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-NOTES-

THE CONSERVATION OF SYSTEMS IN PHASE SPACE*

By ERNEST IKENBERRY (Louisiana State University)

1. Introduction. Important progress in the development of a statistical theory of the

transport phenomena in liquids, based on the application of Gibbs' principle of "con-

servation of density-in-phase,"1 has been made in recent papers by Kirkwood,2

by Born and Green,3 and by JafK.4 Kirkwood and Born and Green have derived the

Maxwell-Boltzmann integro-differential equation and have developed a general statistical

mechanical theory of transport processes, by application of the principle of continuity

in phase space. In their method of treatment of this principle, Born and Green defined

a set of multiform distribution functions and obtained a generalized equation of motion

referring to a cluster of h molecules. This generalized equation reduces to the equation

of motion of ordinary hydrodynamics when h = 1. Born and Green also obtained ex-

pressions for the coefficients of thermal conductivity and of viscosity, but have not

published any numerical results.

Using a method analogous to that introduced by Boltzmann5 in the kinetic theory

of gases, Jaffe4 obtained a solution for the distribution function in the form of a multiple

power series proceeding according to powers of the kinetic energy and resultant mo-

ments. Previously determined6 potential functions were used to calculate theoretical

values for the coefficients of thermal conductivity and of viscosity of ten liquids. The

numerical results obtained agree reasonably well with the observed values, in most

instances.

In each of the three methods of treatment the consideration of boundary con-

ditions has been almost completely avoided. Kirkwood and Born and Green have sug-

gested making the distribution function vanish at the boundaries, and Jaffe limited his

considerations to the neighborhood of a particle in the interior of the liquid. However,

it would seem that, since the coefficients of heat conductivity and of viscosity are

defined in terms of the transfer of thermal energy and of momentum through boundary

surfaces, the theory of these dissipative processes cannot be considered as sufficiently

well developed without the further consideration of boundary conditions. In our treat-

ment of the principle of conservation of density-in-phase, the boundary conditions to

*Received June 5, 1950. The contents of this paper form the first part of the author's doctoral dis-

sertation (May, 1950) at L. S. U. The second part of the dissertation includes the calculation of numerical

values for the coefficients of heat conductivity and of viscosity for ten representative liquids, by means of

a multiple Bruns' series expansion of the distribution function and by an equivalent "generalized mo-

mentum integral" method.

'J. Willard Gibbs, Collected Works, Longman, Green & Co., New York, 1931, Vol. II, Part I, "Ele-

mentary Principles in Statistical Mechanics," Ch. 1.

2J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).
SM. Born and H. S. Green, Nature 159, 251 (1947); Proc. Roy. Soc. London (A) 188, 10 (1946), and

subsequent papers.

4G. Jaffe, Phys. Rev. 69, 688 (1946), 75, 184 (1949).
6L. Boltzmann, Vorlesungen uber Gastheorie, Johann A. Barth, 1896, 1. Theil, "Theorie der Gase mit

einatomigen Molekiilen, deren Dimensionen gegen die mittlere Weglange verschwinden," p. 184.

6G. Jaffe, Phys. Rev. 62, 463 (1942).
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be applied refer to the boundaries of the region of phase space occupied by the systems

of a virtual ensemble, rather than to the boundary condition problems as treated in

hydrodynamics. The formulation of boundary conditions in phase space will be preceded

by the statement of what may reasonably be assumed regarding boundary conditions in

real space, in the most general case of a fluid contained in a finite volume V with moving

boundaries.

A fluid system bounded by the walls of a container consists always of the same

particles, but consideration of such a system is complicated by the presence of a boundary

region of finite thickness where the particles of the fluid are in interaction with the

molecules of the material comprising the walls. We may simplify the boundary condi-

tions, in some respects, by considering a system which is entirely surrounded by a larger

system of the same kind. Due to diffusion, the boundaries of the real system would

become ill-defined if we were to require that the real system is to always consist of

the same particles. We may, however, define the motion of the boundaries of the real

system in such a way that, during any reasonably short interval of time, there is no

mass current (see Eq. (2.12)) through the boundaries. During such an interval of time,

there is no net diffusion of particles through the boundaries of the real system.

The analogy between the hydrodynamical fluid in real space and the imaginary

fluid consisting of systems of the virtual ensemble in phase space may be extended by

conceiving of a diffusion of the systems of the virtual ensemble. In order that the

boundaries of the virtual ensemble should not become ill-defined, it is sufficient that

the boundaries of the virtual ensemble should be defined in terms of the previously

defined boundaries of the real system in real space. The boundary condition to be

applied is that, during any reasonably short interval of time, there is no net diffusion

of systems through the boundaries of the region of phase space occupied by the systems

of the virtual ensemble. During such an interval of time, both the number of particles

in the real system and the number of systems in the virtual ensemble remain constant.

In the present paper, boundary conditions of this very general nature will be applied

in the derivation of an equation of transport analogous to the equations of transfer

derived by Maxwell7 in his kinetic theory of gases. The ordinary equation of continuity,

the hydrodynamical equations of motion, and the equations of thermal and of total

energy will then be obtained as special cases of this general transport equation.

2. Preliminary definitions. We are considering a system of N identical particles,

each of mass m. The state of the system at any instant is determined by the values of

the 3N position coordinates (x„ , ya, za) and of the corresponding momenta (m(dx„/dt) ,

m (dya/dt) , m (dza/dt)) of the N particles. Let

q3a-2 = xa , q3a-1 = ya , q3a = za , a = 1, 2, • • • N, (2.1)

and

Vi = m , i = 1, 2, • • • 3N. (2.2)

Then the 6N values of the <7, and the p{ at any instant determine a point in a 6N di-

mensional phase space. This point is representative of the instantaneous state of the

'J. C. Maxwell, Phil. Trans. 157, 1 (1886), or Collected Works, II, p. 26; J. H. Jeans, The dynamical
theory of gases, The Univ. Press, Cambridge, 1925, Ch. IX.
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system, and the progress of the system in time is represented by the motion of its

representative point along a path in phase space. Following a method developed by

Gibbs,1 we consider a virtual ensemble of N such systems, each consisting of N identical

particles, all of the systems being subject to the same internal and external forces, but

distinguished in that they are distributed among the various states accessible to the

actual system. In general, the ranges of the position coordinates qt are determined by

the physical volume occupied by the particles of the actual system. The ranges of the

momentum coordinates p, are limited by the maximum kinetic energy which the real

system may have, but to avoid mathematical difficulties, we will follow the customary

procedure by taking all real values for the ranges of the momentum coordinates

Letting

3AT

d£l0 = IT dq< dpi (2.3)
t'-l

be the element of extension in phase space, we write

dN = f(q, p, t) dQ0 (2.4)

for the number of systems in <Kla at time t. The distribution function /, which gives

the instantaneous density of systems in phase space at the point (q, p), is in general a

function of the 6N + 1 variables q, p, t. This function is subject to certain conditions

analogous to the conditions first formulated by Hilbert8 for the distribution function

of a gas in position-velocity space. In a strict sense, / is not a continuous function of

the 6N + 1 variables. Nevertheless, it is assumed that the density of systems in phase

space is so great that f can be approximated to a sufficient degree of accuracy by a

function which is continuous and has continuous derivatives with respect to the phase

coordinates and the time. Since a density is of necessity a positive quantity, the dis-

tribution function must not become negative within the ranges of these 6Ar 1 variables.

The distribution function must also be symmetrical in the phase coordinates of any two

particles, inasmuch as any one of the N identical particles may be chosen as the repre-

sentative particle. It is further assumed that the distribution function vanishes suffi-

ciently rapidly, for large values of the momentum coordinates, to assure the existence

of all integrals of the form / f4> dQ„ , where <j>(q, p, t) is any polynomial in the momentum

coordinates with coefficients continuous in the position coordinates and in the time.

The average value, (0), of a function <f> of the phase coordinates and of the time,

for a specified instant of time and for a specified position of a representative particle,

say particle No. 1, is defined by

(<£> f fdQ1 = / /(MQ, , (2.5)

where

3N 3N

dfi, = n dq{ n dpi (2.6)
i=4 »-l

is the element of extension in the subspace fij of Q0 • We note that Oj is the section of

fi0 obtained by assigning specified values to <h , q2 , and q3 . Selection of particle No. 1

as representative particle means that, henceforth, (qt , q2 , q3) may also be considered

8D. Hilbert, Math. Ann. 72, 562 (1912).
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as the coordinates of a point in real space and need not be distinguished from (a:, , y, , 2,).

From (2.5) and (2.6) it may be understood that ($) is, in general, a function of the four

variables qx , q2 , q* , and t even when <j> itself does not depend explicitly on all four of

these variables. This arises from the, in general, complicated manner in which the dis-

tribution function depends upon the position coordinates and on the time.

Letting

dr = dqi dq2 dq3 (2.7)

be the element of extension in real space, and defining c/N, by

rfNj = dr J f dQi , (2.8)

we may make the transformation to real space in the customary manner by writing

dN dNj_ , .
N N ' 1 y)

where dN is the number of particles contained in dr at a specified instant of time. Hence,

by (2.8) and (2.9), the density n of particles in real space is given by

»-f-I/""1- (2-io>
We note from (2.5) and (2.10) that

fftdat=£n(4) (2.11)

Letting i, j = 1, 2, or 3, the components mit,- of the mass current, the components

Sn of the strain tensor, the temperature T, and the components II; of the heat current,

at a specified instant of time and at a specified point (qt , q2 , q3), are defined by

mui = (pi), (2.12)

¥<P') (2.13)

3nkT = Sn + S22 + S33 , (2.14)

and

Hi = 2S5 ^{(P°2 + (P°2 + (P°2}> (2"15)

respectively, where p\ = — (p.).

3. The conservation of systems in phase space. If we define the operator D by

D = A , y [<ki A. . *B± _*1 f3 JN
dt + h \dt dq{ + dt dp J' ^ J

the hydrodynamical equation of continuity in phase space assumes the form9

  D/+'tfe(f) + 4;( t)}-°- <3-2>
'Jeans, op. cit., p. 71.
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The phase coordinates are connected by Hamilton's equations of motion,

f = ̂  + -a*. <3-3>

where e is the Hamiltonian function for the system and the F, are the components of

non-conservative forces. Hereafter we shall, in most cases, designate the dpi/dt by R{ .

The forces whose components are the may be partly of internal, partly of external

origin. In case each force component R{ is independent of the corresponding momentum

coordinate p, , the 3N terms in the summation in (3.2) vanish and (3.2) leads to Gibbs'

principle of conservation of density-in-phase, which is valid for non-conservative as well

as for conservative systems, so long as dRJdp, = 0.

When there is no diffusion of systems in phase space, the vanishing of the summation

in (3.2) is equivalent to Gibbs' principle of extension-in-phase. This principle, together

with Gibbs' principle of conservation of density-in-phase, would then imply conservation

of the total number of systems in the virtual ensemble. However, when there is diffusion

of systems in phase space, the motion in phase space of the boundary surface S0 of

O0 is not determined by (3.3), and, in order to obtain conservation of the total number

of systems in the virtual ensemble, we must supplement (3.2) by the boundary condition

that there is no net flow of systems through the boundaries of the region of phase space

available to the systems of the virtual ensemble. We proceed to give the mathematical

formulation of this boundary condition, for the general case in which the boundary

surface S0 of O0 is in motion in any arbitrary manner.

For complete generality, we consider a function ^ = f<t> where 4> is any polynomial

in the momentum coordinates with coefficients which may be functions of the position

coordinates and of the time. Then d/dt J ip dft0 is defined as the limit, as At —> 0, of the

difference quotient of / ^ d9.0 evaluated at times t and t + At:

d_

dt
[ Hq, V, t) dO,0 = Lim \ f i(q, p, t + At) dSl0 - [ i{q, p, t) dQ0k (3.4)

J Qo A1-.0 (J fl/„ J n0 )

where O0 and are the regions of phase space occupied by the systems of the virtual

ensemble at times t and t + At, respectively. Assuming that \p(q, p, t + At) may, for

sufficiently small values of At, be expanded as a Maclaurin's series in At, we obtain, to

terms of the first order in At,

[ *(q, p, t + At) d00 = [ t(q, p, t) dO o + At [ d^q'P' l) dQ0 • (3.5)
J Q'o * Q'o J Qo vt

Hence (3.4) becomes

dt
[ i dti0 — f ^7 dn0 + Lim f \f/ dQ0 , (3.6)

•'So J a. ot Ai-o A'^n'o-Oo

where % — is the region of phase space through which the boundary surface S0 of

fi0 moves during time At. Letting V0(n) be the component of the velocity of motion of

the element dS0 of the boundary surface S0 of Q0 , normal to dS0 , we may write

d fi0 = V0(n) d So At, (3.7)
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where <H10 is the region of phase space through which dS0 moves during time dt. Hence

(3.6) becomes

_d

dt
f tdQ0 = [ ^jdQ0+ [ iV0(n)dS0. (3.8)

J Qo J fio Js o

We now let v0(n) be the component of the velocity of motion of a representative point

at the surface element dS0 of the surface S0 of O0 , normal to dS0 ■ By Gauss' theorem

for the transformation of a surface integral into a volume integral we may write

/.. «»> - /„.,? (4; (* f) +£. (* t)} ̂  ■ (3-9>
Upon combining (3.8) and (3.9), we obtain, by means of (3.1) and (3.4),

+ f t{VQ(n) — va(ri)} dS0 .

d^Q

(3.10)

With \p = /, we see that (3.10) states that the rate of increase of the total number

of systems in the virtual ensemble is equal to the rate at which systems are produced

in fi0 , augmented by the net rate of flow of systems into fi0 through its boundaries. In

order to obtain conservation of the total number of systems in the virtual ensemble,

we shall apply not only (3.2), but also the boundary condition that there is no net flow

of systems through the boundaries of the region of phase space available to the systems

of the virtual ensemble, so that the surface integral in (3.10) vanishes. We note that

the surface integral in (3.10) may vanish without the integrand itself vanishing identic-

ally, that is, without Va{n) = v0(n). For equality of these two generalized velocity

components would imply that there is no transport of any quantity </> through the

boundaries of the system. As a concrete example, we may consider the case of a fluid

contained within rigid boundaries, with heat being applied at the boundaries. Then,

to the extent that the walls are rigid, the boundaries of 9.0 must also be considered as

fixed, so that V0(n) = 0. But, as there is transfer of heat into the system through the

walls, the particles must, on the average, rebound from the walls with increased kinetic

energy. This may be pictured in phase space by imagining that a system of the virtual

ensemble flows out through the boundary of £2„ at the instant a particle strikes the

rigid wall and another system flows in through the boundary when the particle re-

bounds from the wall, an infinitesimally short time later.

4. The equation of transport. An equation of transport, including the general case of

moving boundaries, may be derived directly from (3.2) by the imposition of a boundary

condition in the 6N — 3 dimensional subspace of , analogous to the boundary

condition previously imposed in 00 . Let Vi(n) be the component of the velocity of a

point on the element dS1 of the boundary surface Si of Si! , normal to dSx , and let

t>i (n) be the component of the velocity of a representative point, in the subspace 0, ,

at the moment that point is on or passes through dSi , normal to dSi . By exactly the

same procedure as previously used, we obtain, corresponding to (3.8),
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dt
[ i do, = f do, + [ iVM dS\ . (4.1)

J Dt •/ fii Cft J St

Since fi, is the space of all 3N momentum coordinates but of only 3N — 3 position co-

ordinates, application of Gauss' theorem for the transformation of a surface integral

into a volume integral gives

L ^ - L i I i (* f)+1 s (♦ $)}«• <«>
We now supply on both sides of (4.2) the three terms necessary to make the indices in

both summations to run from 1 to 3N, combine the result with (4.1), replace by /</>,

and apply (3.2) to obtain

j-. f frdQt + f f — <$> dQi
at J ai dq{ J m

(4.3)

= [ f D<t> dP.t + [ M V,(n) - Viiri)} dSl .
J Hi J S i

When each member of (4.3) is multiplied by N At/N, where Ar is any fixed element

of volume in real space, the first term on the left hand side of the resulting equation

then represents the time rate of increase of the total amount of 4> in At, and the sum-

mation represents the net rate of flow of the quantity 4> out of At, through its boundaries.

The first term on the right hand side, involving D<f>, then represents the rate of increase

of the total amount of 4> in At, due to the explicit dependence of 4> on the phase co-

ordinates and on the time. However, Vi(n) and v1{n) are generalized velocity com-

ponents in the imaginary subspace 0, of phase space, and the surface integral over

dSx , in the right hand side of (4.3), then represents the rate at which the quantity <f>

is transported into At, but not through its boundaries. The real physical space is a 3-

dimensional subspace of phase space, and there are paths in generalized coordinate

space which lead from the exterior to the interior of the closed volume in real space,

yet which do not pass through the boundaries of the real volume. As the transport of

any physical quantity from the exterior to the interior of a closed volume, by a path

not passing through its boundaries, is experimentally unobservable, we require that

the surface integral in (4.3) shall vanish. We thus obtain a first form of the equation of

transport:

Tl / f* da- + t W. / 'm* d"' " / ■ <4'4>

which is valid for any quantity <t> whose value for the entire system is equal to the sum

of its values for the individual particles, and for which the integrals involved exist.

A second form of the equation of transport (4.4) is readily obtained by the aid of (2.11):

ft{n4>) + ]mtw< <nM) = n{m' (4'5)

since both N and N are constant. The right hand side of (4.4), and of (4.5), remains to

be developed, for any particular <f>, by means of (3.1).
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5. The equation of continuity, the equations of motion, and the energy equations.

Letting </> = 1, we obtain from (4.5), by means of (2.12),

I?+s4;(""') = 0' (m)
which is the equation of continuity. Elimination of dn/dt from (4.5) and (5.1) results

in a third form of the equation of transport:

+ (5-2)

where the operator d/dt is defined by

d d . d

dt ~ dt + S Ui dq< '

Letting </> = p, , D<j> — Rf , in (5.2), we obtain the hydrodynamical equations of

motion,

-<»'>' J-1.2.™3- <5«

the components (S,, of the strain tensor having been defined in (2.13). We note that

the mean force acting on the representative particle may be non-conservative even

when the forces acting on the individual particles are conservative. Conservative in-

ternal forces may tend to increase or decrease the disordered motion of the particles

composing the system, and this is interpreted, from the macroscopic point of view, as

the effect of non-conservative forces acting on the parcels of the fluid, as in the ap-

pearance of tangential surface forces when there are velocity gradients.

In order to obtain the equation of thermal energy we may let 4> — (1/2m) y.'?,, (p',)2

in (5.2). By the aid of (2.12) to (2.15) and of (3.1) we obtain

A
dt

(1kT) +11, + iS,s" <**>■ »*>
It is seen that external conservative forces, which depend at most on the position co-

ordinates of the particle on which they act, and possibly on the time, make no contri-

bution to the right hand side of (5.5). In the case of an ideal gas, whose internal energy

is entirely kinetic, the right hand member of (5.5) vanishes. The resulting equation

may then be compared with equation (13) of Enskog's dissertation.10 The terms in the

right hand member of (5.5) become negligible in the case of a moderately dense gas

for which the internal forces decay sufficiently rapidly with distance.

The equation of total energy may be obtained from (5.2) by letting </> = «,= <p[e) +

<p[x) + (l/2w) (pi + pi + pi), where tp[e) and (p[%) are the time independent external

and internal potentials of the representative particle. The external potential <p\e) will

be assumed to be a function of the position coordinates qt ,q2, and q3 of the representative

particle only. Furthermore, only binary attractions and repulsions will be considered,

so that the total potential of the entire system may be expressed as the sum of the po-

10D. Enskog, Kinetische Theorie der Vorgange in mdssig verdunnlen Gasen, Inaugural Dissertation,

Upsala, 1917, p. 18.
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tentials of the individual particles. Upon substituting et for <f> into (5.2), multiplying

the resulting equation by n dr, and integrating over dr at a constant time, we obtain,

by the aid of (2.3), (2.6), (2.7), (2.11) to (2.15) and (3.1) to (3.3), and by considerations

of symmetry,*

d_
dt /*> ■*+/11 +1s""')dr+/ 5 t fe dT

(5.e)

where

(«i) — 2 m(Mi + w2 + ul) + <pi'' + (vi°) + 2 ^T. (5.7)

Upon transforming the second and third volume integrals on the left hand side of (5.6)

into surface integrals, we see that this equation may be interpreted as stating that the

time rate of increase of total energy of the system is equal to the rate at which the non-

conservative body forces F, and surface forces <S<,- do work on the system, augmented

by the rates of transport of thermal energy of disordered motion and of internal potential

energy through its boundaries. The importance of this latter portion of the energy

flux, arising from the strong intermolecular forces in the case of a liquid, has been

pointed out by Born and Green.11 This flux is not contained in the expression (2.15) for

the components of the heat current.

*In the equation obtained by letting <j> — « , in (5.2), we interchange the phase coordinates of the

representative particle with those of each of the other N — 1 particles in turn, and add the resulting

equations. Then, by considerations of symmetry and by the aid of (2.3), (2.6), (2.7) and (2.11), J n(ea)dr

= (N/N) / fea dtlo = (iV/N) f ftj dilo = / n(ei) dr. A similar method of treatment applies to the other

terms on the left hand side of the combined equation. The right hand side of this equation be-

comes (iV/N) J f(De) dilo = (N/N) / / (piFi/m) dSl0 = N J S;,] (m/n)(piFi) dr, by the aid also
of (3.2) and (3.3).

UM. Born and H. S. Green, Proc. Roy. Soc. London (A) 190, 455 (1947).

NOTE ON THE HAMEL-SYNGE THEOREM*

By F. H. van den DUNGEN (University Libre de Bruxelles)

The theorem given by Synge1 for a plane motion of a compressible viscous fluid is

easily extended to a three dimensional motion.

Consider a compressible viscous fluid which moves inside a fixed closed surface B,

on which the velocity vanishes. Our theorem is: A velocity v(x, y, z) is consistent with

the foregoing boundary condition if and only if

/ (A- curl v — / div v) dx dy dz = 0, (1)
J v

*Received June 16, 1950.

'Q. Appl. Math. 8, 107-108 (1950)


