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THE CONNECTION MATRIX THEORY
FOR MORSE DECOMPOSITIONS

ROBERT D. FRANZOSA

Abstract. The connection matrix theory for Morse decompositions is intro-
duced. The connection matrices are matrices of maps between the homology
indices of the sets in the Morse decomposition. The connection matrices cover,
in a natural way, the homology index braid of the Morse decomposition and pro-
vide information about the structure of the Morse decomposition. The existence
of connection matrices of Morse decompositions is established, and examples
illustrating applications of the connection matrix are provided.

Introduction

In [4] the Conley index theory is extended to an index theory for partially
ordered Morse decompositions of isolated invariant sets. Via an index filtra-
tion for the flow-defined ordering of the Morse decomposition the homology
index braid of the Morse decomposition is defined. The homology index braid
contains the homology of the Conley index of each Morse set, i.e., each iso-
lated invariant set defined by the Morse decomposition, along with flow defined
maps between these homology complexes. A connection matrix of the Morse
decomposition is a matrix of maps between the homology indices of the min-
imal Morse sets which, in a natural way, defines an isomorphic image of the
homology index braid. Thus, the connection matrices represent a simple cod-
ification of the information in the homology index braid. Since the homology
index braid contains information about the structure of the invariant set and
its Morse decomposition, so do the connection matrices. It is this feature of
the connection matrices that is the main motivation for their study.

The connection matrix theory is presented by the author in his Ph. D. thesis
[3]. In [3] the theory is developed for the case where the homology of the
Conley index is computed using field coefficients. In this paper we present the
full connection matrix theory in the more general setting where the homology
indices may be computed with coefficients in a module over a PID.

As the Conley index is a generalization of the classical Morse index, the
connection matrix theory has correspondences within Morse theory.   In that
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562 R. D. FRANZOSA

setting the Leray spectral sequence is used to study the relationship between
homology complexes associated to a decomposition of a set and the homology
of the set. That work and the work on connection matrices are both motivated
by a desire to obtain information about the structure of the sets defined by a
decomposition from indices of minimal sets in the decomposition.

Applications of the connection matrix theory can be found in [11-13]. Fur-
ther developments in the connection matrix theory can be found in [10], where
mappings between flows and their relationship to connection matrices are stud-
ied, and in [6], where Rybakowski's Conley-index theory for semiflows on metric
spaces is extended to include a connection matrix theory for Morse decompo-
sitions.

This paper begins in § 1 with a summary of the main background results on
homology index braids from [4]. §1 also includes a brief discussion motivating
the work that follows. The connection matrix theory is developed on a purely
algebraic level in the next three sections. In §§2 and 3 the relevant algebraic
structures are introduced (including the connection matrix in §3), and in §4 the
main connection matrix existence result is proved. In §5 the connection matrix
theory for Morse decompositions is discussed, and applications are presented
in §6.

1. Background and motivation

The work in this paper is a continuation of that in [4], and therefore we carry
over all of the notations and conventions used there. We summarize briefly the
important definitions relating to partial orders, Morse decompositions, index ni-
trations and their associated chain complex braids, and homology index braids.
Further details on these topics can be found in [4]. We assume that the reader
is familiar with the basic concepts of the Conley index theory as in [1-4, 7-9,
14, 15]; in particular, flows, isolated invariant sets and isolating neighborhoods,
o) and &)* limit sets, attractor-repeller pairs, index pairs, index spaces, and the
Conley index.

The standard reference to the homology theory used here is Spanier [16].
Unless otherwise indicated, the homology of a topological space is assumed to
be singular homology with coefficients in a module over a PID. We point out
that throughout this paper we frequently use the same symbol to denote a chain
map and its induced homology map, rather than appending a subscript * to
denote the homology map.

Throughout this paper 7* denotes a finite indexing set with p elements. A
partial order on F is a relation, <, on the elements of P satisfying:

( 1 ) 7i < 71 never holds for n e P ,
(2) n < ri and 7t' < 7t" imply n < ri'.

Assume throughout that < is a partial order on P .
An extension of < is a partial order <' on P for which n < ri implies

n < ri. If P' c P , then < induces a partial order on P' called the restriction
of < to P'.
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An interval in < is a subset I c P for which n, ri E I and it < n" < ri
imply ri' E I. The set of intervals in < is denoted /(<). 7 e /(<) is
called an attracting interval if 7Z € 7 and ri < n imply ri E I. The set of
attracting intervals in < is denoted A(<). n,ri e P are called adjacent if
{n,ri}El(<).

An adjacent «-tuple of intervals in < is an ordered collection (Ix, ... ,In)
of mutually disjoint intervals in < satisfying:

(1) IX, /,-€/(<),
(2) n E Ij, ri Elk, j < k imply ri ft n.

The collection of adjacent «-tuples of intervals in < is denoted 7W(<). Note
that /(<) = 7j(<). It is easy to see that if <' is either an extension of < or
the restriction of < to an interval in < then /„(<') C I„(<). If (7,/) is
an adjacent pair (i.e., 2-tuple) of intervals, then we set IJ-IöJ. If (7,7)
and (J, I) are both adjacent pairs of intervals, then we say that 7 and J are
noncomparable. If (Ix , ... ,In) E In(<) and |J"=1 7. = 7, then (7, , ... ,In) is
called a decomposition of 7 .

Throughout this paper assume S is an isolated invariant set in X, a locally
compact metric local flow in a Hausdorff topological space Y on which there is
defined a flow.

If Sx and S2 are compact invariant subsets of S, then C(S2,SX) is the
set of orbits connecting S2 to Sx in S, i.e., the set {y E S\co(y) c Sx and
co*(y) c S2}. An attractor-repeller pair in S, (A, A*), decomposes S into
the union, S = Au C(A* ,A) U A*. This idea is generalized via the Morse
decompositions of S ; specifically,

Definition 1.1. A (<-ordered) Morse decomposition of S is a collection M =
M (s) — {M(n)}neP of mutually disjoint compact invariant subsets of S such
that if y E S\\JneP M (it), then there exists n < ri with y e C(M(ri), M(n)).

Since a collection of sets M = {M(n)}neP can be a Morse decomposition of
more than one invariant set, the structures (including the indices) associated to a
Morse decomposition of an invariant set S are defined relative to S. However,
for notational convenience, we usually omit reference to S in the discussions
of the structures.

Assume for the remainder of the paper that M = {M(n)}neP is a <-ordered
Morse decomposition of S . The partial order < on P induces an obvious par-
tial order on M called an admissible ordering of the Morse decomposition. The
flow defines an "extremal" admissible ordering of M called the flow ordering of
M, denoted <F and such that n <F ri if and only if there exists a sequence
of distinct elements of P:n - n0, ... ,nn = ri with C(M(n.), M(n.x)) ^ 0
for each j — I, ... ,n .  Every admissible ordering of M is an extension of
<F

Associated to the admissible ordering < of M there is a distinguished collec-
tion of subsets of 5, called the Morse sets of < and defined for each I e I(<)
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by

M{I)=(\jM(it))\j(   (J   C(M(ri),M(n))\
^n€I '        ^n.n'el '

S being an isolated invariant set implies that each Morse set is too. Since
every admissible ordering of M is an extension of the flow ordering, it follows
that the collection of Morse sets of the flow ordering contains the Morse sets
of each other admissible ordering. If (I ,J)e I2(<), then (M(I), M(J)) is an
attractor-repeller pair in M(IJ) ; in particular, if 7 is an attracting interval in
< , then M (I) is an attractor in S with complementary repeller M(P\I).

The index pair for an isolated invariant set is generalized by the index filtra-
tion for an admissible ordering of a Morse decomposition; specifically,

Definition 1.2. An index filtration for the admissible ordering < of M is a
collection of compact sets JV = {A(7)}/e/,(<) satisfying:

(1) for each 7 E A(<),  (N(I), N(0))  is an index pair for the attractor
M(I),

(2) for each 7, ,72 e A(<), N(IX n I2) = N(IX) n N(I2) and N(IX u I2) =
N(IX)UN(I2).

Assume throughout that JV is an index filtration for the admissible ordering
< of M. If J E I(<) and (7 ,J) is a decomposition of K E A(<), then it
follows that 7 e A(<) and (N(K), N(I)) is an index pair for the Morse set
M(J). Thus the index filtration defines an index pair for each Morse set of
the admissible ordering. Furthermore, it follows from property 2 in Definition
1.2 that if (N(K¡), N{I¡)), i = 1,2, are index pairs for M(J) defined by JV,
then the index spaces A(7i(.)/A(7;.), /' = 1,2, are homeomorphic. If we choose
a coefficient module G, and let C(N(K¡)/N(I¡) ; G) denote the singular chains
of the index space TV^O/TV^/,.) with coefficients in G, then it follows that
there is defined a chain complex C^(7';G) (also denoted C(J) for simpler
notation) which is naturally isomorphic to each C(N(Kj)/N(I¡) ; G). Passing
to homology in C(J) one obtains Ht(h(M(J)) ;G), the singular homology with
coefficients in G of h(M(J)), the Conley index of the Morse set M(J). This
is also called the homology index of M (J) with coefficients in G, and for
simplicity we denote it by 77(7).

Now if (7 ,7) E 72(<) then chain maps are defined,

C(i) ^LHL c(U) -^^ C(J)

having the following properties:

( 1 )   /(/ , 77) is injective and p(77 , /)/(/ , 77) = 0,
(2) the chain map defined by p(U ,J),  p:C(IJ)/im(i(1,77)) -» C(J)

induces an isomorphism on homology,
(3) if 7 and 7 are noncomparable, then p(JI ,I)i(I ,IJ) = id\C(I),
(4) if (I ,J ,K) E I3(<), then braid diagram (1.1), below, commutes.
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(1.1)

This collection of chain complexes and chain maps is called the chain complex
braid of the index filtration with coefficients in G and is denoted ^(JV; G)
or W(jy~). ^(jY) is introduced in [4] without mention of the injectivity of
i (1,77). It is easy to see from the definition of /(/ , 77) in [4] that it is injective.

The chain complex braid of an index filtration is the model of what in §2 is
more generally defined as a chain complex braid. Passing to homology in fê(JV)
we obtain the homology index braid of the admissible ordering of the Morse
decomposition with coefficients in G, denoted £?(<;G) or %f(<). %?(<) is
independent of the index filtration jV .

Sf(<) consists of graded modules 77(7) for each 7 e 7(<), and maps
between graded modules i(I ,77): 77(7) -» 77(77), p(77 ,7): 77(77) - 77(7),
and 9(7 ,7): 77(7) ^ 77(7) satisfying:

(1)   -► 77(7) -U 77(77) 4 77(7) -i 77(7) -» •• •  is exact,
(2) if 7 and 7 are noncomparable, then p(77 ,7)/(7 ,77) = id|77(7),
(3) if (7 ,7 , K) E I3(<), then the following braid diagram ( 1.2) commutes:

-H(I) H(X)-

H(IJ)

.H(IJK)   o H(J>-

(1.2) H(JK)

kH(K) mi)1-

H(IJ)

:h<J) 'H(IJK)
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566 R. D. FRANZOSA

Because every admissible ordering of M is an extension of the flow ordering,
it follows that the homology index braid of the flow ordering contains the ho-
mology index braid of each other admissible ordering; therefore the homology
index braid of the flow ordering is also called the homology index braid of the
Morse decomposition and is denoted ßf(M ; G) or ßf(M).

The homology index braid is the model for what in §2 is more generally
defined as a graded module braid. In §§3 and 4 it is shown that the algebraic
information in a graded module braid can be codified in a collection of matrices
called the connection matrices of the graded module braid. In §5 the connec-
tion matrices of a Morse decomposition are then defined to be the connection
matrices of the corresponding homology index braid. The definition and proof
of existence of connection matrices is done on a purely algebraic level in §§2-4.

Before commencing with the work on connection matrices consider the fol-
lowing simple case motivating their study.

Assume that (A, A*) is an attractor-repeller pair in S, and let H (A), H (A*),
and 77(5) denote the homology indices with coefficients in a fixed field. The
homology index braid in this case reduces to an exact sequence:

-► H(A) -i» H(S) 4 ti(A*) £• H(A) -»•••.

If d ¿ 0, then C(A*, A) ¿ 0 (see [4, 8]); therefore the map d (and, more
generally, the homology index braid) contains information about the structure
of the attractor-repeller pair in S .

Now let CA(S) be the chain complex with graded module H (A) ® H (A*)
and boundary map defined by the matrix

(0   d\( H(A)\       ( H(A)
A-{o o)-{h(a*))^{h(a*)

Upon appropriate restriction CA(S) and A define chain complexes CA(A) and
CA(A*) with boundary maps A(A) and A(A*), respectively, where CA(A) =
H (A), CA(A*) = H (A*), and the boundary maps A(A) and A(A*) are trivial.
Now a short exact sequence is defined,

0 -» CA(A) ± CA(S) A CA(A*) -» 0,
where i and p are the obvious inclusion and projection maps, respectively.
Passing to homology we obtain

-► HA(A) -Í* 77A(S) 4 77A(^1*) ^ HA(A) ->••■.

It easily follows that HA(A) = H (A), HA(A*) = H(A*), and d = d . There-
fore we have defined the following commutative diagram of homology modules
and maps:

HA(A)    ±    HA(S)    ^    HA(A*)    -^    77A(^)
(1.3) id id id

H(A)     ^+     H(S)     -^     H(A*)     ^     H (A)
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It is not difficult to see that there exist maps 8(S): HA(S) -+ 77(5) making di-
agram (1.3) commute. The five lemma (see [16]) implies that such maps 8(S)
are isomorphisms. Thus, via the matrix A, an isomorphic image of the homol-
ogy index braid is generated. One then expects that A contains information
present in the homology index braid; in particular, in this case A contains d ,
and therefore provides information about the structure of the orbits connecting
A* to A in S. The matrix A is the prototype of the connection matrices
studied in the following sections.

2. Graded module braids and chain complex braids

Definition 2.1. A sequence of chain maps

"-l        *-2        L-3

is called weakly exact if / is injective, pi = 0, and p:C2/im(i) —* C3, the
chain map defined by p, induces an isomorphism on homology.

Let Cx -^ C2 ^ C3 be weakly exact, and denote the boundary map in C(
by di for each /. It is not difficult to see that if a E H(C3) and Xa c ker(93)
is the equivalence class defining a, then i~xd2p~x(Xa) c ker^) and rep-
resents a unique homology class in H(CX). Therefore, as with short exact se-
quences of chain complexes (see [16]), there exists a connecting homomorphism
d:H(C3) —► H(CX) and an associated exact homology sequence. Specifically,

Proposition 2.2. Given a weakly exact sequence of chain complexes

C -L,r AC
■-l        *-2        ^3

there exists a natural degree -1 homomorphism d:H(C3) -* H(CX) suchthat:
(1) if a E H(C3) and Xa c ker(d3) is the equivalence class defining a,

then d(a) = [rxd2p-l(Xa)],
(2)   ->H{CX) -i*H(C2) A77(C3) ^H(Cx)^ ■■■  is exact.

Proof. Let d':H(C2/im(i)) -► H(CX) be the connecting homomorphism for
the short exact sequence of chain complexes

0 -> C, A C2 A C2/im(0 ^0,

where p is projection onto the quotient, and let p~x be the inverse of the
homology isomorphism p:H(C2/im(i)) —► H(C3). Then define d:H(C3) -»
H(CX) by d = d'p~x . The naturality of d and properties 1 and 2 are easily
verified.    D

Definition 2.3. A graded module braid over < is a collection 3? = &(<) con-
sisting of graded modules and maps between the graded modules satisfying:

(1) for each 7 € 7(<) there is a graded module G(I),
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(2) for each (I ,J) E I2(<) there are maps

i(1,77): G(I) -► G(IJ) of degree 0,
p(77 ,7): G(IJ) -» G(7) of degree 0,
d(J , I): G(J) -» (7(7) of degree - 1

which satisfy

(a)-► (?(/) A G(77) A (7(7) A G(7) -► • • •  is exact,
(b) if 7 and 7 are noncomparable, then p(77 ,7)/(7 ,77) = id \G(I),
(c) if  (I ,J ,K)   E  I3(<), then the following braid diagram (called the

(7 ,7 , K) braid diagram) commutes:

(2.1)

G(IJ>

G(JK)

G(IJ)

G(K)¡

G(J)|

G(I)<

G(IJK)
N

It is shown in [4] that <%"(<), the homology index braid of the admissible
ordering < of M, is a graded module braid.

Assume that 9 and &' are graded module braids over < .

Definition 2.4. A. A map 8 between & and &', denoted 8:& -+ &', is a
collection of module homomorphisms 0(7): G(I) -* G'(I), I E I(<), such that
for each (I ,J) E I2(<) the following diagram commutes:

G(I)

9(1)

G~(I)

G(IJ)

6(1J)

G'(IJ)

G(J)  -

6(J)

C(J) -

- G(I) -

- ¿(i)-

B. If 0(7) is an isomorphism for each 7 e 7(<), then we call 8 an isomor-
phism and we say that S? and 9' are isomorphic.
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Proposition 2.5. Given 6:¡? —> &'. If 8(n) is an isomorphism for each n E P
( i.e., for the one-element intervals ), then 8 is an isomorphism.

The proof of Proposition 2.5 is a straightforward induction argument using
the five lemma.

If 8 is an isomorphism, then there is an obvious inverse isomorphism, which
we denote by 8~  , mapping "§' to 9.

Definition 2.6. A chain complex braid over < is a collection ^ = &(<) con-
sisting of chain complexes and chain maps satisfying:

(1) for each I E I(<) there is a chain complex C(7),
(2) for each (I, J) E I2(<) there are chain maps

i(7 ,77): C(7) - C(IJ),       p(IJ , J): C(IJ) -» C(J)
which satisfy:

(a) C(I) A C(IJ) A C(J) is weakly exact,
(b) if 7 and 7 are noncomparable, then p(77 ,7)/(7 ,77) = id |C(7),
(c) if (I ,J ,K) E I3(<), then the following braid diagram (called the

(I ,J ,K) braid diagram) commutes:

(2.2)

It is shown in [4] that W(J^), the chain complex braid of the index filtration
yV, is a chain complex braid.

Upon passing to homology, a chain complex braid defines a graded module
braid. Specifically, assume ^ is a chain complex braid over < . For each 7 e
7(<) let 77(7) be the homology of the chain complex C(7). If (I ,J)eI2(<),
then there is a weakly exact sequence

C(i) ^LHU C(IJ) -^^ C(J).
Associated to this weakly exact sequence there is an exact homology sequence

(2.3) ■ • ■ - 77(7) -^-^ 77(77) -^^ 77(7) -^-^ 77(7)
Set £?W(<) equal to the collection consisting of the graded modules 77(7)
for each 7 e 7(<), along with the maps i(I ,IJ), p(IJ ,J), d(J ,/) from
sequence (2.3) for each (I ,J) E I2(<).
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Proposition 2.7. W&(<) is a graded module braid over <.
Proof. The only property of a graded module braid required by Definition 2.3
that %"&(<) does not obviously satisfy is the commutativity of those parts
of diagram (2.1) that contain a connecting boundary map d . We prove that
diagram (2.4) below commutes for (I ,J ,K) E I3(<). The other cases follow
similarly.

H(JK)

(2.4) 7/(70 77(7)

Consider

(2.5)

C(7)

C(IJ)

77(77)

. C(IJK)

id

C(IJK)

C(JK)

C(K)
Since f (<) is a chain complex braid, it follows that diagram (2.5) is a commu-
tative diagram of chain maps with rows that are weakly exact. Upon passing to
homology in diagram (2.5), it is easily seen that the commutativity of diagram
(2.4) follows by the naturality of the connecting boundary map.    D

Definition 2.8. If W is a chain complex braid, then we call %"& the graded
module braid generated by f. Furthermore, if & is any graded module braid
isomorphic to ïïffê, then we say that & is chain complex generated.

It is shown in [4] that %?(<), the homology index braid of the admissible
ordering < of M, is the graded module braid generated by the chain complex
braid ^(jV) where JV is an index filtration for < .

The graded module braid is the input used in defining connection matrices.
The chain complex braid is a support structure that is necessary in our proof of
the existence of connection matrices.

Now assume that ^ and fê' are chain complex braids over < .

Definition 2.9. A chain map Y between fê and &, denoted *F: W -» W', is
a collection of chain maps *F(7): C(7) -> C'(7), 7 e /(<), such that for each
(7,7) E I2(<) the following diagram commutes:

C(7)  —i—»  C(77)  —£—» C(J)

\<¥(IJ) \v(J)

-* C'(IJ) —?-^ C'(J)

Now let <#"f and ¿fê?' be the graded module braids generated by W and
&', respectively. Given a chain map *F: W -* W', by passing to homology we

[W)
C'(I) -
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obtain a map 0:^^ -> %'(ë', where for each 7 e /(<), 0(7) is the map
on homology induced by the chain map ¥(/). We call 8 the homology map
induced by 4*.

Now, let < be either an extension of < or the restriction of < to an interval
7 E /(<). Then /„(<') C /„(<) for each « .

If ^ is a graded module braid over < , then we can restrict & to obtain a
graded module braid 2/\<' over <'. Specifically, let 2?\<' be the collection
consisting of the graded modules G(I), for I E /(<') C /(<), along with
the maps /(/ , 77), p(77 ,7), d(J ,1), for (I ,J) E I2(<') C 72(<). It is not
difficult to see that S?\<' is a graded module braid over < .

If 8: & —* &' is a map between graded module braids over < , then we can
restrict 8 to a map

0|<':Sn<'-+ &\< ,       8\< = {8(I)\I E /(<')}.
We can similarly restrict chain complex braids over < and chain maps be-

tween chain complex braids. We leave the details to the reader.

Let C
map

3. The algebraic connection matrix theory

{CA(n)} GP be a collection of graded modules. If 7 c P, then a

A:0CA(7T)-®CA(7O
net net

can be regarded as a matrix

/    ;
••A.*-

V

(
CA(tz)

n ,n'el V
CA(tz)

; net V / net

where each An n, is a map from CA(7i') to CA(7r).

Definition 3.1.
A. A is upper triangular if A^ n, ^ 0 implies n <ri .
B. A is strictly upper triangular if A^ n, ^ 0 implies n <ri .
C. A is a boundary map if each A^ K, is of degree -1 and A  = 0.

Now assume that A: ®neP CA(n) -» ^ji€PCA(n) is an upper triangular
boundary map. For each 7 e /(<) set CA(7) = ®n(El CA(n), and for 7,
7 6 7(<) let A(7 ,7): CA(7) — CA(7) be the map defined by the matrix

/

V

\

J ne/ .n'£J

If 7 e /(<) then we denote A(7 ,7) by A(7).
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Proposition 3.2. A(7) is an upper triangular boundary map for each I e 7(<).
Proof. Clearly A(7) is upper triangular and A(I)n n, is of degree -1 for each
7i, ri E I. We show that A(7) = 0. It is easy to see that there exist 77 ,7 E
/(<) suchthat (77,7,7) is a decomposition of P (i.e., (77 ,7 ,7) E I3(<) and
7777 = P). Since A is upper triangular, A(77,7) = A(77 ,7) = A(7 ,7) = 0.
We can view A as a map:

A(77)   A(7,77)   A(J,H)\    fCA(H)\       f CA(H)\
0 A(7)       A(7,7)     :     CA(7)      -      CA(7)     .
0 0 A(7)   )    V CA(7) )       \ CA(J) )

A = 0 ; therefore by composing the middle row with the middle column it is
easily seen that A(7)  = 0.    D

Now for each 7 G 7(<) there is a chain complex CA(7) with boundary map
A(7). If (I ,J) E I2(<), then there is a short exact sequence

0 -* CA(7)   ''(/ ,U) ■ CA(77)   P{'JJ)> CA(J) - 0,

where ¿(7 ,77) and p(77 ,7) are the obvious inclusion and projection maps,
respectively.

Proposition 3.3.   /'(/ , 77) and p(IJ , 7) are chain maps.
Proof. We can regard i(1,77) as a map of the form

«'■">=(oH"-ra-
As above we can view A(77) as

/A(7)    A(7,7)\   /CA(7)\       / CA(7) \
V   0        A(7)   )-{CA(J)J   *\CA(J)J-

With these identifications it follows that i(I ,IJ)A(I) = A(JI)i(1,77), and
therefore i(1,77) is a chain map. The proof that p(77 ,7) is a chain map is
similar.    D

It is not difficult to see that the collection of chain complexes and chain maps
defined above satisfies the requirements in the definition of a chain complex
braid. More specifically,

Proposition 3.4. Given an upper triangular boundary map

A: 0 CA(tt) - 0 CA(tt) ,
neP n€P

the collection, denoted WA(<), consisting of the chain complexes CA(I) with
boundary map A(7) for each I E I(<), and the chain maps i(I ,IJ) and
p(IJ , 7) for each (I ,J) E I2(<), is a chain complex braid over < .

We call WA(<) the chain complex braid defined by A. Now let ^A(<) be
the graded module braid generated by WA(<) ; i.e., %?A(<) = ¿PffA(<). For
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each 7 e /(<) there is a graded module 77A(7), and for each (7 ,7) e 72(<)
there is an exact sequence

... _» i/A(7) ^^+ 77A(77) ̂ ^»+ 77A(7) ̂ ^+ 77A(7) - • • • .
The connecting homomorphism here takes on a particularly simple form.
Specifically,
Proposition 3.5. If [a] E HA(J), then A(7 ,7)[a] = [A(7, 7)q] .

The proof of Proposition 3.5 follows from Proposition 2.2.
Now given *&, a graded module braid over <, let C = {G(n)}KeP .  It is

natural to ask if there exist any upper triangular boundary maps
A:0G(7r)-+0G(7r)

neP n€P
such that 3?A is isomorphic to S, and therefore if we can recover 3? from
the collection of G(n) 's via a matrix A (thereby using only the (7(7) 's for the
one-element intervals). The significance of this is not so much in the recovering
of S, but rather in the codifying of the algebraic information in S via the
matrix A. In [3] it is shown that such maps A do exist if S is chain complex
generated and G(n) is free for each n E P . Note that in this case if G(n) is
also finitely generated, then it follows that each diagonal entry A(n) in A must
be trivial, and therefore A is strictly upper triangular.

If G(n) is not free, then such a map A may not exist. As an example consider
the graded module braid consisting of only the sequence of graded Z-modules
and maps

-► G(2) -^ (7(1) -Ú (7(12) _L> (7(2) _£+ Q(l) -+ •• • ,
where the only nontrivial modules occur in dimension 1, and appear as follows:

-► 0 - Z — Z -!U Z2 -» 0 — • • • .

It is easy to see that there is no upper triangular boundary map A: G( 1 ) © G(2) -»
(7(1) ©(7(2) resulting in homology isomorphic to (7(12).

This situation is overcome (in 3.8 below) by taking C = {CA(n)}ji€P , where
each CA(7t) is a free chain complex whose homology is isomorphic to G(n).
Definition 3.6. Given S, a graded module braid over < , and C = {CA(n)} p ,
let A:0)te/) CA(7r) —► ®n€P CA(n) be an upper triangular boundary map. Then

A. if ßPA is isomorphic to S, then A is called a C-connec-
tion matrix of S,

B. if also C = {G(n))n€P , then A is called a connection matrix of S.

We denote the collection of C-connection matrices and connection matrices
of S by %Jr(%, C) and %*(&), respectively.

If < is an extension of < , then S?\<'c S?. Thus there are more algebraic
restrictions in defining A for which ß?A is isomorphic to 3? than in defining A
for which %*A is isomorphic to S?\<'. Thus we have the following proposition
whose easy proof is left to the reader.
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Proposition 3.7. If S is a graded module braid over <, and <! is an extension
of <, then for any C, ^Jf(S, C) c %£'&{<', C).

The following theorem, whose proof is presented in the next section, is the
main connection matrix existence result.

Theorem 3.8. If 3?(<) is a chain complex generated graded module braid and
C = {CA(n)}7i€P is such that each CA(n) is a free chain complex with homology
isomorphic to G(n), then WJ?(S? ,C)¿0.

Note that if S is not chain complex generated, then there are no (C-) con-
nection matrices A of S ; otherwise S would be isomorphic to %?A, the
graded module braid generated by fêA, and therefore would be chain complex
generated. It is, however, unknown if every graded module braid is chain com-
plex generated, or equivalently, if there is a connection matrix for every graded
module braid. This poses no problem for our application to Morse decomposi-
tions of invariant sets in a flow, because, as we have seen, the homology index
braid of a Morse decomposition is a chain complex generated graded module
braid, and therefore, we can associate connection matrices to each Morse de-
composition.

It is interesting to note that a graded module braid does not necessarily have
a unique connection matrix. In §6 we present an example that establishes the
nonuniqueness of connection matrices and illustrates the significance of the non-
uniqueness.

4. The existence of connection matrices
We begin the proof of the existence of connection matrices by establishing

some useful properties of chain complex braids. Assume W(<) is a chain
complex braid over < .

Proposition 4.1. If (1,7 ,j') E I3(<), and 7 and J' are noncomparable, then
the following triangle of chain maps is defined and commutes:

C(IJ) —?—+ C(J)

\       ,/
C(IJJ')

Proof. Note that  (7,7,7') E 73(<)   and  7  and J'  noncomparable imply
(I ,j' ,J) E 73(<). Applying p(7'7 ,7) to both sides of a commutativity rela-
tion derived from the (7,7,7') braid diagram we obtain

p(7'7 ,J)i(J , Jj')p(IJ , J) = p(j'j , J)p(IJj', Jj')i(IJ , IJJ').
Noncomparability of 7 and J' imply

p(j'j,J)i(J ,Jj') = id,
and the (7,7', 7) braid diagram yields p(/'7 , J)p(UJ', 77') = p(UJ', J).
Thus

p(77 ,7) = p(777', 7)/(77 ,777'),
the desired relationship.    D
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Proposition 4.2. If (Ix ,7,) and (I2 ,J2) are decompositions of an interval K,
and 72 n 7, = 0, then p(K, 7,)i(I2 ,K) = 0.

Proof. It is easy to see that (72 ,IxnJ2,Jx) is a decomposition of K. By weak
exactness p(K, J2)i(I2 , K) = 0 ; thus p(72 ,7,)p(7C, 72)/(72, K) = 0. Via the
(72,7, n72 ,7,) braid diagram this reduces to p(K, Jx)i(I2 , K) = 0, the desired
relationship.     D

Now assume n E P is maximal under < . Set A = A% = {ri E P\ri < n} ,
and R = Rn = P\A. If K E I(<) is such that n E K, then we set KA = KC\A,
KR = K n R . Assume such a K is fixed. The following proposition is a simple
consequence of these definitions.

Proposition 4.3. (KA,KR) and (A\K,KA) are decompositions of K and A
respectively.

Proposition 4.4. If (I, J) is a decomposition of K, and n E I, then IA = KA
and(IA,IR,J)El3(<).

Proof. Clearly IA c KA . If ri E KA, then ri < n. This and the fact that
71 E I imply that ri El; thus KAdA. Since (7 ,7) e 72(<), and (IA , IR) is
a decomposition of 7, it follows that (IA ,IR,J)El3(<).

Proposition 4.5. If (I, J) is a decomposition of K, and n E J, then
(A\K, KA\JA , JA), (KA , KR\JR , JR), (I, JA , JR), and (KA\JA , JA , KR\JR)
are adjacent triples of intervals, and JA and KR\JR are noncomparable.

Proof. (A\K,KA) E 72(<) by Proposition 4.3, and it is easy to see that
(KA\JA ,JA) is a decomposition of KA ; therefore (A\K, KA\JA ,Ja)eI3(<).
(KA ,Kr)eI2(<) by Proposition 4.3, and (KR\JR ,JR) is clearly a decomposi-
tion of KR ; thus (KA , KR\JR , JR) E l3(<). Since (7 ,7) e 72(<) and (JA , JR)
is a decomposition of 7 (by Proposition 4.3), it follows that (I ,JA,JR) e
73(<). It is not difficult to see that (KA , KR\JR) € 72(<) ; this and the fact that
(KA\JA ,JA) is a decomposition of KA imply (KA\JA ,JA ,KR\JR) e I3(<).
Finally note that JA c A, KR\JR c 7?, and (A , R) E I2(<), and furthermore
KR\JR c 7, JA c 7, and (I ,J) E I2(<) ; it follows that JA and KR\JR are
noncomparable.   D

Proposition 4.6. If (I, J) is a decomposition of K, and n eJ , then the follow-
ing diagram of maps is defined and commutes:

C(A)
p p
/ \

(4.1) C(KA)      JU C(JA)

C(K)       -!U       C(J)
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(A\K,KA\JA,JA)Proof. By Proposition 4.5,
diagram yields the commutative triangle. Now consider

C(KA)

E /,(<); the associated braid

(4.2)

C(K)

C{JA)

C(J)

Note that KA u (KR\JR) = I U JA . By Proposition 4.5, (KA,KR\JR ,JR)
and (I ,JA,JR) are adjacent triples of intervals, yielding, respectively, the left
hand commutative triangle and the commutative rectangle in diagram (4.2).
Furthermore, Proposition 4.5 states that (KA\JA ,JA ,KR\JR) E 73(<) and JA
and KR\JR are noncomparable. Proposition 4.1 then yields the commutative
triangle on the top in diagram (4.2). Thus the outside quadrilateral in diagram
(4.2), i.e., the rectangle in diagram (4.1), commutes.    D

The following proposition describes the main construction step used in the
proof of the existence of connection matrices.

Proposition 4.7. Consider the following diagram of chain complexes and chain
maps:

(4.3)
C'

c1 ̂ c ^ c"

Assume that the horizontal sequence is weakly exact and that a   induces an
isomorphism on homology. If C    is a free chain complex with homology 77
isomorphic to 77" (the homology of C" ) via an isomorphism a": 77   —► 77",
then there exist maps:

d:C' C ,     T.C C c c"
such that

(1)
'd'   d
1 o r

r
c"

r
c"

is a boundary map, where d , d   are the boundary maps in the chain complexes
C , C  , respectively,

(2)   a":C   —► C" is a chain map that induces the homology isomorphism

(3)  ad + t: C © C   —► C is a chain map,
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(4) the following diagram commutes:

C' -i c'vc" -¡-.-e

c' c c"
where i, p are the obvious inclusion, projection maps respectively.
Proof. Set K = ker(<j"), and let L be a subspace of C complementary to
K. We define d, x, and a" separately on K and L . We begin by defining
the maps on K so that diagram (4.4) below commutes where the vertical maps
on the front face are the boundary maps for the respective chain complexes,
and the map 0: K —> K is the trivial map and takes the place of d in A.

(4.4)

Let 4 be an element of a basis for K. Define d(4) e C   so that [d(/)] E
77   is the image of [/] under the following sequence of maps:

77 ■h"Juh'^^h'

where d„ : 77" —► 77' is the connecting homomorphism for the weakly exact se-
quence in diagram (4.3) and (a')~ ' is the inverse of the homology isomorphism
induced by the chain map a .

Now we claim that there exists m e C such that b(m) E ker(d"), [b(m)\ -
a"([4']), and d(m) = aa'd(/). By Proposition 2.2 there exists /i EC such that
[b(*)] = a"([4]) and [a~'ô(/»)] = dta"([¿]). Then by the definition of d(/)
it follows that [a'd(/)] = [a~xd(*)]. Choose o E a~xd(*), and let /i e C'
be such that d'(/i) = a'd(/) - *. Set m = ^ + a(/i). Note that b(m) =
b(n) + ba(/i) = b(/i); therefore [b(m)\ = [b(/i)\ = a"([/]). Furthermore,
d(m) = d(n) + ad'(/i) = ô(y») + aa'd(/) - a(o) = d(*) + add(/) - d{*) =
aa d(/), completing the proof of the claim.

Now define x(4) = m and a"(/) = b(/n). With these definitions it is easy
to see that diagram (4.4) commutes; therefore d, x, and a" are defined on
K as desired.   Note furthermore that [d'(/)] = a"[/]; thus any extension
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of a" on K to a chain map on C    yields a map that induces the homology
isomorphism a".

The proof is complete once we define d, x, and a" on L such that A = 0
and diagram (4.5) below commutes:

(4.5)

Let / be an element of a basis for L . We define d(/), x(/), and <*"(/).
Note that d"(/)EK;so dd"(/), xd"(f), and a"d"(/) are all defined. We
claim that there exist ^ E C , /-EC such that d(s) = ad(?) + xd (f). Since
[#"(/)] = 0, it follows (by the definition of d on K) that [dd"(/)] = 0 and
there exists ó e c' such that d'(d) = dd"(/). Now

d(aa'(-¿) + xd"(/)) = d(aa' + x)(-¿ ®d"(/))
= (ad + x)A(-o ®d" (/))
= (ad + x)((d"(-ä) + dd"(/)) © 0)
= 0,

where the second equality holds by the commutativity of diagram (4.4), and
the fourth equality holds because d (j) = dd (/). It follows that [ad(-d) +
xd (/)] E H, the homology of C, and

b[ad(-¿) + xd"(/)] = [bxd"(/)] = [qV(/)1 = d'[d"(/)] = 0,

where the second equality holds by the commutativity of diagram (4.4), and
the fourth holds because [d (/)] = 0. Therefore [ad(-à) + xd (/)] is in the
image of the homology map, a:H' -> H, induced by the chain map a, and
furthermore, since d: H —► 77' is an isomorphism, there exists e e ker(d )
such that ad[t\ = [ad(-à) + xd (/)]. Thus there exists /■ E C such that
d(r) = ad(-j) + xd"(/) - ad(t). Set ? = -i-t. Clearly d(r) = ad(<?) +
xd (/) ; thus the proof of the claim is complete.

Now define d(/) = 9 , x(/) = s, and d'(/) = b(s).
We claim that A2 = 0. Clearly if c © 0 G C* © c" , then A2(¿ © 0) = 0.

Also, if 0 © / E C   with 4 E K, then because d(4) E ker(9 ), it follows that
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A2(0 © 4) = 0. Consider 0 © / E c' © c" with / E L .

A2(0®/)=A(d(/)®d"(/))
= (d'd(/) + dd"(/)) © d"d"(/)
= (d'(-j) + ~&'-t) + dd"(/)) © 0
= 0,

where the last equality holds because t E ker(d ) and d (à) = dd (/).
Now we claim that diagram (4.5) commutes. The left and right faces on the

right-hand cube need to be checked. That the other squares commute follows
either by assumption (e.g., a is a chain map) or directly from the definition
of the particular maps. Thus we need to show that ad + x and a" are chain
maps. That a" is a chain map, i.e., that the right face commutes, follows by
surjectivity of p and the commutativity of all of the other faces in the right-
hand cube once it is shown that ad + x is a chain map.

To prove that ad + x is a chain map we consider d(ad + x) and (ad + x)A
on c © 0, 0 © 4 , and 0 © / e C © C as above. First consider c © 0 ;
d(ad + x)(c © 0) = dad(c) = add'(a) = (ad + x)A(c © 0). Next consider
0 © / ; d(ad + t)(0 ® 4) = dx(4) = d(™) = add(4) = (ad + t)A(0 © 4),
where the last equality holds because d (4) = 0. Finally consider 0 © / ;
d(ad + t)(0 © /) = dx(/) = d{s) = ad(9) + xd"(/) = add(/) + xd"(/) =
(ad + t)A(0 © /). Thus ad + x is a chain map, and the proof of Proposition
4.7 is complete.    D

We leave it to the reader to provide the simple verification that the main
connection matrix existence result, Theorem 3.8, is established via the following

Theorem 4.8. Let &(<) be a chain complex braid, and C = {CA(n)}neP be
such that for each n E P, CA(n) is a free chain complex with homology HA(n)
isomorphic to H(n), the homology of the chain complex C(n) in W(<). Then
there exists an upper triangular boundary map,

A:0CA(7T)-0CA(7r),
neP neP

and a chain map, 4/:^>A(<) —► W(<), from the chain complex braid defined
by A to W(<), such that 8:^A(<) — %"%(<), the map induced by V, is an
isomorphism.

Proof. The proof is by induction on the order of the indexing set P. If P
contains one element n , then let A be the boundary map in the chain complex
CA(7t) and 8:HA(n) —» 77(7r) be an isomorphism. Since CA(7t) is free, there
exists a chain map *¥: CA(7t) —► C(7r) inducing 8. Clearly A and 4* satisfy
the requirements of the theorem.

Now assume the theorem is true for indexing sets of order « - 1 and P is
of order n.
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Choose a maximal (under < ) n E P . Let P' = P\n and < be the restric-
tion of < to P . By induction there exists an upper triangular boundary map
A':©Äe/., CA(ti) —► @neP, CA(n) and a chain map between chain complex
braids, y'-.WA' —*W\<', that induces an isomorphism on homology.

We extend A' to an upper triangular boundary map,

A:0CA(7r)-0CA(7O,
neP n€P

and 4*' to a chain map, *F: WA —> &, inducing an isomorphism on homology.
Since A is an extension of A', we define A(P') = A'. A must be upper

triangular; therefore A(P', n) is defined to be zero.
It remains to define A(7r, P) ; this is done in three separate pieces. Let A =

{a E P\a < n}, and set Á = A\n , R = P\A . (Ä ,R,n), (A1 ,ti,R)e I3(<).
Upper triangularity of A requires the definition A(7r ,R) = 0. Set A(7r) equal to
the boundary map for the chain complex CA(7t), and let 8(n): HA(n) —> H(n)
be an isomorphism. To define A(7t, A1) consider

CA(A')
W)

C(A') i(A' .A) C(A) p(A.n) C(n).

The horizontal sequence is weakly exact, and by induction *¥(A') induces a
homology map 8(A1) which is an isomorphism. CA(7r) is a free chain complex
and 8(n):HA(n) -* H(n) is an isomorphism.

By Proposition 4.7 there exists maps

A(7t, A'): CA(n) — CA(A') ,
xA:CA(n)^C(A),
*¥(n):CA(n)^C(n)

such that
(1)

fA(A')   A(7i,A')\fCA(A')\       (CA(A')\
^A>-{    0 A(7T)    )\cA(n))-   \CA(n)J

is a boundary map,
(2) *¥(n) is a chain map that induces 8(n),
(3) xA + P¥(Ä): CA(n) © CA(A') - C(A) is a chain map,
(4) the following diagram commutes:

(4.6)

CA(A') —^ CA(A')®CA(ti) —?-+ CA(n)

V(A') rA+W(A') 'Vin)

C(A')   ——> C(A) —p—^   C(n)
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Now with this definition of A(7t ,A!) the matrix A is completely defined. A
is obviously upper triangular; we claim it is a boundary map. We can view A
as a matrix , . ,

'A(A)   A(n,A)   A(R,A)\
A=        0 A(n) 0

0 0 A(R)    J
Then

A(A')A{n ,A')+A(n, A')A{n)   A(A')A{R , A') + A{R , A')A(R) "
A(n)2 0

0 A(R)2 /

Since  (A(^ A{^)'))  is a boundary map, it follows that A(tt)2 , A(A')2, and
A(A')A(n , A')+A(n , A')A(tz) are zero. A(P') = ( A(¡f > ̂¿j'* ), and by induction
A(7>')2 = 0 ; therefore both A(R)2 and A(A')A(R , A')+A(R , A')A(R) are zero.
Hence A2 = 0 and it follows that A is an upper triangular boundary map.

We now define 4*: &A —► 'W. Since 4* is an extension of 4*', we define
4*| <'= 4*'. It remains to define 4'(7C) for intervals K containing n. Set
K' = K\n, and as in Propositions 4.3-4.6 with A = An and R = Rn, let
KA = K n A and KR = KnR.

Note that Proposition 4.3 implies that both p(A,KA) and i(KA,K) are
defined.

Define xK: CA(n) -* C(K) to be the composition of the maps

CA(tc) -^ C(A)   p(A'Ka\ C(Ka)   '(Ka -K) ■ C(K),

and ^(K): CA(K) -► C(K) to be equal to the map

xK + i(K', 7C)4'(7v'): CA(?r) © CA(Tv') -> C(K).

Note that 4/(7r) is defined twice; however, the definition of xn and the
commutativity of diagram (4.6) imply that the two definitions coincide.

Now 4* is completely defined. To complete the proof of the theorem we
must show that 4* is a chain map. Then, since 4/(7r) induces an isomorphism
on homology for each n E P , it follows (by Proposition 2.5) that 4* induces an
isomorphism on homology. Since by induction 4*1 <' is a chain map, we only
need to prove that if K e I(<) and n e K, then *¥(K) is a chain map, and
furthermore, if (7,7) is a decomposition of K, then the following diagram
commutes:

CA(7) —!— CA(K) —p-^ CA(J)

(4.7) W) W) 4V)

C(7)   —i—   C(K)   —^   C(J)
We first prove that diagram (4.7) commutes. We call the left-hand square in

diagram (4.7) an inclusion square and the right-hand square a projection square.
Each square is considered separately.
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To prove that the inclusion square commutes we consider two cases:  it ^ 7
and n E I. Assume n $. I.  (I, J/n , n) e 73(<). Consider

CA(7)

4V)

C(I)

' CA(K')

1>{K')

CA(K)

<¥(K)

;C(K)

'C(K')'

The top and bottom commutes by the (7 , 7\7r, n) braid diagrams. The left
side commutes by induction. The right side commutes by the definition of
4*(7C). Therefore the back commutes; i.e., if n <£ I, then the inclusion square
commutes.

Now assume n e 7 . Set Ï = I\n . CA(I) = CA(n) ® CA(l'). We show that
the inclusion square commutes on each of the subspaces CA(7t) and CA(7')
of CA(7). Note that (I1 ,n,J), (i', 7 , n) e I3(<). Consider

CA(7'

*(/')

C(7'

+ CA(K')

CA(7)-■-^ CA(K)

where all of the unlabeled maps are of the form i(-, ■). The top and bottom
commute by the (i' ,n , 7) and (7', 7 , 7r) braid diagrams. The left and right
sides commute by the definitions of 4*(7) and 4*(7C), respectively. The back
commutes by induction. Thus, the front commutes on the image of /': CA(7') —►
CA(7) ; i.e., the inclusion square commutes on the subspace CA(l') of CA(7).

To show that if n E I, then the inclusion square commutes on CA(7r), note
that IA = KA and (IA,IR,J) E I3(<) by Proposition 4.4. The (IA,IR,J)
braid diagram yields /(/ , 7C)/(7^ , 7) = i(IA , K). This and the fact that IA = KA
imply i(I, K)i(IA , I)p(A , IA)xA - i(KA , K)p(A , KA)xA . Therefore i(I, K)x,
= xK, implying that i(I, K)V(I)\CA(n) = V(K)\CA(n) = V(K)i(I, K)\CA(tz) .
Thus, the inclusion square commutes on the subspace CA(7r) of CA(7).

It now follows that the inclusion square commutes.
Now consider the projection square. CA(7C) = CA(7r) © CA(K'). We show

that the projection square commutes on the subspaces CA(7r) and CA(TC') of
CA(K). We consider two cases: n E J and n c£ J .
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CA(K')

*(K') CA(K).
*(K)[

+ CA(J')

C(K')
|*(J')■>C(7').

->~CA(7)

U(J)

C(K) ■C(J)

Assume n E J. Set J' = J\n. (I ,J' ,n) E I3(<). Consider the above
diagram.

The top and bottom commute by the (7,7', 7r) braid diagrams. The left
and right sides commute because all inclusion squares commute. The back
commutes by induction. Thus the front commutes on the image of i: CA(K') —*
CA(K) ; i.e., if n E J, then the projection square commutes on the subspace
CA(K') of CA(K).

To show that if n E J then the projection square commutes on CA(7t), note
that

p(K, JyT>(K)\CA(7i) = p(K, J)i(KA , K)p(A , KA)xA
= i(JA,J)p(A,JA)xA
= 4/(7)|CA(tt)
= 4/(7)p(7i,7)|CA(7r),

where the second equality holds by Proposition 4.6. It now follows that if n eJ
then the projection square commutes.

Now assume n $ J. Let l' = I\n. (I1 ,J,n) E I3(<), and n and 7 are
noncomparable. Consider

pCA(K') v CA(7)

HV)

C(J)

C(Kf
The top and bottom commute by Proposition 4.1. The left side commutes
since all inclusion squares commute, and the back side commutes by induction.
Therefore the right side commutes on the image of /: CA(K') —* CA(K) ; i.e.,
the projection square commutes on the subspace CA(K') of CA(K).

To show that if n £ J then the projection square commutes on CA(ti) ,
first note that since n £ 7, it follows that p(K,J)\CA(n) = 0. Therefore
4'(7)p(A:,7)|CA(7t) = 0. It is easy to see that KA n7 = 0. Proposition 4.2
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then implies that
p(K,J)i(KA,K) = 0.

Therefore p(K, J)xK = p(K, J)i(KA , K)p(A , KA)xA = 0 ; i.e.,

p(K,J)v¥(K)\CA(7i) = 0.

Thus the projection square commutes on CA(7r), and it now follows that dia-
gram (4.7) commutes.

The proof of Theorem 4.8 is complete once we show that ^(K) is a chain
map. Denote the boundary map in the chain complex C(K) by d(K). We show
that d(K)x¥(K) = x¥(K)A(K) on each of the subspaces CA(K') and CA(tt) of
CA(7C). Note that *¥(A) is a chain map by Proposition 4.7.

Now note that
ö(7C)4/(7i)|CA(7i:') = d(K)i(K' ,7C)4'(7i')

= i(K', K)V(K')A(K')

= C¥(K)\CA(K'))A(K')
= y¥(K)A(K)\CA(K'),

where the first and third equalities hold by the definition of 4/(7C), and the
second holds since i(K', K) and 4/(7C') are chain maps. Furthermore, note
that

d(KmK)\CA(n) = d(K)i(KA,K)p(A,KAmA)\CA(n)
= i(KA , K)p(A , KA)V(A)A(A)\CA(7i)
= V(K)i(KA , K)P(A , Ka)A(A)\CA(ti)
= V(K)A(K)i(KA , K)P(A , KA)\CA(7i)
= x¥(K)A(K)\CA(n),

where the first equality holds by the definition of 4,(7<), the second and fourth
hold since i, p , and 4*(^) are chain maps, and the third holds by the com-
mutativity of diagram (4.7). Therefore 4/(7Q is a chain map, and the proof of
Theorem 4.8 is complete.      D

5. The connection matrix theory for Morse decompositions

Recall that M = {M(n))n&p is a Morse decomposition of the isolated in-
variant set S with admissible ordering <, and T(<;G) (= %*(<) ) is the
homology index braid of < with coefficients in G. <#"(<) is chain complex
generated; therefore if C = {CA(n)}neP is a collection of free chain com-
plexes such that the homology of CA(7c) is isomorphic to 77(7t), the homology
index of M(n) with coefficients in G, then WJf(ßr(<) ,C), the collection of
C-connection matrices of %*(<), is nonempty.

Definition 5.1. Under the above circumstances
A. W.j?(J?'(<) , C) is called the C-connection matrices of the admissible or-

dering < with coefficients in G, and is denoted g^f(< ; G, C).
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B. If < is the flow ordering, then ^Jl(??(<), C) is called the C-connection
matrices of the Morse decomposition M with coefficients in G, and is denoted
<E£(M;G,C).

C. If the chain complex CA(7r) equals 77 (7r) with trivial boundary map, then
the above collections are denoted K#(< ; G) and g^(M ; G), and are called the
connection matrices of < and M, respectively, with coefficients in G.

Note that the situation described in Definition 5.1.C occurs when the homol-
ogy indices 77(7t) are free for each n . An example of that case is when the
coefficient module is chosen to be a field (see Examples 6.1-6.3 below).

Since every admissible ordering of M is an extension of the flow ordering,
the following proposition is an immediate consequence of Proposition 3.7.

Proposition 5.2.  <&#(M;G,C)c WJ!(<;G,C).

Proposition 5.2 is a reflection of the fact that the connection matrices of the
flow ordering of the Morse decomposition are defined using maximum (over all
other admissible orderings of the Morse decomposition) algebraic information.

As is indicated in §2, it is expected that the connection matrices provide
some information about the structure of the invariant set S. For an initial
interpretation result we have

Proposition 5.3. If A E ^(M ;G ,C), n and ri are adjacent in the flow or-
dering, and A(ri , ti) ¿ 0, then C(M(ri), M(n)) ± 0.

Proposition 5.3 describes a situation where information about the set of con-
necting orbits between elements of a Morse decomposition can be obtained via
the connection matrices of the Morse decomposition. We point out that the
proof is nothing but a simple consequence of the definitions involved; specifi-
cally,

Proof.  A(ri , n) j= 0 implies n <F ri . Therefore by the definition of the flow
ordering there is a sequence of distinct elements of P :   n = n0.nn - ri
with C(M(7tj), M(Kj_x)) ¿ 0 for each j = I , ... ,n. n and ri adjacent in
the flow ordering then implies n = 1 ; i.e., C(M(7r'), M(n)) / 0.    □

The ease with which Proposition 5.3 follows from the relevant definitions is
significant because it indicates that the object under investigation, i.e., the col-
lection of connection matrices of the flow ordering of a Morse decomposition,
is to some degree properly defined as a tool for studying the structure of the
invariant set relative to the Morse decomposition. We leave further interpre-
tation results for future investigations; however, it should be noted that simple
examples do indicate that deeper interpretation results are possible.

For example, suppose that for some strictly upper triangular connection ma-
trix of the Morse decomposition, the composition A(7t', 7r)A(7i" , ri) is nontriv-
ial and that n and ri as well as ri and ri' are adjacent under the flow order-
ing. Then by Proposition 5.3 both C (M (n" ), M (ri )) and C(M(ri), M(n))
are nonempty.   Furthermore, if fl := {n , ri , ri'}, then since A(fl)   / 0, it
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M(7l")    *

M(TI*)     *

M<71)    *

Figure 5.1

follows (by Proposition 3.2) that n is not an interval of the flow ordering, thus
implying that more structure is present. More specifically, it is not difficult to
see that this implies C(M(n"), M (it)) ^ 0, and moreover that there exists an
interval 7 in the flow ordering such that n <£ I and both C(M(n"), M (I))
and C(M(I) ,M(n)) are nonempty (see Figure 5.1).

The schematic representation of this situation suggests that there is some
further structure to C(M(n"), M(n)) (e.g., a parameterized family of orbits).
As is indicated above, we leave a formal presentation of these points, along with
further connection matrix interpretation results, to a later study.

6. Some examples

To begin, consider the following family of ordinary differential equations
parameterized by the variable 6 > 0 :

x = +y,       y = +8y - x(x - \)(I - x).
The complete set of bounded solutions Sg for these equations is shown (along

with some nearby orbits) for values of 8 near 0 and for values of 8 large in
Figure 6.1. For all 8 > 0 the set of bounded solutions is an isolated invariant
set, and the collection Me = {Me(i)} is a Morse decomposition of Se where
the sets Me(l), Me(2), Me(3) are the points in the xy plane (1/3,0), (0,0),
(1,0), respectively.

In Example 6.1 we compute the connection matrices with coefficients in Z2
of the Morse decompositions depicted in Figure 6.1. In Example 6.2 we use
the connection matrix theory to prove that there exists a parameter value 8*
at which there is a connecting orbit from Mg, (3) to Me. (2). In Example
6.3 we compute the connection matrices with coefficients in Z2 for the Morse
decomposition Mg.. The latter example is an instance where the Morse de-
composition does not have a unique connection matrix.

Note that since we have chosen field coefficients in Examples 6.1-6.3 and
since we are computing connection matrices (i.e., C-connection matrices where
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o < e « i

e » i

Me(2) Me(l>

Figure 6.1

M0(3)

C is the collection of homology indices of the sets in the relevant Morse decom-
position), it follows that the connection matrices are strictly upper triangular
(see the remarks preceding Definition 3.6 and following Definition 5.1).

In Example 6.4 we consider a case where the coefficients are chosen to be in
Z (i.e., not in a field) and there are no connection matrices. However, with an
appropriate choice of C, we compute the C-connection matrices.

Example 6.1. Qualitatively the flows in Figure 6.1 can be depicted as in Figure
6.2 below.

Consider the case where 0 < 8 -c 1. Here the flow ordering is such that
1 <F 2 is the only relation. Thus by strict upper triangularity of the connection

M(3),

M<2) m<i;

o < e « i

Figure 6.2
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matrices it follows that only A(2, 1) may be nonzero. The homology index of
the Morse set M(12) is easily seen to be trivial; therefore 77A( 12) must be also.
Since the homology indices of the Morse sets M (I) and M (2) are nontrivial,
it follows that A(2,l) is an isomorphism. Thus K#(Me;Z2) consists of one
matrix, and it is in the form

0   «   0'
0    0    0

.0    0    0,
where ss indicates an entry that is an isomorphism.

Consider the case where 8 » 1. Here the flow ordering is such that 1 <F 2
and 1 <F 3 are the only relations. Thus by strict upper triangularity of the
connection matrices it follows that only A(2,1) and A(3 , 1) may be nonzero,
and furthermore, by an argument identical to the one used above, it follows
that each of these entries is an isomorphism. Thus in this case K#(MÖ;Z2)
also contains a single matrix, and it is in the form

'0 « «
0 0 0
0    0    0

Example 6.2. Now let 0 < 8' <c 1 and 1 «: 8" . Append the equation

8 = e(8' - 8)(8" - 8),       e>0,

to the above system. 5, the complete set of bounded solutions to the resulting
system, is an isolated invariant set. Some of the orbits in S, along with a Morse
decomposition, M = {M(i'), M(i")} , of S, are shown in Figure 6.3.

It is not difficult to see that if A is a connection matrix of M with coefficients
in Z2 then A = (A0' [„) where A' and A" are of the form of the first and
second matrices, respectively, computed in Example 6.1 and the entries in T
are in the form A(/'" ,/). The matrix T is called a transition matrix of the
system; transition matrices are studied further in [11-13]. We are interested in

M(2')-vA¿-<f-30- Y M(2")

Mil' )-*-*:-<-$£+- M<1">

M(3")

Figure 6.3
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the A(3" , 2') entry. It is easily verified that A(l" , l') is an isomorphism, and
therefore

fO tv 0 t*    •
0 0 0 •    •
0 0 0 •    •
0 0 0 0«
0 0 0 0    0

Vo 0 0 0    0

A(3" , 2')
A

0
0 J

A must be 0; therefore it can be seen by composing the top row with the
right hand column that A(3" ,2') is nontrivial. Then since M(3") and M(2')
are adjacent in the flow ordering, it follows that C(M(3"), M(2')) is nonempty.
Note that this is true for all e > 0. It then follows (see [12]) that in the system
at e = 0 (i.e., in the original parameterized family of equations) there exists
8*E(8',8") suchthat C(Mg.(3) ,Mg.(2)) is nonempty.

An alternative proof of the existence of a parameter value 8* for which there
is a connecting orbit from Me. (3) to Mg. (2) is presented using the connection
matrix continuation theory in [5].

Example 6.3. Now consider the flow at 8* ; it is depicted qualitatively along
with an index filtration for the flow ordering of the Morse decomposition in
Figure 6.4 below. Let 77(7) denote the homology index with coefficients in
Z2 of the Morse set M(I) for each 7 e I(<F). Each homology index can
be computed by choosing appropriate index pairs from the index filtration (for
example, see the schematic representations in Figure 6.5 below).

The relations in the flow ordering are 1 <F 2, 2 <f 3, and 1 <F 3 . Thus
if A is a connection matrix of the Morse decomposition, then only A(2,1),
A(3,2), and A(3,l) may be nontrivial. As in Example 6.1, A(2,l) is an
isomorphism. A(3 , 2) is trivial because 77(3) is nontrivial only in dimension
one, A(3 ,2) is of degree -1, and 77(2) is trivial in dimension 0.

Now consider A(3 ,1). We leave the details of the computation to the reader
(see [3]), and only illustrate the algebraic relations that determine A(3 ,1). Let

M(3)

TM(2) m<d|

Figure 6.4
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H(23) H(3>

zzzz: EZZZ2

V,
A

3(23,1)   £,

H(23) H(l)

B
Figure 6.5

a be a generator of 77(3), and note that the map p(23, 3): 77(23) -+ 77(3)
associates two independent generators (d and a" in Figure 6.5.A) of 77(23)
to a. It is via this association that A(3 ,l)a is defined.

The flow-defined boundary map 9(23,1):77(23) —> 77(1) is pictured sche-
matically in Figure 6.5.B. It is easy to see that <9(23, l)d is a generator of
77(1), but 9(23, l)a" is trivial. Thus, depending whether a is associated
to d or a", A(3, 1) is either an isomorphism or is trivial. It follows that
%M(Me. ;Z2) contains two matrices, and they are of the form

and

In this example the nonuniqueness of the connection matrices reflects the fact
that there are two qualitatively different perturbations possible from the flow
at 8*. It is not known if nonuniqueness of connection matrices in general re-
flects such a bifurcation of behavior. Reineck [ 12] has shown that on a smooth
manifold if the Morse decomposition consists of hyperbolic rest points and is
such that stable and unstable manifolds intersect transversally then the connec-
tion matrix is unique. Further results in that direction would be an important
component of the connection matrix interpretation theory.

Note that W^(Mgm;Z2) does not continue to K<r(Afe;Z2) for 8 near 8*
(i.e., the form of the collection changes). Thus, even though the Morse decom-
position continues locally, the collection of connection matrices is not invari-
ant under continuation. However, as this example illustrates, the connection
matrices are upper semicontinuous in the sense that under local continuation
connection matrices may be lost, but not gained (see [5]).
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Example 6.4. Now consider the flow on the Mobius band S pictured in Figure
6.6 below:

Figure 6.6

M (I) is an attracting periodic orbit, and M (2) is the complementary re-
pelling orbit. Let 77(-) denote the homology index with coefficients in Z of the
relevant Morse set of the flow ordering of the above Morse decomposition. The
associated homology index braid consists of the sequence of graded Z-modules
and maps

-► 77(2) -^ 7/(1) -Ü 77(12) -^ 77(2) -^ H(\) - • • • ,

where the only nontrivial modules occur in dimension 1, and appear as follows:

-► 0 -» Z — Z -^ Z2 -» 0 -» • • • .

There are no connection matrices associated to this graded module braid (see
the remarks preceding Definition 3.6); however, with an appropriate choice of
the collection C, the collection of C-connection matrices is nonempty. To that
end let CA(1) be a chain complex with graded module equal to 77(1) and with
trivial boundary map, and let CA(2) be a chain complex with graded module
Z in dimensions 1 and 2, trivial otherwise, and with chain map A(2) multipli-
cation by 2 in dimension 2, trivial otherwise. Let C = {CA(1), CA(2)} ; then
since CA( 1 ) and CA(2) are free chain complexes having homology isomorphic
to 77(1) and 77(2), respectively, it follows that the collection of C-connection
matrices of the Morse decomposition is nonempty. In fact, it contains a single
matrix (q A¿ñx)) where A(2) is the map described above and A(2,1) is an
isomorphism in dimension 2 and trivial otherwise.

Note that the flow-defined boundary map 9(2,1) is trivial and therefore does
not reflect the existence of a connecting orbit from M (2) to M (I) ; however
A(2,1) is nontrivial, and therefore (by Proposition 5.3) C(M (2) ,M(l))¿0.

These examples provide simple illustrations of applications of the connection
matrix to the qualitative study of differential equations. Studies of particular
differential equations using the connection matrix have been carried out by
Mischaikow [11] and Reineck [12].  These examples also illustrate that there
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are many questions to be answered (and asked) regarding the connection ma-
trix theory. Besides the interpretation questions mentioned above, there are
numerous questions regarding the computation of connection matrices, most
importantly those investigating the minimal algebraic information required to
maximize the information in the connection matrix.
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