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ABSTRACT

Knowledge of the various interactions between mol-

ecules in the cell is crucial for understanding cellular

processes in health and disease. Currently available

interaction databases, being largely complementary

to each other, must be integrated to obtain a com-

prehensive global map of the different types of inter-

actions. We have previously reported the

development of an integrative interaction database

called ConsensusPathDB (http://ConsensusPathDB.

org) that aims to fulfill this task. In this update

article, we report its significant progress in terms

of interaction content and web interface tools.

ConsensusPathDB has grown mainly due to the

integration of 12 further databases; it now contains

215 541 unique interactions and 4601 pathways from

overall 30 databases. Binary protein interactions are

scored with our confidence assessment tool,

IntScore. The ConsensusPathDB web interface

allows users to take advantage of these integrated

interaction and pathway data in different contexts.

Recent developments include pathway analysis of

metabolite lists, visualization of functional gene/me-

tabolite sets as overlap graphs, gene set analysis

based on protein complexes and induced network

modules analysis that connects a list of genes

through various interaction types. To facilitate the

interactive, visual interpretation of interaction and

pathway data, we have re-implemented the graph

visualization feature of ConsensusPathDB using

the Cytoscape.js library.

INTRODUCTION

Amajor goal of systems biology is to assemble an exhaust-
ive global map of the functional relationships, or inter-
actions, between physical entities in the cell (genes,

proteins, metabolites, etc.) (1). Many methods have been
developed to measure such interactions and have been
applied to model organisms and to human. Thus,
hundreds of thousands of interactions have already been
detected, reported in the literature and assembled in
interaction databases (2); however, these databases are
often complementary and tend to focus on one or a few
types of interactions while in reality all the different inter-
action types coexist in the cell. In order to obtain a global
interaction map that reflects biology as completely as
possible, subject to the currently available interaction
knowledge, many available interaction resources have
to be considered. The heterogeneity of databases in
terms of interaction type, data model and data exchange
format complicates their integration. To facilitate the
exchange and integration of data from different resources,
standard file formats such as PSI-MI (3) and BioPAX (4),
and respective platforms for data exchange such as
PSICQUIC (5) and Pathway Commons (6) have been
developed. However, not all interaction resources have
adopted standard formats, e.g. because they are not com-
patible with the data model of the respective resource.
Despite these hurdles, we have developed a database
called ConsensusPathDB that integrates different types
of interactions from numerous resources into a seamless
global network (7,8). In this network, physical entities
(genes, proteins, metabolites, etc.) from different sources
are matched depending on their accession numbers and
interactions are matched depending on their participants
to reduce data redundancy. The web interface of
ConsensusPathDB aims to serve as a one-stop shop
for searching, visualizing and retrieving the integrated
interaction data, as well as for tools that use these data
for interaction- and pathway-centric analysis of genes,
proteins and metabolites (resulting, e.g. from large-
scale transcriptomics, proteomics or metabolomics
experiments). In this database update article, we report
the most significant recent advancements of
ConsensusPathDB in terms of human interaction
content and web interface functionalities. In addition to
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human data, ConsensusPathDB instances exist for inter-
action and pathway data from the model organisms,
mouse and yeast.

DATABASE CONTENT UPDATE

Since our last report on ConsensusPathDB (8), the
database has grown both in terms of different types of
interactions supported and in terms of source databases
(that is databases whose interaction data are integrated in
ConsensusPathDB). Newly integrated interaction types
comprise genetic interactions and drug–target interactions
in addition to the already supported types (protein–
protein interactions, biochemical reactions—metabolic
and signaling—as well as gene regulatory interactions).
Although human genetic interaction data are currently
scarce and there are only 265 such interactions in the
latest ConsensusPadthDB version [originating from
BioGRID (9)], their number is expected to increase in
the future. On the other hand, there are bulks of
drug–target interaction data extracted from the literature
into several dedicated databases. There are currently
33 081 drug–target interactions in ConsensusPathDB
that originate from four such databases.
The number of source databases integrated in

ConsensusPathDB has grown over the last 2 years since
our last report (8) from 18 to 30 databases. The newly
integrated resources are BIND (protein–protein inter-
actions) (10), DrugBank (drug–target interactions) (11),
InnateDB (protein–protein, biochemical and gene regula-
tory interactions) (12), MatrixDB (protein–protein
interactions) (13), PDZBase (protein–protein interactions)
(14), PhosphoPOINT (protein–protein and biochemical
interactions) (15), PhosphoSitePlus (biochemical

interactions) (16), PINdb (protein–protein interactions)
(17), SignaLink (biochemical pathways) (18), SMPDB
(biochemical pathways) (19), TTD (drug–target inter-
actions) (20) and WikiPathways (biochemical pathways)
(21). Drug–target interactions have been additionally
extracted from the previously integrated databases
KEGG (22) and PharmGKB (23). Although we do not
curate primary datasets, we have integrated a recently
published, large-scale spliceosomal protein–protein inter-
action network obtained through yeast two-hybrid
screening from our own research (24).

The number of unique interactions stored in
ConsensusPathDB has grown in the last 2 years from
155 432 to 215 541 interactions, in part because of the in-
tegration of new databases and in part because the content
of the previously included resources has grown. Analysis
of the total number of source databases per interaction in
ConsensusPathDB shows that the respective distribution
is right-skewed, with most of the interactions (161 396
interactions, 75%) originating from a single-source
database (Figure 1). These results evidence that currently
available databases are highly complementary [in agree-
ment with other reports in the literature, e.g. refs. (25) and
(26)] and, importantly, that the integrated interaction map
present in ConsensusPathDB has not saturated yet. This
underlines the importance of further interaction data in-
tegration. To rule out effects from missed interaction
mappings due to technical issues (e.g. missing accession
number annotation of interaction participants), we
repeated the analysis considering only those interactions
with unambiguously identifiable participants. This
analysis showed very similar trends (data not shown).

Apart from extending the quantity of the
ConsensusPathDB content, we have also taken measures

Figure 1. Histogram of the number of source databases per interaction in ConsensusPathDB.
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for assessing its quality. Interactions stored in public
resources are known to be of different confidence.
Reportedly, considerable fractions of the available
protein–protein interaction data may result from experimen-
tal or literature mining errors (26,27). Thus, we have
assessed the confidence of binary protein–protein inter-
actions stored in ConsensusPathDB. This was done using
an integrative approach that exploits network-topological
features and annotation features to derive confidence
scores for each individual interaction. Among the
network-topological methods integrated in the approach is
a parameter-free, reference data-independent method for
scoring large binary interaction networks called CAPPIC,
which was developed by us (28). The integrative approach
has been implemented as a web tool called IntScore (http://
intscore.molgen.mpg.de) (29), which was applied to the
ConsensusPathDB protein–protein interaction network
(Supplementary Methods). Notably, the protein–protein
interactions in ConsensusPathDB are only scored and not
filtered. The available scores are displayed in the web inter-
face and can be used as a filtering criterion by the users.

WEB INTERFACE FEATURES UPDATE

Pathway analysis of metabolite lists

Over the past decade, pathway over-representation/en-
richment analysis of gene lists has proven a very useful
tool for interpreting large-scale transcriptomics and prote-
omics data (30). Such analysis is able to pinpoint biochem-
ical pathways that are dysregulated and may have a
causative relationship to the phenotype under study or
act as conductors of biological signal leading to it. With
the possibility to measure the cellular concentrations of a
panel of metabolites provided by state-of-the-art
technologies, metabolite signatures for more and more
phenotypes are being generated (31). Like abnormal
gene expression, abnormal metabolite concentrations can
also provide clues about potentially dysregulated meta-
bolic or signaling pathways in the samples under study.
To facilitate the analysis of metabolomics data on the
pathway level, the web interface of ConsensusPathDB
now provides pathway over-representation and enrich-
ment analysis functionality for user-specified metabolite
lists. It exploits the fact that most of the pathways
stored in our database (3321 out of 4601 pathways,
72%) contain metabolites additionally to genes.
Statistical tests are performed with the user-specified
metabolite input that are analogous to those described
previously in the context of gene set analysis to identify
candidate phenotype-associated pathways (7). Although
several tools for pathway-based evaluation of metabolite
lists are already available (32–34), ConsensusPathDB has
the advantage of possessing a rich pathway repertoire col-
lected from 12 resources for biochemical pathways.
Moreover, if the user has both transcriptomics/proteomics
and metabolomics data from a particular phenotype at
hand, ConsensusPathDB can serve as a one-stop shop
for analyzing these data based on the same set of
pathways. This will save the user time and effort needed
to get familiar with two separate tools for the analysis of

the different data types, which will besides be typically
based on different sets of pathways.

Visualization of functional gene/metabolite sets
as overlap graphs

The typical output of most tools for gene/metabolite set
over-representation/enrichment analysis is a table where
predefined functional gene/metabolite sets (e.g.
pathways) are listed, ranked according to some statistical
measure of association with the user-specified input (most
often a P-value). However, the functional sets often
overlap with each other to some extent—for example,
they may stand in a hierarchical relationship to each
other [like Reactome pathways (35) or Gene Ontology
categories (36)] or may share key elements. Thus, to facili-
tate the visual interpretation of over-representation/en-
richment analysis results, we have introduced in
ConsensusPathDB the possibility to visualize the resulting
functional gene/metabolite sets (pathways, neighborhood-
based entity sets (NESTs) (8), Gene Ontology categories
and protein complexes) as overlap graphs (Figure 2). In
these graphs, each node represents a separate predefined
functional set whose member list size (i.e. number of
genes/metabolites contained) and P-values are encoded
as node size and color, respectively. Two nodes are con-
nected by an edge if the according functional sets share
members (genes/metabolites). The edge width reflects the
relative overlap calculated with the Fowlkes–Mallows
index (37) from the number of shared members and the
sizes of the two gene/metabolite sets. The edge color
encodes the number of shared members that are also
found in the user’s input (denoted ‘shared candidates’).
The user can click on the nodes and edges of the overlap
graph to view a list of the pertinent genes/metabolites. The
visual representation helps the user to quickly identify
related biological processes that together show a
changed activity, e.g. because they have the same key
regulators. Moreover, it gives a quick overview over the
relationships between the different types of functional sets
(e.g. particular Gene Ontology biological process
categories may be very similar to particular pathways con-
tained in pathway databases). Last but not least, the color
coding of edges can provide clues about potentially
dysregulated crosstalks between different biological
processes. The overlap graph visualization environment
features a filter that can be applied to edges in order to
highlight only the closest relationships between functional
gene/metabolite sets.
To exemplify how this overlap graph feature of

ConsensusPathDB can be used for interpreting
transcriptomics/proteomics data, Figure 2 displays
results from a toxicogenomics context. Here, functional
gene sets are shown that are significantly over-represented
(P< 0.05) in an input list of 410 genes that appeared dif-
ferentially expressed (P< 0.01) in an in vitro assay of
human hepatocite-like cells that were treated with the
genotoxic chemical benzo[a]pyrene, compared with an un-
treated control (38). The functional gene sets include
manually curated pathways, Gene Ontology categories,
NESTs and protein complexes that overlap with each
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other in different extent. The largest module of
overlapping functional sets visible in Figure 2 is formed
by genotoxic stress response pathways related with p53,
DNA damage, apoptosis and cancer signaling. The
module also includes gene sets centered at several ubiqui-
tin E3 ligases: COP1 [gene symbol: RFWD2, a negative
regulator of p53 (39)], RBX1 (Gene Ontology annotation:
DNA repair) and DDB2 complex [involved in DNA
repair (40)]. The results are in line with the fact that
benzo[a]pyrene is a highly carcinogenic compound due
to its mutagenic nature. Confirmatory, the benzo[a]pyrene
metabolism pathway fromWikiPathways forms a separate
module together with estrogen metabolism pathways from
PharmGKB and WikiPathways (upper right part of
Figure 2). A third module is formed by gene sets
associated with the mitochondrial ribosome (upper left
part in Figure 2).

Gene set analysis based on protein complexes

A further new feature of the ConsensusPathDB web inter-
face is the over-representation/enrichment analysis of gene
lists based on curated protein complexes [in addition to
functional gene sets defined over curated pathways, Gene
Ontology categories and NESTs, as reported previously

(8)]. ConsensusPathDB currently contains 12 263 unique
curated protein complexes originating from overall 10 re-
sources. Totally 4070 complexes have at least four distinct
protein components and thus define functional sets whose
size (i.e. number of member genes) is adequate for statis-
tical over-representation/enrichment tests. These 4070
protein complex-based functional gene sets contain a
total of 4645 unique genes. Notably, many of these gene
sets do not correspond to any human-curated pathways or
otherwise defined gene categories.

Induced network modules analysis with gene lists

In addition to the over-representation/enrichment analysis
of predefined functional gene sets as detailed above, the
web interface of ConsensusPathDB now provides another
approach for the interaction- and pathway-centric analysis
of lists of genes, called induced network modules analysis
(41). Given a list of so-called seed genes (e.g. resulting
from microarray experiments, which are unable to
directly disclose the functional relationships between
genes), it aims to interconnect those genes through differ-
ent types of interactions (e.g. physical, biochemical, regu-
latory, etc.; selectable by the user) (Figure 3). This
information on the pairwise functional/physical

Figure 2. Functional gene set overlap graph summarizing predefined gene sets (and their pairwise overlaps) that are over-represented in an input list of
410 genes differentially expressed after treatment of human hepatocite-like cells with the genotoxic chemical benzo[a]pyrene. Benzo[a]pyrene causes
mutations in the DNA and leads to carcinogenesis (38). Each node in the overlap graph is a predefined gene set (blue label: curated pathway, purple
label: Gene Ontology category, green label: NEST and orange label: protein complex). The node size reflects the size of the gene set and the node color—
its P-value (deeper red means smaller P-value). Each edge denotes an overlap between gene sets (i.e. shared genes). The edge width reflects the size of the
overlap and its color reflects the number of genes/metabolites from the input list that are contained in the overlap. Details are shown in tooltips.
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relationships between the genes can shed light on the bio-
logical reasons why they are identified together in the
experiment. For example, if a group of genes found to
be over-expressed in a microarray experiment are highly
interconnected through physical interactions, this suggests
that those genes may encode proteins which together form
a protein complex that has a high concentration in the
phenotype under study and thus may be relevant for this
phenotype.

Notably, the induced network modules may optionally
include genes that are not in the user-supplied seeds list,
but associate two or more seed genes with each other and
overall have significantly many connections within the
induced network module (Figure 3, nodes with purple
labels). These so-called intermediate genes could be
associated with the phenotype under study, although
they may not be regulated on the transcriptional level
and thus do not appear in the input gene list. For
example, if a group of seed genes are all connected
through gene regulatory interactions to an intermediate
node that represents a transcription factor, this suggests
that the transcription factor may be dysfunctional (e.g.
due to a mutation, which does not necessarily impact
the transcription factor’s expression). Intermediate genes
are ranked according to the significance of association
with the seeds list given their overall connectivity in the
background network. This is quantified by a z-score

calculated for each intermediate node with the binomial
proportions test as per Berger et al. (41). The z-score
threshold can be controlled dynamically by the user in
order to create sub-networks involving many intermediate
and seed genes with a less stringent threshold or more
compact sub-networks with a more stringent threshold.
Berger et al. (41) originally suggested the induced

network modules approach and implemented it as a web
tool called Genes2Networks. Their tool is limited to
physical protein–protein interactions only that further-
more originate from a much smaller number of sources
compared with ConsensusPathDB. Nevertheless,
Genes2Networks allows the user to replace the default
background network by a custom one, if available. The
induced network modules analysis of ConsensusPathDB
additionally features the possibility to overlay
user-specified numerical values (e.g. expression values or
fold changes) on nodes (genes/proteins) of the visualized
network. Upon upload of a two-column, tab-delimited file
containing gene accession numbers in the first column and
numerical values in the second column, the values are
encoded in the node color (green denoting low, negative
values and red denoting high, positive values) to facilitate
their visual interpretation in the context of the network
(Supplementary Figure S1). The values may even be arti-
ficially created to reflect groupings of genes/proteins,
e.g. according to their sub-cellular localization.

Figure 3. Induced network module analysis of a cancer-related gene list. Each node represents a physical entity (gene, protein or compound). Nodes
with black labels are from the input gene list (seed nodes) and nodes with a purple label are intermediate nodes that are not in the input list but
connect seed nodes and have significantly many links in the induced network module. Each edge represents an interaction (physical, biochemical,
regulatory or drug–target interaction). Numerical values can be overlaid on nodes (Supplementary Figure S1). This example network resulted from
an induced network module analysis of 100 genes differentially expressed in metastatic prostate cancer as compared to non-metastatic primary
prostate carcinoma and may represent a module that governs the metastatic potential of prostate cancer.
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Figure 3 depicts a network module induced by a list of
genes differentially expressed in metastatic prostate cancer
compared with primary prostate carcinoma [data obtained
from (42) and available as an example gene set on the
ConsensusPathDB web site]. The module is held
together by different types of interactions, comprising
protein–protein, biochemical, gene regulatory and drug–
target interactions. Many intermediate nodes (Figure 3,
nodes with purple labels) are known cancer-associated
genes although, per definition, they are not present in
the input set of genes differentially expressed in metastatic
prostate cancer. Examples include TP53, TAF1 (node
name: ‘Transcription initiation factor TFIID 250 kDa
subunit’), VHL and SNCG. Interestingly, the breast
cancer drug letrozole is also present in the module and
connects the seed genes EGR1, CYR61 and COLEC12
through drug–target interactions. Furthermore, the
induced network modules analysis suggests metastatic
prostate cancer association of RPAIN (node name:
‘rip_human’; Gene Ontology annotation: DNA repair),
VPS35 (Gene Ontology annotation: cell death) and a
few other genes that appear as intermediate nodes.
Overall, the module constitutes an interaction network
‘cold-spot’, since most of its members are under-expressed
(Supplementary Figure S1).

Other improvements

Graph visualization tool
The graph visualization tool of ConsensusPathDB was
re-implemented using state-of-the-art web technology:
the new visualization facilities are based on Cytoscape.js
(https://github.com/cytoscape/cytoscape.js), a recently
developed open-source graph visualization library for
web applications, which is written in JavaScript/HTML5
as a jQuery (http://jquery.com/) plugin. The older visual-
ization tools are deprecated since they allowed less flexi-
bility; the old Java-based tool additionally relied on Java
Virtual Machine installation.

BioPAX Level 3 export
Networks viewed with the interaction visualization tool
can now be exported in BioPAX Level 3 (4) format.
This format is more descriptive than previous levels and
allows a more precise standard description of the
sub-network of interest. For example, BioPAX Level 3
is able to represent genetic and gene regulatory inter-
actions, which was not possible in BioPAX Levels 2 or 1.

Display of drug information for genes/proteins
The integration of drug–target interactions with physio-
logical ones (biochemical reactions, physical interactions,
etc.) mentioned above is advantageous when it comes to
interaction graph-centric analysis of disease phenotypes.
For example, we have previously described a new class of
functional gene sets called NESTs (8). A NEST is a set of
genes that are linked through different types of inter-
actions (possibly originating from different interaction
databases) to a certain gene, which is itself also included
in the NEST. Given an interaction network of genes, each
gene and its direct network neighbors define a separate
NEST. We have shown that NEST analysis in the

context of gene expression data can aid the identification
of disease-causing genes (8). If available, drug information
is now shown for every gene/protein in the web interface
of ConsensusPathDB (including the visualization tool).
Thus, ConsensusPathDB can now serve for identifying a
potential target for pharmaceutical treatment and, at the
same time, for retrieving information on available drugs
for that target.

Improvements of the ConsensusPathDB web services
We have extended the functionality of the
ConsensusPathDB web services by adding enrichment
analysis functions for lists of genes or metabolites. The
repertoire of predefined gene sets that can be analyzed
through gene set over-representation or enrichment
analysis has been extended to include NESTs, Gene
Ontology categories and protein complexes in addition
to curated pathways. Thus, the web services now cover
completely the gene/metabolite set over-representation/en-
richment analysis functionality of the web interface.

CONCLUSION

Through the integration of 30 public interaction/pathway
resources, ConsensusPathDB assembles to our knowledge
the most comprehensive available map of human inter-
actions and pathways. With regular content updates and
database releases every 3 months, it is ensured that this
map stays up-to-date. New databases are integrated into
ConsensusPathDB at the rate of 1–2 databases per release;
furthermore, new interaction types are occasionally
added. The recent extensions of the web interface func-
tionality, most of which serve for the interaction- and
pathway-based interpretation of sets of genes coming
e.g. from transcriptomics/proteomics studies, sets of me-
tabolites e.g. from metabolomics measurements, and the
integration of drug data with physiological interactions,
open further perspectives for ConsensusPathDB applica-
tions in systems biomedicine and translational research.

AVAILABILITY

The web interface of ConsensusPathDB is freely available
to academic users at http://ConsensusPathDB.org.
Information on web service access is provided on the
ConsensusPathDB web page. The protein interaction
part of the database content is available for download in
tab-delimited and PSI-MI 2.5 formats on the web site. The
gene compositions of biochemical pathways contained in
ConsensusPathDB are available for download on the web
site in a gene identifier namespace selectable by the user.
Custom networks constructed by the user through inter-
action searches are downloadable in BioPAX Level
3 format. ConsensusPathDB can also be used for
evidence mining of user-specified protein–protein inter-
actions (e.g. obtained from an interaction screen)
through a Cytoscape plugin (43). Moreover, separate
ConsensusPadthDB instances exist for the model organ-
isms, mouse (http://ConsensusPathDB.org/MCPDB) and
yeast (http://ConsensusPathDB.org/YCPDB).
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SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figure 1 and Supplementary Methods.
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Spiró,Z., Böde,C., Lenti,K., Vellai,T. and Csermely,P. (2010)
Uniformly curated signaling pathways reveal tissue-specific
cross-talks and support drug target discovery. Bioinformatics, 26,
2042–2050.

19. Frolkis,A., Knox,C., Lim,E., Jewison,T., Law,V., Hau,D.D.,
Liu,P., Gautam,B., Ly,S., Guo,A.C. et al. (2010) SMPDB: The
Small Molecule Pathway Database. Nucleic Acids Res., 38,
D480–D487.

20. Zhu,F., Shi,Z., Qin,C., Tao,L., Liu,X., Xu,F., Zhang,L., Song,Y.,
Liu,X., Zhang,J. et al. (2012) Therapeutic target database update
2012: a resource for facilitating target-oriented drug discovery.
Nucleic Acids Res., 40, D1128–D1136.

21. Kelder,T., van Iersel,M.P., Hanspers,K., Kutmon,M.,
Conklin,B.R., Evelo,C.T. and Pico,A.R. (2012) WikiPathways:
building research communities on biological pathways. Nucleic
Acids Res., 40, D1301–D1307.

22. Kanehisa,M., Goto,S., Sato,Y., Furumichi,M. and Tanabe,M.
(2012) KEGG for integration and interpretation of large-scale
molecular data sets. Nucleic Acids Res., 40, D109–D114.

23. Thorn,C.F., Klein,T.E. and Altman,R.B. (2010)
Pharmacogenomics and bioinformatics: PharmGKB.
Pharmacogenomics, 11, 501–505.

24. Hegele,A., Kamburov,A., Grossmann,A., Sourlis,C., Wowro,S.,
Weimann,M., Will,C.L., Pena,V., Lührmann,R. and Stelzl,U.
(2012) Dynamic protein-protein interaction wiring of the human
spliceosome. Mol. Cell, 45, 567–580.

25. Elefsinioti,A., Ackermann,M. and Beyer,A. (2009) Accounting for
redundancy when integrating gene interaction databases. PLoS
One, 4, e7492.

26. Cusick,M.E., Yu,H., Smolyar,A., Venkatesan,K., Carvunis,A.-R.,
Simonis,N., Rual,J.-F., Borick,H., Braun,P., Dreze,M. et al.
(2009) Literature-curated protein interaction datasets. Nat.
Methods, 6, 39–46.

27. Levy,E.D., Landry,C.R. and Michnick,S.W. (2009) How perfect
can protein interactomes be? Sci. Signal., 2, pe11.

28. Kamburov,A., Grossmann,A., Herwig,R. and Stelzl,U. (2012)
Cluster-based assessment of protein-protein interaction confidence.
BMC Bioinformatics, 13, 262.

29. Kamburov,A., Stelzl,U. and Herwig,R. (2012) IntScore: a web
tool for confidence scoring of biological interactions. Nucleic
Acids Res., 40, W140–W146.

30. Curtis,R.K., Oresic,M. and Vidal-Puig,A. (2005) Pathways to the
analysis of microarray data. Trends Biotechnol., 23, 429–435.

31. Patti,G.J., Yanes,O. and Siuzdak,G. (2012) Innovation:
metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol.
Cell Biol., 13, 263–269.

32. Xia,J. and Wishart,D.S. (2010) MSEA: a web-based tool to
identify biologically meaningful patterns in quantitative
metabolomic data. Nucleic Acids Res., 38, W71–W77.

33. Chagoyen,M. and Pazos,F. (2011) MBRole: enrichment analysis
of metabolomic data. Bioinformatics, 27, 730–731.

Nucleic Acids Research, 2013, Vol. 41, Database issue D799

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
1
/D

1
/D

7
9
3
/1

0
5
3
5
0
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



34. Kamburov,A., Cavill,R., Ebbels,T.M.D., Herwig,R. and
Keun,H.C. (2011) Integrated pathway-level analysis of
transcriptomics and metabolomics data with IMPaLA.
Bioinformatics, 27, 2917–2918.

35. Croft,D., O’Kelly,G., Wu,G., Haw,R., Gillespie,M., Matthews,L.,
Caudy,M., Garapati,P., Gopinath,G., Jassal,B. et al. (2011)
Reactome: a database of reactions, pathways and biological
processes. Nucleic Acids Res., 39, D691–D697.

36. Ashburner,M., Ball,C.A., Blake,J.A., Botstein,D., Butler,H.,
Cherry,J.M., Davis,A.P., Dolinski,K., Dwight,S.S., Eppig,J.T.
et al. (2000) Gene Ontology: tool for the unification of biology.
The Gene Ontology Consortium. Nat. Genet., 25, 25–29.

37. Fowlkes,E.B. and Mallows,C.L. (1983) A method for comparing
two hierarchical clusterings. J. Am. Statist. Assoc., 78, 553–569.

38. Yildirimman,R., Brolén,G., Vilardell,M., Eriksson,G.,
Synnergren,J., Gmuender,H., Kamburov,A., Ingelman-
Sundberg,M., Castell,J., Lahoz,A. et al. (2011) Human embryonic
stem cell derived hepatocyte-like cells as a tool for in vitro
hazard assessment of chemical carcinogenicity. Toxicol. Sci., 124,
278–290.

39. Dornan,D., Wertz,I., Shimizu,H., Arnott,D., Frantz,G.D.,
Dowd,P., O’Rourke,K., Koeppen,H. and Dixit,V.M. (2004) The
ubiquitin ligase COP1 is a critical negative regulator of p53.
Nature, 429, 86–92.

40. Groisman,R., Polanowska,J., Kuraoka,I., Sawada,J., Saijo,M.,
Drapkin,R., Kisselev,A.F., Tanaka,K. and Nakatani,Y. (2003)
The ubiquitin ligase activity in the DDB2 and CSA complexes is
differentially regulated by the COP9 signalosome in response to
DNA damage. Cell, 113, 357–367.

41. Berger,S.I., Posner,J.M. and Ma’ayan,A. (2007) Genes2Networks:
connecting lists of gene symbols using mammalian protein
interactions databases. BMC Bioinformatics, 8, 372.

42. Tomlins,S.A., Mehra,R., Rhodes,D.R., Cao,X., Wang,L.,
Dhanasekaran,S.M., Kalyana-Sundaram,S., Wei,J.T., Rubin,M.A.,
Pienta,K.J. et al. (2007) Integrative molecular concept modeling
of prostate cancer progression. Nat. Genet., 39, 41–51.

43. Pentchev,K., Ono,K., Herwig,R., Ideker,T. and Kamburov,A.
(2010) Evidence mining and novelty assessment of protein-protein
interactions with the ConsensusPathDB plugin for Cytoscape.
Bioinformatics, 26, 2796–2797.

D800 Nucleic Acids Research, 2013, Vol. 41, Database issue

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
1
/D

1
/D

7
9
3
/1

0
5
3
5
0
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


