear that p(G) � 32 and S � u1, u2, v1, v3, w1, w2􏼈 􏼉:
T � V(G) − u1, u2, u5, u6, u7, v1, v3, v5, v6, w1, w2, w4, w5, y􏼈 􏼉.

(9)
'us, |T| � p(G) − 14 � 32 − 14 � 18

∴ cdn(G) � 18 + 6 � 24. (10)

Case 2. Assume that G contains exactly one x − y path that
does not contain cut-vertices, other than x and y. So we have
three possibilities for such bicyclic graph G:

(i) Let Q1 and Q3 each contains at least one internal
cut-vertex, and Q2 does not contain an internal cut-
vertex. 'en, G − v1, v2, . . . , vn􏼈 􏼉(� H1,3) is a uni-
cyclic graph. By 'eorem 2, cdn(H1,3) � p(H1,3) −

α1,3, in which α1,3 is defined in Definition 1 for the
graph H1,3. We can easily verify that if B1,3 is a c.d.b.
of H1,3, then it is a c.d.b. of G because m≥ n≥ k.
'erefore,

cdn(G) � p(G) − n − α1,3. (11)

(ii) LetQ2 andQ3 each contains at least one internal cut-
vertex and Q1 does not contain an internal cut-
vertex. 'en, G − u1, u2, . . . , um􏼈 􏼉(� H2,3) is a uni-
cyclic graph. By 'eorem 2, cdn(H2,3) � p(H2,3) −

α2,3, where α2,3 is the number defined in Definition 1
for the unicyclic graph H2,3. 'us, as in (i),

cdn(G) � p(G) − m − α2,3. (12)

(iii) Let Q1 and Q2 each contains at least one internal
cut-vertex, and Q3 does not contain an internal
cut-vertices. 'en, G − w1, w2, . . . , wk􏼈 􏼉(� H1,2) is
a unicyclic graph. By 'eorem 2, cdn(H1,2) �

p(H1,2) − α1,2, where the number α1,2 is explained
in Definition 1. If k � n, then every c.d.b. of H1,2 is
a c.d.b. of G. 'erefore,

cdn(G) � p(G) − k − α1,2. (13a)

If k< n, then any c.d.b. B1,2 of H1,2 is not c.d.s. of G
because each vertex wi (i � 1, 2, . . . , k) of Q3 does not lie on
a u-v detour for every pair of vertices u, v ∈ B1,2. But it is
clear that either x ∈ B1,2 or y ∈ B1,2. 'us, if x ∈ B1,2 then
B1,2 ∪ w1􏼈 􏼉 is a c.d.b. of G; and if y ∈ B1,2 then B1,2 ∪ wk􏼈 􏼉 is
a c.d.b. of G. 'erefore,

u1

u2

um−1

um
y

vn

vn−1

v2

v1

x

w1

w2

wk

Figure 4: Bicyclic graph for the proof of Proposition 3.
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cdn(G) � p H1,2􏼐 􏼑 − α1,2 + 1 � p(G) − k + α1,2 − 1􏼐 􏼑.
(13b)

'e following example illustrates formulas (11)–(13b).

Example 4. Consider the graphs Gi, 1≤ i≤ 4, as shown in
Figure 7.

It is easy to verify that:

p G1( 􏼁 � 20, α1,3 � 6 , n � 5⟹ cdn G1( 􏼁 � 20 − 6 − 5 � 9,

p G2( 􏼁 � 24, α2,3 � 3 , m � 7⟹ cdn G2( 􏼁 � 24 − 3 − 7 � 14,

p G3( 􏼁 � 25, α1,2 � 6 , k � 5 � n⟹ cdn G3( 􏼁 � 25 − 6

− 5 � 14,

p G4( 􏼁 � 23, α1,2 � 6 , k � 3< 5 � n⟹cdn G4( 􏼁 � 23 − 3

− 6 + 1 � 15.

(14)

Case 3. Assume that the connected bicyclic graph G
consists of two x − y paths, and each path does not contain
cut-vertices but only one x − y path contains internal cut-
vertices.

If Q1 contains at least two internal cut-vertices, and Q2

and Q3 have no cut-vertices, n � k, then Q1 ∪Q2 is a uni-
cyclic graph, denoted H1,2

′ . It is clear that
cdn(G) � cdn H1,2

′􏼐 􏼑 � p H1,2
′􏼐 􏼑 − α1,2′ , (15)

where α1,2′ is given for H1,2
′ as defined in Definition 1. 'us,

cdn(G) � p(G) − n − α1,2′ . (16)

Similar results we have if Qi (i � 2, 3) has at least two
internal cut-vertices and the other x − y paths have no cut-
vertices. 'erefore,

cdn(G) � p(G) − m − α2,3′ , for i � 2 andm � k,

cdn(G) � p(G) − n − α1,3′ , for i � 3 andm � n,
(17)

where α2,3′ is for the unicyclic graphH2,3
′ and α1,3′ is forH1,3

′ .

Remark 3. If the bicyclic graph G depicted in Figure 5 has
exactly one cycle cut-vertex which is a vertex of the x − y
pathQi (1≤ i≤ 3) including x and y, and the other two x − y
paths have equal lengths, then

cdn(G) � 1 + |T|. (18)

From now on, we assume thatm> n> k≥ 1 (see Figure 5).
IfQ1 contains internal cut-vertices andQ2 andQ3 contain no
cut-vertices, then we may assume that the distance from x to
the first cut-vertex along the x − y path Q1 is not more than
the distance from y to the last cut-vertex alongQ1. LetH

″
1,3 be

the unicyclic graph constructed from Q1 ∪Q3 ∪ w1, z􏼈 􏼉,
where w1z is an end-edge incident to vertex w1of Q3. It is
clear H ″1,3 contains vertices x and w1 in addition to vertices
from Q1, and so

cdn(G) � cdn H″1,3􏼐 􏼑 − 1 � p H″1,3􏼐 􏼑 − α″1,3 − 1 � p(G)

+ 1 − α″1,3 − 1 − n.

(19)
'erefore,

cdn(G) � p(G) − n − α″1,3. (20a)

If the distance from y to the last cut-vertex along Q1 is
less than the distance from x to the first cut-vertex along Q1,
then we have the unicyclic graph H‴1,3 � Q1 ∪Q3 ∪ wkz􏼈 􏼉.
Hence,

cdn(G) � p(G) − n − α‴1,3, (20b)

where α‴1,3 is the number defined for H‴1,3 (Definition 1).
We have results similar to (20a) and (20b) for the cases

where Qi (i � 2, 3) has internal cut-vertices, the other two
x − y paths have no internal cut-vertices and m> n> k≥ 1.
Namely, cdn(G) �p(G) − m − α″2,3 or cdn(G) �p(G) − m −
α‴2,3 for i� 2 or 3 and the unicyclic graphs H ″2,3 or H‴2,3.

Remark 4. If the vertex x or the vertex y is the only cycle
cut-vertex of the bicyclic graph G shown in Figure 5 and
m> n> k≥ 1, then

cdn(G) � 2 +|T|. (21)

3.2.#e Connected Detour Numbers of Bicyclic Graphs of Two
Cycles. Let G be a bicyclic graph containing exactly two
cycles C1 and C2, either having one vertex in common or
there is a path joining a vertex ofC1 to a vertex ofC2.'us,G
is considered to consist of two unicyclic graphs G1 and G2

having exactly one vertex v in common.
Let Gi′ (i � 1, 2) be a uncyclic graph obtained from Gi by

adding to it an end-edge vwi. 'e connected detour number
of G is determined by the following theorem.

Theorem 3. Let G be a connected bicyclic graph of order
p≥ 5 and consist of two edge-disjoint unicyclic graphs G1 and
G2 having one vertex v in common. #en, cdn(G) �
p − α1 − α2, in which αi (i � 1, 2) is the number defined in
Definition 1 for the unicyclic graph Gi′.
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Figure 6: Graph G for Example 3.
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Proof. Let B be a c.d.b. of G, then B contains v. Moreover,
let Bi be the subset of B consisting of the vertices of
Gi (i � 1, 2). It is clear that each vertex of Gi lies on u − v
detour for some pair u, v ∈ Bi. 'erefore, Bi is a c.d.s. of
Gi (i � 1, 2), that is because the connectedness of the in-
duced subgraph G[B] implies that Gi[Bi] is connected. Since
B is of minimum order, then Bi ∪ wi􏼈 􏼉 is a c.d.b. of
Gi′ (i � 1, 2). Conversely, it is clear that if Bi′ (i � 1, 2) is
a c.d.b. of Gi′, then (B1

′∪B2
′) − v, w1, w2􏼈 􏼉 is a c.d.b. of G. By

'eorem 2, cdn(Gi′) � |Bi′| � pi′ − αi′ (i � 1, 2), in which pi is
the order ofGi′. 'erefore, cdn(G) � p1

′ + p2
′ − (α1 + α2 + 3).

Since p1
′ + p2
′ � p + 3, then cdn(G) � p − (α1 + α2). □

4. The Connected Detour Numbers
of Cog-Graphs

Let G be a connected (p, q)-graph, then G(c) is the graph
constructed from the graph G with q additional vertices
u1, u2, . . . , uq corresponding to the edges e1, e2, . . . , eq of G
and 2q additional edges obtained from joining ui to the two
vertices of ei for all i � 1, 2, . . . , q. Such class of graphs are
called cog-graphs of G. For example, let G be a star of order
five, then G(c) is cog-star of order nine shown in Figure 8.

Clearly ifG is (p, q)–graph thenG(c) is (p + q, 3q)-graph.
'e proofs of the following elementary results are obvious.

Proposition 5

(1) #e cog-graph G(c) does not contain end-vertices.

(2) If the graph G has n end-vertices, then G(c) contains
exactly (q + n) vertices of degree 2.

(3) For every vertex v ∈ V(G), degG(c)v � 2degGv.

(4) Let v ∈ V(G), then v is a cut-vertex in G(c) iff it is
a cut-vertex in G.

Let V(G) � v1, v2, . . . , vp􏽮 􏽯 and V(G(c) ) � V(G)∪ u1,􏼈
u2, . . . , uq}. If (x1, x2, . . . , xk− 1, xk) is an x1 − xk detour in G,
then (x1, y1, x2, y2, . . . , xk− 1, yk− 1, xk) is an x1 − xk detour in
G(c), in which yi ∈ U � u1, u2, . . . , uq􏽮 􏽯 for 1≤ i≤ k − 1 and
yi is the vertex that corresponds to edge xixi+1 of G. #erefore,
DG(c)(x, y) � 2DG(x, y), ∀x, y ∈ V(G).

Moreover, if Q is an y − y′ detour in G(c) y, y′ ∈ U, (as
shown in Figure 9), then

DG(c) y, y′( 􏼁 � DG(c) y′, x( 􏼁 � DG(c) y, x′( 􏼁 � 2DG x, x′( 􏼁.
(22)

Any way, if S is a detour set of G, then S may not be
a detour set of G(c). Also for some graphs G, cdn
(G)≠ cdn(G(c)). For example, if G is an odd cycle graph Cp
with exactly one chord, then cdn(G) � 2 and cdn(G(c)) � 3.
But there are special graphs G such that cdn(G) � cdn(G(c)),
as given in the following proposition.

Proposition 6. Let G be a connected graph. If G is a tree or
a cycle graph, then

cdn(G) � cdn G(c)􏼐 􏼑 � 2, if G is a cycle graph,

p(G), G is a tree.
􏼨

(23)

Proof. It is obvious.
'e following concepts were introduced by Santhaku-

maran and Athisayanathan in [12]. □

Definition 2. [12, 15] “Any edge e of G is said to lie on an
x − y detour Q, if e is an edge of Q. A set S⊆V(G) is called
an edge detour set of G if every edge of G lies on a detour
joining a pair of vertices of S. 'e edge detour number
dn1(G) of G is the minimum order of its edge detour set.
Any edge detour set of order dn1(G) is called an edge detour
basis of G. A graph which has an edge detour set is called
a edge detour graph (denoted E.D. graph).”

'ere are graphs which are not E.D. graphs because they
do not have edge detour sets [12]. For E.D. graphs we give
the following definition.

Definition 3. Let S be an edge detour set (will be denoted
e.d.s.) of an E.D. graphG. IfG[S] is connected then S is called
a connected edge detour set (denoted c.e.d.s.). 'e con-
nected detour number cdn1(G) of G is defined by

G1

y

x

w1

v1
u1

u2

u3

u4

u5

u6
u7

v2

v3

v4

v5

w2

w3

w5

w4

(a)

G2

x

y

u1

u2

u3

u4

u5

u6
u7

v1

v2

v3

v4

v5

v6

w1

w2

w3

w4

(b)

G3

y

x
u1

u2

u3

u4

u5

u6
u7

v1

v2

v3

v4

v5

w1

w2

w3

w5

w4

(c)

G4

y

x
u1

u2

u3

u4

u5

u6
u7

v1

v2

v3

v4

v5

w1

w2

w3

(d)

Figure 7: Graphs of Example 4.
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cdn1(G) � min |S| : S is c.e.d.s. of G{ }. (24)

Any c.e.d.s. of order cdn1(G) is called connected edge
detour basis (denoted c.e.d.b.) of G.

It can easily be proved that if G is an E.D. graph, then
every c.e.d.s. of G contains all the end-vertices and all the
cut-vertices of G. �us, for every tree T, cdn1(T) � p(T).

Now, we shall determine c.e.d.n. for some special classes
of connected graphs.

Proposition 7. For every cycle graph Cp with p≥ 3,
cdn1(Cp) � 3.

Proof. Let Cp � (v1, v2, . . . , vp, v1), then it is clear that every
edge of Cp other than v1v2 lies on the v1 − v2 detour.
Moreover, the edge v1v2 lies on the v2 − v3 detour. �us,
v1, v2, v3{ } is a c.e.d.b. of Cp, and hence cdn1(Cp) � 3. □

Proposition 8. Let Kp be a complete graph of order p≥ 3,
then for every pair u, v of vertices, every edge other than uv lies
on a u − v detour of Kp.

Proof. One can easily check that the statement is true for
p � 3, 4, and 5. Now assume that the statement is true for
p � r≥ 5, and consider Kr+2. Let x, y be any pair of vertices
of Kr+2, and let Kr � Kr+2 − x, y{ } and V(Kr) � v1, v2, . . . ,{
vr− 1, vr} as shown in Figure 10.

By induction hypothesis for every pair vi, vj of vertices of
Kr, every edge other than vivj ofKr lies on a vi − vj detourQ
in Kr.

It is clear that the two edges xvi, yvj or (xvj, yvi) with Q
produce an x − y detour in Kr+2. �is is true for all
i, j � 1, 2, . . . , r, i≠ j. �us, every edge of Kr+2 other than
xy lies on some x − y detour in Kr+2. �erefore, the
proposition is true for Kr+2. Hence, by induction on p the
proposition is true for Kp, p≥ 3. □

Corollary 1. For each complete graph Kp with p≥ 3,
cdn1(Kp) � 3.

Proof. Let u, v, andw be any three vertices in Kp. By
Proposition 8 every edge of Kp other than uv (resp., uw) lies
on an u − v detour (resp., u − w detour). �us, u, v, w{ } is
a c.e.d.s. of Kp. Clearly, cdn1(Kp)> 2, and hence cdn1
(Kp) � 3. □

Corollary 2. For every complete graph Kp with p≥ 2,
cdn(K(c)

p ) � 2.

Proof. Let x, y be a pair of vertices ofKp, then by Proposition
8 every edge other than xy of Kp lies on an x − y detour in
Kp. �us, every vertex of K(c)

p other than u lies on an x − y
detour in K(c)

p , in which vertex u corresponds to the edge
xy in K(c)

p . Since vertex y is adjacent to u, then every vertex
of K(c)

p lies on an x − u detour. �erefore, x, u{ } is a c.d.b. of
K(c)
p , and hence cdn(K(c)p ) � 2. □

Proposition 9. Let Km,n, m, n≥ 2 be a complete bipartite
graph, then for any pair of adjacent vertices u, v every edge
other than uv lies on a u − v detour in Km,n.

Proof. One can easily check that the proposition holds for
K2,2, K2,3, and K3,3. Now assume that it holds for

G
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G(c)

(b)

Figure 8
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Figure 10: �e graph Kr+2, r≥ 5.
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Figure 9: x, x′ ∈ V(G).
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Kr,s, r, s≥ 3, and consider Kr+1,s+1. Let xy be any edge of
Kr+1,s+1, and letKr,s � Kr+1,s+1 − x, y􏼈 􏼉 as shown in Figure 11
in which its vertex set is X∪Y, X � x1, x2, . . . , xr􏼈 􏼉, and
Y � y1, y2, . . . , ys􏼈 􏼉. By induction hypothesis, every edge of
Kr,s other than xiyj (1≤ i≤ r, 1≤ j≤ s) lies on xi − yj detour
Q inKr,s. Clearly, each xi − yj detourQ inKr,s implies x − y
detour Q′ (namely, x, yj − xi detour, and y) in Kr+1,s+1.
Moreover, each edge ofKr,s with edges xyj and yxi lie onQ′.
Since this holds for i � 1, 2, . . . , r and j � 1, 2, . . . , s, then
every edge ofKr+1,s+1 (other than xy) lies on an x − y detour
in Kr+1,s+1. 'us, by induction the proposition holds for
every Km,n, m, n≥ 2. □

Corollary 3. For every complete bipartite graph
Km,n, m, n≥ 2, then cdn1(Km,n) � 3.

Proof. Consider the vertices x1, x2, and y1 of Km,n where
x1 x2 ∉ E(Km,n) and x1 y1 , x2 y1 ∈ E(Km,n). 'en, by
Proposition 9 every edge of Km,n (other than x1 y1 ) lies on
an x1 − y1 detour, and x1 y1 lies on an x2 − y1 detour in
Km,n. 'erefore, x1 , x2 , y1􏼈 􏼉 is a c.e.d.s. of Km,n, and hence
cdn1(Km,n ) � 3. □

Corollary 4. For every complete bipartite graph Km,n,
m.n≥ 2, then cdn(K(c)

m,n) � 2.

Proof. Let xy be an edge of Km,n, then by Proposition 9
every edge other than xy lies on an x − y detour in Km,n.
From the definition of cog-graphs, every vertex other than z
lies on an x − y detour in K(c)

m,n, where z is the vertex that
corresponds to the edge xy in K(c)

m,n. Adding the edge yz to
every such x − y detour inK(c)

m,n we obtain x − z detours, and
hence every K(c)

m,n lies on an x − z detour in K(c)
m,n. Hence,

cdn(K(c)
m,n ) � 2. □

Proposition 10. Let G be an E.D. graph of order p≥ 2, then
cdn(G(c))≤ cdn1(G).

Proof. Let B be a c.e.d.b. ofG. If u, v ∈ B and uv is an edge of
G, andw is the vertex inG(c) that corresponds to the edge uv,
then we interchange vertex v to vertex w in B. We repeat
such interchange for every edge G[B] to get the set B′ of
vertices in G(c). By Definitions 2 and 3, B′ is a c.d.s. of G(c),
and |B| � |B′|. 'us, cdn(G(c) )≤ |B′| � cdn1(G). □

5. Conclusions

'e connected detour numbers for three classes of con-
nected simple graphs are determined in this research paper.
'e three classes are unicyclic graphs, bicyclic graphs, and
cog-graphs for Ccp,K

c
p, andK

c
m,n. We think that the methods

used in proving the results in Section 3 can be used to
determine the connected detour numbers for bridge graphs
and chain graphs (defined in [16]) that are constructed from
finite pairwise disjoint unicyclic graphs.

It is shown that cdn(Gc) is related to cdn1(G), and in
view of Proposition 10 we suggest the following problem:
characterize edge detour graphs G such that cdn(G(c)) �
cdn1(G).
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