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ABSTRACT

Context. The long and almost continuous observations by Kepler show clear evidence of a granulation background signal in a large
sample of stars, which is interpreted as the surface manifestation of convection. It has been shown that its characteristic timescale
and rms intensity fluctuation scale with the peak frequency (νmax) of the solar-like oscillations. Various attempts have been made
to quantify the observed signal, to determine scaling relations for its characteristic parameters, and to compare them to theoretical
predictions. Even though they are consistent on a global scale, large systematic differences of an unknown origin remain between
different methods, as well as between the observations and simulations.
Aims. We aim to study different approaches to quantifying the signature of stellar granulation and to search for a unified model
that reproduces the observed signal best in a wide variety of stars. We then aim to define empirical scaling relations between the
granulation properties and νmax and various other stellar parameters.
Methods. We use a probabilistic method to compare different approaches to extracting the granulation signal. We fit the power density
spectra of a large set of Kepler targets, determine the granulation and global oscillation parameter, and quantify scaling relations
between them.
Results. We establish that a depression in power at about νmax/2, known from the Sun and a few other main-sequence stars, is also
statistically significant in red giants and that a super-Lorentzian function with two components is best suited to reproducing the
granulation signal in the broader vicinity of the pulsation power excess. We also establish that the specific choice of the background
model can affect the determination of νmax, introducing systematic uncertainties that can significantly exceed the random uncertainties.
We find the characteristic frequency (i.e., inverse timescale) and amplitude of both background components to tightly scale with νmax

for a wide variety of stars (about 2–2000 µHz in νmax), and quantify a mass dependency of the latter. To enable comparison with
theoretical predictions (which do not include the observed power depression), we computed effective timescales and bolometric
intensity fluctuations and found them to approximately scale as τeff ∝ g−0.85 T−0.4 and Agran ∝ (g2 M)−1/4 (or more conveniently
R/M3/4), respectively. Similarly, the bolometric pulsation amplitude scales approximately as Apuls ∝ (g2 M)−1/3 (or R4/3/M), which
implicitly verifies a separate mass and luminosity dependence of Apuls. We have also checked our scaling relations with solar reference
values and find them in good agreement.
Conclusions. We provide a thorough analysis of the granulation background signal in a large sample of stars, from which we establish
a unified model that allows us to accurately extract the granulation and global oscillation parameter. The resulting scaling relations
allow a simple estimate of the overall spectral shape of any solar-type oscillator and might serve as a starting point for future large-
sample studies or as a reference for theoretical modelling of granulation.

Key words. stars: late-type – stars: oscillations (including pulsations) – stars: fundamental parameters – stars: solar-type

1. Introduction

Modern theoretical physics is still lacking a complete descrip-
tion of turbulence, which has proven to be highly resistant to full
modelling because of the wide range in scale from macroscopic

to microscopic. A promising opportunity for studying this pro-
cess is provided by stellar astrophysics. Turbulent convection is
an important energy transport mechanism that is essential for
modelling the structure and evolution of our Sun and stars in
general.
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The surface of the Sun shows an irregular cellular pattern,
which is known as the surface-visible signature of convection. It
is due to hot plasma that rises from the outer convective zone
to the photosphere, where it forms bright cells (the so-called
granules), cools down, and descends at the darker inter-granular
lanes. These granulation structures on the solar surface were first
discovered by Herschel (1801), and thanks to numerical hydro-
dynamical simulations, their properties are nowadays explained
well (e.g., Muller 1999). Other phenomena related to convection
are the so-called solar-like oscillations that are due to turbulent
motions in the convective envelope producing an acoustic noise
that stochastically drives resonant, intrinsically damped acoustic
oscillations (e.g., Christensen-Dalsgaard 2002).

In the Hertzsprung-Russell (HR) diagram, the red border of
the classical δ Sct instability strip (ISRB) is expected to mark the
transition from opacity mechanisms driving stellar oscillations
on the blue side of the ISRB to stochastic excitation on the red
side. This is also the region where stars develop an appreciable
upper convective envelope giving rise to surface granulation. In
contrast to this simplistic picture, evidence has been found that
even the very shallow convective envelopes of hot stars (<1% in
radius) are sufficient to produce an observable granulation signal
(Kallinger & Matthews 2010) and potentially excite solar-like
oscillations (Antoci et al. 2011; Belkacem et al. 2009).

However, all stars with an convective envelope show gran-
ulation. The granules on their surface evolve with time and
produce quasi-periodic brightness fluctuations on a wide range
of timescales and amplitudes (see e.g., Harvey 1985; Aigrain
et al. 2004, for the Sun). Thanks to the high precision photo-
metric measurements of CoRoT (Baglin et al. 2006) and Kepler
(Borucki et al. 2010; Koch et al. 2010) such brightness fluctua-
tions are subject to continuous long-term monitoring for a wids
variety of stars. First results for a large sample study have been
presented by Mathur et al. (2011), who investigated the charac-
teristics of granulation in red giants observed by Kepler. They
found that the characteristic timescale (τeff) and the rms bright-
ness fluctuation (σ) of the granulation signal scale to a first ap-
proximation with the peak frequency (νmax) of the solar-like os-
cillations1 as τeff ∝ ν−0.89

max and σ ∝ ν−0.45
max , respectively, which

is consistent with basic theoretical predictions (e.g., Kjeldsen &
Bedding 2011; Chaplin et al. 2011a). The authors also performed
hydrodynamical 3D simulations of granulation in red giants on
the basis of the Ludwig (2006) ab initio approach. Even though
these simulations match the observed scaling relations well in
terms of trends, they found large systematic differences of up to
a factor of three. Recently, Samadi et al. (2013a,b) provided a
simple theoretical model that supports the observed variations
of the granulation properties with νmax, but also suggests that the
turbulent Mach number in the photosphere plays an important
role in controlling granulation. As in Mathur et al. (2011), they
found their theoretical granulation parameters to match the ob-
servations well on a global scale but to systematically underesti-
mate the measurements. From these attempts it appears that the
general trends of the physical properties of granulation across
the HR diagram are reproducible from a modelling point of view,
but the source of the rather large systematic deviations remains
unknown. The reason for that is not necessarily entirely due to
insufficient models. There is also no consensus yet on how to
exactly extract the granulation parameters from the observations

1 The peak frequency (νmax; also known as the frequency of maximum
oscillation power) is expected to be proportional to the acoustic cutoff-
frequency (νac ∝ g/

√
Teff) of the stellar atmosphere (e.g., Brown et al.

1991; Kjeldsen & Bedding 1995; Belkacem et al. 2011).

and large systematic differences have been found between dif-
ferent methods (see Mathur et al. 2011, for a comparison).

To infer the characteristics of stellar granulation from the
power spectrum of a stars’ intensity variations is not straightfor-
ward and different analysis methods are found in the literature.
These methods use one or more components to model the back-
ground signal locally around νmax, and differ from each other
not only in the number of components used but also in the func-
tional form of the individual components. Usually models of the
form P(ν) ∝ 1/[1+ (πτν)c] are implemented, in which the expo-
nent c plays an important role as it controls how fast the power,
P, decays with increasing frequency. Originally Harvey (1985)
adopted a value of two (i.e., a Lorentzian function, which is in
this context also often named the “classical Harvey model”) to
model the solar background signal but already mentioned that
the actual exponent may well be different from two. The reason
why this is of particular interest is because the exponent defines
the general shape of the background component and the use of
an “incorrect” value can easily result in systematic deviations of
the other background parameters. This effect has not yet been in-
vestigated thoroughly. In fact, it is difficult to measure the actual
exponent from the observations (even for the Sun). Therefore
values different from two were established empirically, like a
fixed exponent of four (e.g., Michel et al. 2009; Kallinger et al.
2010c) but also more general models with c being a free param-
eter (resulting in values as high as 6.2 for the Sun, Karoff 2012).

Another problem arises from the number of components
that are superposed to reproduce the stellar background sig-
nal. Observational evidence for more than one background com-
ponent in the vicinity of the pulsation power excess is given
by a slight depression in power at about νmax/2. Such a fea-
ture has been first found in the solar irradiance data from the
SOHO/VIRGO instrument (e.g., Vázquez Ramió et al. 2005)
but is meanwhile also found to be significant in other stars (e.g.,
Karoff et al. 2013). The physical origin of this kink in the power
spectrum (and therefore an additional signal component) is still
a matter of debate and is either attributed to the occurrence of
bright points (e.g., Harvey et al. 1993), faculae (Karoff 2012),
changing properties of the granules (Andersen et al. 1998), or
a second granulation population (e.g., Vázquez Ramió et al.
2005).

A more phenomenological approach of granulation was re-
cently demonstrated by Bastien et al. (2013), who filtered the
Kepler time series with a 8 h high-pass filter and found that the
rms scatter of the residuals are a good indicator for the surface
gravity of the stars. The advantage of this method is that it is
much faster and easier to apply than asteroseismic techniques
and that it gives a more accurate surface gravity than the usual
spectroscopic methods.

The aim of the current analysis is twofold. Firstly, we inves-
tigate various approaches to model the granulation background
signal in a large sample of stars observed by Kepler. The sam-
ple includes stars from the main sequence to high up the giant
branch and asymptotic giant branch (compared to the analysis in
Mathur et al. 2010, which was restricted to red giants) and there-
fore basically covers the entire parameter space for which we can
expect solar-like oscillations and surface granulation. We use a
probabilistic approach to search for a unified model that repro-
duces the observed signal best for all stars in our sample, where
the complexity of the model should be driven by the data qual-
ity alone. We find that the superposition of two super-Lorentzian
functions (i.e, Harvey-like models with c = 4) is well suited
to reproduce the granulation signal in the broader vicinity of the
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pulsation power excess (about 0.1 to 10× νmax) and fit this model
to all stars in our sample.

Secondly, we investigate the resulting granulation timescales
and rms brightness fluctuations and find tight correlations be-
tween these parameters and νmax. We then define empirical scal-
ing relations between the granulation properties and the surface
gravity (and other fundamental parameters) of a star and com-
pare them to theoretical predictions. Furthermore, we study the
pulsation amplitudes and how they scale with other parameters
of the star.

2. Observations

The Kepler space telescope was launched in March 2009 with
the primary goal of searching for transiting Earth-sized planets
in and near the habitable zones of Sun-like stars. Kepler houses
a 95 cm aperture telescope that points at a single field in the con-
stellations of Cygnus and Lyra, feeding a photometer with a 115
square-degree wide field of view (FOV) to continuously moni-
tor the brightnesses of over 145 000 stars. The exquisite preci-
sion and accuracy of the photometry makes Kepler also an ideal
instrument for asteroseismology and the Kepler Asteroseismic
Science Consortium (KASC) has been set up to study many of
the observed stars (see Gilliland et al. 2010 for an overview and
first results).

Kepler observations are subdivided into quarters, starting
with the initial commissioning run (10 d, Q0), followed by a
short first quarter (34 d, Q1) and subsequent full quarters of 90 d
length. Photometry of most of the stars is conducted at a long
cadence (LC) of 29.42 min, but a subset of up to 512 stars can
be observed at a short cadence (SC) of 58.82 s (for more de-
tails see, e.g., Jenkins et al. 2010). Our studies are primarily
based on the LC data for 1289 red-giant stars spanning from
Q0 to Q13 with a total of about 51 800 measurements per star.
Apart from occasional losses of the satellite’s fine pointing and
scheduled re-orientations of the spacecraft, the about 1142 day-
long observations were continuous, with an overall duty cycle
of about 93%. The sample includes only stars that show a clear
power excess due to pulsation and which have already been used
for other studies, such as the investigation of different seismic
(Huber et al. 2010, 2011; Mosser et al. 2012a) and granulation
(Mathur et al. 2011) observables, the seismic determination of
fundamental parameters (Kallinger et al. 2010b), a comparison
of global oscillation parameters derived from different methods
(Hekker et al. 2011, 2012), a detailed analysis of an individual
star (di Mauro et al. 2011) and of the radial (Kallinger et al.
2012) and non-radial mixed mode spectra (Bedding et al. 2011;
Mosser et al. 2012c), and how the latter are used to constrain ro-
tational properties (Beck et al. 2012) and their evolution (Mosser
et al. 2012b).

Naturally, this sample contains only stars that oscillate with
timescales longer than about 1 h (twice the sampling rate) and
is therefore limited to stars on the giant branch. To extend the
sample towards the subgiant branch and main sequence we also
include SC data of a subsample of solar-type and subgiant stars
presented by Chaplin et al. (2011b). The data were obtained be-
tween Q5 an Q8 and cover up to one year of continuous observa-
tions with up to 480 000 individual measurements per star. Out
of the original sample (500 stars), we selected those for which
we have at least one full quarter of observations. Out of the re-
maining 113 stars we selected the “best” 75 stars, that show a
clear power excess with reasonably high signal-to-noise ratios
(S/Ns) and more importantly also the high-frequency part (see
Fig. 1 above ∼50 µHz) of the granulation signal (i.e., signal with
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Fig. 1. Comparison between the heavily smoothed power density spec-
tra of KIC 5517118 based on “noise-optimised” (black line) and
“stability-optimised” (red line) data, showing additional frequency-
dependent (instrumental) noise in the latter. The insert shows the rela-
tive difference (PDSnoise-PDSstab.)/PDSstab. and a Lorentzian fit (dashed
line).

timescales shorter than the pulsations) is well above the white
noise. The latter is quite often not the case, even for the high-
precision observations of Kepler. This does not result in a se-
lection effect, so that we select only stars with a high granula-
tion amplitude and ignore those with low amplitudes. The fact
that we see the high-frequency part of the granulation signal is
predominantly due to a low white noise level, which basically
reflects the apparent magnitude of the stars. While the original
sample roughly covers stars in the range 6.5 � Kp � 12 mag,
our SC sample is limited to Kp � 10 mag.

3. Data analysis

3.1. Flux extraction

Generally spoken, the Kepler raw data are prepared so that the
point-to-point scatter of the individual measurements is min-
imised (“noise-optimised”), which is important to detect and
characterize planetary transits. This implies that the apertures
on the CCD’s from which the photometry is extracted are kept
generally small to include only a minimum of the sky back-
ground signal. However, this leads to a number of problems. So
it happens for example that a target star (but also background
stars) drifts across the aperture on the CCD leading to long-term
trends in the extracted photometry. Additionally, artefacts are
introduced by occasional losses of the satellite fine pointing or
during the thermal recovery after Kepler is pointed to the Earth.
Even though these instrumental effects can be corrected to some
extent (see, e.g., García et al. 2011; Smith et al. 2012, and refer-
ences therein), they prevent us from accessing intrinsic variabil-
ity timescales longer than a few weeks. This is not a problem for
most of the stars in our sample. It, however, limits the sample to
stars well below the tip of the giant branch. To improve the situ-
ation Mathur et al. (in prep.) developed a new approach, whose
basic principle is to adopt the individual apertures so that trends
and jumps are minimised (“stability-optimised”). Subsequently,
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Fig. 2. Power spectrum of KIC 7949599. The black and grey lines indi-
cate the spectrum of the raw data (duty cycle of ∼93%) and after filling
all gaps shorter than 1 day (duty cycle of ∼95%), respectively, showing
how low-frequency signal leaks into the high-frequency range via the
spectral window (see insert). The blue and red lines correspond to heav-
ily smoothed versions of the raw and gap-filled spectrum, respectively.

we smooth the data with a triangular filter to suppress residual
instrumental long-term trends with timescales longer than about
40 d.

The improved long-term stability comes, however, at the
price of additional high-frequency noise. This is illustrated in
Fig. 1, where we compare the power density spectra of a particu-
lar star based on the original “noise-optimised” (black line) and
the new “stability-optimised” (red line) data reductions. Apart
from the different apertures the data sets are treated equally.
Clearly, the new approach adds significant power at high fre-
quencies2. The relative difference of the two spectra reveals that
the additional noise component is frequency dependent but fol-
lows a simple Lorentzian. In the modelling of the power density
spectra (see Sect. 4 below) it should therefore be sufficient to add
a frequency dependent term to the usually used constant white
noise component.

We note that the presented example is a extreme case. In
fact, the additional noise is negligible (i.e., its amplitude is much
smaller than the white noise) for most stars in our sample. We
also did not find any correlations between the amplitudes or
timescales of the Lorentzian and any other fitted parameter and
assume that this noise feature is largely defined by how exactly
the aperture was chosen and how the sky background looks like
in this aperture. However, there is a tendency that the amplitude
becomes larger for stars with low νmax, which are usually also
the brightest stars with a low white noise.

3.2. Gap filling

Even though Kepler is supposed to observe continuously, there
are several operations affecting the scientific data acquisition
producing quasi-regular gaps (see, e.g., Garcıa et al. 2014a).
If we were to keep these gaps the spectral window would be

2 Note that the improved long-term stability is not noticable in this plot
as the differences are well below 2 µHz.

degraded with, e.g., up to 0.5% high regular peaks (see the in-
sert of Fig. 2). This might seem negligible but we have to keep
in mind that the power contrast between the low-frequency part
of the spectrum with its typically high amplitudes and the high-
frequency white noise is at least for red giants several orders of
magnitudes. Leaving the data gaps untouched would smear out
the intrinsic structure in the high-frequency part of the spectrum.
To correct for this one can fill the gaps by, e.g., linear interpola-
tion. In Fig. 2 we compare the raw and gap-filled spectrum of a
typical Kepler data set of a red giant. Clearly, the aliasing signal
from the gaps in the original time series buries the structure of
the spectrum where the granulation signal fades into the white
noise. On the other hand, filling gaps as long as, e.g., 16 days
(resulting from a malfunction of the satellite at the beginning of
Q8) would introduce spurious modulation peaks. As a compro-
mise we only fill gaps by linear interpolation if they are shorter
than 3/νmax (∼1 day for most of the red giants), which improves
the duty cycle from about 93 to about 95%. This appears as a
small improvement but as can be seen from Fig. 2 it is sufficient
to correct for most of the objectionable regularities in the spec-
tral window function. A detailed description of the impact of
nominal regular gaps in the Kepler time series is given in Garcıa
et al. (2014a). We have to mention that gap-filling has only a
minor effect on the extraction of the parameters relevant for the
subsequent analysis but it becomes important if one wants to
study the detailed structure of the granulation background signal
(see Sect. 4.2).

The power spectra are then computed using a Discrete
Fourier Transform algorithm (DFT; Deeming 1975) and con-
verted to power density (see Appendix A).

3.3. Sampling effects

The variations we observe in stars are generally continuous but
as soon as we measure them we naturally have to discretise them,
i.e. the intrinsic signal is integrated for a certain time during each
measurement. This is not a problem if the timescales of the vari-
ations are long compared to the integration time. For shorter
timescales, however, the discretisation yields a partial cancela-
tion of the signal, so that the resulting time series contains a
damped signal. The damping is frequency dependent and be-
comes larger for increasing signal frequencies approaching the
Nyquist frequency (given that the sampling is similar as the in-
tegration time, i.e. with little or no dead time). For the amplitude
of a harmonic oscillation with a frequency ν this effect can be
expressed by a damping factor,

η = sinc

(

π

2
ν

νnq

)

· (1)

Event though this is well known (e.g., Chaplin et al. 2011a),
the effect is often ignored, which can lead to a quite significant
underestimation of the intrinsic amplitudes, especially for the
Kepler LC data. So it happens that, e.g., the amplitude of a mode
at 200µHz is diminished by roughly 20% (∼35% in power) in
the LC data, which should no longer be ignored.

The situation is similar for the granulation signal. What we
observe for granulation is a quasi-stochastic signal covering a
wide range of timescales with decreasing amplitudes for increas-
ing frequencies. To measure the granulation amplitudes we are
not so much interested in the amplitude at a particular frequency
but in the integrated power at all timescales covered by the ob-
servations. Consequently, there is no simple correction factor for
the signal damping as it is the case for oscillation modes and
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Fig. 3. Heavily smoothed (5 µHz boxcar filter) power density spectrum
of the about 540 and 1000 day-long SC (grey line) and LC Kepler time
series (light-red line), respectively, of KIC 5596656. The black lines
correspond to the best-fit model for the SC data with (full line) and
without (dashed line) the Gaussian component. The red lines indicate
the SC model corrected for the amplitude suppression due to the longer
sampling. The vertical dotted line marks the Nyquist frequency for the
LC sampling.

it was even unclear if the granulation signal is affected by the
cancelation effects at all. In Fig. 3 we show that it indeed is. It
compares heavily smoothed power density spectra of one of the
few cases where a red giant has been observed in LC as well
as SC mode. Clearly, the power density of the LC time series
(light-red line) drops faster towards higher frequencies than in
the SC spectrum (grey line). To test that this is indeed due to the
signal damping we computed a global model fit for the SC data
(solid black line; see Sect. 4) and multiplied it with η2 (red line).
The resulting “corrected” model almost perfectly reproduces the
LC spectrum. In reverse, we can therefore use Eq. (1) to distort
the global model during the fitting process in the same way as
the intrinsic signal is distorted by the sampling in order to ac-
cess the unperturbed granulation parameters. Ignoring the signal
damping does barely affect most of the stars in our LC sample
as their oscillation and granulation timescales are mostly well
below the LC Nyquist frequency. But it introduces a systemat-
ically increasing underestimation of all granulation parameters
(also the timescales are affected) for stars with higher νmax.

Finally, we note that the white noise component of the power
density spectrum is not affected by this sampling effect just like
the binning of a light curve does not change the white noise level
in the Fourier domain.

4. Power density spectra modelling

Modelling the power density spectrum of a solar-type oscillator
appears to be straight forward but actually is a quite complex
task. Before the Kepler era, the background signal was mostly
treated as a parasitic component one needs to get rid of quickly
to access the oscillations. But the background signal itself in-
cludes interesting information on, e.g., the granulation or activity
signal of the star. To extract this information most reliably, one
needs an appropriate model whose complexity should be driven
by the data quality. However, to our knowledge there is yet no

consensus in the community about such a model and various ap-
proaches have been used in the past.

Some early work was done by Mathur et al. (2011), who
qualitatively compared granulation parameters that result from
various background models for a large sample of red giants, ob-
served by Kepler for about 13 months. They found that even
though the granulation parameters generally follow the same
trends (e.g., as a function of νmax) there are significant differ-
ences between the different models. However, at the time the
aim of the study was not to pick a “best model” nor were the
data long enough to make firm conclusions. Now the time series
are almost three times as long, enabling us to carry out a detailed
comparison of different background models.

4.1. The background model

Originally, Harvey (1985) used a function like P(ν) ∝ 1/[1 +
(πντ)c] to model the solar background signal, where an exponent
c of 2 (i.e., a Lorentzian function) was adopted. The basic idea
of this is that the granules cause a signal on the stellar surface
that can be approximated by a sudden pulse with an exponen-
tial decay with a typical timescale τ. The Fourier transform of
such a pulse is a Lorentzian function. Later on it was shown (us-
ing better data) that an exponent of 4 is more appropriate (e.g.
Michel et al. 2009 for the Sun and Kallinger et al. 2010b for red
giants) but also linear or exponential models have been used to
describe the background underneath the oscillation signal. Note
that a model with an exponent of 4 represents a simplification of
1/[1 + (πντ)2]2, which is the Fourier transform of a symmetri-
cally rising and decaying pulse.

Another question is if more than one background component
is required to sufficiently fit the observations. Each component is
believed to represent a separate class of physical process such as
stellar activity, different scales of granulation, or faculae, which
are all strongly connected to the turbulent motions in the con-
vective envelope. With the long time series observations of the
Sun (e.g., from SOHO/VIRGO; Frohlich et al. 1997) it became
evident that there is a slight depression in power density at about
νmax/2 (see, e.g., Kallinger et al. 2010b), which can not be ex-
plained by a single background component in the vicinity of the
oscillations. Karoff (2012) interpreted this as the superposed sig-
nal of granulation and faculae and similar was found in other
solar-type oscillators (Karoff et al. 2013).

The reason why the exponents of Harvey-like models and the
number of components needed to sufficiently reproduce the ob-
served background are poorly determined is because one needs
to access the high-frequency part of the spectrum (beyond the
pulsation power excess, where the power rapidly drops). Until
recently, this was only possible for the Sun and a few red giants
with very good S/Ns but for most of the previously available data
of solar-type oscillators, this part of the spectrum is hidden in the
white noise. Apart from the Sun, however, the particular choice
of the background model was not critical for pre-Kepler data as
the blurry background signal could be almost equally well mod-
elled by different models. But with the increasing length of the
Kepler time series it becomes increasingly important to use an
appropriate model that accounts for the complex structure of the
background and that allows to access the oscillation modes in
the best possible way. We have to keep in mind that the choice of
the background model potentially influences the global parame-
ters of the pulsation power excess (the effect is small but tilting
the underlying background “redistributes” the excess power and
shifts νmax) as well as the mode parameters itself (see Sect. 4.3).

A41, page 5 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424313&pdf_id=3


A&A 570, A41 (2014)

We therefore investigated different background models in more
detail.

In all cases, the power density spectra are modelled by the
superposition of instrumental noise3, the contribution of one to
three super-Lorentzian4 functions, and a power excess hump ap-
proximated by a Gaussian,

P(ν) = P′n + η(ν)
2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

i

ξia
2
i
/bi

1 + (ν/bi)ci
+ Pg exp

−(ν − νmax)2

2σ2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (2)

where P′n corresponds to the instrumental noise contribution and
ai and ci are the rms amplitude and exponent of the ith back-
ground component, respectively. The parameter bi corresponds
to the frequency at which the power of the component is equal
to half its value at zero frequency and is called the characteris-
tic frequency (which is equal to (2πτ)−1, with τ being the char-
acteristic timescale). Pg, νmax, and σ are the height, the cen-
tral frequency, and the width of the power excess hump, re-
spectively. η(ν) is computed according to Eq. (1) and distorts
the background model in the same way as the observations are
distorted by the sampling. The factor ξ is used to normalise
∫ ∞

0
(ξ/b)/[1 + (ν/b)c]dν = 1 so that a2 corresponds to the area

under the super-Lorentzian function in the power density spec-
trum (which in turn is equal to the variance in the time series
that originates, for example, from granulation). Obviously, ξ de-
pends on c and is for c = 2 �→ ξ = 2/π, for c = 4 �→ ξ = 2

√
2/π.

For c different from an even integer (i.e., c is a free parameter
in the fit), the integral can’t be solved analytically so that ξ is
undefined. We then fitted Ai (i.e., the power density at zero fre-
quency) instead of ξa2

i
/bi, and numerically integrated the fit to

determine ai.
In the current analysis we chose to use a frequency-

dependent instrumental noise,

P′n = Pn +
2πα2/β

1 + (ν/β)2
, (3)

where Pn corresponds to the (constant) white noise and α and β
to the amplitude and characteristic frequency of the noise com-
ponent introduced by the aperture optimisation. We note that nei-
ther a constant nor a coloured noise is affected by the sampling
effect described in Sect. 3.3, which is why P′n is not corrected for
η(ν) in Eq. (2).

4.2. Model comparison

To fit the models to the power density spectra we have used a
Bayesian inference tool (MultiNest; Feroz et al. 2009) assum-
ing that the difference between the model and observed spec-
trum follow a χ2statistic with two degrees of freedom (Gabriel
1994)5. MultiNest provides the posterior distributions for the pa-
rameter estimation as well as a realistic global model evidence.
The big advantage of this global evidence compared to other sta-
tistical tools is that it is properly normalised and evaluated over
the entire parameter space. It therefore allows to reliably rate
how good a given model represents a given data set compared

3 Which is either “white” or “coloured”.
4 Note that this function is often called Harvey or Harvey-like model.
However, as the original Harvey model actually is a Lorentzian function
we prefer the term super-Lorentzian.
5 To ensure that the gap-filling has no (or only marginal) influence on
this basic assumption we tested the residual signal in raw and gap-filled
spectra for a number of stars and found no significant deviations.

to another model with little risk to over-fit the data, which is
often not given by a direct comparison of, e.g., the maximum
likelihoods. This is because, roughly speaking, a more complex
model (i.e., with more free parameters) tends to fit some data bet-
ter (i.e., has a better likelihood) than a less complex model but
in the Bayesian concept a model gets assigned a penalty for its
complexity and needs to fit the data considerably better to get a
higher model evidence than a less complex model. With this sta-
tistical measurement in hand, which tells us how good a given
model represents the observations we compared the following
models:

A: the classical Harvey model with a single component and a
fixed c = 2,

B: a single super-Lorentzian function with c fixed to 4,
C: a single component of the form 1/[1 + (ν/b)2]2,
D: a single component with c being a free parameter,
E–H: same as A–D but with two individual components.

To compare the different models we obviously have to assume
that at least one model is true (i.e., the total probability is 1)
and can then determine the individual model probabilities to
pi = zi/

∑

j z j, with z being the global model evidence as de-
livered by MultiNest. In Bayesian statistics, the model complex-
ity is automatically covered by the multi-dimensional parameter
volume that needs to be integrated over when computing z. This,
however, depends also on the priors, as it is often the priors that
determine the effective volume. Even tough MultiNest uses per
default uniform priors (i.e., no a priori knowledge is encoded)
for all parameters, the particular choice of the parameter range
that is evaluated influences z. The model evidence is not very
sensitive to this (given that the posterior distributions are well
covered), but to allow a “fair” model comparison, a given pa-
rameter, for example νmax, needs to be evaluated over the same
(or at least similar) range for all models.

We tested these models for 10 different red giants covering
various νmax and exemplarily list the model probabilities and
best-fit parameters for KIC 7949599 in Table 1, for which the
model comparison gives a clear picture. This is also typical for
the other stars. The first interesting result is that the original
Harvey models (A and E) are completely ruled out as they can
not reproduce the observed spectrum at all. This is not surpris-
ing as can be seen in Fig. 4, where we show the observed spec-
trum along with some of the model fits. Obviously, the slope in
the high-frequency part of the spectrum, above the power ex-
cess, is much too steep to be reproduced by a model with an
exponent of 2. Also interesting is that none of the models with
a single background component (A to D) gets assigned a model
probability that comes even close to those of the 2 component
models. One can therefore safely assume that the background
signal in red giants consists of multiple components, which is in
agreement with what was found for main-sequence stars (e.g.,
Karoff et al. 2013). Among the eight tested models there are
only two that result in a high enough probability to be consid-
ered a good representation (in our sample of models) of the data.
Even though there is a preference for model H the probability
contrast of about 5 between model F and H is not enough to pro-
vide significant evidence for one particular choice. According
to Jeffreys (1998) an odds ratio of up to 3:1 is called weak evi-
dence, only for >10:1 one can speak of strong evidence. In fact,
the best-fit exponents of model H are close to 4 (within ∼1.3σ)
but more important here is that model F and H result in simi-
lar parameters (actually identical within the uncertainties). This
can be seen from Fig. 5, where we plot histograms of the poste-
rior probability density for all parameters of model F (upwards)
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Table 1. Summary of the background model comparison for KIC 7949599.

Gaussian 1st component 2nd component
ln(z/z0) p Pg νmax σ a1 b1 c1 a2 b2 c2

A –1587.7 <10−200 5.4(2) 30.38(02) 13.1(2) 560(12) 2.3(1) 2∗

B –255.7 ∼10−111 4.8(3) 35.7(3) 5.1(2) 624(6) 23.7(2) 4∗

C –75.8 ∼10−33 5.5(3) 34.5(2) 6.0(1) 606(6) 22.5(2) 2/4∗

D –243.4 ∼10−102 5.1(3) 35.2(2) 5.7(2) 601(28) 20.8(4) 3.7(1)
E –1592.4 <10−200 5.4(2) 30.42(02) 13.2(2) 571(15) 2.3(2) 2∗ 31(4) 34.1(6) 2∗

F –1.7 0.166 5.5(2) 33.8(4) 6.1(2) 466(14) 9.4(5) 4∗ 399(19) 31.9(1) 4∗

G –36.6 ∼10−16 5.7(2) 33.9(2) 6.4(2) 352(26) 8.5(9) 2/4∗ 502(18) 25.7(6) 2/4∗

H –0.1 0.833 5.6(3) 33.5(5) 6.1(3) 470(35) 9.7(6) 3.6(3) 365(59) 35.8(3) 4.2(2)

Notes. The model probabilities are determined according to pi = zi/
∑

j z j, where z corresponds to the global model evidence and z0 is an abritrary
reference value (ln(z0) = −138 898). Pg is given in 1000 ppm2/µHz ai in ppm, respectively. All frequency parameters are in µHz. An asterisks
indicates that the parameter is kept fixed during the fitting. Last digit uncertainties are given in parenthesis.
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Fig. 4. Raw (grey) and heavily smoothed (black) power density spec-
trum of KIC 7949599. Over-plotted in colour are the best fits model
with (top panel) and without (bottom panel) the Gaussian component.
Note that model A and E and model F and G effectively overlap. The
inserts show enlarged sections around νmax.

and H (downwards) along with their cumulative distributions.
Obviously, the posterior distributions for all (common) param-
eters strongly overlap with a tendency that model H results in
broader distributions, i.e. larger uncertainties. The models can
therefore be considered practically equivalent. Figure 5 also il-
lustrates that the posterior distributions are not always Gaussian.
It can therefore be misleading to define the best-fit parameter
and its uncertainty as the average value and its standard de-
viation (which is equivalent to fitting a Gaussian to the dis-
tribution). A more general definition for the best-fit parameter
and its uncertainty limits is the value at which the cumulative
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Fig. 5. Histograms (grey bars) and cumulative distributions (black
lines) of the probability density for the parameters determined for
model F (pointing upwards) and model H (pointing downwards) for
KIC 7949599, showing that all common parameters are practically
equivalent (within the uncertainties). Horizontal solid and dashed lines
indicate the median value and the ±1σ limits (of a normal distribution),
respectively. Vertical dotted lines mark the centre of a Gaussian fit to
the histograms. The parameters units are the same as in Table 1.

distribution is equal to 0.5 (i.e., the median) and 0.5± 0.3414
(which is equivalent to ±1σ uncertainties in case of a Gaussian),
respectively. Note that, even though the uncertainties can be
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Fig. 6. Relative differences in νmax between model F and various other
models for a sample of 50 red giants. The average relative difference and
standard deviation is given in brackets. The top and middle panel show
δνmax that result from fitting the entire spectrum (i.e., global fit) while
in the bottom panel the fits are restricted to the range around the power
excess hump (i.e., local fit). In both cases, there are clear systematic
differences between 1- and 2-component models.

asymmetric we provide only a single average value for the sake
of simplicity.

The result of our model comparison would have been dif-
ferent if we would have used the classical likelihood ratio test.
The likelihood computed from the difference between the best-fit
models and the observed spectrum, clearly favours model H with
an odds ratio of about 99:1, which is, as shown by the Bayesian
analysis clearly over-interpreting the data. Or in other words, the
data do not (yet) support to explicitly determine the exponent of
the background model.

The main conclusion for the other 9 test stars is similar and
we do not find a case that differs significantly from that of KIC
7949599. For some stars in this representative sample model H
is the most probable, for some model F is but for none of them
the probability contrast is large enough to strongly support a spe-
cific choice. We do also not find any indication for a correlation
between the specific model choice and the stellar properties like
the surface gravity. Even though model H might be more real-
istic in some cases, we found no compelling argument to prefer
model H over model F and since model F gives practically the
same background parameters, is more robust (as it has less free
parameters), and tends to result in smaller uncertainties, we de-
cided to use model F for the subsequent analysis.

4.3. Systematic effects on νmax

The global model fit does not only allow to determine the back-
ground and global oscillation parameters but also provides an
estimate for the background signal underneath the pulsation
modes, which is an important ingredient for the subsequent

analysis of the oscillations. As can be seen from the insert in
Fig. 4 it is difficult to decide which model gives the most re-
alistic background as we can not easily disentangle the pul-
sation from the granulation signal and all models (apart from
the classical Harvey model) seem to estimate the background
equally well. However, there are small differences, especially at
the low-frequency end of the power excess. These differences
redistribute the power in the hump and potentially lead to dif-
ferent estimates for νmax. We therefore selected 50 red giants
with a low white noise component (where about half of the stars
with νmax below 70 µHz were chosen to be RC stars) and com-
pare νmax that results from model F and various other models
in Fig. 6. Whereas 2-component models give roughly the same
νmax (see middle panel) with only minor systematic deviations,
1-component models result in νmax estimates that clearly differ
from those determined with model F (see top panel). Obviously
there is a systematic trend as a function of νmax, so that νmax
from 1-component models are systematically over- and underes-
timated for stars with low and high νmax, respectively. The quite
significant deviations of up to ∼6% disagree to some extend with
what was found by, e.g., Hekker et al. (2012) who argued that
νmax from different fitters (using different background models)
is generally in good agreement. An explanation for that might
be that the individual deviations cancel out when looking at the
entire sample as a whole. The mean difference of the sample
in Fig. 6 is always within the typical uncertainties of the indi-
vidual measurements. Another reason could be that the methods
mentioned in Hekker et al. (2012) that use only one background
component do not try to fit the whole spectrum, but only the re-
gion around the pulsation power excess. They are therefore less
sensitive to the overall structure of the spectrum (and not suit-
able to deliver granulation parameters) and might give a better
estimate of νmax than in our analysis, where we needed to fit the
whole spectrum to allow the model comparison. However, to test
if the situation changes in a local analysis we redid the fits for
the range 0.5 to 5 times νmax and show the results in the bot-
tom panel of Fig. 6. Note that for model A we had to trim the
spectrum even more to [0.5–2] × νmax, as it is not possible to fol-
low the rapid decay of the granulation signal at high frequencies
with the classical Harvey model. Obviously also a local treat-
ment of the background can systematically effect the determina-
tion of νmax although the effect is reduced. We therefore advise
against 1) the use of only one background component (even in
a local analysis); and 2) the use of the classical Harvey model.
A 1-component Harvey-like model might be applicable if the in-
strumental white noise is high enough so that the high-frequency
part of the granulation signal is hidden therein. For stars like the
one shown in the bottom panel of Fig. 7, where the contrast be-
tween the low-frequency granulation signal and the white noise
is only about 10:1 (compared to about 104:1 for the star in the top
panel) the functional form and number of background compo-
nents become less important. In an extreme case with the white
noise being at a similar level as the granulation signal even a
straight line (i.e, a white component) will do.

The above analysis shows that a different treatment of the
background systematically effects the determination of νmax, but
it does not reveal which of the background models gives the cor-
rect νmax. This question can only be answered with simulated
data set with the actual νmax known, which we try in the follow-
ing. As an input for the pulsation signal we use the l = 0, 1, and
2 adiabatic frequencies6 of a 1.25 M⊙ near solar-calibrated Yale

6 Computed with Guenther’s nonradial nonadiabatic stellar pulsation
program; Guenther (1994).
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Fig. 7. Power density spectra of three typical stars with νmax ≃ 22, 220,
and 2200 µHz, respectively, showing that all timescales and amplitudes
(granulation as well as pulsation) scale simultaneously. Grey and black
lines indicate the raw and heavily smoothed spectrum, respectively. The
global fit is shown with (red) and without (blue) the Gaussian compo-
nent. Green lines indicate the individual background and white noise
components of the fit.

Stellar Evolution Code (YREC; Guenther et al. 1992; Demarque
et al. 2008) model with a radius and effective temperature cho-
sen so that νmax is close to 50 µHz (where we find the largest
systematic deviations, see Fig. 6). For details about the constitu-
tive physics we refer to Kallinger et al. (2010a) and references
therein. Mode amplitude ratios are modulated between 0 and 1
by a Gaussian centred on 50µHz (and a width of 8 µHz), where
we assume a mode visibility of 1.0, 1.5, and 0.5 for l = 0, 1,
and 2 modes, respectively. The amplitude ratios of l = 1 and
2 modes are additionally modulated according to their inverse
mode inertia (i.e., modes with a low inertia have large ampli-
tudes and vice versa; see, e.g., Dupret et al. 2009). The l = 0 and
2 modes are assumed to have a constant mode lifetime of 30 and
40 days, respectively, and the lifetime of l = 1 modes is modu-
lated between 100 and 200 days according to their mode iner-
tia. To compute the artificial 1142 day-long time series (sampled
each ∼5.9 min, see below) for this set of solar-like modes we
add up damped and randomly re-excited oscillations, generated
by the method described by Chaplin et al. (1997). In order to get
realistic absolute amplitudes we rescale the artificial time series
so that its rms scatter is equal to 200 ppm (which corresponds to
the total pulsation amplitude, see Sect. 5.5 below) and add ran-
dom scatter so that the white noise in the resulting power den-
sity spectrum is equal to 3 ppm2/µHz. Since the modes in this
simulated power excess are not symmetrically distributed within
the power excess, the real νmax does not have to correspond to
input value of the centre. To check this, we fit a Gaussian to
the simulated power excess and find the power to be symmetri-
cally distributed around νmax,ref = 49.61±0.06µHz. We note that
in reality the shape of the pulsation power excess is not neces-
sarily Gaussian but as long as the power is distributed roughly
symmetric (and there is no indication that it is not, see, e.g.,

Kallinger et al. 2010c) any symmetric function will give a good
estimate of the intrinsic centre of the power excess.

For the granulation background we add two sets of random
symmetric exponential pulses, with decay times that correspond
to characteristic frequencies, bi = 14 and 46 µHz. The charac-
teristic amplitudes ai are set to 250 ppm by rescaling the time
series to the corresponding rms scatter. To also account for the
sampling effect described in Sect. 3.3, the original time series is
oversampled by a factor of 5 and finally re-sampled to the LC
sampling by averaging.

We then analyse the simulated spectrum between 10µHz and
the Nyqvist frequency. For the 2-component models, model F
results in a νmax = 0.995± 0.01νmax,ref and is therefore in excel-
lent agreement with the reference value. Furthermore all other
input parameters are reproduced to within ∼2σ. Similar can be
said for model G and H. Only for model E, the peak frequency is
grossly underestimated to νmax = 0.94± 0.01νmax,ref, even though
we truncate the spectrum to [0.5–2] × νmax to get a useful fit. As
we expected, the 1-component models yield peak frequencies
that are significantly different from the reference value. While
model A underestimates νmax even more (0.91νmax,ref), model B,
C, and D overestimate the peak frequency to νmax = 1.03, 1.02,
and 1.02νmax,ref, respectively, where the uncertainties are always
on the order of 1%.

As mentioned earlier, these deviations are presumably due to
the fact that an inappropriate background model redistributes the
power in the power excess and shifts the centre. If so, the effect
should become smaller if the shape of background signal is less
distinctive, i.e. large parts of it are hidden in the white noise.
This is indeed what we observe. If we increase the white noise
in our simulated spectrum by a factor of 200 (which dilutes the
contrast between the low-frequency granulation signal and the
white noise to about 10:1) the deviations between the various
models become less pronounced. While we get almost exactly
the same νmax as before for model F, all other models result in a
νmax that is within [0.97–1.0]× νmax,ref . Interestingly, increasing
the white noise by such a large amount has only small effects on
the uncertainties of νmax, which are now about 50% larger than
before.

This test with a simulated spectrum seems to supports our
conclusions from above, namely that a model with two super-
Lorentzian functions is suited best to reproduce the observed
granulation signal and to determine νmax. Neither a 1-component
model nor a model with an exponent significantly different from
four should be used (or at least only under certain circumstances;
see above). For completeness we also simulated a star with a
much higher νmax = 150µHz and find the peak frequencies from
the various models to more or less converge to the same value,
which is in agreement with what can be seen in Fig. 6.

4.4. Fitting the sample

As mentioned above we fit model F to our sample of LC and
SC data. In addition to the two components in the vicinity of
the power excess, we apply a third component to account for
long-period signal intrinsic to the star (e.g., due to activity) with
periods that are usually much longer than 10/νmax, but also resid-
ual instrumental signal. From previous work (e.g., Mathur et al.
2011) it is know that basically all (intrinsic) parameters scale
with νmax, for which we have already good initial guesses from,
e.g., Kallinger et al. (2012). To optimise the computational per-
formance we tried to keep the parameter ranges relatively nar-
row. During the fit νmax is kept within ±10% of its initial guess.
The characteristic frequencies bi are allowed to vary between
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Table 2. Parameters of power law fits to the granulation.

b1 = k νs
max b2 = k νs

max a = k νs
max Mt τeff = k νs

max = k gs T t Agran = k νs
max

k 0.317(2) 0.948(3) 3382(9) 3710(21) 836(4) 2.00(4)·106 3335(9)
s 0.970(2) 0.992(2) –0.609(2) –0.613(2) –0.886(2) –0.853(3) –0.564(2)
t –0.26(3) –0.41(5)
σ 10.2 8.7 16.5 14.4 11.0 9.3 13.5
ρYi ,Xi

99 99 95 44 99 99, 52 98

Agran=k gs MtT u Apuls=k gs MtT u Agran = k As
pulsT

t = k As
pulsg

t Mu

k 9799(43) 10887(127) 11054(385) 9344(348) 4.57(3) 4.79(4) 36(3)
s –0.549(6) –0.555(6) –0.556(4) –0.657(4) 0.855(3) 0.837(3) 0.63(1)
t –0.24(2) –0.24(3) –0.35(3) 0.24(3) –0.15(1)
u 0.05(9) 0.04(8) –0.06(1)
σ 13.1 11.0 10.7 13.6 8.0 10.3 7.3
ρYi ,Xi

97 44 80 97,41,76 99 57 99, 91, 25

Notes. The surface gravity g is in cgs units, frequency parameters (νmax, b1, and b2) are in µHz, τeff is in seconds, and amplitude parameters (a,
Agran, and Apuls) are in ppm. The stellar mass M is in solar units and T = Teff/5777. σ indicates the rms variations of the residuals in percent. If a
coefficient is left blank means that the corresponding parameter is not included in the fit. Last digit uncertainties are given in parenthesis. ρYi ,Xi

is
the magnitude of the correlation coefficient (in percent) between Xi = log10(xi) and Yi = log10 yi, with yi = y1/

∏i−1
j=0 x j = k xc

i , with x0 = 1. The
index i indicates the independent variable (from left to right) of the corresponding power law fit.

0.01 to 0.3, 0.1 to 0.7, and 0.7 to 2 times the initial guess of
νmax. All amplitude parameters (ai and α) are kept below the rms
scatter of the time series (i.e., the square root of the integrated
power in the spectrum). The height and width of the Gaussian
are allowed to vary between 0 to half the maximum power in
the spectrum and 0.05 to 0.3 times the initial guess of νmax, re-
spectively, and βmay vary between 0 and the Nyquist frequency.
MultiNest then delivers the posterior probability distributions for
the 12 free parameters. We check if they are well sampled within
the parameter range and finally marginalise them to determine
the most probable parameters and their 1σ uncertainties. One
parameter that is not directly fitted but evaluated in the subse-
quent analysis is the so-called total pulsation amplitude Apuls. It
is supposed to represent the entire pulsation energy in the power
excess, i.e., the sum of all individual mode amplitudes. During
the fitting procedure we compute Apuls as (σPg

√
2π)1/2, which

is the square root of the area under the Gaussian component of
our model, for each evaluated combination of Pg and σ to build
a posterior distribution from which we determine the most prob-
able value of Apuls and its uncertainty.

The long Kepler time series allowed us to determine νmax
on average to within about 0.9%, the characteristic granulation
frequencies b1 and b2 to within about 5.3 and 3.6%, respectively,
the granulation amplitudes a1 and a2 to better than 3.2 and 5.2%,
respectively, and Apuls to within about 2.8% on average.

In Fig. 7 we show the power density spectra of three repre-
sentative stars, whose νmax differ by a factor of ∼10 from one
to the next, along with the best-fit model (F) and its individual
components.

5. Scaling relations

5.1. Granulation timescales (or frequencies)

Using a few basic physical assumptions one can estimate the
granulation timescales and amplitudes from the stellar parame-
ters. For example, Kjeldsen & Bedding (2011) and Mathur et al.
(2011) argued that convection cells cover a vertical distance
that is proportional to the atmospheric pressure scale height,
Hp ∝ Teff/g, at a speed approximately proportional to the speed

of sound, cs ∝
√

Teff, where g is the surface gravity and Teff is
the effective temperature. Therefore the characteristic timescale
of granulation or more conveniently the characteristic frequency
(since we measure them in a frequency spectrum) can be ex-
pressed as νgran ∝ cs/Hp ∝ g/

√
Teff ∝ νmax, or in other words

there should be a tight relation between the characteristic gran-
ulation frequency and νmax that should be linear in a first ap-
proximation. This is indeed what we observe. The top panel of
Fig. 8 shows that there is a tight relation between the character-
istic frequencies (b1 and b2) and νmax, covering a range in νmax
of more than 3 orders of magnitude from the Sun to high up the
giant branch. A power law fit (black lines) reveals that both re-
lations are almost linear as both exponents are close to 1. The
best fit coefficients and their uncertainties are listed in Table 2.
Furthermore we find that the dispersion along this relation is
with about 10 and 9% only about twice as large as the average
uncertainties of the individual measurements. This indicates that
a power law is too simplistic but also that other properties (like
the evolutionary state, chemical composition, magnetic activity,
etc.) play only a minor role.

The uncertainties of the fit coefficients might appear unre-
alistically small but we note that they are based on uncertain-
ties in bi as well as νmax. For the fit we again used MultiNest,
which can only consider uncertainties in the dependent variable
(as most other fitting algorithms). To account also for the uncer-
tainties of the independent variable we add normally distributed
uncertainties to νmax (with σ being equal to the actual uncer-
tainties of the individual measurements) and redo the fit adding
up the probability density distributions. We iterate this proce-
dure until each fitting parameter converges to a value that stays
within one fifth of the corresponding uncertainty. Additionally
we note that the high correlation coefficients (see Table 2) be-
tween bi and νmax indicate that one can accurately constrain the
power-law parameters.

5.2. Granulation amplitudes

Using similar assumptions as above, Kjeldsen & Bedding (2011)
argued that the granulation power at νmax scales as Pgran(νmax) ∝
ν−2

max. However, Pgran is not really qualified to serve as an
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Fig. 8. Characteristic frequencies (top) and rms amplitudes (bottom)
as a function of νmax for our sample of LC (red/orange) and SC
(blue/magenta) stars. Orange and magenta coloured symbols corre-
spond to the lower frequency component (a1 and b1). Black lines in-
dicate power law fits (see Table 2) and red open circles solar values.
The insert shows the rms amplitudes of the LC sample divided by the
power law fit as a function of stellar mass.

“amplitude” parameter for granulation as it gives the power at
a certain frequency and not, e.g., a proxy for the total energy
that is contained in the granulation signal. More appropriate is
the rms amplitude a, which is defined as the square root of the
integrated granulation signal in the power density spectrum and
represents the rms intensity fluctuations in the time series that
are due to granulation. From Eq. (2) follows that Pgran(νmax) ∝
(a2/b)/[1 + (νmax/b)c]. With Pgran(νmax) ∝ ν−2

max and b ∝ νmax we
then infer that a ∝ ν−0.5

max . Basically this comes from the fact that
the intensity fluctuations scale as the inverse of the square root of
the number of granules on the stellar surface (e.g. Ludwig 2006).
This is again similar to what we observe. The bottom panel of
Fig. 8 illustrates the rms amplitude of both granulation compo-
nents (a1 and a2) as a function of νmax showing that both com-
ponents have comparable amplitudes that are tightly correlated
to νmax. A power law fit (green line) to both amplitudes reveals
that a ∝ ν−0.61

max , which is close to what we expected (based on
some very basic assumptions) and to what has been observed
by others (e.g., Hekker et al. 2012, who fitted the variance of a
sample of Kepler red giants, which is dominated by the granu-
lation signal). In contrast to the granulation frequency scaling,
the dispersion along the fit is with about 16% significantly larger
(three to five times) than the average uncertainties of the individ-
ual measurements. This indicates that the granulation amplitudes
are primarily correlated to νmax (which in turn is dominated by
the stellar radius) but also other parameters like the stellar mass
and/or the chemical composition potentially have a significant
influence on the granulation amplitude (see, e.g., Mosser et al.
2012a). To test this we correct the granulation amplitudes for the

dependency on νmax and show the residuals as a function of stel-
lar mass (insert in the bottom panel of Fig. 8). Stellar fundamen-
tal parameters have been computed with the method described
by Kallinger et al. (2010b), where we use νmax, ∆ν, and Teff as
an input for the LC sample and νmax and Teff for the SC sample.
Effective temperatures are taken from the Kepler Input Catalog
(KIC; Brown et al. 2011) and corrected according to Thygesen
et al. (2012).

Obviously there is a correlation with mass so that high-mass
stars tend to have smaller amplitudes than low-mass stars. To
account for this additional mass dependency (νmax already de-
pends on mass) we add a term and fit a = kνs

max Mt instead of
a = kνs

max, which results in a considerably better fit (the global
evidence of the MulitNest fit is many orders of magnitudes bet-
ter). The best fit coefficients and their uncertainties (determined
with the procedure described in Sect. 5.1) are listed in Table 2.

5.3. Characteristic timescale, τeff

For the Sun, any background signal between a few 100 to a few
1000µHz is usually attributed to granulation (see e.g. Karoff
et al. 2013, for a summary of various interpretations found in
the literature). A major problem in this frequency range results
from a kink that is visible in the background spectrum just below
the oscillation power excess. This feature has been first iden-
tified in the solar irradiance data from the SOHO/VIRGO in-
strument (e.g., Michel et al. 2009, and references therein) but
has meanwhile been observed by Kepler in other stars rang-
ing from red giants (e.g., Mathur et al. 2011) to main-sequence
stars (e.g., Karoff et al. 2013). The depression in power at about
νmax/2 (see Fig. 7) arises from the fact that the background sig-
nal in the vicinity of the oscillation signal consists not of one
but two statistically significant (see Sect. 4.2) individual compo-
nents. One component certainly can be attributed to granulation
but the physical origin of the second component is not yet clear
and still subject of debates (see e.g., Samadi et al. 2013a,b, for a
summary) and is therefore missing in theoretical models. Thus a
direct comparison between our measured granulation parameters
and those from theoretical models is difficult as they measure
different things.

To still be able to compare characteristic granulation
timescales obtained from models and observations (or also from
observations using different descriptions of the granulation spec-
trum) one can define an effective timescale τeff as the e-folding
time of the autocorrelation function (ACF) of the time series
(e.g., Mathur et al. 2011). The characteristic timescale of any
description of the granulation signal in a power spectrum mea-
sures the temporal correlation of the signal in the time domain,
which can also be expressed by the width of the ACF. Recalling
that the autocorrelation of a signal corresponds to the Fourier
transform of its power spectrum, we can determine τeff of our
two-component granulation model by computing the time where
the Fourier transform (i.e., the ACF) of the two superposed gran-
ulation components drops below e−1. The result is shown in the
top panel of Fig. 9, where we choose to plot τeff as a function of
log g instead of νmax, as the surface gravity is a more basic stellar
property and easy to determine for the models.

From a theoretical point of view and with 3-D modelling,
Samadi et al. (2013b) suggested that the characteristic granu-
lation timescale can be described as τeff ∝ (νmaxMa)−1, where
Ma is the turbulent Mach number in the photosphere. The Mach
number is difficult (or even impossible) to determine observa-
tionally but the authors also found that it approximately scales as
Ma ∝ T 2.4

eff /g
0.15. With this and with νmax ∝ g/

√
Teff the above
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Fig. 9. Characteristic timescale τeft (top) and intensity fluctuations Agran

(bottom) as a function of log g for our sample of LC (red) and SC (blue)
stars. Solid lines correspond to power law fits. The dashed line in the
top panel corresponds to a power law fit to effective timescales obtained
from 3D simulations (Mathur et al. 2011). Diamond symbols indicate
values obtained from the granulation spectrum of 3D hydrodynamical
models (Samadi et al. 2013b) and the dotted line corresponds to a power
law fit to these models. The dashed line in the bottom panel shows the
relation between the 8 h-flicker amplitude and log g.

theoretical description translates to τeff ∝ g−0.85 T−1.9
eff . A power-

law fit to the observation reveals,

τeff ∝ g−0.85 T−0.4, (4)

where T = Teff/5777 K. Interestingly, the scaling with g is ex-
actly as expected. Only the temperature dependency is much
weaker than theoretically anticipated. A potential problem in this
analysis are the rather large systematic uncertainties of the KIC
temperatures. We therefore redid the analysis for the 624 stars
in our sample for which well-calibrated effective temperatures
from Sloan Digital Sky Survey photometry (Pinsonneault et al.
2012) are available but found no significant differences in the fit.
Nonetheless, our sample is dominated by red giants, which natu-
rally cover only a relatively small range in effective temperature
(a few hundred K at a given log g, with typical uncertainties of
150 K for individual stars). As a result it is difficult to define any
temperature dependency in our sample of Kepler stars. However,
the dispersion along the fit is with about 9% rather small so that
we can expect no other properties of the star to play a significant
role. For completeness we also fit τeff as a function of νmax and
find it to approximately scale as τeff ∝ ν−0.89

max , which is in per-
fect agreement to what was found by others (e.g., Mathur et al.
2011).

For comparison we show a power law fit to the theoretical
values of τeff (dashed line) presented by Mathur et al. (2011)
and obtained from 3D simulations of convective red-giant atmo-
spheres (Trampedach et al. 2013). They do not provide the effec-
tive temperatures of their models, which is why we restricted the
fit to the surface gravity. Interestingly, the exponent is exactly

what we obtain from the observations, only the absolute values
are smaller by about 60%. This shift in absolute value is likely
caused by the fact that we fit the observed granulation signal
with two individual components, whereas the theoretical spectra
are fitted only with one component as the kink around νmax/2 is
(due to presumably missing physics in the models) not present
in the theoretical spectra. If we would fit the observations with
only one component, as we have done for, e.g., KIC 7949599
in our background model comparison, the resulting τeff is with
∼1.17 × 104 s about 60% smaller than the ∼1.99 × 104 s that we
determine for a two-component fit.

Samadi et al. (2013b) computed granulation timescales and
intensity fluctuations for a grid of 3D hydrodynamical models
based on an approach described by Samadi et al. (2013a). Their
grid also includes three K-type and three F-type dwarf models.
While the K-type models are not covered by our observations,
the F-type models are known to systematically overestimate the
granulation amplitudes (see also Ludwig et al. 2009). We there-
fore exclude them from the further analysis and plot the remain-
ing models in Fig. 9. From a power-law fit we find the charac-
teristic timescales of the models to be almost perfectly repro-
duced as τeff ∝ g−0.86T−1.2 (the residuals scatter by less than
3%). The correlation with g is fully compatible with the observed
one (Eq. (4)) as well as with the theoretically expected. The tem-
perature dependency, however, is much stronger as for the ob-
servations but weaker than originally anticipated. This might be
because the models cover a different range in mass (1.4–4 M⊙
compared to ∼0.7–2.5 M⊙ and therefore different temperatures)
on the RGB and a wider range in effective temperature (∼1200 K
compared to a few hundred K) on the main sequences than the
Kepler sample and the resulting scaling might therefore be of
different sensitivity to the effective temperature. To solve this
discrepancy is, however, beyond the scope of this paper. As for
the Mathur et al. (2011) simulations the absolute values of model
τeff underestimate the observations (by about 40%), which is
again likely due to the missing kink in the theoretical spectra.
Hence, apart from the missing kink and a minor issue with the
temperature dependency (for the observed sample, changing the
exponent from –0.4 to –1.2 changes τeff by a few percent at
most), the agreement between the observations and the model
predictions are surprisingly good.

5.4. Intensity fluctuation, Agran

The rms amplitudes we measured for the two granulation com-
ponents represent the rms intensity fluctuations in the time series
that originate from two physical processes on the stellar surface
and that are both likely associated to granulation. It is however
not relevant for our purpose to identify the exact physical process
that causes each part of the signal. We are more interested in the
total background signal (or so to say a proxy for the total energy)
locally around νmax and therefore have to merge the two individ-
ual amplitudes to a single value that can be compared to other
observations or model predictions. This is straightforward and
we define the total bolometric intensity fluctuation due to gran-
ulation as A2

gran = C2
bol(a

2
1 + a2

2), where Cbol is a bolometric cor-
rection that scales for the Kepler bandpass as Cbol = (Teff/T0)α,
where T0 = 5934 K and α = 0.8 (Ballot et al. 2011; Michel et al.
2009). The estimated uncertainties of ±250 K in Teff typically
add about 1–2% uncertainty to Agran, which are then about 7%
on average.

In a first step we fit Agran as a function of the peak frequency
and find it to approximately scale as Agran ∝ ν−0.56

max . This roughly
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corresponds to Pgran ∝ ν−2.1
max and is therefore different from what

was found by, for example, Mathur et al. (2011), who derived an
exponent of 1.89.

In the bottom panel of Fig. 9 we show Agran as a function of
log g for our total sample of stars. A power law fit indicates that
Agran ∝ g−0.55, which is in agreement to what one would expect.
However, there is some structure in the correlation indicating a
more complex scaling relation and there are a number of stars
that fall significantly below the fit. We therefore follow the same
approach as in Sect. 5.2 and add a mass term to the power law,
which again considerably improves the fit (in terms of global
evidence of the fit and the rms scatter of the residuals). The best
fit coefficients and their uncertainties are listed in Table 2.

We could not compare our measurements to the models pre-
sented in Mathur et al. (2011) as the authors did not provide esti-
mates for the intensity fluctuations. Samadi et al. (2013b), how-
ever, do and we plot their values in the bottom panel of Fig. 9
for comparison. Whereas the models approximately reproduce
the observations on the red-giant branch, they are different for
main-sequence stars. For a given log g, the models cover a much
wider range in Agran than the observations. This might be because
Agran is supposed to be also sensitive to the effective temperature
and the main-sequence models cover a wider range in Teff . To
test this we add a temperature term to our power law and find
the intensity fluctuations to scale as Agran ∝ g−0.56M−0.24T 0.05.
Even though we find a quite weak temperature dependency, the
global evidence of the fit is much better than for the fit with-
out the temperature term indicating again an improvement in the
scaling relation. For the sake of simplicity we ignore the tem-
perature dependency and the granulation amplitude can then be
approximated to scale as

Agran ∝ (g2M)−s, (5)

where s ≃ 1/4. We note that it might be more convenient to ex-
press this scaling as Agran ∝ R/M3/4 (since g already depends
on M) but prefer it the way given above as g is the parame-
ter that can be determined best from the observations and the
mass dependency is only weak. Equation (5) is, however, in-
compatible with the classical scaling relation (e.g., Kjeldsen &
Bedding 2011) Agran ∝ (νmaxM)−1/2T 3/4, which translates into
Agran ∝ T (gM)1/2.

As for the characteristic timescales, we fit our observa-
tional scaling relation to the model predictions from Samadi
et al. (2013b) and find them to approximately scale as Agran ∝
g−0.88M−0.61T 6.0. Apart from the different exponents for g and M,
the strong dependancy on T with such a high power explains the
large dispersion in Fig. 9 but is not compatible to what we find
for the observations. Part of the discrepancy should come from
the differences of overall stellar properties between our sample
and the synthetic models.

In Fig. 9 we also indicate the relation between the 8 h flicker
amplitude and log g from Bastien et al. (2013), who demon-
strated that the rms scatter of the Kepler time series (after apply-
ing a 8 h high-pass filter) can be used to accurately estimate the
surface gravity of stars that show a surface granulation signal.
Interestingly, their flicker amplitude almost perfectly resembles
our Agran scaling for stars with a log g between about 3 to 3.5, in-
dicating that they indeed measure the intensity fluctuations due
to granulation. For stars with smaller or larger log g, however,
the flicker amplitude represents only a part of the granulation
amplitude. We note that this method is not applicable for many
of the red giants because the fixed 8 h filter suppresses the gran-
ulation (and pulsation) signal in stars with νmax � 35µHz (i.e.,
with periods longer than 8 h).

5.5. Pulsation amplitudes

Oscillation amplitudes are a difficult to measure and model as-
teroseismic quantity. From a theoretical point of view, the am-
plitude of a mode is determined by the competing driving and
damping mechanism, involving rather complex physics (e.g.,
Houdek et al. 1999; Samadi et al. 2007). In solar-type oscillating
stars, the outer convective layer is believed to drive modes with a
resonant frequency vCV/Hp, where vCV is the convection veloc-
ity, and a mode energy that is roughly equal to the kinetic energy
of a single convection eddy. The underlying physics is still not
properly understood but a number of scaling relations aiming to
predict mode amplitudes by scaling from the Sun’s values have
been derived and discussed (see, e.g., Corsaro et al. 2013, and
references therein). Testing such scaling relations with observa-
tional data is vital for a better understanding of stellar oscilla-
tions but not only their physical interpretation is still a matter of
debate, also the actual measurements are far from being straight-
forward to perform.

Ideally, it would require to fit a sequence of Lorentzian pro-
files on top of an appropriate background model to determine the
individual mode amplitudes. This is already a challenging task
for individual stars with good S/N and frequency resolution (e.g.,
Gruberbauer et al. 2009) and currently practically impossible for
a large sample of stars. In practice, the power density spectra
are heavily smoothed, corrected for the background signal and
converted to amplitude per oscillation mode. This requires not
only a good knowledge of the granulation background (which
is often not the case, see Sect. 4) but is also based on the as-
sumption that modes of different degree having a different spa-
tial response are excited to the same intrinsic amplitude (e.g.,
Kjeldsen et al. 2008), which is also often not the case (see next
section). Furthermore, sampling effects as described in Sect. 3.3,
which potentially introduce significant systematic uncertainties
are frequently not accounted for. Alternatively, we use what we
call the total pulsation amplitude Apuls, which is a direct output
of our power spectra modelling and which represents the sum
of the amplitudes of all excited modes (even those that are not
detectable individually) and is therefore a good measure for the
total intensity fluctuations due to oscillations that we observe on
the stellar surface.

From theoretical considerations it is assumed that the bolo-
metric mode amplitude scales as (L/M)p(Teff)−t, where it is not
yet fully clear whether or not it scales with L and M to the same
power and what are the specific values of the exponents (e.g.,
Stello et al. 2011; Huber et al. 2011; Corsaro et al. 2013). For the
vast majority of the rather faint stars observed with Kepler, how-
ever, the luminosity is simply unknown (or poorly determined
via the seismic radius and effective temperature) and it is there-
fore difficult to test such a scaling relation. Instead we prefer
to adopt the effective temperature and surface gravity as inde-
pendent variables since L/M ∝ T 4

eff/g (given g ∝ M/R2 and
L ∝ R2T 4

eff). Huber et al. (2011) and Stello et al. (2011) sug-
gested independent exponents for L and M, which means that
we have to add a mass term to our scaling relation. This can also
be seen from Fig. 10, where we plot Apuls as a function of log g,
with the stellar mass colour-coded. Clearly, mass affects the pul-
sation amplitudes so that low-mass stars tend to have larger am-
plitudes than high-mass stars at a given log g. A power law fit
indicates that the total (bolometric) pulsation amplitude roughly
scales as Apuls ∝ g−0.66M−0.35T 0.04. As for the granulation ampli-
tude, MultiNest found the exponent of the temperature term to be
close to zero, which means that the pulsation amplitude of a star
can be sufficiently well explained by the stars mass and surface
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Fig. 10. Total pulsation amplitude as a function of log g for our sample
of LC (circles) and SC (squares) stars, with the colour encoding stel-
lar mass. Black crosses indicate pulsation amplitudes predicted from a
power law fit of the form Apuls ∝ (g2 M)−s (shifted by a factor of 2 for
better visibility).

gravity (i.e., mass and radius) and Teff has no (or only marginal)
effect. Therefore we can approximate the pulsation amplitude to
scale as

Apuls ∝ (g2M)−s, (6)

where s ≃ 1/3. Substituting g by M/R2 and R2 by L/T 4, this
translates to

Apuls ∝ R4/3/M ∝ (L2/M3)sT−8s, (7)

showing that L and M indeed have different exponents. To test
the statistical significance of this we also fitted a power law
Apuls ∝ gsT−t (i.e. without an additional mass term and therefore
L/M with a single exponent) and find the odds ratio between
the two model’s global evidence clearly in favour for the scaling
relation including a mass term.

In principle Eqs. (6) and (7) are equivalent but from an ob-
servational point of view, Eq. (6) should be preferred as it uses
easier to determine parameters.

The relative scatter around the fit of about 13% leaves not
much space for other properties of the star to significantly affect
the pulsation amplitudes. However, there are a number of stars
that have substantially lower total amplitudes than what one ex-
pect from their M and log g. This could be caused by, for exam-
ple, binaries or stellar activity damping the oscillations (see, e.g.,
Huber et al. 2011).

From Fig. 10 it appears the low-mass stars are overabundant
on the upper giant branch (log g � 2.0) compared to the stars
below the red clump (at log g ∼ 2.3). This is presumably due
to the mass loss that stars undergo when evolving up the giant
branch (see, e.g., Miglio et al. 2012).

6. Granulation versus pulsation amplitudes

Solar-like oscillations are excited by convection, which is also
the process responsible for granulation. The basic assumption
is that the power of the velocity fluctuations due to p-mode
oscillations scales with stellar parameters in the same way as
the power of the velocity fluctuations due to granulation. This
is roughly supported by solar observations indicating that both
the kinetic energy of an oscillation mode and of a single gran-
ule are about 1027 erg (Korzennik et al. 2012). Many authors
(e.g., Kjeldsen & Bedding 2011) have previously argued that
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Fig. 11. Granulation intensity fluctuations Agran as a function of the total
pulsation amplitude Apuls. Symbol colours are the same as in Fig. 8. The
dotted and solid line indicate unity and a power law fit, respectively.
Black crosses indicate the ratio Agran/Apuls predicted from a power law
fit Agran ∝ As

pulsg
t Mu (shifted by –1.5 in y-direction for better visibility).

Note that the fit does not include the weak dipole mode stars.

amplitudes of solar-like oscillations should scale in proportion
to fluctuations due to granulation. This is also supported by our
findings, where we show that the pulsation amplitudes scale to
nearly the same power of g and M as the granulation inten-
sity fluctuations. It is therefore obvious to correlate these two
parameters.

This is done in Fig. 11, where we show the amplitude of the
granulation intensity fluctuations as a function of the total pulsa-
tion amplitude. Even though there is a tight relation, there is no
equality nor is it a linear relation. A power law fit indicates that
Agran ∝ A0.86

puls . The bottom panel of Fig. 11 shows that while the
granulation amplitude is about 3 to 4 times larger than the pul-
sation amplitude for stars on the main sequence, the ratio drops
down to about 1.5 for stars high up on the giant branch.

The fact that there is no linear relation between the gran-
ulation and pulsation amplitude is somewhat surprising as one
would intuitively expect that a more vigorous convection causes
a stronger granulation signal in the same way as larger pulsation
amplitudes. On the other hand we have to keep in mind that the
amplitude of solar-like oscillations depends on both the excita-
tion (i.e., the amount of energy that is provided by convection)
as well as the damping rate (i.e., the mode lifetime). Kjeldsen &
Bedding (2011) postulated that the squared p-mode amplitude
in velocity scales with the granulation power at νmax times the
mode lifetime. Efforts to define a scaling relations for the mode
lifetime have been made (Chaplin et al. 2009; Baudin et al. 2011;
Corsaro et al. 2012) but given the fact that measuring mode life-
times is still quite challenging no consensus has been found so
far. It is, however, well established that the mode lifetime is a
function of temperature.

To account for this we add a temperature term and find
that the granulation intensity fluctuations approximately scale
as Agran ∝ A0.84

pulsT 0.24. Even though there is a relatively good
correlation between Agran/A

s
puls and T (see Table 2), including
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Fig. 12. Ratio between the average amplitude of the central two l = 1
and the central three l = 0 modes, showing a group of stars with atypi-
cally small dipole modes (Al=1/Al=0 < 1). Inserts show the power den-
sity spectum of two with red open circles marked stars, where coloured
bars label l = 0 (lightred) and 2 (lightgreen) modes.

the temperature significantly impairs the fit. This is reflected by
the increasing rms scatter of the residuals from ∼8 to ∼10.3%
as well as a much lower global model evidence. A much better
description of the correlation between the granulation and pul-
sation amplitude can be given if we include the surface gravity
and mass in the fit. We find the granulation amplitude to scale as
Agran ∝ A0.63

puls g
−0.15M−0.06, which is consistent with what one can

expect when comparing the individual scalings for the granula-
tion and pulsation amplitudes.

6.1. Weak dipole modes

Figure 11 shows an interesting feature with a group of stars de-
viating from the general trend. From a pulsation amplitude of
about 200 ppm downwards there exists a group of stars that
seem to have substantially larger granulation amplitudes than ex-
pected. A closer look on the individual power spectra, however,
reveals that it is the total pulsation amplitude that is smaller than
it should be for “normal” stars. This is because the dipole modes
are much weaker (or even totally suppressed) than the surround-
ing l = 0 and 2 modes, which is reflected in the integrated am-
plitude as there is some power “missing”. The origin of this phe-
nomena is unknown but Mosser et al. (2012a) and only recently
García et al. (2014b) found that it is not correlated with, e.g., the
temperature or chemical composition of these stars, and Mosser
et al. (2013a) argue that it likely results from a very efficient
coupling between pressure and gravity waves.

To check whether this effect is also reflected in the granula-
tion signal that excites the modes, we need to estimate how much
pulsation power is missing. We therefore compute the average
amplitude of the central two l = 1 modes and the central three
l = 0 and 2 modes. Following Mosser et al. (2012a) the individ-
ual mode amplitudes are given as A2

l
(ν) = δν

∑δ+

δ−[P(ν) − B(ν)],
where δν is the bin width of independent frequency bins with
the power density P(ν) and background level B(ν). In the case
of l = 0 and 2 modes, the spectrum is evaluated between δ± =
νm ± δν02/2 (with νm and δν02 being the mode frequency and
the small frequency separation, respectively) and in the case of

dipole modes, from δ− = ν0 + δν02/2 to δ+ = ν2 − δν02/2 (with
ν0 and ν2 being the adjacent l = 0 and 2 mode frequencies). The
amplitude ratio A1/A0 is given in Fig. 12 and clearly shows that
stars with νmax � 60 µHz split into two groups7. While normal
stars have an amplitude ratio of ∼1.4 on average, A1/A0 reduces
to ∼1.0 to 0.5 (depending on νmax) in weak dipole-mode stars.
Assuming that the total pulsation amplitude is roughly propor-
tional to A0(1 + A1/A0 + A2/A0) we can estimate the Apuls is
underestimated by about 15 to 40% compared to normal stars.
Adding this “missing” pulsation amplitude in Fig. 11 would shift
the weak dipole-mode stars into (or at least close to) the popula-
tion of normal stars. From this we conclude that the granulation
signal acts normal in such stars confirming the early result based
on KIC 8561221 in which the background was also found to be
normal (García et al. 2014b). This needs, however further work,
which is beyond the scope of this paper. We therefore excluded
these stars from our analysis.

7. Testing the scaling relations on the Sun

A good possibility for an independent test of the above deduced
scaling relations is given by the Sun. We use a 1-year time se-
ries from the green channel of the SOHO/VIRGO data (Frohlich
et al. 1997) obtained during the solar activity minimum before
Cycle 23 and fitted our model F to the corresponding power
density spectrum. The resulting best-fit parameter are listed in
Table 3, where Agran,⊙ and Apuls,⊙ are bolometrically corrected
according to Michel et al. (2009). From this analysis it becomes
again obvious that the specific treatment of the granulation back-
ground has an important impact on the determination of νmax.
Whereas Kallinger et al. (2010b) fitted the same model to the
same data, they did not arrive at the same νmax. This is presum-
ably due to the fact that we now do also account for the sampling
effects described in Sect. 3.3, which redistributes the power in
the power excess and shifts νmax from 3120± 5 to 3140± 4 µHz.

In Table 3 we also give the values that result from our scal-
ing relations and find them in good agreement with the actual
measurements. Note that the predicted amplitudes a1,⊙ and a2,⊙
are given for the SOHO/VIRGO bandpass (centred on 500 nm),
where we assume a simple linear transformation from the Kepler
bandpass (centred on 664 nm).

8. Summary

In this work we investigated the granulation background spec-
trum of a large and homogeneous sample of 1364 stars observed
by Kepler. The sample includes stars from the main sequence,
the sub-giant branch to stars on the ascending giant branch, in
the red clump, and on the asymptotic giant branch. Or in other
words, stars with a mass ranging from about 0.7 to 2.5 M⊙ that
are cooler than the red border of the classical instability strip,
that cover a large fraction of the parameter space for which we
can expect convective surface layers that exhibit solar-like os-
cillations and granulation. We used Kepler light curves that span
between 90 and 360 days for main-sequence stars and sub-giants
and about 1140 days for red giants, corrected them for various
instrumental effects and analysed the overall structure of the re-
sulting power density spectra. From this study we find that:

– The depression in power at about νmax/2 that is know from
the Sun and a few other main-sequence stars is a common

7 A2/A0 does not show this effect, which is why we do not plot it in
Fig. 12. Its average value is about 0.85.
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Table 3. Solar reference values and the corresponding parameter pre-
dicted from scaling realtions.

Solar values Scaling relation

Pg,⊙ 0.25(1)
νmax,⊙ 3140(4)
σ⊙ 361(4)

a1,⊙ 36.5(2) 35.5(7)
b1,⊙ 758(8) 782(11)
a2,⊙ 35.9(2) 35.5(7)
b2,⊙ 2468(9) 2787(43)

τeff,⊙ 375(4) 340(12)
Agran,⊙ 41.0(2) 38(2)
Apuls,⊙ 12.01(6) 11.4(6)

Notes. The predicted amplitudes a1,⊙ and a2,⊙ are multiplied by 1.33
to account for the different passbands of Kepler and SOHO/VIRGO.
Agran,⊙ and Apuls,⊙ are bolometric values. The units are the same as in
Tables 1 and 2.

feature in all stars of our sample. A plausible explanation for
this feature is the presence of a second background compo-
nent close to the pulsation power excess. The fact that the
position of the depression relative to the power excess is
roughly constant for all stars indicates that the characteris-
tic timescales and amplitudes of the two components have a
fixed ratio.

– Using two (instead of one) background components signifi-
cantly improves the estimate of the background underneath
the oscillation signal. A single component is only sufficient
if the instrumental white noise dominates the background (or
is at least not negligible as for many of the Kepler targets)
hiding the specific shape of the granulation signal.

– In a probabilistic comparison of various functional forms of
background models a super-Lorentzian function with a free
(but close to 4) exponent turned out to reproduce the ob-
served signal best for many stars. The data do, however, not
(yet) provide enough evidence for such a model and a model
with an exponent fixed to 4 (which represents a significant
simplification for the fitting) can be considered as equally
good.

– The specific choice of the background model influences the
determination of νmax. An inappropriate background model
can redistribute the power in the pulsation power excess and
systematically shift its centre. We find such shifts in a lo-
cal (around νmax) as well as a global analysis of the power
spectrum and note that the systematics are largest between
one and two-component models. We confirmed these find-
ings using simulated power spectra.

We then used a Bayesian inference tool to determine the gran-
ulation and global oscillation parameters and their uncertainties
for our sample of stars. Compared to the previous analysis of
Mathur et al. (2011) we extended the sample towards sub-giant
branch and main-sequence stars and used time series for the red
giants that are about three times as long. On the other hand, M
giants that show solar-like oscillations (Mosser et al. 2013b) are
excluded from our analysis as their granulation signal has such
long periods that we cannot derive precise parameters even with
the long Kepler time series. The total sample now covers more
than 3 order of magnitudes in νmax. From the analysis of the re-
sulting parameters we conclude that:

– There are tight relations between all granulation parameters
and νmax. Whereas the characteristic granulation frequencies

scale almost linearly with νmax, the granulation amplitudes
approximately scale as ν−0.6

max . We also confirmed a significant
mass dependency of the latter.

– The defined scaling relations allow to estimate the overall
shape of the granulation signal of any solar-type oscillator
to within about 15%, and might therefore serve as a good
starting point for future large sample studies.

– In order to allow a comparison with previous measurements
and model estimates we also computed effective timescales
and total intensity fluctuations. We established that both pa-
rameters are predominantly determined by gravity on the
stellar surface. They were found to approximately scale as
τeff ∝ g−0.85T−0.4 and Agran ∝ (g2M)−1/4 ∝ R/M3/4. From
the rather small rms scatter of the residuals (<10% for both
parameters) we conclude that no other property of the star
plays a significant role.

– While the theoretical predictions of the characteristic
timescales are generally in good agreement with the ob-
servation, some discrepancies remain for the intensity
fluctuations.

– There is a statistically significant and surprisingly simple
scaling relation for the total pulsation amplitude, which
turned out to approximately scale as Apuls ∝ (g2M)−1/3 ∝
R4/3/M. This implicitly verifies a separate mass and luminos-
ity but no (additional) temperature dependence of the mode
amplitudes. Our sample certainly includes stars with dimin-
ished pulsation amplitudes due to, e.g., an increased activ-
ity level or binary companions. The small rms scatter of the
residuals of about 14% therefore indicates that the unper-
turbed pulsation amplitudes are well approximated by the
above scaling relation.

– The granulation timescale and amplitude as well as the pul-
sation amplitude can be sufficiently described by the mass
and surface gravity of a star and the effective temperature has
no (or only marginal) additional effect on these parameters.

– The granulation signal in weak dipole-mode stars is at first
order indistinguishable from that of normal stars.
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Appendix A: Power density conversion

Measuring amplitudes of a quasi-stochastic signal (i.e., solar-
like oscillations but also the granulation signal) is not straight
forward. What we actually measure in a power spectrum is, e.g.,
the height of an oscillation mode (i.e., the amplitude of the limit
spectrum). This does not only scale with the intrinsic mode am-
plitude and line width but also with the time baseline of the
observations. It is therefore convenient to convert the spectral
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power PPS to spectral power density PPDS, to become indepen-
dent of the baseline. There are several approaches to do so. A fre-
quently used method (e.g., Appourchaux et al. 2008) is to search
for a conversion factor ζ so that

σ2 = ζ

∫ νnq

0
PPS(ν) dν (A.1)

is satisfied (also known as Parseval’s theorem), where σ2 and
νnq are the variance and Nyqvist frequency8 of the time se-
ries, respectively. The spectral power density is then given as
PPDS = ζPPS. Strictly speaking, this relation is only valid for
evenly spaced and continuous data sets. However, introducing
gaps in a continuous time series, that contains for example only
Gaussian noise, will not change its variance but it will change the
integral of the corresponding power spectrum and therefore the
conversion factor ζ. This is because the gaps in the time series
produce alias peaks in the spectral window function that provide
additional power to the spectrum, which is not present in the
time domain. To account for this, sort of a filling factor could
be introduced in Eq. (A.1) but it is more convenient to use the
actual spectral window function SPS. We define the conversion
factor between spectral power and spectral power density as,

ζ =

⎛

⎜

⎜

⎜

⎜

⎝

∫ +νnq

−νnq

SPS(ν) dν

⎞

⎟

⎟

⎟

⎟

⎠

−1

. (A.2)

That said, we note that for most of the Kepler time series the con-
version factors resulting from Eqs. (A.1) and (A.2) are almost
identical because the spectral window functions of the high-
duty-cycle time series are close to a Dirac function. However,
for stars with large gaps (e.g., due to missing quarters) the dif-
ference can be non-negligible.
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