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THE CONSISTENCY OF A VARIANT OF CHURCH'S THESIS WITH AN
AXIOMATIC THEORY OF AN EPISTEMIC NOTION

W.N. Reinhardt

ABSTRACT. In this paper we prove the consistency of a variant
of Church's Thesis than can be formulated as a schema in a first
order language with a modal operator for intuitive provability.
We also conjeture the consistency of a stronger variant.

1. INTRODUCTION.

We consider the language of arithmetic augmented by a new symbol B and the
formation rule: If o is a sentence (or formula) so is Bo. The informal meaning
intended for Bo is that o is intuitively provable, so that for example
“1Bc AT1B 1o expresses the (absolute) undecidability of o. This interpretation
suggest notions of intuitive decidability, for example

¥x(Be(x) v B T16(x))

express the intuitive decidability of 6(x), and these motivate the formulation
of our variant of Church's Thesis. Since Turing advocated the view that any in-
telectual activity of humanscan be carried out by a properly programmed computer,
and in particular that theorem proving by an idealized human mathematician is
essentially mechanical, the thesis we formulate migth appropriately be called
Turing's thesis. I believe that B expresses an important epistemic notion and
that the axiomatic theory given here can be used to illuminate for example some
controversies regarding the philosophical significance of Gidel's incompleteness
theorems. In this paper we leave these issues aside, and simply formulate the
-theory and prove it consistent with one variant of Church's Thesis. In a later
paper we shall discuss these issues and the relation of B to earlier authors.
(Godel 1933, 1951, Lob 1955, Kalmar 1959, Myhill 1960, Lucas 1961, Montague
1963, Benacerraf 1967, Tharp 1973, Wang 1974, Boolos 1979, Shapiro 1980). 1
would like to thank Andrej Stedrov for pointing out an error in the first ver-
sion of this paper. In the earlier version a proof was claimed for conjecture-

3-la. of this paper. The problem remains open.
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2. ARITHMETIC WITH B.

We split the axioms into four groups: those which may be regarded as appli-
cable to any subject matter(the logical axioms), those pecyliar to arithmetic,
those involving the truth (or satisfaction) predicate for arithmetic, and those
stating Church's Thesis. In the first and third groups some of the axioms are
essentially classical (e.g. instances of classical schemas which may however in-
volve B) and others are new, peculiar to languages with B. The arithmetic axioms

are essentially classical.

2.1. Logical axioms.

We suppose our languages has variables VgaVysers, @ ONC place sentential
connective 71 (for negation), a two place sentential comnective + (for truth
functional implication), the universal quantifier ¥, a one place sentential con-
nective B (for provability), and equality =. We allow relation symbols and cer-
tain function symbols, but logic with function symbols in the general case re-
quires restrictions not familiar from classical logic. (In effect, we may allow
function symbols for recursive functions with no restrictions, or arbitrary
function svmbols with certain caveats which will be mentioned). We shall use T,
=, ¥ not as names for symbols but as names for operations. Thus if 8, ¢ are for-
mulas, 16, (6 + ¢) are to be formulas. We treat defined connectives such as
v, A, # similarly.

We have the usual formation rules for first order languages, plus the rule:
it 9 is a formula, B8 is a formula with the same free variables as 8. A sentence
is a formula with no free variables. '

In order to state the axioms for the truth preaicate (in §2.3), it will be
convenient to suppose that all syntactic objects have been identified with their
(iddel numbers, in one of the usual ways. Thus the syntactic operations 71, +,
cte, are all primitive recursive. It will not much matter how this is done, but
for convenience in describing substitution operations, one may think of formulas
as strings of symbols. What is important is that the various syntactic opera-
tions 7, +, substitution, etc. will be primitive recursive.

DEFINITION 2.1.

a) By a B-closure of a formula & we mean a sentence obtained from 6 by ite-
rated applications of universal quantification and B. Thus ¥x¥yx = y, B¥xB¥yB
x*y and BYx¥y x2 y are all B-closures of x = y. If ¢ is a sentence it is a B-
closure of itself.

b) 8(x/y) is the expression obtained from 8 by replacing all free occurrences
of x in 8 by y.

¢} By the logical arioms we understand the B-closures of the following
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schemas (where u,x,y,z are variables):

L1. truth finctional tautologies

L2, ¥x(8 =~ ¢) + (vx6 » ¥xo)

L3. Wy(¥x8 -+ 8(x/y)), where x,y are variables and x is free for vy in 8,
L4. 6 + ¥x6, where x is not free in 6, .

L5& » &

L6. x =y~ [6(wx) + 8(u/y)], where u is free for x,y in @,
L7. B(® > ¢) » (BO > B4)

L8. B& + 8

L9. B6 - BB&

L10. B¥x8 » ¥xB(3y(x = y) + 8), where y is a variable distinct from x, and
means as usual 7Y 7,

L11. B3zB(t = z) » [vx6 » 8(x/t)], where x,z are variables, t is a term and
i) z does not occur free in t
ii) x is free for t in 8,

L12. 3y(t = y) + [¥x8 + 8(x/t)], provided that i), ii) above hold, and in ad-
dition x does not occur free within the scope fo B in 6.

d) A thecry in the language with B is a set of sentences containing the log-
gical axioms and closed under modus ponens. We write A +0 to mean o is in cvery
theory including A. We write as usual +o for @ ko,

We note:

PROPOSITION 2.2.
a) Suppose that A ig a set of seniences such that whenever o € A, Boe A, Then
A Fo implies A - Bo,
b) If the sentence o ig a elassical validity, in a language with no function
symbole, them koO.
¢) If the sentence ¢ is a classical validityinalanguage with funetion symbols
f;, and A is the set of sentences ¥XIy £(X) = ;, then A +o0.
Proof. a) The only rule is modus ponens, so apply L7, LZ.
b) Since LI-L6 are the usual classical schemas, this is obvious.
c) By L12, it is sufficient to see that A  3y(t = y) for all temms t built from
the f's. This is easily seen by induction on t; e.g. if t = f(ty,t;), and
A l—3y1(t1 = yI] a;yz[tz = yz} A v~:}y332[f(y1.}'2] = z), then by L12, A +
2(£(ty,t;) = 2).

We note also the following:

L3 ¥xo -+ 8(x/y),
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where x is free for t in g, provided that we restrict the introduction of func-
tion symbols to (for example) primitive recursive functions. This is because the
antecedent of L11 says that t is a term which may be effectively evaluated (this
is the caveat referred to earlier) and it will follow from'our arithmetic axioms
that this is so for primitive recursive temms. The antecedent in L12 may of

course be omitted altogether if we follow the usual practice of classical logic

of assuning all functions everywhere defined.

We remark without proof that the axioms L11-L12 are chosen so that the fol-

lowing is true.

THEOREM 2.3, If Tis a theory withT-Byx3y , no X; occurs in the scope of B
in 8, f is new funection eymbol, and T' has as axiome T together with all T
elosures of
B(X,y) = £(X) =,

Then T' is a conservative extengion of T.

In particular, if T has no function symbols, then we may add them with im-
punity, but only by observing the caveats regarding the principle of universal
instantiation with complex terms (the case of functions fx = y corresponding to
8(x,v) with x in the scope of B would require a further restriction in L12).

2.2, Arithmetic axioms.

By the language of (first order) Peano arithmetic we understand the language
with an individual constant for 0, a unary function symbol for the succesor op-
eration S, and a function symbol d for each primitive recursive definition of a
function fj (we could of course do with only function symbols for plus and times,
.but it will be convenient to have terms for certain primitive recursive func-
tions). Just as we used ¥, 71, # etc. for syntactic operations on formulas and
variables, we use 0, 5, f; for syntactic operations on temms. Thus 0 is a tem,
and if t is a term, so are 5(t), fd(t). If f is primitive recursive, we shall

often write f, leaving the reader to find d.

REMARK 2.4. It does not much matter how one thinks of the definitions d,
except that "d is such a definition'" should be primitive recursive, and "x is
the denotation of t' should be definable for terms t built up with the fd's.
We observe however that a nice way is the following simultaneous definition
of function symbols and terms. We write V(e) for the free variable of the ex-

pression e.

1. 0 is a term with V(p) = @.
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2. If vis a variable, v is a term with V(v) = {v}.

3. § is a function symbol with V(§) = #.
If f is a function symbol and t is a term then f(t) is a term with V(£(t))
= V() UvV(t).

5. If t,s are temms and v is a variable, v V(t), then Pvst is a function
symbol with V(Pvst) = V(t) UV(s) — {v}.

Modulo an assignment of functions f; to the function symbols d, an assign-
ment a to the variables now determines (in the usual way) a value t[a] for each
term. We explain the assignment fq as follows. If we single out a variable, say
u, to stand as argument, there is a (one place) function fy for each term,namely
fy(n) is just the value of t under the assignment which is like a except for
assigning to u the value n. We intend that for a function symbol d, and term du
(obtained by concatenating d with u), fq will be the same as fg, (with u singled
out). In particular, for the functional symbol d = Pvst, the value at n of the
one-place function f is obtained by interating f. (detemmined by selecting v
as the argument) n times, starting with f. (which, since v « V(1), is constant
when v is selected to mark the argument):

- - ¢ln)
fa(n) = £ .. L f = £70 o
£,00) = £,
fd(n+1) = fsfd[n).

Thus the axioms for d are (the closures of)
d(oy = t
d(Sv) = s(v/dv).

It

Note that the syntactic operation ¥ takes variables x,y and produces the term
(x 3 y) with free variables x,y, whereas the function symbol for "adding x to"
or "iterate the succesor operation starting with x'" is PySyx, with one free

variable x. Thus x 7 y is PySyxy. Similarly, using Polish notation and drop-

ing the bars for legibility, +xy = +x +x .. +x0 = (+x) g - (Py + xy0)y.

DEFINITION 2.5. Let L be any language which includes the language of Pea-
no arithmetic. The Peano axioms for L are the B-closures (or the ordinary
closures, if L is classical) of the following:

Al. The usual Peano axioms for 0 and S, which assert that S is 1-1 and onto all

but 0. We takes this to include 3x(0 # x) and 3y(Sx * y).

AZ. The usual Peano axioms stating that +, * satisfy their recursive defini-
tions, and in general similar axioms for each primitive recursive function

symbol ¥ , including ¥xay(f(X) = y).
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A3. The usual induction schema, allowing formulas from L:

8(x/0) A¥x(8 + 8(x/5x)) + v¥x6.

THEOREM 2.6.
a) B¥xBiv(x = y). Thia yields the B-closures of B¥x6 - ¥xB& and 3xB6 + Bixs.
b)  From the B-closure of 8 + B8, we obtain those of 3x0 + BIx6 and 3IxP + 3IxBH.
€) For each (primitive recursive) term t and variable z, we have the B-elosure

of t =z + B(t = z). In particular

(i} Sx =2z +B(Sx = z)

(ii) x+y = z + B(x+y = z)

(iii) x*y = 2 = B(x*y = z)

(iv) 3zB(t = z

(vl] x<v+B(x<y)

(vi) t # z = B(t # 2)

d) We have the B-closures of ¥X<y (BO) - B(¥x<y8).

REMARK. We have suppressed the bars and dots in the interests of readabil-
ity,

Prood. a) We prove the B-clousures of 3y(x = y) by induction on x. 3y(0=1y)
is a classical validity, so B3y(0 = y) by Prop. 2.2. For the induction note
that ¥x3y(Sx = y) is a classical validity, so again by Prop. 2.2, B¥xay(Sx = y).
By L10 then
' ¥xB(3y(x = y) » 3y(Sx = y)),

and by L7, L2

u

¥x(Bay(x = y) = Bay(Sx = y)),

which is the induction step.

We note that L10 now simplifies to Bvx8 - ¥xB6,

a) con't. lurthermore by Prop. 2.2, B¥x(8® + 3x8), so by L10 ¥xB(8 + 3x8),
so by L7 ¥x(B8 -+ BaxB), whence 3xB6 + Bixf.

b) From ¥x(8 + BB) we get ¥x(vB + n8), w¥x+BG + ¥xvo, vxug + wWwxuBg, i.
¢. 3x8 + 3xB8. Also, we have 3xB6 + B3x6, so 3x6 + Baxe.

¢) We show that yx(Sx = z +B(Sx = z)) by induction on z. The case z = 0 is
vacuously true, as ¥x T1(Sx = 0). For the induction step we need the

LEMMA 2.7, We have the B-closure of X =y =+ B(x = y).
Proof. We give two proofs, first using the equality axioms, then using only
induction. Now L6 gives

x =y~ [B(x = u(wx) »B(x = y) (wy)]
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x=y+ [Bx=x) +B(x=y)].

But L5 gives B(x = x), so a tautology yields
X:y-a-B[x:y]_

We now prove vy(x = y »Bx = y)) by induction on x. First, wy(0 = y + B0 = y)),
this is done by induction on y. If y = 0, it is B(0 = 0). Since 0 = 0 is clas-
sicaly valid, Prop. 2.2 gives B(0 = 0). The conclusion of the induction step is
¥y(0 = Sy » B(0 = Sy)), which is vacuolusly satisfied. We now return to the
induction on x. We assume ¥y(x =y +B(x = y)), and are to prove ¥y(Sx = y +BSx
= y)). Again we proceed by induction on y. The case y = 0 is vacuously satisfied
So we must see ¥y(Sx = y »B(Sx = y)) + ¥y(Sx = Sy +B(Sx = Sy)). Now ¥y¥x(x = y -
Sx = Sy) is a classical theorem of Peano arithemtic, so by Prop. 2.2 and Al0,
¥y¥xB(x = y + Sx = Sy), and thus

B(x
Consequently Sx

y) = B(Sx = Sy).
Sy+rx=y

+ B(x = y) induction on x
+ B(Sx = Sy).
This completes the induction on y, hence that on x, and so the lemma.

We returmn to the induction on z for the theorem. We show directly that the
conclusion of the induction step holds, namely
¥x(Sx = Sz +BSx = Sz)).
This is because S5x = Sz » x = 2
+B(x = z) by the Lemma.
As in the second proof of the Lemma,
B¥x(x = y = Sx = Sy)
¥xB(x = y + Sx = Sy)
¥x(B{x = v) = B(Sx = Sy)),
so
Sx = Sz + B(Sx = 8z),

as desired.
For the iterations of S, note first that the above argument shows 0 = z +

B(0 = z). Now suppose that we have the B-closures of
f(x,0) = k{x)
f(x,n+1) = glx, ),
and those of kx = z + B(kx = z), g(x,y) = z + Blg(x,y) = 2).

w show, .
f(x,n) = z + B(f(x,n) = z)



by induction on n. For n = 0, this is
£(x,0) =z » k(x) =
+ B(k(x) = z)
+ B(f(x,0) = z).

(2]

For Sn it is

f(x,5n) =z » g(x,f(x,n)) =z
Ju(f(x,n) = uaglx,u) = z)
Bau(f(x,n) = uag(x,u) =z) (byb)
B(f(x,5n) = z).

+

+

+

This takes care of c¢) and in particular (i)-(iii); (iv) follows from b). Writing
X < v as 3z(x+Sz = y), so does (v). We get (vi), (viii) the same way, viewing
t #zas u(t =ua(t <uoru=<t)), and t,=t,as 32{1:1 =z = tz}.

d) This is a scraight forward induction on y.

2.3. Axioms for the truth predicate.

The axioms are the usual ones for arithmetical truth, with the addition of
a4 clause for sentences Bo. Satisfaction is definable from truth, since for exam
ple if & has one free variable x, then k 6[n] iff k 6(x/n), where n denotes n.
We must, however, state more than the truth schema Tr(g) + ¢ to get the corres-

ponding satisfaction schemas such as
Sat(8,y) + 8(y).

We shall necd several syntactic operations, and formulas and terms arithmetiz-

ing syntactic notions, which we summarize in

NOTATION 1.8.

a) For each n e w, n is the term 5...50 (n iterations).
The corresponding function is b: ne n.

b) Sb(8,x,n) is 8(x/n), the result of substituting n at the free occurrences
of x in 8.

¢) Wix), Tm(x), Fm(x,y), Sent; (x), are formulas (of Peano arithmetic) ex-
presing "x is a variable', "x is a primitive recursive temm', '"x is a formula
of L with one free variable y'", and "x is a sentence of L'". L may be classical
or allow B, but does not admit Try; Try is always a unary predicate not in L.

d) den(x,y) is a formula expressing "x is a primitive recursive term and y
is the denotation of x'".

¢) Recall that if { is a primitive recursive finction of n arguments, then
f is a syntactic operation taking n terms to a term. If for example f has 2 ar-
guments and u, v are variables f(u,v) will have two free variables u, v, and
for all m, n, £(m,n) will denote f(m,n). For the axioms we are interested spe-



%, B, and 5b. Note that for exanple @ + 3 denotes 6 ¢,

cifically in T, >, ¥,
§b(8,x,n) denotes Sb(8,x,n).

B8 denotes BB, and St

DEFINITION 2.9. The satisfaction axioms for L are the B-closures of the
following. Here u,v,w,x,y,z are variables.

S1. Tm(u) A Tm(v) +
Tr(u £ v) « 3z(den{u,z) a den(v,z))

52, Sent(x) +

Tr(S %) = 7 Tr(x)
S3. Sent(x) a Sent (y) =+

Tr(x 3 y) « (Tr(x) + Tr(y))
S4. Fm(x,w) +

Tr(Wwx) < v2Tr(Sb(x,w,z))
§5. Sent(x) +

Tr(Bx) «+ BTr(x)

Note that for appropriate L, 51-55 are the usual satisfaction axioms over
Peano arithmetic; S5 is the obvious addition when the language includes B. For
readability we omitted the subscript L from Sent, Fm, and Tr.

DEFINITION Z.10.

a) P is classical first order Peano arithmetic, i.e. the classical theory
of axioms Al-A3. BP is Peano arithmetic in the language with B adjoined, i.e.
the (Def. 2-1d) theory of Al-Al.

b) If A is a theory in a language L with finitely many function and rela-
tion symbols, then A" has in addition to the axioms of A the (B)-closures of

the satisfaction axioms for Try.

2.4. Church's Thesis.
Let U(e,n) be an r.e. formula universal for r.e. sets (provably in P). Now
we may state the version of Church's Thesis which concern us. They are

DEFINITION 2.11.
CT. ¥n{én + Bén) - 3n¥n(6n< Uen)
BCT. B[wn(én + Bén) - 3evn(on< Uen)].

REMARK 2.12.
a) Note that CT implies that every intuitively decidable set (i.e. ¥x[BO v
B 710]) s recursive, as then both ¥x(6 + B8) and ¥x(716 + B719), so both 8

and —19define r.e. sets, hence 9 is recursive.



b) We remark without proof that the effectivized version of CT

ECT. Bw¥n(8n -+ Bén) + 3eB¥n(8n+ Uen)
is refutable (this is essentially the content of Godel's first incompleteness
theorem).

3. ON THE CONSISTENCY OF BCT.

We can now state the main theorem.

THEOREM 3.1. The theory {BP)+ ig consictent with CI. That is, Peano arith-
metie in the language with B and the truth (or satisfaction) predicate is con-
sistent with the weak form of Chureh's Thesis. Specifically, [BP)+ ineludes
the axiom groups L1-L1Z, Al-Ad, and 51-55.

The following corollary can be stated without the fuss of arithmetization
required for 3-1.

COROLLARY 3.2. The theory BP is comsistent with CI.
These results are much weaker than the corresponding conjectures for BCT:

C- jecture 3-la. (BP)' is consistent with BCT.
Cc~jecture 3-2a. BP is consistent with BCT.

We begin by indicating the proof in outline. We shall first prove 3.2, then
obscerve that the sume method works to obtain 3.1. The proof proceeds by an in-
terpretation 1. T intcrprets (BP}Jr into the languages of P" so that an impor-
tant instance of CT holds. Namely, that where € is the formula Bw(x) express-
ing "x is an intuitively provable Tr-free sentence", i.e. the formula Tr(B(x).
ClI(Bw) is cquivalent to the assertion that Bw is r.e.

Since Bw is r.e., all instances CT(8) for @ not involving Tr follow from
this. This proves 3.2. The proof of 3.1 proceeds the same way, beginning with
an interpretation I of [BP‘]+ into the language of P and using (TF(B1~J+J to
complete the proof.

With cach formula ¢ and assigment a to the free varianles 8 we can asso-
ciate a sentence o which asserts that 9 holds of the assigned numbers. For
example, to 6(u) (with one free variable u) and assignment 4 which sets u to
n, we associate 8(n), to 6(u,v) and a = (u/m,v/n) we associate 6(n,m, etc.

In the sequel it will be convenient to associate with each 5 a temm [6] with
the same free variables as © such that, under the assignment a, [8] will de-

note the ubowe mentioned sentence. For example, in the case 8(u), Sh(8,u,u)



is suwch a temm.

DEFINITION 3.3.
a) Let Uy,-..,u, be the free variables of 6. Then

[9] = SE( - 'ﬁ[gﬁlésﬁl ’ulj ,].-lz,UZ] e ’f&]’lﬁ‘l]

(if n =0, [6] = 8). Note that 8+ [8] is primitive recursive.

b) Bw(x) is the fornula Sent;(x) ATr(B(x)) of (BP)* (which expresses "x
is an intuitively provable sentence of L').

c) Let w be any formula of classical arithmetic (not involving Tr). We de-
fine the interpretation I (I, if we need to make 7 explicit) in two stages.
First, for fomulas not involving Tr, then for those which do.

(i) aI =qa if a is atomic (without Tr).
(1l = o
© > o)1 =6l » ol
(3ue) T = 3ue!
86)1 = ol A n[6]]

(this interpretation of B was suggested by M.H. Lob). It will be convenient
to introduce the notation

B 6 =6amnfe].
(ii) let I, be the (primitive recursive) mapping (from formulas of arithmetic
with B but without Tr to formulas of arithmetic with neither B nor Tr) defined
by (i) (and the condition Iu(x) =0 if x is not such a formulaj. We put

(rre)! = (i (0,

where I (x) is a primitive recursive tem representing I .

PROPOSITION 3.4. CT(Bw), the instance of CI obtained by taking 8(x) =

Bw(x), is equivalent to
Jevx(Bw(x) <+ U(e,x)),

BCT(Bw) to
Bleyx(Bw(x) + Ule,x)),

and ECT(Bw) to
3eBYx(Bw(x) < U(e,x)).

Proof. It suffices to prove the antecedent
Byx(Bw(x) +BBw(x)).
Now Bw(x) is Tr(B(x)), and S5 is the B-closure of

TrB(x) +BTr(x).
Thus
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Bw(x) + B Tr(x) by S5
+ B BTrx by L9
+ B Tr(B(x)) by S5
+ B Bw(x).

THEOREM 3.5. There is a r.e. formula W such that wnder the interpretation
I, (BP)" is true, as well as CT(Bw). In particular
(a) oe BP implies P kol
) oe (BP) implies P* ko
(c) o= CT(Bw) implies P™* idl.

I

Proof. We break the proof into a series of lemmas and propositions. The
first lemma asserts the existence of a w satisfyingthe hypotheses of the others.

LEMMA 3.6. There is an r.e. formula W such that

(i) P* - o implies P + w[o]

(ii) P + n[e = ¢] » w[8] + n[¢]

(iit) P + n[8] » w[n[6]]

(iv) P + 6 + n[8], for 8 any primitive recursive equation.
(v) Pk Senty(y) ~ ﬂ([T‘r(y)] <+ y)

(vi) P+ Sent; (x) a Sent;(y) A m(x > yraa(x) » w(y)

(vii) P* + Sent; (x) A m () > Tr(x),

where ‘I'!D(X) expresses "X is provable in P".
vidy P - Sent; (x) AT(x) > Tr(x)

In (V)-(viii), L is the language of P.

Proo4. Take m to be a standard formula expressing provability in p*. Then
(i)-(iii) arc the schemas traditionaly used to prove Godel's second incomplete-
ness thecorem. The proof may be found for example in the second volume of Hil-
bart and Bernays. (iv) is the main lemma used in the proof of (iii). (v) is the
formalization of Tr(o) + o, and will be discussed at lemma 3.17. (vi) is the
main lemma used in proving (ii); we list it separately for ease of reference.
(vii) is a standard fact about P+; it contains enough to prove the correctness
of P. The specific theorem of P we will need to apply this to is
(vii') Fm(x,w) + no(fﬁ(x,w,z] & Sb(Ix,w,z))

which formalizes Claim 3.12.

PROPOSITION 3.7. Let A be a theory such that
(i) A+ o implies A ¥ ﬂIg,]

Suppose furthermore that
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(a) The universal closures of the I images of the schema
B¥xt + vxBO

are provable in A.
(b) The universal closure of the 1 image of ¢ ie provable in A.
Then the I image of any B-closure of ¢ is provable in A.

(Thus it will suffice to show in P the universal closures of the I images
of the schemas we wish to interpret, including that of (a)).

Paoogd. Let o be the universal closure of ¢l. From (i) we get A ko implies
A B . Using (a), the prefixed B may be moved in the quantifier prefix any-
where before ¢I. The process may be repeated with a new prefixed B to obtain
all B-closures of tpl.

We now examine the various groups of axioms.

PROPOSITION 3.8. The I images of the claseical schemas L1, L2, L4, LS
are logiecally valid, as well as L6 for 8 atomic, and L8.

Prop. 3.7 then shows that the I images of their B-closures are provable
in A.

The rest of the classical axioms (L3, L6) will be taken care of in Lemma
3.10.

Proog. L1, L8. The schema B 6 + 8 is tautologous (64 n[68] + @), and
(Be + B}I = BﬁBI + ol is an instance of this. Evidently I takes tautologies
to tautologies in general.

L2, L4, 15; L6 for 6 atomic. The I images of these are all instances of
the schema, since I preserves the classical logical operations. The only point
to check arises in the case of L6, where we must check that G[x/u)I = BI(x/u).
For later reference we prove this where u is any term. For a atomic in clas-
sical arithmetic, aI = q; since a(x/u) is also atomic,

[at/w]T = aGeu) = ol (x/v).
(Here the brackets are used only as parentheses). For « of the form Tr(t),
[Tr(t) c/w] T = [Treevw)]t = T (tevw),

whereas

[Tr(®)] xn) = [Tr(I, ()] /W) = Tr(I t(/w),
which establishes the desired equality.
PROPOSITION 3.9. al Suppose that in A we have the universal closures of

(i) w[p], for @ logically valid,
(ii) n[e + ¢] - (11[9] > TI'[¢1)
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Then the wniversal closures of the 1 images of the schemas L7, L8, L10 (propo-
sitional and quantifiers axioms for B) are provable in A

b) Moreover, the hypothesis (a) of prop. 3.7 is also satisfied, that is
BHV}(B + VXBT[B.

c) If in addition
(iii) n[8] + w[n]6]]
then 19 is also provable in A.

Proog. For L7, we show the schema

B.(8~>¢) > (BoO~+Bo).
This is just (8 + ¢) am[8 > ¢] + (8a7[6] » dan[4]), and follows from (i),
n[e + ¢] = (v[6] = 7[¢]). The I images of L7 are instances of the fommer.

L8 was proved already.

For L9, we show the schema B 6 +~ B B 8, of which the I images of L9 are
instances. This is just 8an[6] = ean[6] an[6an[6]], for which it will suf-
fice to see n[8] » n[8am[8]]. Now 8 + (n[8] ~ 8an[8]) is a tautology, so by
(1)

n[e = (n[6] + (6an[e]))].
Thus using (iii) n[6] - m[w[8]] and several instances of (ii), we obtain the
desired result.

For 1L.10 we show the schema

(a) B_¥x6 + ¥xB 6.

(Ihis will satisfy the hypotheses (a} of 3.7). The schema Bﬂvxe - \'xB“{Ey

(x =vy) =~ 6) follows from this using a tautology and the distributivity of B,
over + (from the proof of L7). Now (a) is just

vxo A w[¥x8] + ¥x(8an[8]),
for which it will suffice to see
n[¥xe] » n[e].

Since ¥x0 » 8 is a logical validity, by (i) we have n[¥x8 + 8] , so (ii) gives

the desired result.

LEMMA 3.10. a) Let A include P and satisfy assumption (ii) of Prop. 3. 9%a,
as well as
(i) A o implies A n[o].
Then the I-images of L3 and L6 are provable in A.
Suppose that in addition, A satisfies
(iv) A (8 + n[6]), for all primitive recursive equations 6.
Then the wniversal closures of the 1 images of L11, L12 (the universal ins-

tantiation schemas for terms), are provable in A.
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Before giving the proof, we make the following remark regarding the signi-
ficance of the antecedents of L11, L12,

REMARK 3.11.

a) Because of assumption (i), the antecedent of L12 is always satisfied.
This is because 3y(t = y) is logically valid (classically), and (i) assures
that A -B 3y(t = y).

b) Since the schema Bvx6 + ¥xB6 yield 3xB8 - B3x6 (see the proof of Theo-
rem 2.6 a), the antecedent of L11 becomes 3xB(t = z). This is

z(t = zamwft = 2]).
In view of (iv), it is always satisfied for primitive recursive t.
Proof. We prove the I-images of the conclusion of L11, L12Z,
¥x8 + 8(x/t).
(In case t is a variable, (iv) will not be needed, which will prove part a)).
Now (vx6 + 8(x/t))] = wxol » (e(x/t))L. Since wxe!
the classical instantiation schema, will thus suffice to prove the

- Gl{x!t} is an instance of

CLAIM 3.12. In A we have the closure of (8(x/t))Y+ el (x/t).

Proog. The proof proceeds by induction on the formula 6.
1. © = o atomic. The proof is the same as in the case t = u, u a variable,
which was given in prop. 3.8 for L6; we get (e(x/t])l = BI(x/t}.
2, @~>¢, 18, 3y8 are all easily checked since substitution is a homo-
morphism on these logical operations.
3. B8. Assume for 6, that A I-GI(x/t}H (e(x/t}JI. We are to see that
A —@) (/1) Bo(x/t)]. The L.h.s. of this is (81an[6'])(x/1), i.e.
ol (x/t) A (r[6']) (x/1),
whereas the r.h.s. is
6/t Al (0x/t)T].
Thus it will suffice to see that
o/t « (r[6]) /).
Now by induction, A ol (x/t) (8(x/t))L. Using (i)-(iv) we can apply Prop.
3.9 b), and Prop. 3.7 to obtain any B closure of this in A, in particular
A kel avey < (0w .
Hence by (ii) we may distribute 7 to obtain
A Fafelove)] « w[ee/n)T].

Thus it will suffice to see in A that
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w[el/0)] » (r[6o1]) (/).
We shall prove now in A the general
SCHEMA  3.13: n[e(x/t)] = (v[¢]) (x/1).
To do this we need the syntactic

FACT 5.14, If x,w are variables, then P I—[B]()(/w) =

[6(x/w)].

We leave this to the reader to check, but note that in the case of 6 with

one free variable x, it follows from the formalization of

(8(x/w)) (x/n)

n

8(x/n).
Letting
Sub(8,x,w) = 8(x/w),
this is
Sb(Sub(8,x,w,n) = Sb(8,x,n),

so the formalization is

35{%[\'0“’1 ’Vz} ’VZ’V3) N EE(VO,VI ’V3]

which yields on taking v to 8, v, to 3% v, to w, and vy to W

4

(Sub(8,w,w) ,w,w) # Sb(8,x,w)

g

(F0x/w),w,w) = Sb(8,x,x) (x/w)

[o(x/w)] = [8](x/w).

We procced to check the schema 3.13. Now using the abowve fact,

(r[6]) (x/w) = n([8] (x/w))
« 7[¢(x/w)].

In casc t is a variable, this is schema 3.13, so the proof of a) is now com-

plete. In general we have, for w a variable not in ¢ or t,

d(x/t) + Wit = w = d(x/w)),

Ll

w + (n[¢]) (x/w))
w ~ nfe(x/w)]),

(n[eP(x/t) = w(t

n

- yx(t
whercas (using (i), (ii))
i[o(x/t)] = nlww(t = w + o(x/w))];

again using (1) ete. (as in Prop. 3.9b)

(m
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> wilt = w > o(x/w)],

sp by (ii)
> ([t = w] + nloe(x/w)]).
Thus by (iv)
tewo e =],
and it follows that

T[o(x/t)] + Wit = w m[é(x/w)]).
Thus by (1)
mlo(x/t)] » (n[¢]) (x/t).
This completes one half of the proof of the schema. Note that we have used the
computability of t.
For the other half, we use

¥(x/t) = 3w(t
7 [¢] (x/t) + 3w(t

+« Jw(t

waX(x/w)):
waT[¢](x/w)) (2)

waT[6(x,w)])

so that by (iv)
= 3w('n[t = W] A 'IT[¢(X/W)I];

using (i) with a suitable tautology, and (ii), gives
+ 3wt = wa d(x/w)])

so that using tha validity y + 3wy under n, we have by (ii)
+ n[3w(t = wa ¢(x/w))].

Thus applying (i) to (2) with x = ¢
+ 1[o(x/t)]

which completes the proof of schema 3.13, and Lemma 3.10, and hence the check-
ing of the logical axioms under I.

We turn now the arithmetical axioms.

PROPOSITION 3.15. Let A be a theory in a classical language L ineluding
arithmetic, and suppose that A satiefies the Peano axiome. Let m satisfy the
conditions (i)-(iii) of Lemma 3.10a, as well as
(iv) ARSE =w1[S(x) =w],

AFD =w=[0=w].
Then the I images of the wniversal closures of the schemas Al-A3 are provable

in A
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Proog. I takes Al, A2 to themelwes, so no assumption is needed on 7. The
claim 3.12 for t = 0, 3(x) obtains and I, preserves the classical logical sym-

bols, so A3 goes to a formula equivalent to an instance of A3.

This completes the proof of Theorem 3.5a.
Next the satisfaction axioms.

PROPOSITION 3.16. a) For any formula m, the universal closures of the I
images of the satisfaction axioms §1-83 (for the language 1B of arithmetic with
B ) are provable in p*.

b) If m satisfies the conditions
(vi) ‘:',cnt1 (x) nScntL(y] AT(x > y) am(x) + n(y),

(vii) Scntl(x) A g(x) + Tr(x),
then the 1 image of S4 is provable in P

¢) If in addition to (vi) T satisfies
(v) Sent(y) =+ n([Tr(y)] = ¥),
then S5 e also obtained.

Proog. For atomic formulas, Iou =q, soin P

Tm(u) A Tm(v) = T(u2v) = (uzv),
Thus T /|| 19
Tri(u 2 v) < TrI(u = v)
« Tr(u £ v),

and S1 follows from S1 in P'.

52 becomes

Sent (x) = (Tr(i0 Hx) « “ITriox). (n

)
Since Io o = —IIOU, in P we have
d, Ax) = {:Ifox)

Using this and P +-Sent  (x) > Sent; (I;x), (1) follows from S2 in P*. 83 is
proved the same way, formalizing IO(B o) L8 I 6.

h) For the proof of 54 we need the formalization of Claim 3.12. Taking
A =P in that Claim, and confinir;g our attention to the case where 6 has one
free variahble w, and t is a temm n, this yields

For all n, and all formulas 6 with one free variable w,
. . (2)
(3 P e/t e olm.
The proof of (2) may be carried out in P; since (3) may be written as

P —ISh(8,w,n) < Sh(I8,w,n).
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and T, expresses provability in P, the formalization of (2) is
(vii') P Hn(x,w) -+ wo(is‘b(x,w,:) « Sb(Ix,w,z))
as indicated after Lelr;m 3.6. Here Fm(x,w) means for L with B,Tr. At this point
we only need it for L without Tr; for such we get B | By (x) ~I(x) =1 (x),
of course. Now S4 is g ’
En(x,w) + (Tr(vwx) < ¥zTr(Sb(x,w,2))) s
so we must see that F’"{LB] (x,w) +
Tr(ioiwx) - UzTriogﬁ[x,w,z} ]
Now, I Vub = ¥ul 8, so in P, I Wwx = xI x. Thus
Tr(ioﬁwx] - Tr[i'wiox) ,
and using S4 in P*,
“ varEE(on,w,z).

Using (vii'), (vii), and S2,3 in P* gives the result.
c) S5. We shall need the following

LEMMA 3.17. a) If 6 is any formula of the language L of Peano avithmetic,
then in P’ we have the closure of Tr[B] 8.

b) In particular, restricting © to sentences gives: for all sentences o of
L, P (Tr(8) < o).

c) The proof of (b) can be carried out in P, so that if m expresses prob-
ability in P (or something stronger)

P kvy(Sent, (y) » n([Tr(y)] < y))

Proof. These are standard results so we indicate the proof only briefly.
a) Proved by induction on 8. The notation [68] extends to temms t. For atom-
ic formulas use [t = s] = ([t] # [s]) and den([t],t). For the other cases use

[ 18] = = [8], etc., and the corresponding clause of the satisfaction axioms.
b) is immediate from a).
c) Note that

Tr(Er] = (TT[)’) ] {Y/a) = Sb (Tr(YJ Y sUJ ]

so its formalization is Sb(TT(y),¥,y) = [Tr(y)].

Proof of 3.16. The new satisfaction axiom is

Sent(x) + (Tr(Bx) < BTr(x)),

so under I it becomes
Sent(x) + (Tr(I_Bx)« B Tr(I x)). (1)

Here Sent(x) expresses "is a sentence in the language 1B of arithmetic with



B", but of course without Tr. Now

]

IBo=1o0an[Io] =10 (T o)

"

[oo nSb{r,y,lOUI.
Where y is the free variables of 7. The formalization of this is
Sent(x) + iDF—ix 2 ioxf\ ﬁ(ﬁ,)},fox] ;
which is provable in P. Thus we have, suppressing the antecedent Sent(x),
Tr(1 Bx) < Tr(I xA Sb(m,y,I x)) (2)
so that by S82, S5 in P+,
- 'I'l‘[ioxj A Tr[gﬁ[ﬁ,}_o’,ioxﬂ i
Now
Bﬂ'l‘r(fox] - Tr(iox] A ﬁ[Trfox] . (3)
so to check (1) it will by (2), (3) be enough to check
Tr(ﬁ(%,)},ioxl ) - n[Triox] A
Now in P

Sent (x) > SetL[ix) .

B
0 it will suffice (by iniiaitiating iox for y) to see
Sent, (y) + (Tr(Sb(7,¥,y)) « n[Tr(y)]),
i.c., suppressing the antecedent, and noting [n] = Sb(m,y,y)
Tr[n(y)] < n[Tr(y)]. (€3]

The result now follows easily from Lemma 3.17. By 3.17a,

Tr[n(y)] < ©(y).
While hy 3.17¢,

T([Tr(yn] = y). (5)
Thus by (vi) (modus ponens for m),
7[Tr(y)] = n(y). (6)

Comhining (5), (0) gives (4) and hence completes the proof of 3.16.

This completes the proof of Theorem 3.5b.
We now turm to CT(Bw).

PROPOSITION 3.18. If 1 satisfies the condition (vi) (vii) of Prop. 3.16
b, ap wll as

(viii) P Sent, (x) A m(x) > Tr(x),



then the I image of CT(Bw) is provable in pt.
Proog. The I image of CT(Bw) is

3e¥x[Bwl (x) + Uex),

Jeyx(Sent(x) a Tr[iDEx} +« Uex).
As before (in 3.16¢), this is

Bu' (x) + Tr(iox) A Tr(?%l_)(v_r,)_(,fox])
+ Tr(iox) A ﬂl:io)f) .

But since 7 is a correct notion of proof (viii) ,
“ (I x).
Finally, since m is an r.e. formula, there is a Turing machine e which enumer-

ates the arithmetical sentences o such that P* o; since I is recursive, it
is evident that {o|P" o To} is also. I.e. that

3e\rx(1r(ioxj A Sent{LB) (x) + Uex),
so that
3e¥x(Bwl (x) « Uex)
as desired.
This completes the proof of Theorem 3.5.

It is now easy to prove Corollary 3.2. We must see the schema BCT for for-
mulas 6 of the language of BP (i.e. without Tr).
Proof of 3.2. Suppose that ¥x(6 -+ B8). Then
6+ BO
+ BTr[6]
« Bw|[6]
« Ule,[e]).
Now this just says that the inverse image of a certain r.e. set (Bw) under the
recursive function f(n) = 8(n) is also r.e. Indeed, there is a primitive re-
cursive function g such that if e is the Turing machine for a set E, g(e) will
be the Turing machine for f ' (and moreover, one can get g effectively from
f). Thus we have in P,
ve (vx(U(e, Fx) < U(ge,x)), (m
so that
ve [vx(Bw(x) < Uex) =+ yx(Bw(Ex) « U(ge,x))] .

Since £(x) = [8(x)], this completes the proof of Corollary 3.2.
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To complete the proof of Theorema 3.1, we extend the definition of I to the
language of (BP) el using for m(x) a formula expressing Y ext Let I, be the
previous definition and put
Tri(x) = Tr,(i,(x).

++

We show that I interpretes (BP) = + CT(Bw,).
Prop. 3.8 requires the addition clauses (obtainedby replacing Tr by Tr, and

I, by Iy):

[1r, (0 /] Y = [1r, (e/w)]t = Tr 1 (t0/w)),

[’l‘r+[1}]I[x/u)

u

[Tr+(i1[r)1 (x/u) = Tr+(i1t(x/u)].
In Prop. 3.16, the first new satisfaction axiom is s1':

Tm(u) + (Tr,Tru+ Tr(u)),
which goes to Tm(u) -+

TrJi{T‘“ruJ - Tr(io(u)} :

Now
TrI(x} =Trl_(x),
so in P
I Trx) = (Tr Tox)
Thus

Tr+(I1T_ruJ - Tr+(ﬁi0u)
- 'Fr+|Triou]
- Tr(]ou).

The new axioms 52+, $3%, s4" are the same as the old with Tr replaced by Tey;
and the antecedent syntactic conditions (Fm,Sent) chaged accordingly. Thus the
proofs are the same with I, replaced by L. The proof of ss* requires use of

P Tr,[6]« 6 ,

and the various formalizations of Lemma 3.17. The proof is again the same,
replacing Tr by Tr, I by I,. The proof of CT(Bw,) requires the correctness
of =, which is now provable in P+++, but is otherwise the same. Theorem 3.1

now follows by the same argument as in the proof of 3.2.

we would like to make a few remarks to indicate the nature of the diffi-
culty in extending these results to obtain conjectures 3.la, 3.2a.

The situation now is that we have T consistent (where T is (BP)), T l-a,and
we would like to show the consistency of TU{Ba}. However, it is certainly not
truc in general that TU{Ba} is consistent. For example, if a is (y A71By),
then Ba (and hence TU{Bal}) is inconsistent:
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B(yA T1By) » ByAB 7By
+ Bya 71 By.
Now CT(Bw) certainly implies that there are sentences such as ¥; in fact BCT
implies for some arithmetical @
Bie(8(e) A TIBB(e))
so that
de(6(e) A T1BB(e))
is provable in T.

We remark that one obvious way to try to interpret BCT(Bw) is to use the
same method used for CT(Bw) but to replace w[g] by n[a + 6] = 7 [6]. It tumns
out that no such interpretation will have BCT(Bw). In fact, if 7 is any reaso-
nable proof predicate (i.e. one satisfying Gidel's second theorem), then de-
Jongh and the author have observed that BCT(Bw) fails in the L&b interpretation
using .

To see this, consider the following schema, which is a consequence of BCT:
1) Blewx(Be(x) « U(e,[s8(e)])),
where 8(x) is a formula with one free variable x. This is equivalent to BCT(BO),
since the correspondence x '+ [8(x)] may be assumed to be 1-1 recursive. Apply
the fixed point theorem to obtain 8(x) an arithmetical formula (no B's, no
Tr's, etc.) so that

2) B¥x(8(x) « U(x, [6(x0)])).

Now we also have in general

3) Bvx(Be(x) » 8(x)).

Thus taking x to be e, we have Bie¢(e), where ¢(e) is the conjunction of

1') B (e)+ U[e,[e(e]])
2') 8(e) «7U(e,[8(e)])
3') Bo(e) + 6(e).

Since 8(e) A T1B8(e) is a tautological consequence of 8(e), we thus have

4) B3le(6B(e) A IBA(e)).

Consequently, any interpretation which makes (1) come out true will also have
(4). In particular, if Bé is interpreted as 8 (6] (which, since 6 is arith-
metical, will be the case for any Lob interpretation], the truth of 4) gives

r[3e(6(e) o 1(8(e) am[8(e)])]
E Je(8(e) a Irlele)])

= Je(In[e(e)])
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£ 3x An(x)
? Con

T['

in other words, Gddel's second theorem fails for m.
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