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THE CONSISTENCY OF A VARIANT OF,CHURCH'S THESIS WITH AN

AXIOMATIC THEORY OF AN EPISTEMIC NOTION

W.N. Reinhardt

ABSTRACT. In this paper we prove the consistency of a variant

of Church's Thesis than can be formulated as a schema in a first

order language with a modal operator for intuitive provability.

We also conjeture the consistency of a stronger variant.

1. INTRODUCTION.

We consider the language of arithmetic augmented by a new symbol B and the

formation rule: I f o is a sentence (or formula) so is Bo, The informal meaning

intended for Bo is that o is intuitively provable, so that for example

"IBo " I BI o expresses the (absolute) undecidability of o . This interpretation

suggest notions of intui ti ve decidabili ty, for example

\/x(B8(x) v B 18(x))

express the intuitive decidability of 8(x), and these motivate the formulation

of our variant of Church's Thesis. Since Turing advocated the view that any in-

telectual activity of humanscan be carried out by a properly programmed compute~

and in particular that theorem proving by an idealized hUJl1anmathematician is

essentially mechanical, the thesis we formulate migth appropriately be cal led

Turing's thesis. I believe that B expresses an important epistemic notion and

that the axiomatic theory given here can be used to illuminate for example some

corrtrove rs ies regarding the philosophical significance of GOdeI 's incompleteness

theorems. In this paper we leave these issues aside, and simply formulate the

-theory and prove it consistent with one variant of Church's Thesis. In a later

paper we shall discuss these issues and the relation of B to earlier authors.

(GOdel 1933, 1951, Lob 1955, Kalm a r 1959, Myhill 1960, Lucas 1961, Mont a gue

1963, Benacerraf 1967, Tharp 1973, Wang 1974, Boolos 1979, Shapiro 1980). I

would like to thank Andrej Scedrov for pointing out an error in the first ver-

sion of this paper. In the earlier version a proof was claimed for conjecture-

3-1a. of this paper. The problem remains open.
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2. ARITHMETIC WITH B.

We split the axioms into four groups: those which may be regarded as appli-

cable to any subject matter(the logical axioJTlS), those pecvliar to arithmetic,

those involving the truth (or satisfaction) predicate for arithmetic, and those

stating Church's Thesis. In the first and third groups some of the axi.oms are

essentially classical (e.g. instances of classical schemas which may however in-

volve B) and others are new, peculiar to languages with B. The arithmetic axioms

a re essentially classical.

2.1. Logical axioms.

\lie suppose our languages has variables v
o
,v1, ... , a one place sentential

connective" (for negation), a D'IO place sentential connective + (for truth

Iunc t i onal implication), the universal quantifier II, a one place sentential con-

nective B (for provability), and equality =. We allow relation symbols and cer-

t.a i n funct i on symbols, but logic with function symbols in the general case re-

quires restrictions not familiar from classical logic. (In effect, we may allow

func t i on symbols for recursive functions with no restrictions, or a rb i trary

Iunct i on symbols with certain caveats which will be mentioned). We shall use I,

+, II not 3S n a n e s for symbols but as n a n e s for operations. Thus if 8, < /> are for-

mulas, ., 8, (8 + < /» are to be fo rmulas . We treat d e fined connectives such as

v, ~ .... similarly.

\lie h a v e the usual fonnation rules for first order languages, plus the rule:

if 8, is a formula, B8 is a formula with the same free variables as 8. A sentence

is a fo rmul a wi th no free variables.

In order to state the axi oms for the truth prem cate (in §2.3), it will be

convenient to suppose that all syntactic objects have been identified with their

Codel nwnbers, in one of the usual ways. Thus the syntactic operations I, +,

etc. are all primitive recursive. I t will not much matter how this is done, but

for convenience in describing substitution operations, one may think of formulas

as strings of symbols. \lfhat is important is that the various syntactic opera-

tions -', +, substitution, etc. will be primitive recursive.

DErINITION 2.1.

a) By 3 B -c lo s u r e of a formula 8 we nean a sentence obtained from 8 by ite-

rated app Li cat i ons of universal quantification and B. 11lUS IIxllyx = y, BllxBllyB

x= y , and Bllxllyx > y a re all B-closures .of x '" y. If a is a sentence it is a B-

closure of itself.

b) 9(x!y) is the expression obtained from 9 by replacing all free occurrences

of x in 8 by y.

c) By the lo g ic a l a x io m s we understand the B-closures of the following
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schemas (where u,x,y,z are variables):

L1. truth functional tautologies

L2. VX(6 + $) + (Vx6 + VX$]

L3. Vy(Vx6 + 6(x/y)), where x,y are variables and x is free for yin 6,

L4. 6 + VX6, where x is not free in 6,

LS. x = x

L6.

L7.

L8. B6 + 6

L9. B6 + BB6

L10.

x = y + [6(u/x) + 6(u/y)J, where u is free for x,y in 6,

B(6 + $) + (B6 + B$)

BVx6 + VxB(3y(X = y) + 6), where y is a variable distinct fro~ x, and

means as usual I V I,

Ll1. B3zB(t = z) -e- [Vx6 -e- 6(x/tlJ", v !h e ~ e x,z are variables, t is a term and

i] z does not occur free in t

i i ) x is free for t in 6,

L12. 3y(t = y) + [vx6 + 6 ( x l t ) ] , provided that i . t , i i ) above hold, and in ;1(1-

dition x does not occur free within the scope fo B in e.

d) A th e o r y in the language with B is a set of sentences containing th e log-

gical axioms and closed under modus ponens. Wewrite A I - - 0 to mean 0 is in e v e ry

theory including A. We write as usual 1--0 for 0 1--0.

We note:

PROPOSITION 2.2.

a ) S u p p o s e th a t A i s a s e t o f s e n t e n c e e s u c h th a t w h e n e v e r 0 c A, B o e: A. T h e n

A 1-0 im p l ie s A I - Bo ,

b) I f th e s e n te n c e 0 i s a c la s s ic a l v a l id i ty , in a la n g u a g e w i th n o fu n c t io n

s y m b o ls , th e n 1 -0 .

c ) I f th e s e n te n c e 0 i s a c la s s ic a l v a l id i ty in a la n g u a g e w i th fu n c t io n s y m b o ls

f
i

> a n d A i s th e s e t o f s e n te n c e s Vx3Y f(~) = y, th e n A 1--0.

P IW o 6 . a) The only rule is modus ponens, so apply L7, L2.

b) Since L1-L6 are the usual classical schemas, this is obvious.

c) By L12, it is sufficient to see that A I - - 3y(t = y) for all terms t built from

the f's. This is easily seen by induction on t; e.g. if t = f(t1,t2), and

A I - - 3Y1(t1 = Y1) I I 3Y2(t2 = Y2) ,\ v'1Y23Z(f(Y1'Y2) = z), then by L12, A I - -

3Z(f(t
1
,t

2
) = z).

We note also the following:

'L3' Vx6 + 6ex/y),



1 8 0

where x is free for t in 8, provided that w e restrict the introduction of func-

tion symbols to (for example) primi ti ve recursive functions. This is because the

antecedent of L 1 1 says that t is a tenn which may be effectively evaluated (this

is the caveat referred to earlier) and it will follow Fromour arithmetic axiors

that this is so for primitive recursive terms. The antecedent in L12 may of

course be omitted altogether if w e follow the usual practice of classical logic

of assuming all funct i.ons everywhere defined.

\lie remark wi thout proof that the axioms L11-L12 are chosen so that the fol-

lowing is true.

TIIEORE~12.3. I fT is a th e o r y w i th T I - -B l tX 3 ~ y , n o xi o c c u r s in th e s c o p e o f B

in 8, f i s n e w fu n c t io n s y m b o l , a n d T t h a s a s a x io m s T to g e th e r w i th a l l T

c lo s u r e s o f

8(x,y) ++ f(~) y,

T h e n T' i s a c o n s e r v a t iv e e x te n s io n o f T.

In particLuar, if T has no function symbols, then w e may add them with im-

punity, but only by observing the caveats regarding the principle of universal

instantiation with complex tenns (the case of functions fx = y corresponding to

8(x,y) with x in the scope of B would require a further restriction in L12).

2.2. Arithmetic axioms.

By the language of (first order) Peano arithmetic w e understand the language

with an individual constant for 0, a unary function symbol for the succesor op-

eration S, and a function symbol d for each primi ti ve recursive definition of a

function f el (w e could of course do with only function symbols for plus and times,

.but it wi 11 be convenient to have tenns for certain primitive recursive func-

tions). Just as we used It, I, " etc. for syntactic operations on formulas and

variables, we use 6, s, fd for syntactic operations on tenns. Thus 0 is a term,

and if t is a term, so are S(t), fd(t). I f f is primitive recursive, w e shall

often write f , leaving the reader to find d.

REMARK2.4. I t does not much matter how one thinks of the definitions d,

except that "d is such a definition" should be primi ti ve re curs i ve, and "x is

the denotation of t" should be definable for tenns t built up with the fd' s.

\\Ie observe however that a nice way is the following simultaneous definition

of function symbols and tenns. \liewrite Vee) for the free variable of the ex-

pression e.

1 . G is a term with V(p) 0.
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2. I f v is a variable, v is a te rm with V(v) = Iv}.

3. S is a funct i.on symbol with yeS) = 0.

4. I f f is a funct i on symbol and t is a tenn then f(t) is a tenn with V(f(t))

= V(f) UV(t).

5. If t,s are tenns and v is a variable, v<t- Vet), then Pvst is a funct ion

synDol with V(Pvst) = Vet) UV(s) _. Ivl .

Modulo an assignment of funct ions fd to the funct i on symbols d, an assign-

nent a to the variables now detennines (in the usual way) a value t[ a.J for each

term. We explain the assi~1ment fd as follows. If we single out a variable, say

u, to stand as argument, there is a (onepJace) funct i on ft for each tenn,namely

ft (n) is just the value of t unde r the ass i gnrrent which is like a . except for

ass i gnirig to u the value n . We intend that for a funct i.on symbol d , and term du

(obtained by concatenating d WIth u), fd will be the SaJre as fdu (with u singled

out). In particular, for the funct i onal symbol d = Pvst, the value at n of the

one-place funct i on fd is obtained by interating fs (detennined by selecting v

as the argument) n times, starting with ft (which, since v < i. V(t) , is constant

when v is selected to mark the argument}:

fd(n) = fsfs ... fsft f~n)ft

i.e.

fd(O) f
t

f
d

(n+1) f
s
f
d

(n) .

Thus the axioms for d are (the closures of)

d(O) -'- t

d(Sv) - 5 (v/dv) .

Note that the syntactic operation", takes variables x,y and produces the term

(x '" y) with free variables x, y, whereas the funct i on syrrbol for "adding x to"

or "iterate the succesor operation starting with x" is PySyx, with one free

variable x. Thus x'" y is PySyxy. Similarly, using Polish notation and drop-

ing the bars for legibility, -xy = +x +x .. +xo = (+x) (y)O = (Py + xyO)y.

DEFINITION 2.5. Let L be any language which includes the language of Pea-

no arithmetic. The P e a n o a x io m s fo r L are the B-closures (or the ordinary

closures, if L is classical) of the following:

A1. The usual Peano axioms for 0 and S, which assert that S is 1-1 and onto all

but O. We takes this to include 3X(O± x) and 3y(Sx = y).

A2. The usual Peano axioms stating that +, 0 satisfy their recursive defini-

ti ons , and in general similar axioms for each primitive recursive func tim

symbol f ,including V;3y(f(;) = y) .
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A3. The usual induction schema, allowing formulas from L:

e(x/O) A \Jx(e -)0 e(x/sx)) -)0 \Jxe.

TIIEOREM 2.6.

a) B\JxB3y(x = y). This yiplds the B-closures of B\Jxe -)0 \JxBe and 3xBe -)0 B3xe.

b) From the B-closure of e -)0 Be> we obtain those of 3xe -)0 B3xe and 3xe -)0 3xBe.

c) For each {primitive recursive} term t and variable z, we have the B-closure

of t = Z -)0 B(t = z). In particular

(i) Sx = z -)0 B(Sx = z)

(ii) x+y = z -)0 B(x+y z)

(iii) x·y = z -)0 B(x·y = z)

(i v) 3zB(t = z)

(v) x < y-)oB(x<y)

(vi) t fo z -)0 B(t fo z)

(vii) t
1

= t
2

-)0 B(t
1 = t

2
) .

d) hie have the B-closures of \Jx < y (Be) -)oB(lIx<ye).

RE~'IARK. We have suppressed the bars and dots in the interests of readabil-

ity.

P J to o 6 . a) We prove the B-clousures of 3y(x = y) by induction on x. 3y(O = y)

is a classical validity, so B3y(0 = y) by Prop. 2.2. For the induction note

that \Jx3y(Sx = y) is a classical validity, so again by Prop. 2.2, B\JX3Y(SX = y ) .

By L10 then
,

\JxB(3Y(x y) -)0 3Y(SX = y)),

~l11dbyL7,L2

\Jx(B3y(X y) -)0 B3Y(Sx = y)),

"hich is the induction step.

We note that L10 now simplifies to Bllxe -)0 \JxBe,

a) con I t. Furthermore by Prop. 2.2, B\Jx(e -)0 3xe), so by L10 \JxB(e -)0 3Xe) ,

so by L7 \Jx(Be -)0 B3xe) , ~lence 3xBe -)0 B3xe.

b) From \Jx(e -)0 Be) we get \Jx('VBe -)0 'Ve), \Jx'l..Be -)0 IIx'Ve, 'VIIX'Ve-)0 'Vllx'VBe,i.

e. 3xe -)0 3xBe. Also, we have 3xBe -)0 B3xe, so 3xe -)0 B3xe.

c) We show that IIX(SX = z -)oB(Sx= z))by induction on z. The case z = 0 is

vacuously t rue , as \Jx ..,(Sx = 0). For the induction step we need the

LEMMA 2.7. We have the B-closure of x = y -+ B(x = y).

P 'L O o 6 . We give two proofs, first using the equality axioms, then using only

induction. Now L6 gives

x = y -)0 [B(x = u)(u/x) -)0 B(x = y)(u/y)]
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i.e.

x ~ y ~ [B(x ~ x) ~ B(x ~ y)].

But LS gives B(x ~ x), so a tautology yields

x ~ y ~ B(x ~ y).

We n o w prove \ ly (x ~ y -'B(x ~ y)) by induction on x. First, \ ly (O ~ Y -s- B(O~ y)),

this is done by induction on y. If Y ~ 0, it is B(O ~ 0). Since 0 ~ 0 is clas-

sicaly valid, Prop. 2.2 gives B(O ~ 0). The conclusion of the induction step is

\ ly (O ~ Sy ~ B(O ~ Sy)), which is vacuolusly satisfied. We now return to the

induction on x. We a s s u n e \ ly (x ~ y ~ B(x ~ y)), and are to prove \ly(Sx ~ y ~ B(Sx

~ y)). Again we proceed by induction on y. The case y ~ 0 is vacuously satisfied

So we must see \ly(Sx ~ y ~B(Sx ~ y)) ~ \ly(Sx ~ Sy ~ B(Sx ~ Sy)). Now \ ly \ lx (x ~ Y ~

Sx ~ Sy) is a classical theorem of Peano arithemtic, so by Prop. 2.2 and A10,

\ ly \ lx B (x ~ y ~ Sx ~ Sy), and thus

B(x ~ y) ~ B(Sx ~ Sy).

Sx ~ Sy ~ x ~ y

~ B(x ~ y) induction on x

~ B(Sx ~ Sy).

Consequently

This completes the induction on y, hence that on x, and so the lemma.

We return to the induction on z for the theorem. We show directly that the

conclusion of the induction step holds, namely

\lx(Sx ~ Sz ~ B(Sx ~ Sz)).

This is because Sx ~ Sz ~ x ~ z

~ B(x ~ z) by the Lemma.

As in the second proof of the Lemma,

B\lx(x ~ Y ~ Sx ~ Sy)

\ lx B (x ~ Y ~ Sx ~ Sy)

\lx(B(x ~ y) ~ B(Sx ~ Sy)),

so

Sx ~ Sz ~ B(Sx ~ Sz),

as desired.

For the iterations of S, note first that the above argl.llrent shows 0 z ~

B(O ~ z). N o w suppose that we have the B-closures of

f(x, 0) ~ k (x )

f(x,n+i) ~ g(x,fn),

and those of kx ~ z ~ B(kx ~ z), g(x,y) ~ z ~ B(g(x,y) z).

I '; s h o w

f(x,n) z ~ B(f(x,n) z)



by induction on n. For n = 0, this is

f(x,O) = z + k(x) = z

+ B(k(x) z)

+ B(f(x,O) = z).

For 5n it is

f(x,Sn) z + g(x,f(x,n)) = z

+ 3u(f(x,n) = UII g(x,u) = z )

+ B3u(f(x,n) = u II g(x,u) = z) (by b)

+ B(f(x,Sn) = z).

111is ta k e s care of c I and in particular (i) - (iii); (i v) follows from b I . Writing

x < yas n(x+Sz = y), so does (v). We get (vi), (viii) the same way, viewing

t f z as 3u(t = u / I (t < U or u < t)), and t, = tz as 3Z(t, = z = t
Z

) '

d) This is a sr ra i ght forwa rd induction on y.

2 ,3 . Axioms for the truth predicate.

'[11ea x i o m s a re the usual ones for arithmetical truth, with the addition of

;1 c Lausc for sentences B o , Satisfaction is definable from truth, since for exam-

ple if 8 has one free variable x, then F8[n] iff F8(x/Ti), where Ti denotes n.

\l'e must, howevc 1', state more than the truth schema Tr(o) ++ o to get the corres-

ponding sut is faction schemas such as

Sat(ii,y)++ 8(y).

\lie ;;haJ I need several syntactic operations, and formulas and terms ari thmetiz-

j n g s ynt ac t i c notions, which we s u m n a r i ze in

'JOBT ION '.8.

;J) For each n e: Iv, n is the term 5 .. . 5 0 (n iterations).

The corresponding function is b: n 1-+ n.

b ) Sb(8,x,n) is 8 (X /r1 ) , the result of substituting Ti at the free occurrences

of x in e.
c) \Ib(x), Tm(x), FmL(x,y), SentL(x), are fonnulas (of Peano arithmetic) ex-

presing "x is a vari ab Ie'", "x is a primitive recursive term", "x is a fonnula

of L wi th one free variable y", and "x is a sentence of L". L may be classical

or a l Iow B, but docs not admit TrL; TrL is always a unary predicate not in L .

d) den(x,y) is a fonnula expre ss ing "x is a primitive recursive term and y

is the denotation of x".

e) Reca l l that if [ is a primitive recursive funct.i on of n arguments, then

f is ;J s ynt ac t i c ope r . it ion t ak i ng n tenus to a term. I f for example f has Z ar-

gWllents and u, v are v.rr i ab lc s f(u,v) will have two free variables u, v, and

for 311 m, n , f ( i i l ,n ) will denote f(m,n). For the axioms we are interested spe-



cifically in~, -->, I i , - 13, and Sb. Note that for example lii '+ i j i) deno es 8 -->e p ,

Be denotes B8, and Sb(ii,x,n) denotes 5b(8,x,n).

DEFIN IT ION 2.9. The s a t i s fa c t io n a x io m s fo r L are the B-closures of the

following. Here u, v,w,x,y,z are variables.

51. Tm(u) A Tm(v) -->

Tr(u ~ v) - 3z(den(u,z) A den(v,z))

52. Sent (x) -->

Tr(~ x) - " I Tr(x)

53. Sent (x) A 5ent
L

(y) -->

Tr(x =;. y) - (Tr(x) -->Tr(y))

54. Fm(x,w)-->

Tr(Vwx) -< + \/zTr(Sb(x,w ,z))

55. Sent (x) -->

Tr(Bx) - BTr(x)

Note that for appropriate L, 51-55 are the usual satisfaction axion~ over

Peano arithrretic; 5S is the obvious addition when the language includes B. For

readability we omitted the subscript L from Sent, Fm, and Tr ,

DEFINITION 2.10.

a) P is classical first order Peano ari thnet ic , i. e. the classical theory

of axioms A1-A3. BP is Peano ar i thme t i.c in the language with B adjoined, i.e.

the (Def. 2-1d) theory of A l-A 3 .

b) I f A is a theory in a language L with finitely many function and rela-

tion symbols, then A+ has in addition to the axion~ of A the (B)-closures of

the satisfaction axioms for TrL'

2.4. Church's Thesis.

Let D(e,n) be an Le. formula universal for r .e , sets (provably in P). Now

we may state the version of Church's Thesis which concern us. They are

DEFINITION 2.11.

cr. \/ne8n -->B8n) -->3n\/n(8n .... Den)

B e T . B[\/n(8n -->B8n) -->3e\/n(8n- lJen)].

REMARK2.12.

a) Note that C f implies that every intuiti 'ely decidable set (i.e. \/x[B8 v

B 18]) .is recursive, as then both \/x(8 -->B8) and \/x(,8 --> B,8), so both 8

and ,8 define r .e . sets, hence 8 is recursive.



b) We remark without proof that the effectivized version of CT

Ecr. BIIn(en + Ben) + 3eB\/n(en -<+ Uen)

is refutable (this is essentially the content of Godel's first incompleteness

theorem) .

3. ON THE CONSISTENCY OF BCT.

We can n o w state the main theorem.

THEOREM3.1. The theory (BP) + is consistent with CT. That is, Peano arith-

metic in the language with B and the truth (or satisfaction) predicate is con-

sistent with the weak form of Church's Thesis. Specifically, (BP)+ includes

the axiom groups L1-L12, A1-A4, and 5 1 -5 5 .

The following corollary can be stated without the fuss of arithmetization

required for 3·1.

COROLLARY3.2. The theory BP is consistent with CT.

These results are much weaker than the corresponding conjectures for BeT:

C: j e c t u re 3-1a. (BP)+ is consistent with Bcr.

Ce 'jecture 3-2a. BP is consistent with BCT.

1I'e begin by indicating the proof in outline. We shall first prove 3.2, then

observe that the s arre ne thod works to obtain 3.1. The proof proceeds by an in-
+ +

tc rp rct at i on 1 . I interprets (BP) into the languages of P so that an impor-

t ant i nst ance of CT holds. Nanel y , that where e is the formula Bw(x) express-

ing "x is ClJ1 intuitively provable Tr-free sentence", i.e. the formula Tr(B(x)).

Cl'{Bw) is cqui valent to the assertion that BIVis r.e.

Since Bw is r . e., all instances C l{ e) for e not involving Tr follow from

this. This proves 3.2. The proof of 3.1 proceeds the same way, beginning with

an interpretation I of (BP+)+ into the language of p++ and us irig CT(Bw+) to

complete the proof.

With each formul a 8 and as s i gm.cnt a to the free var i ao Ies e we can asso-

c i.rtc ;1 sentence a which asserts that 8 holds of the ass i gned numbers. For

cx.uuplc , to 8(u) (with one free variable u) and ass i gnnent a which sets u to

n , lie assoc i atc 8(n); to e(u, v) and a = (u/m, v/n) we associate 8(n,m), etc.

In the sequel it wil l be convenient to associate with each 8 a term [8] with

the S:IJll2 free var i ab lcs JS 8 such that, under the ass i grurent a , [8] wi l I de-

note the above mentioned sentence. For example, in the case 8(u), Sb(8,u,u)
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is such a te rm,

DEFINITION 3.3.

a) Let u" -..,un be the free variables of e. Then

[eJ = Sb( ... Sb(Sb(8,u, ,u,) ,uZ,uZ)'" ,un'~)

(if n = 0, [e) = 8). Note that e f -+ [e) is primitive recursive.

b) Bw(x) is the fonnula SentL(x) " Tr(B(x)) of (BP)+ (which expresses "x

is an intuitively provable sentence of L").

c) Let n be any fonnula of classical arithmetic (not involVing Tr). We de-

fine the interpretation I (In if we need to make rrexplicit) in two stages.

First, for fonnulas not involving Tr, then for those which do.

(i) a
I

= a if a is atomic (without Tr).

( le)1 eI

~ ~ ¢)I = eI ~ ¢I

pue)I = 3ueI

(Be)I = ell\n[el]

(this interpretation of B was suggested by M.H. Lob). It will be convenient

to introduce the notation

Be=e"n[e].
'IT

(ii) Let 1
0
be the (primitive recursive) mapping (from formulas of ari thnet ic

with B but without Tr to fonnulas of arithmetic with neither B nor Tr) defined

by (i) (and the condition IO(x) = a if x is not such a formula). We put

(Tr(x))1 Tr(Io(x)),

where Io(x) is a primitive recursive tenn representing 1
0

,

PROPOSITION 3.4. Cl'{Bw), th e in s ta n c e o f C T o b ta in e d b y ta k in g 8(x)

Bw(x) , i s e q u iv a le n t to

3el/x(Bw(x)++ U(e,x)) ,

BCT(Bw) to

B3e\/x(Bw(x)++ U(e ,x)),

a n d ECT(Bw) to

3eB\/x(Bw(x)++ U(e,x)).

P~oo6. It suffices to prove the antecedent

B\/x(Bw(x) -s. B Bw(x)) .

Now Bw(x) is Tr(B(x)), and SS is the B-closure of

TrB(x) ~ B Tr(x) .

Thus
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Bw(x) ->- B Tr(x)

->- B BTrx

->- B Tr(B(x))

->- B B w (x ) .

by S5

by 1 9

by S5

THEOREM3.5. T h e r e is a r .e . fo rm u la rr s u c h th a t u n d e r th e in te r p r e ta t io n

lrr' (BP)+ i s t r u e , a s w e l l a s CT(Bw). I n p a r t ic u la r

(a ) 0 e:: BP im p l ie s P 1-0
1

(b) 0 e:: (BP) + im p l ie s p + 1-0
1

(c) 0 ~ CT(Bw) im p l ie s p + + I-i.

PIlOO 6. We break the proof into a series of lerrmas and propositions. The

first lemma asserts the existence of a rr satisfyingthe hypotheses of the others.

LEMMA3.6. T h e r e is a n r . .e . fo rm u la n s u c h th a t

(i) p + I - 0 im p l ie s P I - rr[oJ

(ii) P I - rr[e ->- ¢] ->- rr[e] ->- rr[¢}

(iii) P I - rr[e] ->- rr[rr[e]]

(iv) P I - e ->- rr[e], fo r e a n y p r im i t iv e r e c u r s iv e e q u a t io n .

(v) P I - Sent j Iy) ->- rr([Tr(y)] -++ y )

(vi) P I - SentL(x) / I SentL(y) / I rr(x ";'--yj-A-rr(x)->- rr(y)

(v ii) p + I - ' SentL (x) / I "o (x) ->- Tr(x),

u 'o o Y 'erro(x) e x p " " e s s e s "x i s p r o v a b le in P".

(v iir j 1 '+ + I - SentL(x) / I rr(x) ->- Tr(x)

I n (v)-(viii), L i s th e la n g u a g e o f P.

PIlOO 6. Take n to be a standard formula expressing provability in P+. Then

(iJ - (iii) are the schemas traditionaly used to prove G6del's second incomplete-

ness theorem. The proof may be found for example in the second volune of Hil-

be.rt· and Be rnays . (iv) is the main lemma used in the proof of (iii). (v) is the

formalization of T r(a ) ++ 0, and will be discussed at lemma 3.17. (vi) is the

main Iemma used in proving (ii); we list it separately for ease of reference.

(vii) is a standard fact about p + ; it contains enough to prove the correctness.

of P. The specific theorem of P we will need to apply this to is

(vii') Fm(x,w) ->- rro(iSb(x,w,z) .... Sb(ix,w,z))

which fonnalizes Claim 3.12.

PROPOSITION 3.7. L e t A b e a th e o r y s u c h th a t

(i) A I - 0 im p l ie s A I - rr19-]

S u p p o s e fu r th e rm o r e th a t
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(a) T h e u n iv e p s a l c lo s u p e s o f th e I im a g e s o f th e s c h em a

B\lxe -+ \/xBe

a p e p r o u a b l .e in A.

(b) T h e u n iv e p s a l c lo s u p e o f th e I im a g e o f ~ is p p o v a b le in A.

T h e n th e I im a g e o f a n y B -c lo s u p e o f ~ is p r o v a b le in A.

(Thus it will suffice to show in p+ the universal closures of the I images

of the schemas we wish to interpret, including that of (a)).

P IW o 6 . Let o be the uni.ve rsa l closure of ~I. From (i) we get A I-cr implies

A I-B . Using (a), the prefixed B may be moved in the quantifier prefix any-

where before ~I. The process may be repeated with a new prefixed B to obtain

all B-closures of ~I.

Wenow examine the various groups of axioms.

PROPOSITION 3.8. T h e I im a g e s o f th e c la s s ic a l e c h em a e Ll, L2, L4, L5

a P e lo g ic a l ly v a l id , a s w e I I a s L6 fo p e a to m ic , a n d L8.

Prop. 3.7 then shows that the I images of their B-closures are provable

in A.

The rest of the classical axioms (L3, L6) will be taken care of in Lemma

3.10.

P fto o 6 . L1, L8. The schema Be -+ e is tautologous (el\1I[eJ -+ e), and
11

(Be -+ e)I = B eI -+ eI is an instance of this. Evidently I takes tautologies
11

to tautologies in general.

L2, L4, L5; L6 for e atomic. The I images of these are all instances of

the schema, since I preserves the classical logical operations. The only point

to check arises in the case of L6, where we must check that e (x/u) I = e
I

(x /u ) .

For later reference we prove this where u is any term. For a atomic ion clas-

sical arithmetic, aI = a; since a(x/u) is also atomic,

[a(x/u)]I = a(x/u) = aI(x/u).

(Here the brackets are used only as parentheses). For a of the form Tr(t) ,

[Tr(t)(xlu)]I = [Tr(t(xlu))]I = Trlo(t(x/u)),

whereas

[Tr(t)]I(x/n) = [Tr(fo(t))] (x /u ) = Tr(Iot(xlu)),

which establishes the desired equality.

(i)

(ii)

PROPOSITION 3.9. a l S u p p o s e th a t

11 [ j l ] , fo p e lo g ic a l ly v a l id ,

1I[e -+ ~ ] -+ (1I[e] "" 1f[~])

in A w e h a v e th e u n iv e p s a l c lo s u p e s o f
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Then the universal closures of the I images of the schemas L7, L8, Ll0 (propo-

sitional and quantifiers axioms for B ) are provable in A .

b) Moreover, the hypothesis (a) of prop. 3.7 is also satisfied, that is

B \J x e - .- \J x B e.
IT IT

c ) If in addition

(iii) IT [e J - .- IT [ lT le J ]

then L9 is also provable in A.

P J W O n . For L7, we show the schema

B lT (e - .- ¢ ) - . - (B lT e - .- B lT ¢ ) ·

This is just (e . . . ¢ ) I I lT [e . . . ¢ ] . . . (e ll lT [e J . . . ¢ lI lT [¢ ]) , and follows from (i),

IT [e . . . e p J -s- ( IT [e ] -s- IT [¢ ]) . The I images of L7 are instances of the former.

L8 W3S proved already.

For L9, we show the schema B lT e .. . B lT B lT e , of which the I images of L9 are

instances. This is just e ll lT [e J . . . e ll lT [e J I I lT [e ll lT [e ] ] , for which it will suf-

fice to see IT [e ] . . . IT [e I I IT [e ] ] . Nowe .. . (T I [e J . . . e ll IT [e ]) is a tautology, so by

(i)

IT [e - . - (T I [e J . . . (e I I IT [e ]) ) ] .

Thus using (iii) IT [e ] . . . IT [ lT [e J ] and several instances of (Li ) , we obtain the

desi red result.

For L10 He show the schema

('111is Hill satisfy the hypotheses (a) of 3.7). The schema B lT llx e . . . \JxBlT (3y •

(x = y ) - . - e ) follows from this using a tautology and the distributivity of BTl

over -e- (from the proof of L7). Now (a) is just

I Ix e I I T I [ I Ix e ] . . . I Ix (e I I IT [ e J ) ,

[or which it wi 11 suffice to see

T I[ I IX e ] . . . IT [e J .

Since \J x e - .- e is a logical validity, by (i) we have IT [ lIx e . . . e ] , so (ii) gives

the dcs i rcd result.

L n l~ 1 1 \ 3.10. a ) Let A include P and satisfy assumption (i i ) of Prop. 3. sa,

as well as

(i) A 1 -0 implies A I - lT [o ] .

Then the I-images of L3 and L6 are provable in A.

Suppose that in addition, A satisfies

(i v ) A I - (e - . - IT [e ]) , for all primitive recursive equations e .

Then the universal closures of the I images of Ll1, L12 (the universal ins-

tantiation schemas for terms), are provable in A.
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Before giving the proof, we make the following remark regarding the signi-

ficance of the antecedents of L11, L12,

REMARK 3.11.

a) Because of assumption (i), the antecedent of L12 is always satisfied.

This is because 3y(t = y) is logically valid (classically), and (i) assures

that A I--B
1I

3y(t= y).

b) Since the schema BVxS + VxBS yield 3xES + B3xS (see the proof of TIleo-

rem 2.6 a), the antecedent of L11 becomes 3xB(t = z). This is

3z(t = Z1\1I[t = z]).

In view of (iv) , it is always satisfied for primitive recursive t.

Pnoo6. We prove the I-images of the conclusion of L11, L12,

IIxS+ S(xlt).

(In case t is a variable, (iv) will not be needed, which will prove part aJ).

Now (VxS + S(x/t))I = vxsl + (S(x/t))I. Since vxSI + SI(x/t) is an instance of

the classical instantiation schema, will thus suffice to prove the

CLAIM 3.12. I n A w e h a v e th e c lo s u r e o f (S(xlt))1 ++ SI (xlt).

Pnoo6. The proof proceeds by induction on the formula S.

1. S = a atomic. The proof is the same as in the case t = u, u a variable,

which was given in prop. 3.8 for L6; we get (S(x/t))I = SI(x/t).

2. S + ep, IS, 3yS are all easily checked since substitution is a homo-

morphism on these logical operations.

3. BS. Assume for S, that A I--SI(xlt)++ (S(xlt))I. We are to see that

A I--(BS)I(xlt)++ (BS(xlt))I. The l.h.s. of this is (SII\1I[sIJ)(xlt), i.e.

SI (x/r) 1 \ (1I[SIJ ) (xlt) ,

whereas the r.h.s. is

Thus it will suffice to see that

1I[S(xlt)l]++ (1I[SI])(xlt).

Now by induction, A I--SI(xlt)++ (S(x/t))I. Using (i)-(iv) we can apply Prop.

3.9 b), and Prop. 3.7 to obtain mlY B1I closure of this in A, in particular

A 1 - -1 1 [sI(x/t) ++ (S(xlt))I].

Hence by (ii) we may distribute 11 to obtain

A l--1T[sl(xlt)]++ 1I[S(x/t)I].

Thus it will suffice to see in A that
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Weshall prove now in A the general

SCIIH1A 3.13: 1T[<P(X/t)] ++ (1T[<P])(X/t).

To do this we need the syntactic

fACT 3.14. I f x,w a p e » a r - i a b l e e , t ih e r i P I - - [8] (x/w) ,; [8(x/w)].

We leave this to the reader to check, but note that in the case of 8 with

one free variable x, it follows from the formalization of

(8(x/w))(x/n) = 8(x/n).

Letting

Sub(8,x,w) = 8 (x/w),

this is

Sb(Sub(8,x,w,n) = Sb(8,x,n),

so the formalization is

SD(Sub(v
o
,v

1
,v

2
), v

Z
,v

3
) ,; Sb(v

o
'v

1
,v

3
)

wh i ch yields on taking V
o

to 8, v
1

to ie, ": to \~, and v3 to w

Sb(Sub(8,w,w) ,w,w) ,; Sb(8,x,w)

i.e.
Sb (8TX7WT,w,w) = Sb(S,x,x) (x/w)

i.e.
[8(x/w)] = [8](x/w).

ive proceed to check the schema 3.13. Nowusing the above fact,

(1T[<P])(X/W) = 1 T ( [< P ] (x/w))

+ + 1T[<jJ(X/W)].

In case t is a variable, this is schema 3.13, so the proof of a) is now com-

plete. In gcnc ra l we have, for w a variable not in < p or t,

ep(x/t) ++ \!w( t = W -+ ep(x/w)),

(11 [<p])(x/t) ++ \I'v(t = w -+ (1T[¢1 )(x/w))

+ + \lx(t = W -+ 1T[<P(X/W)]), (1 )

w h o reus (u s in g (i), (ii))

n[<p(x/t)]++ n[\lw(t = w -+ ep(x/w))];

;1 ~ ; l in u s i ru ; (il etc. (as in Prop. 3.9b)
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~ Vwrr[t = w ~ ~(xiw)],

sp by t i.i )

~ Vw(rr[t = w] -e- rr[~(xiw)JJ.

Thus by (i.v)

t = w ~ rr[t = w],

and it follows that

rr[~(xit)] ~ Vw(t = w ~ rr[$Cxiw)JJ.

Thus by (1 )

rr[~(xit)l ~ (rr[~])(xit).

This completes one half of the proof of the schema. Note that we have used the

computability of t ,

For the other half, we use

X(xit) + + 3w(t = w II x(xiw)):

rr [~1Cx/t) + + 3w(t = w II n [~] (x/w) )

++3w(t = wllrr[¢(x,w)])

(2)

so that by (iv)

~3w(rr[t =w]1I1I[$Cx/w)]);

using (i) with a suitable tautology, and (ii), gives

~ 3w(rr[t = WII Hx/w)])

so that using tha validity X ~ 3wX unde r 11, we have by (ii)

~ 1I[3w(t = wll ~(xiw))].

Thus applying (i) to (2) with X = ~

~ rr[~(xit)]

which completes the proof of schema 3.13, and Lemma 3.10, and hence the check-

ing of the logical axioms unde r I.

We turn now the arithmetical axioms.

PROPOSITION 3.15. L e t A b e a th e o r y in a c la s s ic a l la n g u a g e L in c lu d in g

a r i th m e t ic , a n d s u p p o s e th a t A s a t i s f ie s th e P e a n o a x io m s . L e t 11 s a t i s fy th e

c o n d i t io n s (i)-(iii) o f L em m a 3. lO a , a s w e l l a s

(iv) A I - - Sex) = w ~ rr[S(x) = w],

A I - 0 = w ~ n [d = w] .

T h e n t l te 1
11

im a g e s o f th e u n iv e r s a l c lo s u r e s o f th e e c h em a e A1-A3 a r e p r o v a b le

in A.
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P~oo6. In takes A1, A2 to themelves, so no assumption is needed on n. The

claim 3.12 for t ; 0, Sex) obtains an.d In preserves the classical logical sym-

bols, so A3 goes to a formula equivalent to an instance of A3.

This completes the proof of Theorem 3.5a.

Next the satisfaction axioms.

PROPOSITION 3.16. a) F o p a n y fo rm u la n, th e u n i .v e r e a l : c l .o e u r e e of th e I

im a g e s of th e s a t i s fa c t io n a x io m e S1-S3 ( fo p th e la n g u a g e LB of a x - i th m e t . i c w i th

B) ape p r o u a b l : e in p+

b ) I f TIs a t i s f ie s th e c o n d i t io n s

(vi) SentL(x) 1\5ent
L
(y) 1 \ n Ix ~ y) I\TI(x) ~ TI(y),

(v i i ) SentL(x) 1 \ g (x ) ~ Tr(x) ,

th e n th e I im a g e of S4 i s p r o v a b le in P+.

c ) I f in a d d i t io n to (vi) TIs a t i s f ie s

(v) SentL(y) ~ n([Tr(y)] ++ y ) ,

th e n S5 i s a ls o o b ta in e d .

P~oo6. For atomic formulas, loa; a, so in P

Tm(u) 1 \ Tm(v) ~ I(u ;; v) ~ (u ;; v).

'!l1US

T i(u ~ v) ++ Trl(u ;; v )

++ Tr(u ;; v),

.md fo l l ows from 51 in
+

'11 P .

S2 b e c o n e s
,

Sent (Xi (Tr(lo ='x)++ 'lTrlox) . (1)~
(LB) }

Since [ 'a ,loa' in P we h a v e
0

(10 -lx) - (-='Iox)

+
Using this and P f--Sent(LB) (x) ~ SentL(Iox), (1) follows from S2 in P . S3 is

proved the saJTCway, formalizing 1
0
(8 ~ ¢) ; 1

0
8 ~ I

o
¢'

h) For the proof of S4 we need the formalization of Claim 3.12. Taking
"

II ; I ' in that U aim,.:tnd confining our attention to the case where 8 has one

Free variable \\I, and t is a term n, this yields

{

For all n, and all formulas 8 with one free variable w,
( 2)

(3) P f--(8(lvln))I + + 8I(w/n).

The proof of (2) may b e carried out in P; since (3) may be written as

P f--ISb(8,w,n) + + Sb(I8,w,n).
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and 11
0

expresses provability in P, the fonnalization of (2) is

(vii') P ~Fm(x,w) + 1I
o
(!Sb(x,w,z) ~ Sb(Ix,w,z))

a s indicated after L e m m a 3.6. Here Fm(x,w) means for L wi th B,Tr. At this point

we only need it for L
B

without Tr; for such we get Fm(LB)(x) + I(x) = lo(x) ,

of course. NowS4 is

so we must see that

Fm(x,w) + (Tr(Vwx) + + VZTr(Sb(x,w,z))),

Fm(LB)(x,w) +

Tr(loVwx) + + vzTrloSb(x,lV,z).

VuIoe, so in P, I Vwx~ V x l x. Thus
o 0

Now, Iovue

Tr(1 Vwx)+ + Tr(VwI x),
o 0

and using S4 in p+,

< + VzTrSb(Iox,w,z).

Using (vii'), (vii), and S2,3 in p+ gives the result.

c) S5. We shall need the following

L E M M A 3 .1 7 . a) If e is any formula of the language L of Peano arithmetic,

then in P+ we have the closure of Tr [8] < + e.

b) In particular, restricting 8 to sentences gives: for all sentences 0 of

L , P+ ~ (Tr(o) < + 0).

c ) The proof of (b) can be carried out in P, so that if 11 expresses prob-

ability in p+ (or something stronger)

P ~vy(SentL(Y) + 1I([Tr(y)]~ y))

P~oo6. These are standard results so we indicate the proof only briefly.

a) Proved by induction on 8. The notation [8] extends to terms t , For atom-

ic formulas use [t = s] = ([t] ~ [sJ) and den([t] ,t). For the other cases use

-,e] = = , [e], etc., and the corresponding clause of the satisfaction axioms.

b) is immediate from al .

c) Note that

Tr(o) = (T'r(y) ) ( y /o ) = Sb (Tr(y) ,y,o) ,

so its fonnalization is Sb(Trey) ,y,y) = [Tr(y)].

Proof of 3.16. The new satisfaction axiom is

Sent(x) + (Tr(Bx) + + BTr(x)) ,

so under I it becomes

Sent(x) + (Tr(loBx) + + B1ITr(Iox)). (1 )

Hore Sent(x) expresses "is a sentence in the language L
B

of ar i thne t ic with



B", but of course wi t hout Tr. Now

I Bo I a r ; n [I 0] = I a " n ( IO )
a a a a a

loa" SbIn ,y ,100).

\'ihere y is the free variables of n , The formalization of this is

5ent(x) -+ 10Bx '" lox" 5b(rr,y,lox) ,

which is provable in r . Thus we have, suppressing the antecedent 5ent(x),

Tr(loBx) ++ Tr(lox" 5b(rr,y,lox))

so that by 52, 53 in r " ,

(2)

BnTr(lox) ++ TrcIox) " n [Trfox] ,

so to check (1) it wi 11 by (2), (3) be enough to check

(3)

Tr(Sb(rr ,y .t x)) ++ If [Trl xl.
a a

NOl'I in P

5ent(LB) (x ) -+ 5etL(Ix),

so it wi l l suffice (by instantiating loX for y) to see

5ent
L

(y ) -+ (Tr(5b(rr,y,y)) ++ n[Tr(y)]),

i.e., suppressing the antecedent, and noting [11] = Sb(TI,y,y)

Tr[n(y)] ++ 11[Tr(y) J.

The result now follows easily from Lemma3.17. By 3. 17a,

Tr[n(y)]++ n(y).

\\~1ilc by 3 .1 7 c ,

n( [Tr(y)] ~ y). (5)

' lh u - , h y (vi) (modus ponens for n),

n[Tr(y) 1 ++ n(y). (6)

Comhining (S), Ui) gives (4) and hence completes the proof of 3.16.

111is completes the proof of Theorem 3.5b.

We [101,tum to CT(BI").

PROP05fTION 3.18. I f r r s a t i s f ie s th e c o n d i t io n (vi) (vii) o f P r o p . 3 .1 6

b , 0 1 ; 1,).: I I a s

(viii) p" " I-SentL(x)" n(x) -+ Tr(x) ,



th e n th e I im a g e o f CT(Bw) i s p r o v a b l e in P+.

P J r.o o n . The I image of CT(Bw) is

3ellx(BwI(x) + + Uex) ,

i.e.

3ellx(Sent (x) r ; Tr(loBx) + + lJex) .

As before (in 3. 16c). this is

Bw
I
(x) + + Tr(1 x) " Tr(Sb (-IT, y, 1 x))

o 0

+ + r - r t x ) "n(l x ) .
o 0

But since n is a correct notion of proof (viii)

++ n(lox) .

Finally, since n is an r.e. formula, there is a Turing machine e which enumer-

ates the ar i.thne t i cal sentences 0 such that p" 1-0; since 1
0

is recursive, it

is evident that {a lp + 1-0IO} is also. I.e. that

so that

3ellx(n(I
O
x)" Sent (LB)(x) + + U e x ) ,

3ellx(BwI(x) ++ lJex)

as desired.

This completes the proof of Theorem 3.5.

I t is now easy to prove Corollary 3.2. Wemust see the schema Ber for for-

mulas e of the language of BP (i.e. without Tr).

P J r.o o n on 3.2. Suppose that \/x(e + Be). lnen

e + + B e

+ + BTr[e]

++ Bw[e]

++ Ute, [e]).

Now this just says that the inverse image of a certain r.e. set (Bw) under the

recursive function fen) = ern) is also r.e. Indeed, there is a primitive re-

cursive function g such that if e is the Turing machine for a set E, gee) will

be the Turing machine for f-1E (and moreover, one can get g effectively from

f). Thus we have in P,

lIe(lIx(U(e,fx) ++ U(ge,x)) , (1 )

so that

Since f.(x)

lIe[lIx(Bw(x)++ lJex) + IIx(Bw(fx)++ U(ge,x))].

[e(x)], this completes the proof of Corollary 3.2.
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To complete the proof of Theorema 3.', we extend the definition of 1
++ ++

language of (BP) using for "(x) a formula expressing IIp I-x": Let I,
previous definition and put

Tr:(x)

(BP)++ +

to the

be the

We show that 1 interpretes

Prop. 3.8 requires the

1
0

by I,):

Tr+cI, (x)).

CT(Bw+).

clauses (obt aired by replacing Tr by Tr + andaddition

[Tr+(T)(x/U)]1 [Tr+(t(x/u))]1 = Tr),(t(x/u)),

[Tr+(T)] I (x/u) [Tr+(I, (T)] (x/u) = Tr+(I,t(x/u)).

In Prop. 3.'6, the first new satisfaction axiom is S,+:

Tm(u) -.- (Tr+Tru +>- TrCu) ) ,

which goes to Trn(u) -.-

Now

T i(x )

so in P

Thus

Tr+(I,Tru) +>- Tr+(TrIou)

+>- Tr I TI'l u]
+ 0

+>- T r (1 0 u ) .

The nCI"axioms S2+, S3+, S4+ are the same as the old with Tr replaced by Tr+'

and thc antecedent syntactic conditions (Pm,Sent) chaged accordingly. Thus the
+ .

proo [~ arc the same with 1
0

replaced by I,. The proof of S5 requi res use of

p++ I-TrJe] + + e ,

,

~md thc various formalizations of Lemma3. '7. The proof is again the same,

rcp.Iac.ing Tr by Tr +' 1
0

by I,. The proof of CT(Bw+)requires the correctness

of TT, which is nOHprovable in p+++, but is otherwise the same. Theorem 3.'

no", fo1101"s by the same argument as in the proof of 3.2.

',Vcwould I ike to make a few remarks to indicate the nature of the diffi-

culty in extcnding these results to obtain conjectures 3. 'a, 3.2a.

Tl1Csi tuat i on now is that He have T consistent (where T is (BP}\ T I-a, and

IyCwould 1i kc to show the consistency of T U{Ba}. However, it is certainly not

true in gcneral that TU{Ba} is consistent. For example, if a is (y A,By),

thcn Ba (and hcncc TU{Bcd) is inconsistent:
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B(YAIBy) + ByAB IBy

+ ByA I By.

NowCT(Bw)certainly implies that there are sentences such as y; in fact BCT

implies for s e n e arithrretical 8

B3e(8(e) A IB8(e))

so that

3e(8(e) A IB8(e))

is provable in T.

We remark that one obvious way to try to interpret B C T (B " ,) is to use the

sane method used for CT(Bw)but to replace IT[8J by IT[a + 8] = IT
a
[8]. It turns

out that no such interpretation will have BCT(Bw). In fact, if ITis any reaso-

nable proof predicate (i. e. one satisfying Gidel' s second theorem), then de-

Jongh and the author have observed that BCT(Bw)fails in the Lob interpretation

using IT.

To see this, consider the following schema, which is a consequence of B C T :

1) B3el/x(B8(x) <+ U(e, [8(e)])) ,

where 8(x) is a formula with one free variable x. This is equivalent to BCT(BS),

since the correspondence x '+ [8(x)] may be ass~ned to be 1-1 recursive. Apply

the fixed point theorem to obtain 8(x) an arithmetical formula (no B' s, no

Tr's, etc.) so that

2) Bl/x(8(x)<+ IU(x,[8(x)])).

Nowwe also have in general

3) Bl/x(B8(x) + 8(x)) .

Ibus taking x to be e, we have B3e¢(e), where ¢(e) is the conjunction of

1 ') B (e) <+ U(e, [8(e)])

2') 8(e) *-lU(e,[8(e)j)

3') B8(e)+8(e).

Since 8(e) A IB8(e) is a tautological consequence of 8(e), we thus have

4) B3e(8(e) A IB8(e)).

Consequently, any interpretation which makes (1) come out true will also have

(4). In particular, i f B8 is interpreted as 8 AIT[8J(which, since 8 is arith-

metical, will be the case for any Lob interpretation), the truth of 4) gives

IT[ae (8 (e) A - , (8 (e) AIT[8(e) ]) ]

I - - 3e(8(e) A " l IT[8(e)])
IT

fiT 3e(iIT[8(eJ])
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'r r 3 x '''IT (x )

'r r ConlT'

in other words, GOdel's second theorem fails for IT .
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