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THE CONNER-FLOYD MAP FOR FORMAL A-MODULES

KEITH JOHNSON

ABSTRACT. A generalization of the Conner-Floyd map from complex co-
bordism to complex /C-theory is constructed for formal A-modules when A
is the ring of algebraic integers in a number field or its p-adic completion.
This map is employed to study the Adams-Novikov spectral sequence for for-
mal A-modules and to confirm a conjecture of D. Ravenel.

0. Introduction. Let BP be the spectrum representing Brown-Peterson coho-
mology with respect to a prime p and let E be the Adams summand of complex
if-theory with respect to this prime. The BP version of the Conner-Floyd map is
a map of spectra BP —+ E which induces a natural equivalence

BP, X ®Bp. E» ~ E.X.

In particular this induces an isomorphism

£* ®Bp. BP»BP®bp.£. ~ E.E
and so provides a way of computing the Hopf algebra of stable co-operations for E
from those for BP. Using this one can obtain a description of E*E similar to that
for K*K contained in [AHS]. The study of BP and the computation of BP* BP
are based on a study of formal group law, in particular the p-typical formal group
law.

In [Rl] Ravenel studied a generalization of this situation where the formal group
law is replaced by a formal yl-module where A is the ring of integers in an algebraic
number field K or its p-adic completion. The purpose of the present paper is to
describe the corresponding generalization of the map (BP», BP* BP) —► (E*,E*E)
induced by the Conner-Floyd map, and to compute the generalization of E*E. This
is of interest because it provides some information about a conjecture (3.10) made
in [Rl]. This conjecture concerned the value of a certain Ext group Exty,t(Va, Va)
when K is an extension of the field Qp of p-adic numbers. Here (Va, VaT) is the
Hopf algebroid corresponding to the A-typical formal A module. This group was
conjectured to be, up to small factor, A/J^,^. Here J^iq_1\ is the ideal of A
generated by the elements of the form a™ — 1 for units a of A congruent to 1 mod(7r)
and (it) is the unique prime ideal in A. We will show, using the generalization of
the Conner-Floyd map, that A/J*,^ occurs as E\' in the chromatic spectra
sequence for formal ^-modules [Rl, Lemma 2.10] and that the small factor in the
conjecture is contributed by the nontriviality of the differential d\ originating from
this group.   We will analyze this differential and show that it is nonzero for A
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320 KEITH JOHNSON

the ring of integers in a totally ramified extension of degree a power of p, pl, of
the field obtained by adjoining pth roots of unity to Qp: but zero for all other A
(thus the small factor is nontrivial for K = Q2 (p = 2, / = 0) and K = Qz[\f—3]
(p = 3, / = 0), the two special cases considered in [Rl]). For A of this type we
also identify those dimensions in which the small factor is nontrivial and give an
estimate of its size in terms of that of JA and the number of roots of unity of pth
power order contained in A.

The paper is organized as follows:
In §1 we define the Hopf algebroid (Ea,EaT) which is our generalization of

(£,,£,£) and a map of Hopf algebroids (VA,VAT) -» (EA,EAT). We also define
a second map of Hopf algebroids

(EA,EAT) -» (Klv^-'lKl^u-^v^-1})
and study EAT by studying the image of the composition map

*: V,AT-^A:[tt,t|-1,i;,t;-1].

In §2, we define a certain subalgebra C of the ring of Laurent polynomials. This
algebra consists of those Laurent polynomials satisfying a certain integrality condi-
tion and is related to similar rings studied by Georg Polya and Alexander Ostrowski
over 60 years ago. We show that in dimension 0 the image of $ is equal to C and
then show that the map (EaT)q —» C is an isomorphism. Using this description
of EaT we compute the Ext group ExIeat(Ea, Ea) in §3 and show that this is
isomorphic, via a vi local change of rings theorem, to the group ExtvAr{VA, M1)
in the chromatic spectral sequence. We then do the number theory necessary to
identify those extensions for which the relevant differential is nontrivial.

I would like to thank Doug Ravenel for his comments on a preliminary version
of this paper. The calculations in §3 (Corollaries 27 and 28) in particular owe a
great deal to his suggestions.

1. The map $ and generators for Im$. We will suppose that A is the
ring of integers in a finite extension K of Qp, the p-adic numbers, with maximal
ideal (tt) and residue field Fq. If q = pf, and e is the ramification index of p in A,
i.e. (7re) = (p), then e ■ / is the index of the extension [CF].

In analogy with definition 3.6 of [M-R], we define
EA = A[v:v-1}

with degree(f) = 2(q - 1) and give it the structure of a VA algebra via the map
( v   if i = 1,

<t>':VA->EA,        «*->{„ '{ 0   if i > 1.
We also define

EAT = EA ®Va VAT ®Va Ea
which forms with EA, a Hopf algebroid. There is by extension a map of Hopf
algebroids

(J>',&): (Va,VaT)^(Ea,EaT).
It is EaT which we wish to describe. For this we will require the auxiliary Hopf
algebroid (K[v, v_1],/f[u,u_1, v,t>-1]). The structure maps here are given by

i]r{v)=v,     r)L(v) — u,     %j)(u) = u<8l,     ip(v) = 1 ® v,     c(u)=v.
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THE CONNER-FLOYD MAP FOR FORMAL A-MODULES 321

To describe EAT we will examine its image in K[u, u~x,v, v_1] under the canon-
ical map EaT —► EAT<g>K and show that this map is injective. We will concentrate
first on identifying the image of this map, and postpone the proof of injectivity to
the end of §2. Since the image of this map is the same as that of the composition

VAT — EAT — EAT ®K = K[u, u~\v, v'1}

it is this that we study, i.e. the Hopf algebroid map

(0,*): (Va,VAT) -» (Kiv,v-l],K[u,u-\v,v-l\).

Recall [Rl, 2.8] that
VAT = VA[tut2,...]    where deg(i„) = 2{qn - 1).

To describe the image of $ we will obtain a recursive formula for $(tn) in terms
of $(tj) for j < n. To do this we must first determine the value of the unique
extension of cf)

&:VA®K ^Klv^-1}
on the coefficients of the logarithm of the formal ^-module.

LEMMA 1.    // the log of the A-typical formal A-module is J2 XiXq   then

^(An) = t^"-1)/^-1)/^.

PROOF. We have, from [Rl, 2.9], the formula

7rA„=     ^    X'Vn-i-
0<i<n

Applying <f> we obtain
7T0(A„) = 0(A„_j) -v""

and the result follows.    □

PROPOSITION 2. The degree 0 component of the image of <& is generated over
A[w,w-1] by the set of polynomials {gn\n = 0,1,2,...} which are determined by
the recursive formula

n — l      1

9n = J2 Zi+1 [Sn-i-l ' w""   ' - 9n-i-l) ■

Here we have used the notation w = v/u.

PROOF. Starting with the same formula as in the proof above and applying rm
yields

7T»7fi(A„) =     J2    r)R(*t)VR(Vn-i)9'
0<i<n

or
n n—l    i

* ■ £^) • <-i = EE^^)(t^k-«)''
i=0 i=0 j=0

Applying $ to both sides of this we obtain
n n — l

i=0 i=0
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322 KEITH JOHNSON

since $(»7fl(wn-t)) = 0 unless n — i = 1. This can be rewritten as

^^(^.i/M^),';^^.)/!,-.)^,),'./-1.
*—* 7T' *—'  7Tl
t=0 i=0

To analyze this further we introduce the notation

Making this substitution we obtain, after some computation
n      , n-1

2L, ni9n-i        /_, ^i + lQn-i-l    W
i=0 i=0

Solving this for gn yields the result.    □

2. Integral valued polynomials and the image of $. To analyze further the
image of $, we introduce certain subalgebras of the algebra Laurent polynomials:

C = {/ € K[w,w-l\\f(\ + irA) C A},
B = CnK[w],
B = {f e K[x]\f(A) C A}.

Note that the algebras B and B are isomorphic via the unique map of algebras
sending w to l+7rx. In view of our observations in the preceding section concerning
the polynomials {gn}, showing that (Im $)o Q C is equivalent to showing that gn €
B or, writing hn(x) = <7„((x — l)/7r), that hn £ B. In terms of these polynomials
the recurrence formula of Proposition 2 becomes

^ = E^(hti-^+^~'-hCL)-
i=0

What we will show is

LEMMA 3.    If hGB, i < n, then

PROOF. We begin by noting two facts about A. First, if u is a unit in A, then
uq~l = lmod7r. This is because the group of units modulo tt has order q — 1.
Second, the binomial theorem implies that if y = 1 modx" then yQ = 1 modTr1"1"1.
It follows from this, by induction, that for any x £ A,

(1 + XTi-)9""1 = 1    mod7rI+1

for any i < n.
From these two facts we see that for any x & A,

hq'   (ttx+I)9""1 -h"'+1 = hqi(x) - hgi+1 (x)     modnl+1

= hq'(x)(l - h^-l)q'(x))     mod7rJ+1

= 0    mod7rt+1.    D

We next examine the algebras B and B more closely using techniques developed
by G. Polya and A. Ostrowski, published in 1919 [O, P]. The results in these papers
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THE CONNER-FLOYD MAP FOR FORMAL A-MODULES 323

are stated for the case of the ring of integers in an algebraic number field, but, as
remarked in [C], they all extend directly to the case of any Dedekind ring with
finite residue fields, including the discrete valuation ring, A, that we are concerned
with. Our aim is to develop a way of recognizing a generating set for these algebras
(which we will apply to {<?„} or {hn}).

DEFINITION 4. (i) Let {pi\i = 0,..., q — 1} be a complete set of residues for it
in A.

(ii) Let {oti\i = 0,1,2,... } and {cti\i — 0,1,2,... } be subsets of A defined by
k

an = ^pCj7rl    and    an = 1 + 7rfin
i=0

if the expression of the integer n in base q is n = 22i=o ciQ'•
(iii) Let tp: Z+ -> Z+ be defined by

i=l  L^  J

We can make the following observations concerning these definitions. First, the
elements i&i}9^1 form a complete set of residues for irk in A for any positive
integer k. Next the elements {cti}Q=Ql form a complete set of residues mod7rfc+1
of those elements of A congruent to 1 mod ir. Finally, the function i/j could equally
well be defined by the formula

1&(n)=fn-f>Wfo-l).
Given these observations, we may define some polynomials which form bases for

B andB.
DEFINITION 5. Let g0(w) = 1 = g0(x) and, for n > 0,

n-l
- 1   \      TT   w~ai
2"H =  11  ^HHn)

i=0

and
n-l

i=0

PROPOSITION 6 [P, O]. (i) {gn\n = 0,1,2,...} is a basis for B as an A-
module.

(ii) {gn\n = 0,1,2,... } is a basis for B as an A-module.

PROOF. In view of the isomorphism B ~ B mentioned at the beginning of this
section it suffices to prove (i).

That gn E B for all n follows from the fact that if a E A, then
n-l

]Ja-at = 0    modTr^").
i=0

This can be found in [P, p. 106].
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324 KEITH JOHNSON

To show that the polynomials {<7„|n = 0,l,...} span S, we require the additional
fact from [P, Satz IV], that if / E B is of degree n then tt^") • / G A[x\. Thus,
since the leading term of gn is l/n^^n\ / can be expressed as a linear combination
of go,..., gn. Linear independence follows from the fact that degree (gn) = n.    O

To deduce information about the multiplicative structure of these algebras from
this result it is convenient to introduce some auxiliary polynomials which yield
different bases for B and B. Let {ft(x)\i = 0,1,...} be the polynomials given
recursively by

/o(z) =x,
f1(X) = (xq-x)/TT,

fn + l{x) = /l ofn(x).

Also, if n = X^J=o ciQl let

fn(x) = Y[(fi(x))c'    and    fn(x) = f(^iy

PROPOSITION 7. The polynomials {fn\n = 0,1,2,...} and{fn\n = 0,1,2,...}
are bases for the algebras B and B respectively. The polynomials {fn\n = 0,1,2,... }
are a generating set for B.

PROOF. It suffices to prove the first of these three assertions. Since J2i=o c«V'(9t)
= ip(n) the leading coefficient of /n is l/ir1^^. Thus, for each n, the matrix
expressing the polynomials {fi\i = 0,1,..., n) as A linear combinations of {gt\i —
0,1,..., n} is triangular with units of A along its diagonal. It is, therefore, invertible
over A by Cramer's rule. The result follows.    D

We are now ready to return to studying Im($)o and to show that it equals C.
For this we show that the polynomials {hn(x)\n — 0,1,... } generate B. This is
sufficient since B generated C over Afw1*"1] and B = B. Our approach is to compare
this prospective generating set with the one for B constructed above.

DEFINITION 8. Denote by Rn the subalgebra of B generated by {fi\i =
0,1,...,n}.

These subalgebras have the property

LEMMA 9.    (i) If f EB, anddeg(f) < qn+1, then f E Rn.
(ii) If k < qn+2 is given,  then there exists f £ Rn with the properties that

deg(/) = k, and that the leading coefficient of f is l/ir^^-1.

PROOF. The subgroup of B of polynomials of degree less than t7™+1 has as a
basis {fi\i — 1,2,..., qn+1 - 1}. Since each of these is constructed as a product of
polynomials in i?„ the first assertion is clear. Some arithmetic with the function tp
shows that if k = Y^7=o cia% ̂nen

n-l

i=0

has the property claimed in the second assertion.    □
We are now ready to prove the following proposition.
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PROPOSITION 10.    Rn is generated by {hi\i = 1,2,...,n+ 1}.

PROOF. We begin with a result concerning the coefficients of hn. Suppose that

(,"-l)/(9-l)

tin —        y fl^nx
t=0

and that 7 is the 7r-adic valuation on K as in [Rl, p. 340], i.e. 7 is the extension to K
of the usual valuation on the p-adic numbers. We claim that 7(aj,n) > —ip(qn~1)/e
with strict inequality if i > qn~l and equality if i — qn~x. We will prove this by
induction on n. For n = 1 the result follows from direct computation. Suppose the
result holds for hn and consider hn+i.

Note that ip has the property

</>(</>) = q • ̂ (g"-1) + 1 > q2xp(qn-2) + 2,     etc.

Now hn+i is given by

and the 7r-adic norm of the coefficients of hql_i(irx + l)9"/7rJ+1 are all greater

than — (qlip(qn~l~l) + (i + l))/e while those of hqk-i /irl+1 will all be greater than
— (ql+l ■ ip(qn~t~1) + (i + l))/e. The previous observation shows that all of these
are strictly greater than —ip(qn)/e except possibly the second when i = 0. Thus
our problem reduces to that of examining the 7r-adic valuations of the coefficients
0f/l«/7T = £M\

For the moment let us write aj in place of ai,„. The coefficient bi is

bi = ~2_]aii ' "ai«

where the sum is over all g-tuples / = (ii ■ ■ ■ iq) with

t=i

For i > qn+1 at least one of the i3 is greater than qn and so by induction

e 3 \e e J e

On the other hand, when i — qn+1 there is exactly one g-tuple with the property
i < qn for all j namely ij = qn: j = 1,..., q.

In this case

Thus 7(6,1+1) = -ip(qn)/e.
To complete our proof of this proposition we again induct on n. It is clear

by direct computation that Rx is generated by h\ and /i2- Suppose that Rn is
generated by {ht\i — 1,2,..., n +1} and consider Rn+i ■ The polynomial hn+2 has
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326 KEITH JOHNSON

degree (qn+2 - l)/(q - 1) < qn+2 and so, applying the previous lemma and the
observation above repeatedly we can find f E Rn such that hn+2 — / is of degree
qn+1. Furthermore, the 7r-adic norm of the leading coefficient of hn+2 — f will be
-rp(qn+1)/e, again by the observation above. Thus

Span(i?„, hn+2) =Span(Rn,hn+2 -/) = Span(i?„,/„+1) = R„+1.    D

We thus have

Corollary 11.   Im($)0 = C.

It only remains for us to establish the injectivity of $. The kernel of

$: EAT -» EAT ® K = X[u,«-\ v,?;"1]

will consist of the torsion subgroup of EaT. Since EaT is a module over the local
ring A the injectivity of $ will follow from that of the induced map

#:EaT/{*)-+{C®Ea)/{*).
PROPOSITION 12.    $' is an isomorphism.

PROOF. If we let KA(\) = Fqlvi^i1} as in [Rl], then

(EaT)/(tt) si KA(1) ® VAT ® KA{\)

which is denoted £a(1) m [&!]• ^ nas the presentation

E^l) = KA(l)[U\i = 1,2,... ]/(»i«J - vj'fc).
Its degree 0 component, which we willl denote Sa(1)* has the presentation

Sx(l). = F,[$|» = 1,2,...]/(«?- Si).
The map ($0) sends Sj to 9, so it will suffice to show that ($0) restricted to the

subalgebra of 5^(1). generated by s±,... ,sn maps isomorphically to the subalge-
bra generated by g\,... ,gn. We first note that the inclusion B <—> C induces an
isomorphism B/(ir) —► C/(tt). This is because (w — l)/7r E B and C, so that w = 1
mod(7r).

Now the subalgebra of Sa(1)* generated by s\,... ,sn is clearly of rank qn over
Fq. Thus, since $' is surjective, we need only compute the rank of the subalgebra
of B/(ir) generated by g\,. ■ ■ ,gn or, equivalently, that of the subalgebra of B/(ir)
generated by h\,...,hn. This is i?ri_i/(7r) which is also generated by /o,..., fn-i-
Since 7r ■ fi+1 = fq - /, we have fq = /* in /^-^(tt) and so Rn-i/(n) has rank qn
also.    □

3. ExIeat(Ea,Ea) and Ravenel's conjecture. The relation between our
description of EaT in §2 and the group ExtyAr(V,4, V^) occurring in the Ravenel
conjecture involves three steps. First the computation of Ext£AT(-^A!^A)> second
the relation of this to the chromatic spectral sequence of [Rl], and finally the
analysis of the differentials in that spectral sequence. We consider these in order.

The computation of ExIeat(Ea,Ea) proceeds as in [S, Propositions 19.17-
19.22], where the special case K = Q is considered. The only property of Q that is
used is that it is a field.
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PROPOSITION   13.      Ext^Ay(9_1)\EA,EA) = A/7fc.(,_i).

PROOF. In general, for any Hopf algebra H over a ring R we have

Ext]ih(R, R) = Pk(H)/(r,L - r,R)(R)

where Pk( ) denotes the degree k primitives. In our case this becomes

Extl^q-1)(EA,EA) = Pk(EAT)l(r,L - Vr){Ea)

and 0 in dimensions not divisible by 2(q — 1). The denominator is easily identified:
(VL-VR)(EA)=A-(uk-vh).

For the numerator, first note that

Pk(K[u,u-\v,v-l\) = K-(uk- vk).

Therefore
Pk(EAT) = A-((uk-vk)/-Kd^)

where   d(k)   is  the  largest   integer  for  which   (uk — vk)/-!rd^    E   EAT,   i.e.
(wk - l)/-ird^ E C.   From our description of C in §2 we see that 7rd(fc) • A =
Jk-(q-l)-      D

We next recall the construction of the chromatic spectral sequence and relate
the Ext group constructed above to groups which occur there. Define inductively
a pair of sequences of VaT comodules NA and M\ by:

N°A = VA,    Mi = («i1)-1Vj4®JVi,    NA+l=MA/N\.

These occur in the short exact sequences

0 -» N\ -► M\ -► N\+1 -* 0
which can be combined to give a resolution of Va over VaT:

0 - VA -» M°A -» MA - • ■ • .
If we write

£>?•' = Ext^r^,^)    and   E^ =ExtfcT(VA,MA)
then we obtain an exact couple:

£>i  -► Di

\   /
£i

The spectral sequence associated to this couple is the chromatic spectral se-
quence, which converges to Exty*T(VA,VA). Ravenel's conjecture is concerned with
ExtVAT(VA,VA) which occurs as .E^'0 in this spectral sequence (since E^'1 = 0).
We therefore concentrate on

El'° = Ext°y*T(VA,MA),        E\>° = Extv^T(VA,M2A)

and the differential d\ between these two groups, whose kernel is E2°-
The first of these groups is related to our previous computation by the following

vi local change of rings theorem which holds for any i>i local VaT comodule, but
which we state only for the special case which we need.
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Theorem 14.   ExtVAT(VA,MA) ~ ExtEAr(EA,EA ®vA M\).

The proof of this result is a straightforward generalization of Theorem 3.10 of
[M-R].

Based on this theorem we can compute El' .

Corollary 15.

n , f KIA if* = 0,
Extv'AT(VA,M\)^\   J \        .I. Extg t(Ea,Ea)    otherwise.

PROOF. When the map do: MA —* MA is tensored with Ea it yields the exact
sequence

0^EA->EA ®vA M°A -» EA ®va M\ -> 0

which has associated to it a long exact sequence of Ext groups. Since the middle
term in the short exact sequence is isomorphic to Ea <8>a K whose Ext groups are
given by

v*      (J?    r  «   m     J K   ^ (*>*) = (0,0),ExtEAr(EA,EA <g>A K) = \
y 0     otherwise,

the result follows.    □
The proof of this corollary provides us with a convenient representation for ele-

ments of E^ . If we take the cobar resolution over EaT of the groups in the short
exact sequence, then we obtain the diagram:

0

1
0 -► EA -► EAT ->

0 -►    EA ®a K    -► K ®A EAT ->

] 1
0 -> EA ®va Ma -► EA ®va Ma ®Ea EaT -►

0
Using Theorem 14 and this diagram we see that we may represent an element of

Exty*T(VA, MA) by an element x E Ea®aK with the property that (i]l—Vr){x) e
EaT. Such a representative is unique modulo Ea-

The final step in our consideration of Ravenel's conjecture is the study of the
differential d\ and the identification of its kernel. We first describe this kernel
in terms of the representation given above for elements of E{ and then do the
necessary number theory to determine when this kernel is all of Ex' .

Using the long exact Ext sequences associated to the short exact sequences

0 — N\ — M\ -► N\+1 -> 0
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for i = 1,2 and the fact that the differential dx is given by the composition

Exfy;T{VA,MA) - Exfy*AT(VA,N2A) -» Extv^AT(VA,M2A)

we see  that  the kernel of d\  is given by the image of Exty*T(VA,NA)  in
Exty*T(VA,MA). We can relate this to our earlier description of elements in Ex
using the following diagram whose rows are exact:

0 -—-►    VA     -—-►      VA®K      -►       N\       -► 0

0 -► v^lVA -► vxlVA ®A K -►       Mi       -> 0

i ] 1
0 -►    EA     ->      EA®K      -► EA ® M\ -► 0

Tracing through this diagram we see that an element x E EA <g> K represents an
element in the image of Exty*T(VA, NA) if it is the image under the center vertical
composition of an element y E Va ® K with the property that (rn — r]R)(y) E VaT.
The content of Theorem 14 is that any x E EA®K representing an element of E\'
will be the image of an element z E v1~1Va ®K with (rn - r}R)(z) E v1~1Va ® VaT.
It will be the image of an element y as above if the expression of z as a Laurent
polynomial in v\ does not involve any negative powers of v\ which are nontrivial
modulo Va-

Before we can describe this kernel more explicitly we require a more precise
description of the arithmetic function d(l) which determines the ideal J*.

Proposition 16.   If(m,p) = i then d(mpk) = d(pk).
PROOF, d is defined so that for any a E A with a = 1 mod 7r we have

ap" slmodTr^*).
Therefore

and so d(mpk)l > d(pk).
On the other hand there exists a E A with a = 1 mod 7r for which

ap" ^lmod7rd(p'c) + 1.

Using the binomial theorem we see that this implies that, since (m,p) = 1,

and so d(mpk) < d(pk) also.      □
Thus we can restrict our attention to the value of d at powers of p. For this we

will use the following result concerning congruences in A from [Ha, p. 228].

LEMMA 17.    IfxE A is such that x = I + air" modTr""1"1 then
' l + aP7rP'/mod7rP,/+1 if v < e/(p-I),

xv=\  l + (ap-eo)7rpi/mod7rp,y+1    if u = e/(p- 1),
1 - eairu+e mod 7r1/+e+1 if v > e/(p - 1),

where e is the unit in A for which p = —e-Ke.
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This lemma allows us to explicitly describe d if e/(p — 1) is not a power of p.

Proposition 18.   Ifpl^1<e/(p-l)<pl then
<*(P*) = K lfk-U

y   '     \pl + (k- l)e    ifk>l.
PROOF. The lemma shows that, for k < I d(pk) = p ■ d(pk~1) and, for k > I

d(pk) = e + d(pk-1).    D
If e/(p — 1) is a power of p the situation is the same in low dimensions. Just as

above we can show

Proposition 19.   Ife/(p-l)=pl and k < I then d(pk) = pk.

The critical level is k = (I +1) where the existence of pth roots of unity becomes
important.

PROPOSITION 20. If k > I, then the following equation holds except in the
case where e = pl(p — 1), / = 1, and A contains pth roots of unity:

d(pk) =pl + (k-l)-e.

PROOF. The result will follow as above for all k > I if we can establish it for the
case k = I + 1. If z = 1 + a7rmod7r2 then, by the lemma,

xp1+1 = i + (aP'+i _ £a*>V'+1     mod7rp'+1 + 1.

Thus it suffices for us to show that there exists a E A which is not a solution of the
congruence (apl+l - eap ) = 0mod7r. To do this we count the number of solutions
of this congruence and show that there are less than p* of them modulo 7r. Since the
pth power map is an automorphism of A/irA any solution of this congruence is the
p'th power of a (unique modulo 7r) solution of ap - ea = 0mod7r. This congruence
has either p solutions or 1 solution modulo 7r according to whether A does or does
not contain pth roots of unity [Ha, p. 224].    D

PROPOSITION 21. // e/(p - 1) = pl, f = 1 and A contains pth roots of unity
thenpl+1 <d(pl+1) <pl+1+pl.

PROOF. The left hand inequality follows from the previous proof. For the right
hand one, note that

(1 + 7T2)P        = 1 + 7TP       +P        mod7TP       +P+1.      D

REMARK 22. Using the description of the 1-units (units congruent to lmod7r)
in A given in [Ha, p. 242] the left-hand inequality above can be improved to p'+1 +
pM_1 < d(pl+1) if the group of roots of unity of pth power order in A has order pM.

For k > I + 1 the computation is as before.

Proposition 23.   Ifd(p'+l) =p'+1+u then, for k > l + i, d(pk) =pl + (k-
l) ■ e + u.

We can now complete our description of the kernel of dx. Proposition 13 and
the description of d(l) given above give an upper bound for the order of this kernel.
To identify cases in which this upper bound is attained we must construct specific
elements in El°.
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Proposition 24.     (i) If (m,p) = 1, pl < e/(p - 1) < pl+1 and k < I then
(vL-VR)(v?pk/*pk)evAT.

(n) If(m,p) = l,pl <e/(p-l) < pl+1 andk > I then (nL-riR)(v™pk/-Kp>^k^e)
eVAT.

PROOF. Since (r)R)(vi) = (v\ + 7rti) and so (r\L - Vr){vi) = (_7rii) both
these results follow from computing the 7r-adic valuations of the coefficients of the

k
binomial expansion of (vx + ■Kt\)mp .    D

Combining Proposition 20 with the description of elements of Ker(cfi) following
Corollary 15 we see that we have

COROLLARY 25. Except in the case where e = p'(p-l), / = 1, and A contains
pth roots of unity the following equation holds:

Exty^q-l)(VA,VA) = A/Jn[q_iy

In the case excluded in Corollary 25 we can construct the following element of
E\'°.

PROPOSITION 26. Ife/(p - 1) = pl, f — 1, A contains pth roots of unity and
u is as in Proposition 23 then

(riL ~ VR) ((v?,+ 1) - 7rp'+1(v2/v1)pl) /7rp'+1+« 6 VAT.

PROOF. Since u < pl it is sufficient for us to compute the numerator of this
quotient modulo 7rp    +p . Expanding (v\ + irti)p      we obtain

, w     ap' + i  _  (Pl + l\    p'.p'   p'(p-l)   ,      p'+1,pl
(VL-Vr){Vi)P        =1        ,     |7TP^<^      '+7TP       t\

^pytp'vp'{p-1)+^+1tp'

= *p'+1(tp'+1-etp'vp'^)     mod^+,V.

On the other hand r)R(v2/vi) = (v2/vi) + tp- t\Vp_1 mod7r and so

(Vl-Vr) (/+1feM)^^+1 (*r -tfv*'^)     mod7rp'+1+p'.
The result now follows from the observation that e = 1 mod 7ru which can be

established by expanding (1 + 7r)p and noting that it must be congruent to
lmod7rp' + 1+u.    □

Since the element ((vp /ttp +1) — (v2/vi)p /n) contains negative powers of
V\ which are nonzero modulo VAT we have constructed an element of E{ which
is not in the kernel of d\. We have, therefore

COROLLARY 27. If f = 1, e/(p — 1) — pl, and A contains pth roots of unity
then

Extv^l(p-l)(VA,VA) = A/(tt*'+1) # A/Jp.+,(p_1).

We can also take powers of the elements constructed in Proposition 26 to obtain
elements of Ext1,n'p-1' if p'+1 divides n. These powers do not contain any neg-
ative powers of v\ which are nontrivial modulo VAT. Thus we can complete our
description of Exty*T(VA,VA):
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COROLLARY 28.    If f = I, e/(p — 1) = pl, and A contains pth roots of unity,
then except in the case n = p'+1,

Ext1v'%p-1)(VA,VA)=A/Jn(p_1).
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