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In ecological field surveys, observations are gathered at different spatial locations. The
purpose may be to relate biological response variables (e.g., species abundances) to
explanatory environmental variables (e.g., soil characteristics). In the absence of prior
knowledge, ecologists have been taught to rely on systematic or random sampling
designs. If there is prior knowledge about the spatial patterning of the explanatory
variables, obtained from either previous surveys or a pilot study, can we use this
information to optimize the sampling design in order to maximize our ability to detect
the relationships between the response and explanatory variables?
The specific questions addressed in this paper are: a) What is the effect (type I error)
of spatial autocorrelation on the statistical tests commonly used by ecologists to analyse
field survey data? b) Can we eliminate, or at least minimize, the effect of spatial
autocorrelation by the design of the survey? Are there designs that provide greater
power for surveys, at least under certain circumstances? c) Can we eliminate or control
for the effect of spatial autocorrelation during the analysis? To answer the last question,
we compared regular regression analysis to a modified t-test developed by Dutilleul
for correlation coefficients in the presence of spatial autocorrelation.
Replicated surfaces (typically, 1000 of them) were simulated using different spatial
parameters, and these surfaces were subjected to different sampling designs and
methods of statistical analysis. The simulated surfaces may represent, for example,
vegetation response to underlying environmental variation. This allowed us 1) to
measure the frequency of type I error (the failure to reject the null hypothesis when
in fact there is no effect of the environment on the response variable) and 2) to estimate
the power of the different combinations of sampling designs and methods of statistical
analysis (power is measured by the rate of rejection of the null hypothesis when an
effect of the environment on the response variable has been created).
Our results indicate that: 1) Spatial autocorrelation in both the response and
environmental variables affects the classical tests of significance of correlation or
regression coefficients. Spatial autocorrelation in only one of the two variables does
not affect the test of significance. 2) A broad-scale spatial structure present in data has
the same effect on the tests as spatial autocorrelation. When such a structure is present
in one of the variables and autocorrelation is found in the other, or in both, the tests
of significance have inflated rates of type I error. 3) Dutilleul’s modified t-test for the
correlation coefficient, corrected for spatial autocorrelation, effectively corrects for
spatial autocorrelation in the data. It also effectively corrects for the presence of
deterministic structures, with or without spatial autocorrelation. The presence of a
broad-scale deterministic structure may, in some cases, reduce the power of the modified
t-test.
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In field surveys, ecologists make observations at differ-
ent spatial locations, hereafter referred to as ‘‘sites’’.
The aim is often to relate biological response variables
(e.g., the growth of individuals, the abundance of a
species, or the structure of ecological communities) to
explanatory environmental variables (e.g., soil charac-
teristics, herbivore abundance).

Ecologists know from experience that physical as
well as biological variables observed in nature display
spatial patterns. Patterns may result either from deter-
ministic processes or from processes causing spatial
autocorrelation, or both; the distinction is explained
below. As we will see in this paper, some types of
spatial pattern make it difficult to accurately detect and
quantify the biological responses, which are of primary
interest. The effects of spatial structures in general, and
of spatial autocorrelation in particular, on statistical
tests of significance, have been described elsewhere (see,
e.g., Bivand 1980, Cliff and Ord 1981, Haining 1990, or
Legendre and Legendre 1998 for a review). It is our
purpose here to determine the consequences of particu-
lar sampling designs on the detection of biological
responses in the face of some common types of spatial
patterning in the data.

Rather than analysing actual data sets, we chose the
simulation approach because the use of simulations
allows us to compare the outcome of the analysis to
‘‘the truth’’, which we know because we have generated
it. The analysis of real data sets is usually limited in
terms of the number of data sets available with all the
necessary variables; it is also limited by the fact that
one does not know whether the null hypothesis (H0:
there is no effect of the environmental variable on the
response variable) or the alternative hypothesis (H1:
there is an effect) is true in any particular case. Monte
Carlo simulations allow researchers to know the exact
relationship between variables in the data. No doubt
exists as to whether it is H0 or H1 which is true in each
particular simulated data set (Milligan 1996).

We used stochastic simulations designed to produce
surfaces of responses. These surfaces may incorporate
1) deterministic (e.g., physical) spatial patterns in the
environmental variable to which the biological entities
are responding, 2) spatial autocorrelation in the under-
lying environmental variable, and 3) spatial autocorre-
lation in the biotic responses. Each pair of surfaces was
generated using a particular set of parameter values,
and was replicated 1000 times. By analysing these repli-
cates, we can explore the consequences of using various
sampling designs for our ability to detect true biotic
responses, and to conclude that there is no biotic
response when none is present while different types of
spatial pattern are present.

The simulations were used in this paper to address
three questions formulated below. In these simulations,
we generated the processes described above that may
give rise to spatial structures: deterministic spatial

structures and spatial autocorrelation in the explana-
tory variables, plus spatial autocorrelation in the eco-
logical response variable.

The questions addressed in this paper are: a) What is
the effect (in terms of type I error) of spatial autocorre-
lation on the statistical tests of correlation and regres-
sion analysis, which are commonly used by ecologists to
analyse field survey data? b) Can we eliminate the effect
of spatial autocorrelation by the design of the survey?
Which designs provide the most power? c) Can we
eliminate or control for the effect of spatial autocorre-
lation during the analysis? To answer this question, we
used ordinary correlation analysis and compared it to a
modified t-test developed by Dutilleul for correlation
coefficients in the presence of spatial autocorrelation.

Sampling designs

In the absence of prior knowledge about the systems
that they intend to sample, ecologists have been taught
to rely on systematic or random sampling designs.
When designing a sampling plan, scientists should make
use of information, obtained from either previous sur-
veys or a pilot study, about the nature of the underlying
spatial structure of the variables. This is unfortunately
not always the case. When prior knowledge about the
spatial structure does exist, it is often not clear how to
use it to optimize the design. The objective of this
optimization should be to increase the power to detect
real patterns in the response (minimizing the probabil-
ity of type II error) while reducing the likelihood of
false detection of responses that do not exist (which
would be a type I error). Analysis of the simulations,
reported in this paper, will give indications to that
effect.

Spatial dependence versus spatial autocorrelation

The spatial patterns that are the most commonly en-
countered in nature are gradients and patches. The
processes that may have produced the observed spatial
structures are the subject of many debates in the litera-
ture. For response variables such as the size of plants,
or species abundances, it is useful to recognize that
spatial patterns may originate in two different ways, as
specified by the following models (Legendre and Legen-
dre 1998).

1. Spatial dependence. – This model implies that the
response variable is spatially structured because it de-
pends upon explanatory (e.g., physical) variables that
are themselves spatially structured by their own gener-
ating processes. This is an extension of the environmen-
tal control model developed during the 1950s by
Whittaker (1956), Hutchinson (1957), and Bray and
Curtis (1957). The equation is the following:
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yj=�y+ f(explanatory variablesj)+�j (1)

The model implies that the value taken by a dependent
variable y at site j is the overall regional mean �y of the
variable, modulated by adding the local effect of the
explanatory variables at site j, plus a random error
component �j.

2. Spatial autocorrelation. – In this model, the value
of response variable y at site j is assumed to result from
some dynamic process within variable y itself. Spatial
autocorrelation actually refers to the lack of indepen-
dence among the error components of field data, as a
function of geographic distance among the sites. The
equation describing this model is the following:

yj=�y+�i f(yi−�y)+�j (2)

This equation implies that the value of variable y at site
j is the overall regional mean �y of the variable, plus a
weighted sum of the centred values (yi−�y) of the same
variable at sites i that surround j, plus an independent
error term �j. Sites i are those that are within the zone
of spatial influence of the process generating the auto-
correlation. In the simulation model described below,
the extent of this zone of influence is determined by the
range of the spherical variogram model used to gener-
ate spatial autocorrelation in the data. Note that the
total error term of this model is [�i f(yi−�y)+�j]; it
contains a spatially-structured and a spatially-indepen-
dent portion.

Real-case field observations often result from a com-
bination of models 1 and 2, model 1 providing for the
large-scale spatial structuring and model 2 for the
smaller-scale structure:

yi=�y+ f1(explanatory variablesj)+�i f2(yi−�y)+�j

(3)

Data generated under this model may not be stationary
if the explanatory variable manifests large-scale spatial
structuring. Model 2 assumes second-order stationarity,
which means that the mean (�y) and variance are the
same in any portion of the study area and that the
spatial autocovariance, which is the same all over the
area, is a function of the separation vector rather than
a function of the locations of the two points (Cressie
1993). Lack of stationarity occurs when the scale of
dependence in model 1 approaches the size of the area
under study. For example, the environmental variable
might be spatially structured at a small spatial scale and
remain stationary at the scale of the study area. There-
fore, it is possible to have a relationship that can be
modelled by eq. (3) and is also stationary.

An added complexity is that the physical explanatory
variables of ecological models may themselves be the

result of deterministic spatial structures, plus autocorre-
lation generated by the processes that have given rise to
the environmental variables.

Methods

The model

In our simulations, a response variable (R) measured
during a field survey is considered to represent the sum
of separate effects (Fig. 1): the influence of an explana-
tory environmental variable (E), spatial autocorrelation
in the response variable (SAR), and a spatially unstruc-
tured random error component (�R) taking independent
values for each observation i:

Ri= f(Ei)+SARi+�Ri (4)

The environmental variable, in turn, may possess a
deterministic structure (D) plus a spatially autocorre-
lated error component (SAE) and a spatially unstruc-
tured random error (�E):

Ei=Di+SAEi+�Ei (5)

Assuming a linear response function of the ecological to
the environmental variables, the model for the response
variable R may be written as follows:

Ri=�Ei+SARi+�Ri=�(Di+SAEi+�Ei)+SARi+�Ri

(6)

The assumptions of this model are the following: a) all
environmental effects can be summarized by a single
variable whose effect on R is linear; the effect is thus
modelled by multiplying E by an effect-size (regression-
type) parameter � (referred to below as the ‘‘transfer
parameter’’). b) The error component �, which takes
independent values (i.e., not spatially autocorrelated)
for each observation i, is modelled as a normal error
term whose variance (Var�) is fixed by a parameter
provided for each simulation. A normal error can legit-
imately be assumed for a natural phenomenon that
results from a large number of factors acting indepen-
dently, whose random effects are cumulative, if the
variance of the phenomenon produced by each factor is
small (Galton 1898, Scherrer 1984).

Numerical simulations

Simulations have been performed to check the type I
error and estimate the power of the tests of significance
in the presence of different types of sampling designs
and spatial structures. Type I error occurs when the
null hypothesis is rejected while the data conform to
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H0. A test of statistical significance is valid if the
rejection rate is not larger than the significance level �,
for any value of �, when the null hypothesis is true
(Edgington 1995). A test of significance should also be
able to reject the null hypothesis in most instances
when H0 is false. The ability to reject H0 in these
circumstances is referred to as the power of the test. In
the present study, power is the empirical rate of rejec-
tion of the null hypothesis when H0 is false by con-
struct. High power is a desirable property. When two
or more procedures are available (sampling designs or
tests of statistical significance), one should use the
procedure that has the highest power.

A simulation run, using the computer program de-
scribed below, consists of the following steps: 1) Specify
the number of simulations and the size of the experi-
mental field, which is given in number of points from
west to east and from north to south. 2) Specify a
sampling design and the number of sampling units.
3) Specify the characteristics of the environmental vari-
able E: the type of deterministic structure D; the
parameters of the spherical variogram model describing
the autocorrelation function SAE for the environmental
variable; and the slope parameter (beta) through which
the environmental component will carry on to the
response variable. The variance of the normal error
component �E is set to be 1. 4) Specify the parameters
of the spherical variogram model describing the auto-

correlation function SAR for the response variable, as
well as the variance of the normal error component �R

for the response variable.

Simulation setup

A computer program has been written to carry out the
numerical simulations. A simulation consists of 1) the
generation of an explanatory environmental surface
and a response surface according to the parameters
specified for the simulation run, 2) extraction of the
explanatory variable (E) and response variable (R)
following a sampling design, and 3) analysis of the
relationship between E and R. A simulation run is the
process through which a set of (typically 1000) repli-
cated pairs of surfaces (E, R) are generated using a
given combination of parameters, and analysed. For
each simulated pair of variables, the program conducts
a correlation analysis and produces a probability asso-
ciated with the t-statistic. Results are accumulated over
all simulations of a run.

The final statistic for a simulation run is the propor-
tion of rejections of the null hypothesis (H0: no effect of
the environmental variable on the response variable)
across the simulations. A 95% confidence interval for
the rejection rate is also computed. The program allows
users to obtain output files containing individual simu-
lated surfaces, which can be drawn as maps.

Fig. 1. Construction of the environmental and response surfaces during the simulations. See text. Bigger empty circles represent
larger negative values; bigger black circles, larger positive values. The range of values in each graph is shown in brackets
underneath. The sampling design is a cross in this example; the 39 sampled points are shown in grey.
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Table 1. Simulations carried out to study the rate of type I error.

Deterministic structure in Sampling designs Total number of runs, eachVariogram ranges
for variables E and Rthe environmental variable runs involving 1000 simulations

0, 20 and 50 (total of 9 combinations)No deterministic structure 721, 2, 3, 8, 10, 11,
(‘‘deterministic’’=0) 12, 13

6, 7, 9 0, 4 and 16 (total of 9 combinations) 27
Gradients in two directions 271, 2, 3 0, 20 and 50 (total of 9 combinations)

(‘‘deterministic’’=2) 276, 7, 9 0, 4 and 16 (total of 9 combinations)
One big patch 1, 2, 3 0, 20 and 50 (total of 9 combinations) 27

(‘‘deterministic’’=3) 270, 4 and 16 (total of 9 combinations)
Four waves 1, 2, 3 0, 20 and 50 (total of 9 combinations) 27

6, 7, 9 0, 4 and 16 (total of 9 combinations) 27(‘‘deterministic’’=4)
1, 2, 3, 8Two regions/zones 0, 20 and 50 (total of 9 combinations) 36

27(‘‘deterministic’’=5) 6, 7, 9 0, 4 and 16 (total of 9 combinations)
Grand total 324

Spatially autocorrelated surfaces with given vari-
ogram parameters were generated using the Condi-
tional Simulation method, as implemented in
subroutine Sgsim of the geostatistical software library
GSLib (Deutsch and Journel 1992). We restricted our
simulations to spherical variograms with range specified
in the run parameters, without or with anisotropy.

The following parameters were used in the simula-
tions reported in this paper.

a) Surfaces were generated in a field containing
100×100 points (or nodes).

b) Six types of underlying spatial structures were
available in the program (simulation parameter ‘‘deter-
ministic’’): 0) no deterministic structure (random nor-
mal error only); 1) linear gradient from north (low
values) to south (high values), not used in this study; 2)
linear gradients from north to south and from west to
east, so that the lowest values are in the upper left-hand
corner and the highest values are in the lower right-
hand corner of the map; 3) one big bi-normal patch in
the centre of the field; 4) four waves across the field
with their crests parallel to the upper and lower frames
of the map; 5) two zones (north and south portions of
the field) separated by a sharp discontinuity.

c) There are thirteen different choices for the sam-
pling designs (simulation parameter ‘‘design’’) available
in the simulation program. Different numbers of sam-
pling units, depending on the design, were used in
generating the simulations: 1) Simple random sampling
(100 units). 2) Systematic (100 units). 3) Aggregates of
5 sampling units in a systematic pattern (80 or 125
units). 4) Horizontal transect with a single sampling
interval (design not used in this paper). 5) Horizontal
transect with 2 sampling intervals (design not used in
this paper). 6) Vertical transect with a single sampling
interval (50 units, interval of 2 points). 7) Vertical
transect with two sampling intervals (50 units; alternat-
ing intervals of 1 and 2 points; the transect started on
row 1 and reached down to row 74 of the 100×100
field). 8) Stratified vertically into 2 strata; simple ran-
dom sampling within each stratum (100 units). 9) Cross
consisting of two crossing transects (99 units; interval

of 2 points between units). 10) Two parallel vertical
transects distributed evenly (100 units, interval of 2
points). 11) Three parallel vertical transects distributed
evenly (99 units, interval of 3 points). 12) Two parallel
vertical transects distributed at random (100 units, in-
terval of 2 points). 13) Three parallel vertical transects
distributed at random (99 units, interval of 3 points).

d) Spatial autocorrelation in the environmental vari-
able E and the response variable R was specified by
spherical variogram models with nugget values of 0.
The ranges were {20, 50} points for sampling designs 1,
2, 3, 8, 10, 11, 12 or 13, and {4, 16} points for sampling
designs 6, 7 and 9. These values were chosen in such a
way that there might be an effect on the rate of type I
error for the ordinary t-tests, when testing the correla-
tion coefficient.

A simulation study can never explore all parameter
combinations. Choices have to be made in order to
obtain publishable results in finite time. The simulation
effort reported in this paper was the following: 1) Type
I error study – the simulations are described in Table 1.
Total: 324 runs, each one involving 1000 simulations.
2) Power study – the same simulation runs were re-
peated using the value 0.3 for the transfer parameter �.
The value 0.3 was chosen because it obtained differ-
ences in power among simulation runs; it was high
enough to produce a measurable response in many
simulations, yet not so high as to produced detection of
an effect in all simulations. Total: 324 runs, each one
involving 1000 simulations.

Illustration

Figure 1 illustrates how the environmental and re-
sponse surfaces were created and the sampling was
conducted. In this example, sampling is conducted in a
field containing 20×20 points. The surface for variable
E (environmental) was constructed as the sum of a
deterministic structure, plus a spatially autocorrelated
error component (SA) generated using a spherical vario-
gram model with range of 5 in both directions, plus a
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spatially unstructured random error component
N(0, 1). Note that the first two components may or
may not be present in the results reported below; a
choice of 5 deterministic components are available in
the program.

The response variable is the sum of three separate
effects: the influence of the environmental variable mul-
tiplied by an effect-size parameter, spatial autocorrela-
tion (SA) in the response variable generated using a
spherical variogram model with range of 5 in both
directions, and a spatially unstructured random error
component N(0, 1). The first two components may or
may not be present in the results reported below. One
of several sampling designs, available in the program,
was applied to the data field. The environmental and
response variables were measured at these sites, produc-
ing the data file which was then analysed by the pro-
gram using an ordinary t-test of the significance of the
correlation coefficients as well as a t-test modified to
take spatial autocorrelation into account.

Statistics

Since we are dealing with a single environmental and
response variable, simple linear regression can be re-
placed by correlation analysis; the F-test of the regres-
sion coefficient is equivalent to a two-tailed t-test of the
Pearson correlation coefficient between these two vari-
ables. The first test used in the present study is thus a
regular t-test of the Pearson correlation coefficient. The
second one is Dutilleul’s (1993) modified t-test which
corrects the variance of the test statistic as well as the
degrees of freedom (df) in the presence of spatial auto-
correlation. This test is a generalized and exact form of
the approximate procedure proposed by Clifford et al.
(1989). We will examine how well Dutilleul’s modified
t-test is able to compensate for SA in the environmental
and response variables.

Predicted results

The rate of type I error is computed as the proportion
of rejection of the null hypothesis when the data con-
form to it. In our simulations, H0 is true if the environ-
mental (E) and response (R) variables are not linked by
the transfer parameter �. A test can be said to have
correct rate of type I error if, across the simulations,
the rejection rate is approximately equal to the signifi-
cance level � used to make the statistical decision.

Based upon the simulation results reported by
Bivand (1980) for autocorrelated variables in the case
of the Pearson correlation coefficient, we made the
following prediction: in field surveys, the rate of type I
error should be inflated (i.e., the rejection rate should
be higher than �) when spatial autocorrelation is

present in both the controlling environmental variable
(E) and the response variable (R), if the spatial autocor-
relation is not explicitly taken into account in the
course of the analysis. The statistical reasons for this
predicted behaviour are summarized in Legendre and
Legendre (1998).

Simulation results

In the simulation runs for studying the rate of type I
error, surfaces were generated in such a way that the
null hypothesis was true. This means that the transfer
parameter � of eq. (5) was set to zero, so that no
relationship was created between the environmental
and response variables. The alternative hypothesis was
made true in the power study by setting the transfer
parameter � to 0.3. The statistic subjected to a test of
significance was the correlation between the environ-
mental (E) and response (R) variables.

The rate of type I error is the most important aspect
in the comparison of the 11 sampling designs used in
this study and the two ways of analysing the data
(classical Pearson r and test corrected for spatial auto-
correlation). Here are the results for the various cases
that were studied.

1. No deterministic structure in the environmental
variable (‘‘deterministic’’=0)

Type I error
Under simple random sampling, the ordinary t-test has
correct � significance level when there is no autocorrela-
tion, or when autocorrelation is present in only one of
the variables (Fig. 2A). The rate of type I error is
inflated when autocorrelation is present in both vari-
ables. This is in agreement with the results reported by
Bivand (1980). The same remains true, by and large, for
the other random sampling designs investigated in this
study.

Dutilleul’s modified t-test, which compensates for
spatial autocorrelation, results in correct rate of type I
error with all sampling designs investigated here. With
some designs, the modified t-test has a slightly reduced
rate of type I error; the test thus remains valid.

Power
The power study (Fig. 2B) shows that power is the
same for all sampling designs. The only differences in
power are most likely due to differences in sample size
(n=80 for sampling design 3, n=50 for designs 6 and
7; n=99 or 100 for all other designs). The presence of
SA in the environmental variable seems to increase
power slightly.

When the unmodified t-test has correct rate of type I
error, its power is the same as Dutilleul’s modified
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Fig. 2. A) Type I error rates
and 95% confidence intervals
(error bars) at �=0.05 of the
ordinary t-test (left) and
Dutilleul’s modified t-test
(right) for increasing values
(along the abscissa) of the
ranges of the variograms
determining spatial
autocorrelation (SA) in the
environmental and response
variables. Each error rate
estimate results from
analysing 1000 simulated data
sets for which the null
hypothesis was true. There
was no deterministic structure
in the simulated data sets.
The sampling designs are
described in the Methods. B)
Same as A), power study.
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t-test. The apparent greater power of the unmodified
t-test, in some cases, is due to the increase in rate of
type I error shown in Fig. 2A. The unmodified t-test is
invalid when it has inflated rate of type I error; it
should not be used in these cases. The presence of any
amount of SA in the response variable reduces the
power of both tests.

Lesson learned
In the absence of SA, there is no change in the degrees
of freedom in Dutilleul’s modified t-test. Results are
identical to those of the unmodified t-test. Dutilleul’s
modified t-test can thus be used in all situations, i.e., in
the presence or absence of SA. The results depend,
however, on the quality of the estimation of SA; this
problem is saved for the Discussion.

2. Gradient in the environmental variable
(‘‘deterministic’’=2)

Gradients are the most commonly encountered spatial
structures in nature.

Type I error
A broad-scale gradient in the environmental variable
has the same effect on the ordinary t-tests as if SA was
present in that variable (Fig. 3A). Thus, it is only when
SA is not present in the response variable that the
regular t-test is valid, having correct or conservative
(i.e., deflated) rate of type I error.

Dutilleul’s modified t-test reacts to the presence of a
deterministic spatial structure by over-correcting the
F-statistic and degrees of freedom; this produces re-
duced rates of type I error. The test thus remains valid.

Fig. 3. A) Type I error rates
and 95% confidence intervals
at �=0.05 of the ordinary
t-test (left) and Dutilleul’s
modified t-test (right) for
increasing values of the
ranges of the variograms
determining spatial
autocorrelation in the
environmental and response
variables. See Fig. 2A for
details. A gradient
(‘‘deterministic’’=2) was
included in the environmental
variable. B) Same as A),
power study.
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The modified t-test interprets the spatial gradient as an
indicator of broad-scale spatial autocorrelation, as if the
sampled area was a portion of a broader-scale autocor-
related structure. Aggregated sampling (design=3) may
produce slightly inflated rate of type I error when SA is
strong in the response variable, in addition to the spatial
gradient.

Power
The power study (Fig. 3B) shows that for ordinary
t-tests, power is no problem when the test is valid, i.e.,
when there is no autocorrelation in the response vari-
able. The seemingly smaller power for the two transect
designs (design=6 and 7) is due to smaller sample size
(n=50).

For Dutilleul’s modified t-test, some designs have
poor power with some or all combinations of SA in the
environmental and response variables. Aggregated sam-
pling (design=3) retains high power because it allows a
better estimation of autocorrelation in the first distance
classes of the correlograms computed in Dutilleul’s
method. The other designs have approximately equal
power; the transect designs (design=6 and 7) seem to
have smaller power, but this is due to the smaller sample
size used in the simulations.

Lesson learned
Instead of analysing data containing a broad-scale gradi-
ent, a better way is to look for, and identify, the gradient
in the environmental variable. It can be explicitly in-
cluded in the regression model in the form of a linear
trend-surface equation of the site coordinates, together
with the environmental and response variables, as will be
shown in the Discussion.

To analyse data containing an un-filtered broad-scale
gradient, aggregated sampling (design=3) is the best
overall design if the analysis is done using Dutilleul’s
modified t-test.

3. Large patch in the environmental variable
(‘‘deterministic’’=3)

Patches are perhaps the second most commonly encoun-
tered spatial structures in nature.

Type I error
The observations are essentially the same as in the case
of gradients. A large patch in the environmental variable
has the same effect on regular t-tests as if SA was present
(Fig. 4A). The effect of this type of spatial structure on
Dutilleul’s modified t-test is negligible.

Power
The power study (Fig. 4B) shows that for ordinary
t-tests, power is no problem with sampling designs 1, 2,
3 and 9 when the test is valid, which is the case when

there is no autocorrelation in the response variable. For
Dutilleul’s modified t-test, the transect and cross designs
have poor power with some or all combinations of SA
in the environmental and response variables. This may
be linked to violation of the stationarity assumption by
the large patch structure. The best designs in terms of
power are aggregated (design=3), systematic (design=
2), and simple random sampling (design=1).

Lesson learned
Rather than analysing data containing a large patch, it
seems preferable to positively identify the patch structure
during a pilot study (or during the actual study) and
remove its effect by including the terms of a polynomial
trend-surface equation in the regression analysis; see
example in the Discussion. Short of that, to analyse data
containing a large patch, simple random, aggregated,
and systematic sampling (design=1, 2 and 3) are the
best overall designs if the analysis is done using Du-
tilleul’s modified t-test.

4. Waves in the environmental variable
(‘‘deterministic’’=4)

Regular waves are found, in nature, when the deposition
of a material (e.g., sand) was controlled by the flow of
a fluid, commonly air or water, but also ice, magma, etc.

Type I error
With this type of spatial structure, the sampling designs
covering the whole sampling field (i.e., random and
systematic) are doing better in the presence of spatial
autocorrelation in the response variable than the other
designs (Fig. 5A). The worst results were obtained using
the aggregated design, even though we made sure that
the aggregates were not in phase with the waves of the
deterministic structure. The best design without Du-
tilleul’s modified t-test is the systematic. By and large,
Dutilleul’s modified test has correct rate of type I error,
except for a slight inflation in the case of the systematic
design, in the presence of strong autocorrelation in the
response variable.

Power
The power study (Fig. 5B) shows that all methods have
equally good power when they are valid. With Dutilleul’s
modified t-test, transects (designs 6 and 7) seem to have
lower power in the presence of spatial autocorrelation in
the response variable, but this is due to the smaller
sample size used in the transect simulations.

Lesson learned
With this type of spatial structure, the best thing to do
is to use a systematic sampling design and carry out a
test without modification; or to use any type of sampling
and carry out a test with Dutilleul’s modification.
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Fig. 4. A) Type I error rates
and 95% confidence intervals
at �=0.05 of the ordinary
t-test (left) and Dutilleul’s
modified t-test (right) for
increasing values of the
ranges of the variograms
determining spatial
autocorrelation in the
environmental and response
variables. See Fig. 2A for
details. A big bi-normal patch
(‘‘deterministic’’=3) was
included in the environmental
variable. B) Same as A),
power study.

5. Two clearly separate zones in the
environmental variable (‘‘deterministic’’=5)

This type of structure is encountered, for instance, in
vegetation surveys that cover two geologically different
zones. Another example is found in limnology, when
the littoral and pelagic zones of a lake are analysed
together.

Type I error
The observations are the same as in the case of a
gradient (Fig. 6A).

Power
The power study (Fig. 6B) shows that all designs have
equally good power, except for vertical transects with a
single sampling interval (design 6: nearly no power at
all) and the transect with two sampling intervals (design

7: low power) in the case of Dutilleul’s modified t-test.
This is clearly due to violation of the stationarity
assumption by the two-zone structure.

Lesson learned
If the strata have been chosen in such a way as to fit the
natural divisions of the environmental variable in the
field, one should use a covariable, representing the
strata, in the analysis of the results (partial correlation
or partial regression), to control for the effect of the
strata means on the analysis.

Discussion

Dutilleul’s modified t-test which takes the effect of
spatial autocorrelation into account is a major break-
through for the analysis of survey data. However, it
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requires good estimates of the spatial autocorrelation
present in the variables under study. As sample size
increases, the estimates become more accurate. Con-
versely, with small sample size, the accuracy of the
modification to the F-statistic and the degrees of free-
dom is reduced. This is an inherent limitation of any
method of modification based upon estimates of spatial
autocorrelation obtained from the data themselves. The
take-home message for ecologists is that, if the vari-
ables under study are spatially autocorrelated, the sam-
ple size (n) should be as large as possible – for instance:
n=100 in the case of strongly autocorrelated data.

For Dutilleul’s modified t-test, the reduction of the
rate of type I error due to the presence of a determinis-
tic structure actually depends on the scale of that
structure. The effect on the rate of type I error is
stronger for broader-scale deterministic spatial struc-
tures such as gradients, and smaller for smaller struc-

tures such as big bumps in the centre of the field. With
some combinations of SA in the environmental and
response variables, designs utilizing transects have
poorer power than the simple random, systematic or
aggregated designs, probably because the assumption of
stationarity, required by the correlograms computed in
the Dutilleul procedure, is violated by the presence of
these structures.

Taking broad-scale spatial structures and
finer-scale SA into account

The simulations have shown that, when a broad-scale
spatial structure is present in the environmental vari-
able E, this structure makes even Dutilleul’s modified
t-test have reduced rate of type I error. Although the
test remains valid, its power is reduced, so this is an

Fig. 5. A) Type I error rates
and 95% confidence intervals
at �=0.05 of the ordinary
t-test (left) and Dutilleul’s
modified t-test (right) for
increasing values of the
ranges of the variograms
determining spatial
autocorrelation in the
environmental and response
variables. See Fig. 2A for
details. Waves
(‘‘deterministic’’=4) were
included in the environmental
variable. B) Same as A),
power study.
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Fig. 6. A) Type I error rates
and 95% confidence intervals
at �=0.05 of the ordinary
t-test (left) and Dutilleul’s
modified t-test (right) for
increasing values of the
ranges of the variograms
determining spatial
autocorrelation in the
environmental and response
variables. See Fig. 2A for
details. A two-zone structure
(‘‘deterministic’’=5) was
included in the environmental
variable. B) Same as A),
power study.

undesirable property. Instead of analysing data con-
taining a broad-scale spatial structure, a better way is
to look for, and identify, the gradient in the environ-
mental variable using some form of spatial modelling.
The method of analysis is the following.

1) Is there a broad-scale spatial component in the
environmental variable E? One can use the results of a
pilot study or field observations to answer this ques-
tion. If so, this structure must be identified and ‘‘peeled
off’’ the data before studying the relationship between
the environmental and response variables. In some
cases, the broad-scale spatial component can be mod-
elled using a linear or polynomial trend-surface equa-
tion. Trend-surface analysis is a classical form of spatial
modelling; it is explained in several textbooks, including
Legendre and Legendre (1998, Section 13.2.1). In other
instances, the broad-scale component can be hypothe-

sized to have other functional forms. For instance, a
patch can be modelled by a Gaussian response function
(an example is given below) which can be modelled by
a normal density function through nonlinear regression;
a discontinuity can be modelled by a dummy variable
in linear regression. k is the number of parameters
required to fit the broad-scale spatial model to variable
E.

2) Calculate the partial correlation between R and E.
According to our hypothesis, if a broad-scale spatial
structure is present in the data, it is caused by the
broad-scale spatial structuring of the environmental
variable. 2.1) Compute the vector of residuals Res(Ei)
of the environmental variable E after fitting the broad-
scale spatial model. 2.2) Compute the vector residuals
Res(Ri) of the regression of the response variable R on
the fitted broad-scale spatial model. 2.3) Compute the
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correlation r between Res(E) and Res(R). This correla-
tion is actually the partial correlation between E and R
after controlling for the broad-scale spatial model.

3) Compute the associated probability: 3.1) To take
into account the spatial autocorrelation potentially
present in E and R, compute the Dutilleul-corrected
number of degrees of freedom, �Dut A program to
compute the modified t-test for the Pearson correlation
coefficient corrected for spatial autocorrelation, follow-
ing Dutilleul (1993), is available at URL �http://
www.fas.umontreal.ca/biol/legendre/�. This program
can be used to estimate the partial correlation r (the
same value is obtained as in step 2.3 above) as well as
the corrected number of degrees of freedom �Dut.

Note that in some cases, after removing the broad-
scale spatial structure, spatial autocorrelation analysis
may not detect any significant autocorrelation remain-
ing in one, the other, or both residuals Res(E) and
Res(R). In that case, one does not have to compute a
modified number of degrees of freedom using Du-
tilleul’s method: when autocorrelation is present in only
one of the variables under study, or in none of them,
the rate of type I error is not modified, as shown by
Bivand (1980) and illustrated in Fig. 2A.

3.2) Compute the modified partial t-statistic from the
partial correlation coefficient r:

tc=
r��c

�1−r2
(7)

In this formula, use a corrected number of degrees of
freedom �c=�Dut−k where k is the number of
parameters required in step 1 (above) to fit the broad-
scale spatial model to variable E. If no spatial autocor-

relation is present in the data (or, at least, in one of the
residual variables), �c= (n−2)−k; t is then the classi-
cal statistic for testing the significance of a partial
correlation coefficient. This value is identical to the
t-statistic used for testing the significance of a partial
regression coefficient in multiple regression.

3.3) Find the probability associated with the t-statis-
tic in a one-tailed or two-tailed test, for �c degrees of
freedom.

One should check that there is no other broad-scale
spatial component in the response variable R, besides
the one modelled for E. If this happened, it would
mean that some other environmental variable E� con-
taining a broad-scale spatial structure is also an impor-
tant determinant of R; the model should be redesigned
to include this variable.

Example 1
Let us illustrate this procedure using two numerical
examples. We used a sampling field of size (100×100
points). Using our simulation program, we generated a
first pair of variables similar to those of Fig. 1, but
without any effect of the environmental variable E (Fig.
7a) on the response variable R (Fig. 7b); to do so, we
simply set the simulation transfer parameter (�) to 0.
The environmental variable was made to contain a
large patch in the centre of the field, as in Fig. 1, plus
spatially-autocorrelated error and non-spatially-struc-
tured normal error. The response variable only
contained spatially-autocorrelated error and non-
spatially-structured error. For both variables, the spa-
tially-autocorrelated error component was generated
using a spherical variogram model with range of 25 in
both directions. We ran a horizontal transect through

Fig. 7. Illustration of the data used in Examples 1 and 2. In Example 1, R is independent of E. In Example 2, a dependence
between E and R was created by setting the response parameter beta to 0.4. E is the same in the two examples. (a, b, c) Raw
data. The Gaussian density function fitted to E, called Fit(E) in the text, is also shown (curve). (d, e, f) Plot of the residuals.
Adjacent values are linked by lines to make it easier to appreciate the autocorrelation remaining in the residuals.
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the centre of the patch (like the horizontal arm of the
cross design in Fig. 1) and measured the two variables
at 50 equispaced points along the transect.

We will now assume that we don’t know how the
variables were generated and analyse them as we would
do for field data. Our task is to deconstruct the data,
peeling off the broad-scale spatial component, and find
whether or not the residuals are significantly related to
each other. So, we will proceed to spatial modelling of
variable E. Figure 7a indicates the presence of a bump
in the E values observed along the transect. A bump
would be difficult to model using a polynomial trend-
surface equation, and would require many terms to
approximate its shape. We chose to model it using a
Gaussian function (normal density):

Ei=c
� 1

�2�b
e

− (xi−a)2

2b
n

(8)

where Xi represents the position of site i along the
transect, a represents the estimate of the mean, b is that
of the variance, and c is a vertical scale parameter. The
model was fitted to the E data using nonlinear regres-
sion (curve in Fig. 7a, R2=0.91); k=3 parameters
were estimated to fit the model. The parameter esti-
mates were a=50.44, b=92.54, and c=242.81. The
fitted values of this model, Fit(E), were computed and
used in the sequel as our estimates of the broad-scale
deterministic spatial structure identified in E. The resid-
uals Res(E) of this model were also calculated (Fig. 7d).

The next step is to test the hypothesis that the
broad-scale spatial structure found in E may have been
passed on to the response variable R. The regression of
R on vector Fit(E) was computed and the residuals
Res(R) were calculated (Fig. 7e); as expected, this re-
gression explained very little of the response data (R2=
0.08) since the data had been generated with a beta
coefficient of 0.

The correlation between the two vectors of residuals
was r=0.1654. Dutilleul’s modified t-test for the corre-
lation coefficient, corrected for spatial autocorrelation,
was computed; among other information, the program
provided the number of degrees of freedom corrected
for spatial autocorrelation (�Dut=28.65). For �c=
�Dut−k=25.65, the corrected t-statistic was tc=
(r��c)/�(1−r2)=0.8496 and the associated
probability was p=0.4032. We can now compare this
answer to the results one would have obtained from the
calculation of a correlation coefficient between the two
original variables E and R: r(E,R)=0.3178, p=0.0245.
At significance level 0.05, one would have drawn the
erroneous conclusion that there was a significant rela-
tionship between R and E. This would have been due to
the inflated type I error rate of the test in the presence
of autocorrelation (Fig. 2A) and of a broad-scale deter-
ministic structure (Fig. 4A) in the data (Table 2, central
column). As we observed in Fig. 2A, the test would

Table 2. Three estimates of the significance of the correlation
between a response (R) and an environmental (E) variable. In
Example 1, R is independent of E. In Example 2, a depen-
dence between E and R was created by setting the response
parameter beta to 0.4. k is the number of parameters required
to fit the broad-scale spatial model to variable E; k=3 in
these examples.

Example 1 Example 2
beta=0.4beta=0

Correlation between R
and E

0.3178r(R,E) 0.8172
�=n−2 48 48
p 0.0245* �0.0001***

Correlation between residuals after controlling for effect
of broad-scale spatial structure

0.44660.1654r[Resid(R), Resid(E)]
�=n−2 48 48
p 0.2509 N.S. 0.0012**

Correlation between residuals using Dutilleul’s modified t-
test

r[Resid(R), Resid(E)] 0.1654 0.4466
22.1525.65�c=�DDut−k

p 0.4032 N.S. 0.0202**

*** : p�0.001; ** : p�0.01; * : p�0.05; N.S.: not significant.

have been too liberal (p=0.2509 in the central portion
of the Table) if we had not applied Dutilleul’s modified
t-test, which corrects for the spatial autocorrelation
present in the data.

Example 2

A second pair of variables was simulated, but this time
there was an effect of E (Fig. 7a) on R (Fig. 7c) that
was generated by setting the simulation transfer
parameter (�) to 0.4. Except for that, the deterministic
structure in E, and the SA and normal error compo-
nents in R and E, were the same as in the first example,
so that the estimated broad-scale deterministic structure
in E, Fit(E), as well as the residuals Res(E), were the
same as in Example 1.

In the second step, R was regressed on Fit(E) and the
residuals Res(R) were calculated (Fig. 7f); this time, the
regression explained an important portion of the vari-
ance of the response data (R2=0.5868) since the data
had been generated with a beta coefficient of 0.4.

The correlation between the two vectors of residuals
was r=0.4466. Dutilleul’s modified t-test for the corre-
lation coefficient, corrected for spatial autocorrelation,
was computed; the program provided the number of
degrees of freedom corrected for spatial autocorrelation
(�Dut=25.15). For �c=�Dut−k.=22.15, the modified
t-statistic was tc= (r��c)/�(1−r2)=2.5034 and the
associated probability was p=0.0202. We can now
compare this answer to the results one would have
obtained from the calculation of a correlation coeffi-
cient between the two original variables E and R:
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r(E,R)=0.8172, p�0.0001. The statistical conclusion
drawn from this result would have been correct, but the
probability is far too small. The incorrect and correct
results are summarized in the right-hand column of Table
2. Again, and as in Fig. 4A, the test would have been too
liberal (p=0.0012 in the central portion of the Table) if
we had not applied Dutilleul’s modified t-test, which
corrects for the spatial autocorrelation present in the
data.

Conclusion

1) Spatial autocorrelation in both variables disturbs the
classical tests of significance of correlation or regression
coefficients. Spatial autocorrelation in a single variable
does not affect the test of significance.

2) A broad-scale spatial structure present in data has
the same effect on the tests as spatial autocorrelation.
When such a structure is present in one of the variables
and autocorrelation is found in the other, or in both, the
tests of significance have inflated rate of type I error.

3) Dutilleul’s modified t-test for the correlation coeffi-
cient, corrected for spatial autocorrelation, effectively
corrects for spatial autocorrelation in the data. It also
effectively corrects for the presence of some structures,
with or without spatial autocorrelation; the test is always
valid. The presence of a broad-scale deterministic struc-
ture may, in some cases, reduce the power of the modified
t-test: Dutilleul’s modified t-test uses correlograms com-
puted to estimate the corrected number of degrees of
freedom, and correlograms assume second-order station-
arity. This assumption is clearly violated, for instance, by
the presence of a big patch in the centre of the field.

The simulation program used in this paper constitutes
one of the end products of this work. The source code,
written in FORTRAN, is available at URL �http://
www.fas.umontreal.ca/biol/legendre/� to users who may
want to develop subroutines allowing the comparison of
different methods of analysis of the data in terms of type
I error and power, or simply generate spatially-structured
random data sets. A user’s manual is distributed with the
program.
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