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Abstract

We analyze the onset of ‘necking’ and subsequent filament failure during the
transient uniaxial elongation of viscoelastic fluid samples in extensional rheome-
ters. In the limit of rapid elongation (such that no molecular relaxation occurs)
the external work applied is all stored elastically and the Considère criterion origi-
nally developed in solid mechanics can be used to quantitatively predict the critical
Hencky strain to failure. By comparing the predictions of the Doi-Edwards model
for linear homopolymer melts with those of the ‘Pom-Pom’ model recently proposed
by McLeish & Larson (J. Rheol. 42,(1998) p.81-110) for prototypical branched melts
we show that the critical strain to failure in rapid elongation of a rubbery material
is intimately linked to the molecular topology of the chain, especially the degree of
chain branching. The onset of necking instability is monotonically shifted to larger
Hencky strains as the number of branches is increased. Numerical computations
at finite Deborah numbers also show that there is an optimal range of deformation
rates over which homogeneous extensions can be maintained to large strain.

We also consider other rapid homogeneous stretching deformations, such as bi-
axial and planar stretching, and show that the degree of stabilization afforded by
inclusion of material with long-chain branching is a sensitive function of the imposed
mode of deformation.
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1 Introduction

With the advent of new experimental devices such as the melt extensiometer originally

developed by Meissner & co-workers [1] and the filament stretching rheometer [2, 3], ro-

bust techniques have become available for measuring the transient extensional viscosity

function η̄+(ε̇0, t) in a wide range of polymer melts and solutions. A common observation

in numerous tests by many researchers is that the limiting Hencky strain attainable in

experiments is frequently not constrained by the dynamic range (e.g. the length or max-

imum velocity) of the device but rather by a ‘failure’ of the integrity of the fluid sample

that leads to a topological singularity and the formation of two discrete fluid domains. A

review by Eggers [4] describes in detail recent advances in modeling of the dynamics of

such breakup processes for Newtonian fluids and Malkin & Petrie [5] provide an overview

of some of the failure mechanisms observed in polymeric fluids.

In filament stretching devices, the no-slip boundary conditions near the endplate

lead to non-homogeneous deformation in the sample. In strongly strain-hardening dilute

polymer solutions experimental observations [6] and time-dependent numerical calcula-

tions [7] show that the non-homogeneous deformation leads to a three-dimensional non-

axisymmetric free-surface instability near the rigid endplates which can ultimately lead

to the complete decohesion of the sample. By contrast, in less strongly strain-hardening

materials such as concentrated polymer solutions, experimental measurements [8] and

numerical calculations [9, 10] show that the sample develops a ‘necked’ configuration as

a result of the nonhomogeneous deformation which grows progressively worse as the im-

posed strain increases. In his review of extensional rheometry in polymer melts, Meissner

[11] also comments that experimental measurements in devices such as the Rheomet-

rics Melt Extensiometer (RME) are “...not terminated by fracture but by an increasing

inhomogeneity of the sample deformation”.

A theoretical analysis by Kolte et al. [12] of viscoelastic computations performed

at high Deborah numbers using an integral constitutive model shows that this unsta-
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ble necking phenomenon can be quantitatively understood using the Considère criterion

[13, 5] commonly employed in solid mechanical analyses of viscoplastic necking in amor-

phous glassy materials. This criterion can also be used to rationalize the results of time-

dependent numerical calculations for concentrated polymer solutions [8]; however, in this

case, the dynamics of the ensuing unstable necking or break-up are strongly dependent

on the magnitude of the viscous solvent contribution to the total stress in the filament.

Despite this nonhomogeneity in the flow field, the numerical calculations show that simul-

taneous measurement of the tensile force in the elongating fluid column and the filament

profile (or midplane dimension) can be used together with an appropriate force balance

[14] to extract the transient extensional viscosity of the material.

Vincent [15] first used the Considère criterion to understand the necking observed

during elongation and cold-drawing of polymeric tensile test specimens. Coggswell &

Moore appear to have been the first to apply the analysis to polymer melts in the rubbery

state, apparently as the result of a suggestion by J. R. A. Pearson [16]. Connelly and

Pearson [17] subsequently used the analysis together with an integral constitutive equation

of the K-BKZ type to quantify the transient extensional stress growth and ultimate strain-

to-failure of several diverse polymer melt specimens. Their results and other experimental

observations are summarized in the review of Malkin & Petrie [5].

Extensional viscosity measurements in molten polyethylene [18, 19] and molten poly-

propylene [20] samples have clearly shown that the presence of long-chain branching dra-

matically affects both the rate and the magnitude of the strain-hardening during transient

tensile stress growth in the material. With the recent development of molecular constitu-

tive equations for prototypical branched polymer melts [21], it is now possible to directly

connect the measured extensional rheological properties of bulk samples with constitu-

tive parameters that characterize the topology and degree of branching of the underlying

fluid microstructure. Given the recent successful applications of the Considère analysis

in understanding numerical simulations and experiments of the dynamical evolution of
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concentrated solutions and melts of linear homopolymers in strong stretching flows, it is

of interest to see if the analysis can also be applied successfully to experimental observa-

tions of the transient stress growth in branched materials. Since it is well-known [22, 23]

that the presence of long-chain branching in a material significantly affects the stability

of industrial processes such as film-blowing and fiber-spinning, observations of the stress

growth and also the mode of dynamical failure in the sample may shed more light on

these complex flows. This is explored in more detail in a companion paper on the biaxial

inflation of a polymeric membrane [24].

The basic concepts to be introduced in the present paper are the following:

1.1 The Considère Criterion

This criterion states that homogenous uniaxial elongation of a viscoelastic filament is

guaranteed provided the strain is less than that at which a maximum occurs in the force

versus extension curve [16, 15, 5]. In a homogenous uniaxial elongation, the area decreases

as

A(ε) = πR2(ε) = πR0
2e−ε (1)

where ε ≡ ε̇0 t is the Hencky (‘true’) strain. Assuming that a set of viscoelastic constitu-

tive equations are solved for a transient uniaxial elongation to yield the stress σ(t), the

Considère criterion states that for stability we require

dFz

dε
=

d

dε

[
(σzz − σrr)πR0

2e−ε
]
≥ 0 (2)

or, if we non-dimensionalize the tensile stress difference using the characteristic scale

η0 ε̇0 and then rearrange we obtain

d Tr+

dε
− Tr+ ≥ 0 (3)

where Tr+ ≡ (σzz − σrr)/(η0ε̇0) is the transient Trouton ratio.

Equivalently, for stable elongation we require that the transient Trouton ratio must in-

crease at least exponentially with the Hencky strain, in order to overcome the exponential
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decrease in the area

d ln Tr+

dε
≥ 1 (4)

Following the notation of Malkin & Petrie [5], we denote the value of the strain at

which the force reaches a maximum as εf . Beyond this critical value of the Hencky strain,

the Considère criterion states that the material cannot be elongated homogeneously and

instead undergoes a dynamical failure event. Numerical simulations by Kolte et al [9] and

by Yao et al [8] show that the subsequent dynamics of this process are sensitive functions

of the Weissenberg number and the constitutive rheology of the material. However, even

though the material is failing, numerical calculations of filament stretching rheometers

show that measurements of the tensile force Fz(t) and the rate of evolution in Rmid(t)

can still be used to accurately monitor the transient extensional viscosity of the material,

since the entire deformation history of the Lagrangian fluid element at the midpoint of

the fluid column is known.

1.2 Fast elastic extension

By ‘fast elastic extension’ we mean a situation in which a filament of uniform thickness

initially at rest is extended at a rate so fast that the response is elastic without relaxation.

It may be noted that not all model materials can undergo a fast elastic extension. For

example a Newtonian fluid or any polymer solution with “instantaneous” viscosity will

develop infinite stresses in this experiment. However some models for polymer melts

do behave as elastic materials in fast deformations. The Lodge elastic liquid and the

Doi-Edwards model are two such examples. The criterion for a memory integral fluid

to be capable of undergoing fast elastic extension is that the memory function must be

integrable. The integral of the memory function is then the “instantaneous elasticity” or

plateau modulus G0
N for fast deformations from the rest state. This quantity is equal to

the limiting value of the storage modulus for large frequencies:

lim
ω→∞

G ′(ω) = G0
N (5)
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For real polymeric materials, we see that the fast elastic extension must happen at a

time scale over which G ′(ω) is independent of ω; i.e. fast enough that overall chain

relaxation does not take place but not so fast that the material is glassy. This corresponds

to the “rubbery” plateau region for an amorphous material and in this limit all of the

external work is stored elastically. Careful measurements of the elastic recoil in polymer

melts following tensile creep experiments (see, for example [25, 18] show that this rapid

stretching limit and complete storage of the externally applied work as elastic energy is

an increasingly accurate approximation at high strain rates and moderate strains.

Since it is well-known that such materials may still undergo necking failure [15] be-

yond a critical strain, we denote the strain to failure in the rapid stretching limit as

limε̇→∞(εf ) = ε∞. It should be noted that at very high deformation rates, for a real amor-

phous material there is also the possibility of a glassy response and Malkin & Petrie [5]

point out that this could lead to brittle failure at very small imposed strains, but we do

not consider this mode of material response further here.

We now proceed to use these concepts to investigate the rapid stretching of polymeric

fluid samples modeled by several different viscoelastic constitutive equations. We begin

by considering the Doi-Edwards equation for linear polymer melts and then proceed to

investigate the modifications to the predicted strain to failure in the rapid stretching limit

that result from addition of long-chain branching in the molecular structure.

2 The Doi-Edwards Model for Linear Melts

The Doi-Edwards model [26] for linear polymer melts leads to the following expression

for the stress:

σ(t) =
5

4π

∫ t

−∞
M(t− t′)

∫
|u|=1

E · u E · u
|E · u||E · u|du dt′ (6)

where E = E(t, t′) is a displacement gradient tensor for the deformation t′ → t (see e.g.

Appendix A) and u is a unit vector. The integration
∫

du signifies an integration over a

unit sphere and represents an averaging over segment orientations. The memory function
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for the monodisperse model is

M(s) =
96η0

λ2

∞∑
n=0

e−π2(2n+1)2s/λ (7)

We use the version of the Doi-Edwards model with the independent alignment approxi-

mation. For the memory function in eq.(7) the result for the plateau modulus is:

G0
N =

∫ ∞
0

M(s)ds =
12η0

λ
(8)

In a fast elastic deformation from an equilibrium state (at t = 0) the stress at time t = 0+

becomes:

σ =
5G0

N

4π

∫
|u|=1

E · u E · u
|E · u||E · u|du (9)

where E = E(t, 0) is the displacement gradient tensor for the deformation.

Consider now a fast uniaxial deformation in which an incomressible filament of radius

R0 initially at rest is extended uniaxially by a stretch ratio ν along the z-direction. Then

the stretch ratios are: νx = νy = ν−1/2 and νz = ν. After performing the integration over

the unit sphere indicated in eq.(9), the total force in the filament becomes

F (ν) =
5G0

NA0

2(ν3 − 1)ν

[
2ν3 + 1− 3ν3 tan−1(

√
ν3 − 1)√

ν3 − 1

]
(10)

where A0 = πR2
0. As a test of this expression, let ν = 1 + ε to find

F = 3G0
NA0(ε +O(ε2)) (11)

as expected.

The function F (ν)/G0
NA0 is sometimes referred to as the (dimensionless) ‘engineering

stress’ and is plotted as a function of ν in Figure 1. The Doi-Edwards result given in

eq.(10) is indicated by the solid line and evidently has a local maximum at a stretch ratio

ν∞ ' 2.36 corresponding to a Hencky strain of approximately ε∞ ' 0.86. Thus we arrive

at the conclusion that the Doi-Edwards model predicts purely elastic Considère instability

for fast uniaxial extension at a Hencky strain less than unity. It is worthwhile to note that

this conclusion is independent of the exact form of the memory function. Consequently
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the result is not altered by polydispersity of the linear melt. However the result is changed

by the introduction of chain branching as we shall see in the following section. Moreover,

tests have shown that a number of common polymeric materials do indeed show elastic

instability at low Hencky strains [17]. It must be remembered that the above result is

obtained for the limit of infinite Deborah numbers. Nonlinear simulations of failure based

on constitutive equations similar to the Doi-Edwards model [12] show that the strain to

failure increases as the Deborah number is reduced and, as mentioned above, the critical

strain does in fact tend to infinity as the Deborah numbers tends to zero.

The integral over the unit sphere in eq.(6) was expressed in an approximate form by

Currie [27] who arrived in this way at a constitutive equation that may be called the

DEC-model, meaning the Currie approximation to the Doi-Edwards (DE) model. For

fast deformations from the rest state the stress predicted by the DEC-model is:

σ =
5G0

N

J − 1

[
B −

(
I2 +

13

4

)−1/2

B−1

]
(12)

The notation for the strain tensors is that of [28] so that in particular

I1 = trB; I2 = trB−1 (13)

and

J = I1 + 2
(
I2 +

13

4

)1/2

. (14)

For the rapid uniaxial elongation experiment considered above, we find for the DEC-model

that

F (ν) =
5G0

NA0

(2ν−1 + ν2) + 2(2ν + ν−2 + 13
4
)

1
2 − 1

(ν2 − ν−1) +
ν − ν−2

(2ν + ν−2 + 13
4
)

1
2

 1

ν
. (15)

For comparison the force predicted by the DEC-model is also shown in Figure 1 by the

broken line. It is seen that the DEC-model provides an excellent approximation to the

tensile force predicted by the DE-model. For simplicity, in the analysis of Section 4 we

will thus use the DEC-model in place of the DE-model for linear polymer melts.
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3 The ‘Pom-Pom’ Model for Branched Polymer Melts

The ‘Pom-Pom’ model was proposed by McLeish & Larson [21, henceforth referred to as

M&L] to describe the dynamics of an entangled polymer melt comprised of prototypical

branched chains. The authors describe a set of “drastic but unproblematic” simplifications

of the full Pom-Pom model whereby they arrive at a simplified (differential) model. This

simplified model (described by the authors as the ‘Tom-Pom’ model) can be written in

the following form

σ =
15

4
φ2

b G0 λ(t)2S (16)

where the deformation of the chain backbone is described by a dimensionless orientation

tensor S and by a dimensionless scalar stretch parameter λ. The orientation is defined in

terms of a microstructural tensor A by

A(1) = − 1

τb

(A− I) (17)

S =
A

trA
(18)

where the subscript (1) denotes the usual Upper Convected Derivative. For simplicity and

consistency with notation used for evolution equations for dilute solutions of dumbbells,

we use a structure tensor A that is three times that of M&L, but this does not change

the orientation tensor S. The evolution equation for the dimensionless scalar stretch

parameter is

Dλ

Dt
= λ(κ : S)− 1

τs

(λ− 1) for λ(t) < q. (19)

The stretch parameter λ cannot exceed a maximum value q governed by the number of

long-chain branches off the main chain backbone.

Here κ ≡ (∇v)T is the transpose of the velocity gradient tensor, and τs & τb are

the relaxation times for stretching and orientation respectively. These time constants are

defined by M&L in terms of the ‘attempt’ time for retraction of a single arm τ0 (in M&L

notation τa(0)) by
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Ts ≡
τs

τ0

= sb q (stretching) (20)

Tb ≡
τb

τ0

=
4

π2
s2

b φb q (orientation) (21)

where q is the number of arms, φb = sb/[2qsa + sb] is the mass fraction of backbone

and sa, sb are the relative molecular weights (scaled with respect to the entanglement

molecular weight, Me) of the arms and backbone respectively.

To simplify what follows, we non-dimensionalize eqs.(16 – 19) using the orientational

relaxation time as the characteristic time scale and a slightly modified modulus G = 5
4
φ2

bG0

as a characteristic stress. In a flow with characteristic deformation rate ε̇0 we thus obtain

the following dimensionless equations:

σ∗ ≡ σ

G
= 3λ2 S (22)

D

Dt∗
A = Deb (κ∗ ·A + A · κ∗T )− (A− I) (23)

S =
A

trA
(24)

D

Dt∗
λ = Deb λ (κ∗ : S)− τb

τs

(λ− 1) for λ < q (25)

where t∗ = t/τb ; κ∗ = κ/ε̇0 and Deb = τb ε̇0.

From a perturbation analysis of eqs. (22–25) in the limit as Deb → 0 it follows that

λ = 1 +O(De2
bτs/τb) and that in fact the linear viscoelastic limit is

σ∗ = I + Deb

∫ t∗

−∞
e−(t∗−t̂ )γ̇∗(t̂ ) dt̂ + O(De2

b) (26)

where γ̇∗ = κ + κ∗T . In particular the nondimensional zero-shear-rate viscosity is unity

corresponding to η0 = G τb which is the reason for our choice of scaling.

Note: M&L use the arm relaxation time τ0 to define a Deborah number ε̇τ0. But from

eqs.(20–21) it follows for typical values of the parameters sa, sb & q (sb > sa and

q > 1) that τb ≥ τs ≥ τ0 and hence, in dimensionless form,

τbε̇0 ≥ τsε̇0 ≥ τ0ε̇0 (27)
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The Deborah numbers for backbone orientation (Deb = De Tb), chain stretching

(Des = De Ts) and arm relaxation ε̇τ0 are thus related as follows:

Deb ≥ Des ≥ τ0ε̇ (28)

Deviation from linear viscoelastic behavior of the stresses (De2
b ≈ 1) and onset of

chain stretching (Deb Des ≈ 1) may thus occur even when τ0ε̇0 ¿ 1 as can be seen

in M&L fig. 2.

Typical results showing the evolution of the transient Trouton ratio (Tr+ ≡ (σ∗zz −

σ∗rr)/Deb) for the ‘Tom-Pom’ model as a function of t∗ for several values of the the

orientational Deborah number are presented in Figure 2. The hollow symbols show the

corresponding loci of the Considère criterion for each curve. These points are determined

from plots of the dimensionless force vs. strain for different imposed Deborah numbers.

The discontinuity in the curves corresponds to the value of the strain (ε = Debt
∗) at which

the stretch reaches its maximum value of q, and which we thus denote εq. For strains

ε > εq the stress saturates (as the arms are progressively disentangled from the melt) at

a maximum value of ∆σq and so the force decreases as ∼ e−ε. This process is described

by M & L as “Branch Point Withdrawal” and is further discussed in Section 4.2.

If we plot the strains εf at which the maximum force is attained (shown by symbols

in Figure 2) as a function of the orientational Deborah number, then we generate a plot

of the ‘strain-to-failure’ εf (Deb) for this model branched material. The result is shown

in Fig. 3 which bears a striking similarity to the sketch shown in Fig. 1 of the recent

paper by Malkin & Petrie [5]. It should be noted that in the present work, we have

only considered the rapid stretching limit in which all of the imposed work is stored as

elastic energy and none is dissipated in viscous flow of the material. This is, of course,

an increasingly poor description of the material response at low Deb and, at low Deborah

numbers, Malkin & Petrie suggest that the strain-to-failure increases monotonically as the

Deborah number goes to zero. In fact, it can be shown theoretically that for a Newtonian
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fluid εf → ∞ in the absence of surface tension [12]. The computed profile in Figure 3

should thus be compared with the dashed curve sketched in figure 1 of Malkin & Petrie .

If we vary the degree of chain branching q or the molecular weight of the constituents

(sa, sb), then the shape of these curves and the location of the local maximum max(εf ) in

the strain to failure can be systematically varied, as shown in Fig. 3. Such calculations

show that, for a given polymeric chain topology, there is an optimal range of stretching

rates at which the material can be processed to a large Hencky strain before undergoing

a dynamical necking failure.

Although these observations are based on computations with a highly idealized model

for long-chain branched polymer melts, recent rheological modeling using a multimode

‘pom-pom’ representation [29] have shown that such models can be used to quantitatively

describe both the shear and the extensional rheology of commercial branched materials.

Calculations such as those shown in Figure 2 may thus be of use in understanding practical

operational limits for transient extensional flows such as those encountered in film-blowing

and fiber-spinning operations.

4 The Rapid Stretching Limit

The curves in Fig. 3 clearly show that there are two distinct physical responses in the

system. On the left-hand branch, the tensile force passes through a maximum before

the stretch λ → q and hence εf < εq. On the right-hand branch the maximum force is

attained at a strain εf ≡ εq corresponding to onset of branch point withdrawal. Since

there is no solvent contribution to this constitutive equation, there is a well-defined limit

as ε̇0 → ∞ in which the material once again behaves as a ‘rubbery’ solid composed of

entangled branched macromolecules in which all of the external work is stored elastically

and the strain to failure becomes independent of the rate of stretching. It is clear from

Figure 3 that this Rapid Stretching Limit for the ‘Pom-Pom model’ varies with the degree

of chain branching, q.
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To analyze the behavior of the ‘Tom-Pom’ model in the rapid stretching limit it is

convenient to rescale the time with the strain-rate. That is we introduce Deb t∗ = ε̇0 t

in eqs.(23) and (25). Then it is clear that the relaxation terms in these equations be-

come negligible for rapid streatching. For simplicity, in the following we simply use the

dimensional form of the ‘Tom-Pom’ model with the relaxation terms omitted and initial

conditions A(0) = I and λ = 1. Let the material undergo a rapid deformation to some

deformation at time t > 0. The evolution equation for A with the relaxation term omitted

is now the same as the evolution equation for the Finger strain tensor (see e.g. Appendix

A). Hence the deformation in the material is affine and the configuration tensor at time

t is given by

A(t) = B(t, 0) (29)

where the indices on the Finger strain tensor denote the deformation from equilibrium to

the deformed state at t. The orientation tensor is therefore

S = B/I1 (30)

where I1 = trB is the first invariant of the finger strain tensor. Consequently, in the fast

deformation limit the evolution equation for λ becomes

∂

∂t
λ = λ (κ : B)/I1 (31)

which has the solution

λ2 = I1/3 (32)

for the given initial condition. For rapid stretching, the stress tensor for the ‘Tom-Pom’

model may therefore be written

σ =


G B I1 ≤ 3q2

3 G q2 B/I1 I1 > 3q2

(33)

where G = 5
4

φ2
b G0. It is seen that the Tom-Pom model in fast straining motion is an

ideal elastic material. The elastic modulus G differs slightly from G0 of the underlying
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molecular model, which may be an indication of the approximations involved in replacing

the full integral form of the model with the ‘Tom-Pom’ differential form.

For strains smaller than I1 = 3q2, the Tom-Pom model is equivalent to a neo-Hookean

material in the network theory of rubber elasticity [30]. During rapid stretching defor-

mations, the topological junction points along the chain serve effectively as permanent

physical cross-links in the material which efficiently transmit the stress as in a vulcanized

rubber. At larger strains, I1 ≥ 3q2, branch-point withdrawal becomes important and

the stress acting on the central links of the chain becomes sufficient to disentangle the

arms of the ‘pom-pom’ from the surrounding melt. The ‘permanent’ cross-links are thus

destroyed and the fluid becomes a Doi-Edwards type elastic material. At all strains, the

stored elastic energy is a monotone increasing function of the first strain invariant. An

integral formulation for the microstructural configuration tensor S(t) in the ‘Tom-Pom

model’ for flow situations not restricted to rapid stretching is given in Appendix B.

4.1 Rapid Stretching Limits in Homogeneous Flows

While our main interest here is with rapid uniaxial stretching, we note that eq.(33) is

applicable for any rapid deformation. For easy reference we summarize the expressions

for the scalar stretch function λ of the Tom-Pom model in some standard deformations:

Simple shear:

λ2 = 1 + (γ/3)2

where the magnitude of shear is given by γ = γ̇0t in a fast shear deformation with

vx = γ̇0y, vy = vz = 0.

Planar elongation:

λ2 = (1 + eε + e−ε)/3

where ε is given by ε = ε̇0t in a fast homogeneous deformation with vx = ε̇0x, vy = −ε̇0y

and vz = 0.
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Biaxial extension:

λ2 = (2e2ε + e−4ε)/3

where ε is the Hencky strain in a fast homogeneous deformation with vx = ε̇0x, vy = ε̇0y

and vz = −2ε̇0z.

Uniaxial extension:

λ2 = (e2ε + 2e−ε)/3

where ε is the Hencky strain.

Furthermore, eq.(33) may be used to determine the Considère criterion in each of

the above rapid stretching deformations. For example, the total dimensionless tensile

force F in a filament of initial area A0 uniaxially extended by a factor ν = exp(ε) and

characterized by the ‘Tom-Pom’ model may be written compactly in the form:

F

G A0

= Min

{
(ν − ν−2),

(
3q2(ν − ν−2)

ν2 + 2 ν−1

)}
(34)

where the first term is the neo-Hookean response expected at small stretch ratios and

the second is the Doi-Edwards–like nonlinear response expected following branch-point

withdrawal. These functions are shown in Figure 4 for q = 1, 2 and 3.

The Considère criterion corresponds to the locus of the maximum force in each of these

curves. The situation q = 1 is special in that the Tom-Pom model is Doi-Edwards-like

from the beginning, since there are no branch-points in the molecular structure to provide

the physical cross-links at small strains. For q = 1 the maximum force is located at a

critical stretch ratio of ν∞ =
3
√

4 + 3
√

2.

For q ≥ 2 the maximum force is obtained when λ = q. Hence the Hencky strain to

failure in the rapid stretching limit is given for q ≥ 2 by the transcendental expression

e2ε∞ + 2e−ε∞ = 3q2. (35)
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This equation may be solved approximately to obtain finally the following estimates

of the Hencky strain to failure in the Rapid Stretching Limit for the Tom-Pom model:

ε∞ =

 ln(4 + 3
√

2)/3 ' 0.7031 for q = 1

ln(q
√

3)− 1

(q
√

3)
3−1

+O(q−5) for q ≥ 2. (36)

These asymptotic results are shown in Fig. 3 by the dashed lines. Also shown on Fig.

3 by the dotted line is the rapid stretching limit for the linear chain computed using the

Doi-Edwards model (with the Currie potential) from Section 2 above which was found

to be εDEC
∞ ' 0.87. Note this does not quite correspond to the value obtained from the

‘Tom-Pom’ model for q = 1 which is another indication of the approximations involved is

replacing the full integral form of the ‘Pom-Pom’ model with the approximate differential

form.

Similar results can also be obtained for rapid planar elongation of a cylindrical polymer

sheet and rapid biaxial stretching of a spherical membrane. The appropriate force balance

and corresponding Considère criterion in the latter geometry was first analyzed for an

empirical constitutive model in the appendix of Coggswell & Moore [16]. The limiting

values of the critical principal stretch ratio ν∞ in the limit of large De are shown in

Table 1 for the ‘Tom-Pom’ model, the Doi-Edwards (Currie) model and the neo-Hookean

model. In each case, the ‘Tom-Pom’ model for q = 1 provides a reasonable approximation

to the rapid stretching result obtained for the DEC model.

For rapid stretching deformations in either uniaxial or planar elongation, the addition

of long-chain branched molecules (q > 1) leads to a marked increase in the maximum

stretch ratio that can be attained before onset of a necking instability. As q increases,

the stress that can be carried by a branched melt before branch-point withdrawal also

increases, and the material follows the neo-Hookean response expected for a permanently

cross-linked material to increasingly high strains.

By contrast, in biaxial extension of the ‘Tom-Pom’ model, the internal pressure in

an expanding spherical shell of a branched material passes through a maximum before

branch-point withdrawal occurs for any value of q > 1. This is a result of the differ-
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Uniaxial Planar Biaxial
Doi-Edwards (Currie) 2.388 1.576 1.302

Tom-Pom q = 1
[
4 + 3

√
2
](1/3)

1.501
[

7+
√

57
4

](1/6)

Tom-Pom q ≥ 2
√

3 q +O(q−3)
√

(3q2 − 1) +O(q−4) 71/6

Neo-Hookean ∞ ∞ 71/6

Table 1: Values of the critical principal stretch ν∞ beyond which homogeneous extension
in a rapid stretching motion is unstable for various constitutive models.

ing magnitudes of the strain invariants I1 & I2 in biaxial extension and the underlying

geometry of the spherical expansion. A branched material (q > 1) thus behaves as a

neo-Hookean material right up to the point of failure and further addition of branched

macromolecules will not improve the maximum stretch that can be obtained. Very recent

measurements by Tajiri et al. [31] in two different HDPE samples (one of which is linear

and one of which exhibits some chain branching) support this observation. The addition

of branched macromolecules was found to increase the transient uniaxial extensional vis-

cosity and reduce ‘sagging’ of blow-molded samples under simple uniaxial gravitational

loading. However chain-branching did not inhibit blistering during inflation of spherical

shells, and measurements by the authors in lubricated biaxial squeezing flow show the

existence of a local maximum in the engineering stress at stretch ratios close to the pre-

dicted limiting values in Table 1. The neo-Hookean material is, in fact, rather weak in

biaxial extension and the Considère criterion predicts a very moderate strain to failure

corresponding to ν∞ ' 1.383. The consequences of non-homogeneities in a biaxial mem-

brane inflation problem and the analysis of alternative constitutive models which would

improve the strain-to-failure in biaxial expansion are considered in a companion paper to

the present work [24].

4.2 Consequences for Extensional Rheometry

If the Considère criterion is exceeded during the course of a filament stretching experiment,

and the tensile force passes through a maximum, then this will result in the onset of
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filament failure. As a result of the large stored elastic energy and the absence of any

appreciable viscous component to the stress in polymer melts at high stretching rates, this

failure event can be extremely rapid [12]. Consequently, experimental measurements of

the transient extensional viscosity may be truncated well before the physical limitations

of the experimental device are attained. As an example, we consider the anticipated

shape of the bounding envelope of achievable stresses and strains for transient uniaxial

elongation of a prototypical branched material described by the ‘Tom-pom’ model. In

the rapid stretching limit, the evolution in the tensile stress difference predicted by the

‘Tom-Pom’ model is elasto-plastic and for strains larger than I1 = 3q2 the ‘pom-pom’

arms are disentangled from the melt. When this occurs it may be seen from eq.(33) that

the stress saturates at a maximum value

∆σq ≡ lim
DesÀ1

∆σ = 3Gq2 e2εq − e−εq

e2εq + 2e−εq
' 3Gq2. (37)

corresponding to η̄+ ' 3Gq2/ε̇0.

The strain to failure εf also asymptotes to the value εq given by eq.(35). The locus

of this bounding curve on the usual plot of transient Trouton ratio vs. time can thus be

written as

log(Tr+)q ≡ log(η̄+/η0)
∣∣∣
εf→εq

= log

(
3 q2

εq

)
+ log

(
tq
τb

)
(38)

At high stretch rates, the Considère criterion thus describes a straight line (on a log-

log plot). This result may be compared with the linear viscoelastic envelope η̄+
LV E =

3η0[1 − e(−t/τb)] which also yields a linear response of the form η̄+
LV E ' 3η0(tq/τb) for

small times (tq/τb) ≡ εq/Deb ¿ 1 . If a viscoelastic material undergoing rapid stretching

exhibits a necking instability, the measured data should thus lie a factor of
(
q2/ ln(

√
3 q)

)
above the linear viscoelastic envelope at small times, as shown in Figure 5. Similar

bounding curves can indeed be discerned in experimental measurements of the extensional

viscosity of highly branched materials (e.g. Bird et al. [28]; Inkson et al. [29]). This bound

on the range of strains for which the transient extensional viscosity of a polymer melt can

be measured is, in effect, a material function characterizing the extensional response of
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the material. Our rapid stretching analysis shows that this bound is intimately connected

with the degree of long-chain branching in the polymer architecture.

5 Conclusions

We have demonstrated that constitutive equations for linear and branched polymer melts

have well-defined maximum strains for which homogeneous extension can be attained.

Beyond this critical strain, εf , the material undergoes an elastic instability and “necks”

down until the sample eventually ruptures into two discrete pieces. In the limit of rapid

extension (such that no molecular relaxation occurs) analytical estimates of this critical

strain can be obtained for constitutive models with integrable memory functions. Using

the molecular ‘Pom-Pom’ model of M & L it is clear that this strain to failure can be

controlled by varying the length, sa, and number, q, of the arms of the branched material.

Although the present calculations are for an idealized H-molecule or ‘pom-pom’, such ar-

guments can help systematically rationalize the changes in ‘spinnability’ and ‘drawability’

of materials as the molecular topology is changed. The numerical calculations at finite

De also reveal the existence of a local maximum in the attainable Hencky strain before

the Considère criterion predicts onset of necking. Recognizing the existence and location

of this maximum and its dependence on molecular topology suggests the possibility of de-

termining optimal operating conditions for attaining high draw ratios and large molecular

orientations in strong uniaxial extensional flows. Similar calculations for other modes of

deformation may also be helpful in understanding how to control the stability boundaries

of other strong stretching processes such as film-blowing for blends of highly-branched

materials such as polyethylene.
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Appendix A

For reference, we present here the time derivatives of the displacement gradient tensor

and the strain tensor used in the development. The notation follows that of [28]. Let

a material particle have coordinates x′i, i = 1, 2, 3 at time t′ and xi, i = 1, 2, 3 at time t.

Then the components of the displacement gradient tensor E are defined by:

Eij =
∂xi

∂x′j
(39)

From E the components of the Finger strain tensor B are defined by

Bij = EinEjn (40)

The tensors relate to the fixed particle describing the changes from t′ to t but are used

without these arguments whenever no confusion can arise. The time derivative of the

displacement gradient tensor is computed directly from its definition

∂

∂t
Eij =

∂

∂t

∂xi

∂x′j
=

∂

∂x′j

∂xi

∂t
(41)

=
∂vi

∂xm

∂xm

∂x′j
= (∇v)miEmj (42)

In going from the first to the second line, the velocity has been initially defined as ∂xi/∂t

at fixed particle. Subsequently this quantity has been replaced by the velocity vi at

fixed position and the chain rule has been used. Keep in mind also that the partial

time derivative on E indicates a derivative at fixed particle that would be replaced by

a substantial derivative at fixed position. Then the time derivative of the Finger strain

tensor follows from the rule for differentiation of the displacement gradient

∂

∂t
Bij = (∇v)miEmnEjn + Ein(∇v)mjEmn (43)

= (∇v)miBmj + Bim(∇v)mj (44)

The equations for the time derivatives of Eij and Bij may be used as evolution equations

for these quantities with the initial conditions that Eij = Bij = δij when t′ = t. Note
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from the latter equation that

∂

∂t
I1 = 2(∇v) : B (45)

where I1 = Bii denotes the trace of the Finger strain tensor.

Appendix B

We present here an explicit expression for the microstructural configuration tensor. Note

first that the evolution equation for A has the solution:

A(t) =
1

τb

∫ t

−∞
e−(t−t′)/τbB(t, t′)dt′ (46)

This may be seen by application of the rule for differentiation of an integral and the

relation for differentiation of B in Appendix A. It then follows that the structure tensor

is given by:

S(t) =

∫ t
−∞ et′/τb B(t, t′)dt′∫ t
−∞ et′/τb I1(t, t′)dt′

(47)

In particular for q = 1 this leads to the following integral form of the expression for the

polymeric contribution to the stress in the ‘Tom-Pom’ model:

σ(t) = 3G

∫ t
−∞ et′/τb B(t, t′)dt′∫ t
−∞ et′/τb I1(t, t′)dt′

(48)

where G = 5
4
φ2

bG0.

It is seen from this form, that while the stress tensor in the ‘Tom-Pom’ model depends

on the past history of the Finger strain tensor alone, it is not a single integral “superposi-

tion” of past contributions. It follows, that the Tom-Pom model is not a Rivlin-Sawyers

fluid. This is fundamentally different from the stress in the original Doi-Edwards model

and the Currie approximate version which both belong to the K-BKZ subclass of single

integral models. In mathematical terms the stress tensor for the Rivlin-Sawyers fluids are

additive functionals [32], while the stress in the ‘Tom-Pom’ model is not.
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List of Figures

Figure 1 The dimensionless engineering stress F/(G A0) in rapid uniaxial extension for
the Doi-Edwards model (—) and for the Currie Approximation to the Doi-Edwards
model (− · −).

Figure 2 The transient Trouton ratio Tr+ in homogeneous uniaxial elongation for the
‘Tom-Pom’ model with q = 5, sa = 3, sb = 30 and orientational Deborah numbers
in the range 0.3 ≤ Deb ≤ 30. The dotted lines show the response of the quasi-linear
Upper-Convected Maxwell model (q = 1, sa = 0) and the hollow circles (◦) indicate
the locus of the Considère criterion at each value of Deb.

Figure 3 Variation in the critical Hencky strain to failure, εf , as a function of the orien-
tational Deborah number, Deb, for different numbers of arms q = 3 (◦), 5 (∗), 10 (4).
For each curve the molecular weights of the arms and and central segment are held
fixed at sa = 3, sb = 30.

Figure 4 The dimensionless engineering stress F/(G A0) in rapid uniaxial extension for
the Neo-Hookean model (—), and for the ‘Tom-Pom’ model with q = 1 (· · ·), q = 2
(− · −) and for q = 3 (– – –).

Figure 5 Stability envelope for onset of necking instabilities in transient uniaxial ex-
tensional rheometry of a branched polymeric material described by the ‘Tom-Pom’
model with q = 3, sa = 3, sb = 30.
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