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Abstract 

The relative expressive power of a sentential operator U]o~ is compared to that of a syntactical 
predicate L('c~') in the setting of first-order logics. Despite results by Montague and by 
Thomason that claim otherwise, any of the so-called CCmodal" logics of knowledge and belief 
can be translated into classical first-order logics that have a corresponding predicate on 
sentences. 
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In most logics of knowledge and belief there is a symbol in the language that  is intended 

to be interpreted as "knows" (or "believes"). In first-order logics there is some flexibility 
regarding the syntactic type of this symbol, namely the choice between a sentential operator 

symbol, say K,  which would be used like the negation operator ~ to prefix a formula (e.g, 
K ( P  D Q)), and a predicate symbol Know, which would be used in the standard first-order 

manner to prefix a term that  is the name of a formula (e.g., Know('P D Q')). We would like to 
report on our findings concerning the relative expressive power of sentential operators versus 

these so-called syntactical predicates and the apparent difficulties in consistently formalizing 

the predicate approach. 
A glimpse at the literature on logics of knowledge and belief reveals a diversity 

of approaches, with the expected split between operators and predicates: Hintikka [2], 
Levesque [6,7], and Konolige [4] are among those who have put forward first-order log- 
ics extended with sentential operators for knowledge and belief; McCarthy [8], Creary [1], 
Moore [11], Konolige [3], and Perlis [14], are just some who have proposed first-order logics 
of knowledge and belief that employ one or more predicates on sentences (sometimes in the 
guise of concepts as pointed out by McCarthy in [8]). Although this is not the place to delve 

into the reasons for the split, we note that  the issues touched on in this paper may have been 
contributing factors. 1 

When discussing the translation (or conversion, or reduction) of a sentential operator to 
a syntacticM predicate, it is not immediately clear what properties must be preserved. In 

the context of the modality of necessity, where the symbol [] is the usual necessity operator, 

Quine has stated that  

there would be comfort in being able to regard 'E2' as mere shorthand for 'Nec' and a 
pair of quotation marks--thus '[](9 is odd)' for 'Nec '9 is odd' '. (Quine, [16, p. 268]) 

This is completely analogous to the way a sentence involving the connective ~_ can be un- 
derstood, macro-style, as shorthand for one expressed entirely in terms of the connective 

symbols D and A. Implicit in Quine's desideratum is the property that iterated neces- 
sity operators should be read in a like fashion-- thus  []~(9 is odd) would be short not for 

Nec('[](9 is odd)'), but rather Nec('Nec('9 is odd')'). 
Let us tentatively adopt just such a reading of [] and see how the modal laws should be 

reinterpreted. For simplicity, we will refer to the language with the [] symbol as the "modal" 

language, and the other one as the "classical" language. Further, we will use L as the name 
for the unary predicate symbol that appears in the classical language but not in the modM 
one, chiefly because what we have to say has nothing to do with necessity or any other specific 

modality. 2 
One of the axiom schemata of the standard epistemic and alethic modal logics is 

1Moore certainly thought so: ~The main reason that modal logics are generally favored over syntactic 
methods, however, is that there are severe difficulties in formalizing the syntactic approach. ~ [11, p. 216] 

2In fact, the main application ir: AI of our results will be for knowledge and belief. 
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E]O~ ~ Oe, 

where c~ is a schematic letter ranging over all sentences in the modal language, For example, 
if P and Q are nullary predicate letters in the modal language, the sentence 

[](P ^ DQ) (P ^ QQ) 

is an instance of tha t  axiom schema. When, following Quine, we reinterpret this as shorthand, 
we see it as an abbreviation for the sentence 

L('P A L('Q')') D (P ^ L('Q')). 

Using Quine's quasi-quotation to more correctly reflect the fact that  a is being used as a 
schematic sentence letter, we can re-express the above schema as 

LCr  1) 

But the key question here is: Over which sentences should a range? The modal language? 
The entire classical language7 Or perhaps just a subset thereof? 

A sentence schema is best viewed as an abbreviation for a set of sentences in a language; 
convenience aside, it is the set that  matters, nothing else. When trying to translate a schema 

in one language into one in another language, the schema should,first be expanded into the set 
of sentences that  it describes, then each of these sentences should be translated individually, 

and finally one can try to find a convenient schematic description of that resulting set. The 

other way of approaching it - -  simply translate the non-schematic portion of the schema and 

consider all schematic letters as ranging over sentences in the target language--need not 

always lead to the correct result. 
If we carefully follow the steps mentioned above, the schema in the modal language 

expands to a particular (infinite) set of sentences in the modal language, and then each of 

these sentences is seen to be shorthand for some sentence in the classical language. The 

corresponding classical schema must cover all and only the sentences in this set. Note, 

however, there are some sentences in the classical language that  have no shorthand equivalent 

in the modal language. For example, 3x L(x) has no short form, because of the occurrence 
of a variable in the argument position of an L predicationfl In other words, our re-reading of 

sentences in the modal language only yields a subset of the classical language. Call a sentence 
regular if it belongs to this subset. Since the regular sentences are a proper subset of the 
classical language, and since every sentence described by a modal schema will correspond to 

a regular one, the correct re-interpretation of any modal schema will necessarily be a schema 

whose schematic letters range over just the regular sentences in the classical language. The 

correct re-reading of the schema: 

U]c~ D o~ for all sentences a in the modal language, 

'Recal l  that modal sentences may not use L (it~s not a symbol in the modal language) and, as will be seen 
later, even formulas like Bx Oct will never glve rise to formulas that have z in the initial argument position 

of L. 
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is, therefore, the schema: 

L(fa 1) D a for all regular sentences c~ in the classical language. 

With this as our basis, we will show that there can be syntactical treatments of modal 

operators of the form Quine has wished for all along. 
The remainder of this paper is organized as follows. After laying down our background 

assumptions in the next section, we review Montague's and Thomason's results. The matter 

of making precise our notational games is taken up in the section following that, along with 

proof that the simple way of deriving syntactical treatments of arbitrary sentential operators 
is consistent. We are then in a position to apply this technique to the standard modal logics 

to obtain classical first-order logics with all of the properties one might reasonably expect. 

Montague's and Thomason's negative results will be seen to apply only if the modal axiom 

schemata are inappropriately translated into ones in which the schematic sentence letters 

range over the entire classical language. We conclude with some suggested directions for 
future research. 

Terminology and Nota t ion  

We assume throughout that the common base language will be a first-order logical language .~ 

with logical symbols ~, D, and V, and replete with predicate, function and constant symbols. 4 

The Greek letters a, 8, and "7 will be used for open formulas; ¢, ¢, and a will stand for 
sentences (closed formulas); S and T will stand for sets of sentences. 

£ (~)  will be the "modal" language obtained by augmenting ~g with the unary sentential 
operator ~,  and ~(L) will be the classical language obtained from ~ by adding the family 

of (n + 1)-ary predicate symbols Ln, for each natural number n. 5 When we aren't concerned 
with quantifying into modal contexts, we'll often use the symbol L as a synonym for L0. (In 

a later section we will suggest how to get by with a single 2-place predicate symbol.) 

For the sake of brevity, we have focussed our attention on languages with one extra unary 

sentential operator. There is no difficulty in adapting our techniques to sets of operators of 

arbitrary arities. 

Because we will be considering syntactical treatments of sentential operators, we need 

to be precise about what this involves. As we understand Quine and Montague, such a 

treatment necessarily involves a predicate of sentences as notational forms. These syntactical 

predicates would be prefixed to a term that serves to name some formula (or term) in some 

(perhaps different) language. The only syntactical predicates that we will encounter are the 

Li, which are found only in the language/~(L). We will require that our languages have a 

collection of closed terms that serve as names for each of the formulas and terms of/~(L). 

These terms are called the encoding terms for .g(L); the encoding term corresponding to the 

formula a will be written roll. Distinct formulas will have distinct encoding terms. Although 

4Other logical symbols like V and 3 can be introduced as abbreviations in the customary manner. 

SQulne [16] calls L a multiflrade predicate symbol. 
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we place no other constraints on the encoding scheme, we do wish to point out that  the 

kind we have in mind would not employ an infinite number of distinct function and constant 

symbols. This is because we wish our systems to be able to express the s tandard notions of 

elementary syntax [10], including the functions for forming, dissecting, and categorizing the 

formulas of the language being encoded. 6 The encoding scheme plays only a background role, 
remaining invariant throughout  the presentation. 

Translation functions that  map formulas of one language into formulas of another play a 

key role in this investigatiom Embeddings are one kind of translation function that  are of 
fundamental  importance. 

D e f i n i t i o n  Let ~1 and ~2 be languages, both of which use at least the connectives of 
first-order logic. A translation function ¢: ~1 --~ ~2 is an embedding of ~1 in ~2 iff 

(i) o maps atomic formulas to themselves; i.e., a ° = a. 

(ii) ~ distributes over the connectives of first-order logic; i.e., (~a)  ° = ~ a  °, 
(a  D fl)o : ao D flo, and (Vxo~)°= Vxa °. 

(iii) c~ ° has the same free variables as a. 

In other words, an embedding is a homomorphism from L1 to •2 except tha t  it is almost 

entirely unrestricted in its t reatment  of non-standard symbols of g l ,  such as the operator D. 

The generalization of theoremhood to include modal languages is defined in terms of 

embeddings. For the remainder of this section, unless otherwise indicated, the source language 

~1 can be either ~([])  or ~(L),  with ¢ E ~1 and S c ~1; the target language ~2 will always 
be ~(L).  

D e f i n i t i o n  ¢ is an eztended theorem ifffor every embedding o of ~1 in ~(L),  ¢o is a theorem 
of first-order logic. 

Clearly, if ~1 does not contain any non-standard symbols, the only embedding possible is 

the identity function. The extended theorems of ~ (L) are, therefore, precisely the theorems 
of first-order logic. 

On the other hand, ¢ is an extended theorem of the modal language ~([])  iff ¢ with 

every subformula []j3 replaced by any formula 7 of ~(L) with the same free variables is a 

theorem of first-order logic. Note, however, that  not  all substitution instances of theorems of 

first-order logic will be extended theorems. For example, while (Vx o~ D a(x/t)) is a theorem 

of first-order logic for any a,  a substitution instance of it, 

Vx[~P(x) D DP(t), 

6The reader will not be lead astray if he thinks of ./~ as being the language of elementary number theory, 
~, with non-logical symbols =, s (successor), +,. ,  and 0. For a particular theory, take Robinson's finitely- 
axiomatized arithmetic theory Q [18], and understand the encoding terms to be a subset of the numerals 0, 
80, 880, etc., set in correspondence with the terms and formulas of .~(L) via some sort of G~:lel numbering 

scheme. 
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is not a theorem of quantified modN S4. Fortunately, it is not an extended theorem according 

to the above definition. 
The notions of derivability and consistency can also be defined in a way that is compatible 

with first-order logic while, at the same time, being applicable to modal languages as well. 

Def in i t ion  ¢ is derivable from S (written S t-- ¢) iff ¢ follows from S and the extended 

theorems of ~1 by modus ponens None. 

Since the set of extended theorems is itself closed under modus ponens, k ~ ¢ iff ~b is an 
extended theorem. Moreover, since modus ponens is the only rule of inference, the Deduction 

Theorem holds. 

Def in i t ion  S is inconsistent iff S i- ¢ for every ¢ in ~1. 

When Zl = Z(L), these definitions coincide with the usual ones. For 1~(E3), the above 
definitions automatically restrict our attention to modal systems that  are "upward compati- 

ble" with first-order predicate calculus. While this immediately rules out some systems, such 
as intuitionistic and relevance logics, it sanctions the usual modal theories. For example, the 

set of theorems of quantified modal logic S5 is consistent according to the above definition. 
In addition, we are allowing for very different sorts of modM theories. Although air-tight con- 
straints are imposed on the interpretation of the connective symbols occurring outside the 

scope of a [] operator, the interpretation of the [] operator itself and, therefore, everything 

within its scope is almost totally unconstrained. The [] operator can be made as referentially 

opaque as desired. For example, 

{Vx []P(x), ~Vy E3P(y) } 

is consistent. In this case the ' [] '  could be read as "uses the variable 'x '  freely '~. 

R e v i e w  o f  M o n t a g u e  a n d  T h o m a s o n  

The first result, due to Montague [9], sets its sights on syntactical treatments of the standard 

modal logics that  include the axiom of necessity, such as T,  $4, and 85. In this theorem, 

and the one following it, the open formula a with free variable x should be viewed as a 

generalization of the atomic formula L(x). 

T h e o r e m  1 (Montague, Theorem 1) Let .4 + be a first-order language that  contains at least 

the non-logicN symbols of elementary number theory. Let T be a set of sentences of .4 + and 

c~ a formula of .4+ with one free variable. Suppose that the following conditions are met, for 

all sentences ¢ and ¢ of .4+. 

(i) T t-- Q, where Q is the single axiom for Robinson's arithmetic system Q, 

(ii) T I- a(r¢ 1) ~ ¢, 

(iii) T e 

(iv) T D ¢1) D D 
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Cv) r if ,/, is a logical axiom. 

Then T is inconsistent. 

P r o o f :  The proof involves a "self-referential" sentence of the form ~r _= a(rQ D ~al) ,  which 
is shown to be paradoxical. Refer to the original paper for details. | 

From this result Montague reasons as follows: 

Now what general conclusions can be drawn from Theorems 1-47 In the first place, 
observe that the schemata in conditions (ii)-(v) of Theorem 1 are provable in the well- 
known systems of first-order modal logic with identity.... These schemata would, more. 
over, be provable in any reasonable extension of predicate logic of S1, the weakest of 
the Lewis modal calculi. Further, it is not unnatural to impose condition (i): modal 
logic, like ordinary logic, ought to be applicable to an arbitrary subject matter, including 
arithmetic .. . .  

Thus if necessity is to be treated syntactically, that i8, as a predicate of sentences, as 

Carnap and Quine have urged, then virtually all of modal logic, even the weak system S1, 
must be sacrificed. (Montague, [9, p. 2941; Italics added) 

Theorem 1 obviously applies to standard approaches to idealized knowledge (e.g. ,  Hin- 
tikka [2]), since they share the same basic axiom schemata with the modal logics. But logics 
of idealized belief, for which the axiom schema corresponding to condition (ii) is inappropri- 
ate, are not covered. With  the close ties between knowledge and truth, and given Tarski's 
famous theorem [17] on the non-definability of a truth predicate, ~ one might always hope that  
belief predicates would not be susceptible to paradoxes of self-reference. However, as the next 
theorem due to Thomason [19] shows, logics of idealized belief--  notably weak $ 5 - -  are also 
in jeopardy. 

T h e o r e m  2 (Thomason, Theorem 2) s Let 4 + be a first-order language that  contains at 
least the non-logical symbols of elementary number theory. Let 2" be a set of sentences of 
.~+ and o~ a formula of .~+ with one free variable. Suppose that  the following conditions are 

met, for all sentences ~ and ~b of 4 +. 

Ci) 2" 1) D 

(ii) 2" I- acracr~ l) = ~1), 

(iii) 2" I- ca(rib1), if,/, is a logical axiom, 

Civ) 2" I- o~crff = ~1) = cacrffl) = acre, l)). 

Then for all sentences ~b E 4 +, 

(v) 2' I- oL(rq 1) ~ a(r~ 1) 

where Q is the single axiom for Q. 

7In fact, Montague considered his result to be a refinement of Tarski's. 

SWith some minor changes: no relativlzatlon, sentences in place of arbitrary formulas, and a bug fix. 
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P r o o f :  Similar to  the proof of Montague's theorem, this proof involves a paradoxical sentence 

of the  form a ~ (Q D c~(r-~a ])). Refer to the original paper for details. I 

Thomason concludes: 

Though this theorem does not show T to be inconsistent, it does establish that T 
would become inconsistent upon the addition of [~(FQ1 )] and _~(r¢1 ), for any formula 
¢. This seems to show a coherent theory of idealized belief as a syntactical predicate to 
be problematic. {Whomason, [19, p. 393]} 

Thus the syntactical predicate approach to knowledge and belief appears to be seriously 

f l a w e d - - a n d  in a way tha t  the operator approach is not. In what  follows, we will show that  

these appearances are indeed deceiving and are based on a misconception of what  should be 
required of a syntactical t rea tment  of modality. 

A Translatlon-Based Syntactical Treatment 

In this section we will define a particular embedding * from formulas of ~(C]) to formulas 

of/~C L) and show that  this mapping preserves the important  property of derivability. That  

is, for all T C_ .C([]) and a e /~( [3) ,  T ~ a iff T* ~- a*. We will see that  * maps /}(½) to a 

subset of L(L). Consequently, sets of sentences arising from the proper translation of sets of 

modM sentences will only dictate how the predicate L should treat a subset of ~(L),  while 

remaining completely neutral  on the rest. 

T h e  T r a n s l a t i o n  F u n c t i o n  * 

We introduce a translat ion function from the modal language to the classical one in order to 
make precise the  idea of reading [] as shorthand for L and a pair of quotat ion marks. 

D e f i n i t i o n  The translation function * is defined to be the embedding of/~([3) in/~(L) with 

the  property 

= 

where Zl, x2 , . . ,  x ,  are the free variables of the formula c~, listed in some predetermined, fixed 

order. 

• is clearly 1-1, since L,~ ~/~([] )  and distinct formulas have distinct encoding terms. 

De f in} t l on  a E /~(L) is regular iff c~ -- "T* for some '7 E ~([]).  In other words, the set of 

regular formulas is just  •([])* (see Figure 1). 

Reductions 

For a mapping such as * to be considered to be a reduction of the modal operator to a 

syntactical predicate, it must, at the very least, preserve derivability. 



z(n) 

z([]) 

T 

_ _ _  

\ 
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Figure 1: The Regular Formulas of Z(L). 

D e f i n i t i o n  A translation function o: L1 ~ L2 is said to be a reduction of S C Lx to T ~ £~ 
if, for all ¢ e Zl ,  

See < ~- TI-4, °. 

Morgan 's  syntactic approach [12] provides a good example of how to reduce arbitrary 

logics to classical first-order ones. Note, however, that a reduction need not preserve any 

aspect of a sentence's structure. On the other hand, we are interested in the embedding *, 
which observes all of the normal connectives, mapping -~ to -~, D to D, etc., and also preserves 

all atomic formulas. This is because, following Quine, we wish to re-interpret the [] operator 

somehow as a predicate, but leave the rest of the modal sentence unchanged. 

More generally, we are also interested.in translation functions that  can be used to reduce 

not just  a single set of sentences but all such sets. 

D e f i n i t i o n  A translation function o: ~1 ~ ~ is said to be a genera/reduction of ~1 to ~2 

if for every T _c ~1, o is a reduction of T to T ° = {~o I ~ E T}. 

L e m m a  3 General reductions preserve consistency. That is, if o is a general reduction of ~1 

to ~2, then for all T C ~1, T is consistent iff T ° is consistent. 

P r o o f :  T_C£1incons i s ten t  ~ U ~ ¢ f o r a l l ~ b e ~ l  "~ Y T °~-¢°  ~ T o [ _ ( a A ~ a )  ° 

for all a -~ ~ T ° ~ a ° A --~a ° *' ~- T ° inconsistent. | 
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P r o p e r t i e s  o f  * 

L e m m a  4 For any ¢ E 2~(U]), if ¢o is satisfiable for some embedding o of ~(E]) in ~(L), then 
¢* is also satisfiable. 

P roof :  If ¢o is satisfiable, then it is satisfiable in a term model M = (T, I )  whose domain 
7" includes all of the closed terms of ~(n). Define M* = (T, I*) be the first-order model 
structure for L (L) with domain of interpretation T and agreeing with M on the interpretdtion 
of all non-logical symbols except (n0, L1,...}; i.e, let I * ( P )  = I ( P )  for each predicate symbol 
P of L. For each n :2 0, define 

I * ( L n )  = {( ra* l , t l , . . . , tn )  E T n+l [ a e ~([2) with free variables X l , . . . , xn  

andM,, .~l  ..... z ,  .-,,,...,,. ~ (D-)°}. 

We show by induction on the structure of any formula ¢~ E ~(E]) that,  for all variable 
assignments v~ 

M , v ~ a  ° ¢=~ M*,vp,~*. 

There are five cases: 

(1) a is atomic. It follows immediately from the fact that n ° = a* and that  M and M* 
agree on the interpretation of all predicate symbols and terms of ~ (i.e., exclusive of the Li 
predicates). 

(2) a = Dig. Let X l , . . . ,  Xr~ be the free variables of ft. 

M,v b (~ig)° <:::::" (rig*~,,,(~),...,,.,(~,O) e z*(L,O (since ,~*= ig* i~ ~ = ig) 
,'I"-I'. M*,v ~ L.(rn*l,xt,...,Zn) 
• ~ > M*,~(12f l)*.  

(3) a = - Z .  

M,~ p (-~ig)° 

(4) ,~= Z ~,~. 
(5) ~ = w ft. 

M, v ~ (Vz fl)* 

<: b" M , v ~ f l °  

• ~ ~- M*,,,~fl*C=(-¢)*). 
Similar to the preceding case. 

4- -4 -  

-4 b- 

M, v ~ Vzfl ° 
M, u~ ~ flo for all t e T 
M*, u~ ~ fl* for all t E T 

M*,,,  ~ Vx ig* (= (Wig)*). 

Thus, for all a c .C(~2) and all assignments v, 

(by the induction hypothesis) 

(by the induction hypothesis) 

M , v ~ a  ° 4 ~ M * , u ~ a * ,  

| 
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Lemn~a 5 For all ¢ G ~(O), F ¢ ~ F ¢% 

Proof :  (:=~) If F ¢ then ¢ is an extended theorem of Z(D). Therefore, by the definition of 
extended theorem, F ¢o for every embedding * of L( • )  in £(L), of which * is included. 

(.¢=) If ~ ¢ then ~b is not an extended theorem. So, ~ ¢o for some embedding o. By first-order 
completeness, 7¢ ° is satisfiable. By Lemma 4, ~¢* must also be satisfiable. Therefore ~ ¢* 
by first-order soundness. | 

T h e o r e m  6 * is a general embedding reduction of £(D) to ~(L). 

P roof :  Take any T _C ,/~(~) and any ¢ e Z(D). Then 

T ~ ¢ ~ t" al D- . -  D ak D ¢ for some a l , . . . ,  ak E T 
"~ ~" F- (al D a2 D . . .  D ak D ¢)* 

< -~- T*i"¢% 

Hence * is a general reduction of ~(~)  to Z(L). | 

(by Lemma 5) 

Montague and Thomason Revisited 

By Theorem 6, given any consistent set of sentences over the modal language £(D) one can 
always reduce it using * to a consistent set of sentences of ~ (L) in which the role of the extra 
sentential operator is played instead by a syntactical predicate. This treatment is entirely 
consonant with the systematic reading of the operator [] as shorthand for the multigrade 
predicate L and a pair of quotation marks that Quine has countenanced. Applied to a 
genuine modal theory such as $5, one obtains a classical first-order system that rightfully 
deserves to be considered as a syntactical treatment of modality. 

But how, then, are we to reconcile this with Montague's result, which seemed to show 
that syntactical treatments of modality are not possible? The answer is quite simple. Notice 
that in conditions (ii)-(v) of Theorem 1, which are supposed to be the predicate counterparts 
of the modal theorem schemata (•¢ ~ ¢), O(O¢ ~ ¢), etc., respectively, are schemata with 
¢ and ¢ ranging over the entire classical language. These conditions are overly stringent. As 
mentioned earlier, the correct predicate counterparts of the modal schemata are the classical 
schemata (ii)-(v) with ¢ and ¢ ranging over jus t  the regular subset of the classical.language. 
As the following result illustrates, by restricting ¢ and ¢ in conditions (ii)-(v) to be regular, 
the claim of inconsistency no longer follows. This means that the irregular sentences are 
indeed the source of any inconsistencies (a stronger claim than the simple observation that 

Montague's pro•f employs irregular sentences). 

N o n - T h e o r e m  7 (cf. Theorem 1) Let ,4+ be a first-order language that contains at least 
the non-logical symbols of elementary number theory. Let T be a set of sentences of .4+ and 
o~ a formula of .4+ with one free variable. Suppose that the following conditions are met, for 

all regular sentences ¢ and ¢ of ~+. 
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(i) T b Q, where Q is the single axiom for Robinson's arithmetic system Q, 

(ii) T ~ a(r¢ t) ~ ¢, 

(iii) T e a(ra(r¢ 1 ) ~ ¢1), 

(iv) T U ¢1) 

(v) T t- a(r¢l) ,  if ¢ is a logical axiom. 

Then T is inconsistent. 
C o u n t e r e x a m p l e :  Let S _C A(E3) consist of the theorems of the modal system $5 together 
with the single axiom Q of Robinson's arithmetic. S is consistent since it is satisfiable in 
a suitable Kripke model with arithmetic. For ~q+ use A(L), for vt use the open formula 
Lo(x),andlet T = S*. Condition (i) holds since Q = Q * a n d Q E  S. (E]a ~ a) E S for 
every a E A(E3), because this is a theorem schema for $5. Hence S* k- L0(ra .1) D a* for 
every tr E A(E3); i.e., S* F c~(r¢ 1) D ¢ for every regular ¢ E A(L). Similarly, conditions 
(iii)-(v) follows in virtue of the corresponding properties of $5. By Theorem 6, * is a 
general reduction, which are always consistency preserving by Lemma 3. So S* is consistent, 
providing a counterexample to this slightly modified statement of Montague's theorem. I 

Similar considerations apply equally well to Thomason's result. 

N o n - T h e o r e m  8 (cf. Theorem 2) Let A+ be a first-order language that contains at least 
the non-logical symbols of elementary number theory. Let T be a set of sentences of A + and 
c~ a formula of ~+ with one free variable. Suppose that the following conditions are met, for 
all regular sentences ¢ and ¢ of A +. 

(i) T F a(r¢ l) D a(ra(r¢l) l) ,  

(ii) T F- a(ra(r¢ l) ~ ¢1), 

(iii) T F a(r¢ 3 ), if ¢ is a logical axiom, 

(iv) T t- a(r¢ D ¢1) D (a(r¢ t) D a(r¢l)) .  

Then for all sentences ¢ E A +, 

(v) T i- a(rQ]) D 

where Q is the single axiom for Q. 
C o u n t e r e x a m p l e :  Use the same counterexample as in the preceding non-theorem. | 

W h y  it W o r k s  

Non-Theorems 7 and 8 indicate quite clearly that the restriction to regular sentences makes 
a significant difference. What is happening is this. Both Montague's and Thomason's proofs 
rely on the existence of fixed points for certain formulas in the language. In particular, 
Montague's proof requires that  there be a sentence 4 satisfying T I- ¢ ~. a(rQ o -~¢~). The 
existence of such a fixed-point sentence ¢ follows from the Fixed-Point Theorem (a proof 
appears in [10]). The particular fixed point ¢ whose construction is given in his proof has 

the form 
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wC = C8C , ] D 1 D vy C6C , ) D 

where 6 is a (regular} formula with two free variables. The important thing to note is that 
this ¢ is not a regular sentence because it contains the subformula L(y) (= ~(y)). Similarly, 
Thomason's Theorem 2 relies on a fixed point ~b such that T F- ¢ _~ (Q D a(r-~¢l)), and, 

again, the ~ constructed would not be regular. Furthermore, no regular sentence could be 
used in place of these ~b sentencea. By restricting our attention to the regular sentences we are 
failing to provide axioms that apply to those fixed point sentences upon which their results 

hinge. 

Other  Cons iderat ions  

C o m p a t i b i l i t y  w i t h  F i r s t - O r d e r  T h e o r i e s  w i t h  E q u a l i t y  

Note that if T is a modal theory with a built-in equality predicate, it need not be the case that 
T* be compatible with first-order predicate calculus with equality. In particular, T might 
confuse the encoding terms; e.g., T F- ra*l = r~a*l for some a. Then, even though r~*l and 
r~a*l are distinct encoding terms and the sentence (Da A ~[D-~) is consistent, T* would be 
inconsistent with the full set of theorems of = applied to L because T* I-- L(ra *~) A-~L(r~a*~). 
To guarantee that  such difficulties do not arise, a restriction must be placed on T to ensure 

that  distinct encoding terms cannot be conflated. 
Assume that  the notion of extended theorem is redefined in terms of embeddings into first- 

order predicate calculus with equality, and that derivability, consistency, etc. are reinterpreted 

accordingly. 

Def in i t i on  T is adequate iff T F/s = t for all distinct encoding terms s and t. 

Robinson's arithmetic system Q is adequate for encoding expressions using a subset of 

the numerals, since Q I- s ~ t for all distinct closed terms s and $. 

T h e o r e m  9 When restricted to adequate sets of sentences, * is a general embedding reduc- 

tion of ~(D) to Z(L). 

P roo f :  A variation of Lemma 4 must be shown to hold. The restiction that ¢ be adequate 
is needed to ensure the existence of a model for ¢o that interprets distinct encoding terms as 
distinct domain elements (being equivalence classes defined over the terms}. Then Lemma 5 
and Theorem 6 go through~ mutatis rnutandis. We will not repeat the proofs here; instead, 

we leave them as an exercise for the obsessed reader. | 

C o m p a r i s o n  t o  P e r l i s '  T r u t h  S c h e m a  

This work has a definite tie-in to the recent work on limited truth predicates. We will discuss 
this briefly and mention how that has a bearing on the finite axiomatizability of syntactical 

treatments of knowledge and belief. 
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Perlis has recently argued [13] that it is overly restrictive to work within a representa- 

tional framework that  precludes any chance of even expressing a statement that is potentially 
paradoxical. After all, we routinely make statements about our own statments, reason about 
the our own reasoning and our relationship with the external world, and so forth. On occa- 

sion we may stumble into a paradox, but we usually react to it more with amusement than 

anything else. 
Perlis has advocated working in classical first-order logic containing a syntactical predicate 

for t ru th  with the ability to explicitly refer to any formula in the language. Beginning with a 
theory T over a language L, he shows how to extend it to another classical first-order theory 

P(T) over the extended language ~(True), True being the suitably-limited truth predicate 

for the full language ~(True). The axiom schema that  is used to extend T to P(T) is 

True(tel ) ~ ¢o for all sentences ¢ E ~(True), (1) 

where Co is a variant of ¢ obtained by performing certain, straightforward transformations 

o n  some of its subformulas (we need not be concerned with the details here). 
Our work relates to his in the following manner. Extend Perlis' base theory T over ~ to 

R(T) over the language Z(D) by adjoining all instances of the axiom schema 

D e  =- ~b for all sentences ¢ E Z(D). 

This axiom schema is obviously consistent; all it says is that [] is a logical no-op. We can now 
translate Z([]) to Z(True) with the embedding that satisfies (De)" to True(re' l);  i .e. ," is 

a minor variation on our * that assumes that there is no quantification into modal contexts. 
It can be shown that  R(T) ® is a proper subtheory of P(T). That is, Perlis' limited truth 

schema (1 / includes all of the sentences that a translation-based schema would contain (i.e., 
all of the regular ones). Indeed, any useful truth schema should handle the regular sentences 

at  the very least. In a sense, R(T) ° is a minimal theory, a standard by which the adequacy 
of other proposals such as Perlis' can be gauged. This is just as one might have expected: 

whereas our concern was to provide a syntactical treatment of modality without falling prey 

to the paradoxes of self-reference, Perlis was going after a limited form of self-reference. 

F i n i t e  A x l o m a t i z a b i l l t y  

As Quine has pointed out in [16], a family of predicate symbols like L~ can always be reduced 
to a single 2-place predicate symbol L~ that  takes a finite sequence of variable-value pairings 
(i.e., an environment/a-list) as its second argument. We would revamp * so that  

(DoO* = L,(ro,*", <<rZll, 2 i>, <rx21,=2>,..., <rz, l, x,>>), 

where xl,  z 2 , . . ,  z~ are the free variables of or. 
Having a finite language is a necessary start if you are to construct a finite axiomatization, 

but it is clearly not sufficient° For people interested in translating standard modal theories, 
one must also attend to problems concerning axiom schemata. Under what circumstances 
can an axiom schema be replaced by a finite set of axioms? We do not have the full answer 
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yet. However, it does appear that  many of the common axiom schemata can be collapsed 
into single axioms. For example, the schema D(~ D ~), when translated, could be rendered 

VxVeregular(x) ~ L.(implies(z,z),e), 

where r e g u l a r  and i m p l i e s  are predicates and functions defined over sentence encodings 
(and easily finitely axiomatized). 9 Unfortunately, a schema like (D~ D ~) cannot be handled 

exactly as above Because a schematic variable appears outside the scope of any D. It would 

appear, however, tha t  such schemata can be handled indirectly via a limited truth predicate, 
like the ones discussed above, in addition to the syntactical predicate being axiomatized. 

Truth predicates, as it happens, do have finite axiomatizations. We hope to be able to report 
on this at a later date. 

Concluding Remarks 

The spectre of inconsistency has always loomed over those research programmes which (for 

good reasons and bad) have at tempted to formalize modalities in first-order terms. McCarthy 
expressed the fear as follows: 

We have not yet investigated the matter, but plausible axioms for necessity or knowl- 
edge expressed in terms of concepts may lead to the paradoxes discussed in Kaplan 
and Montague (1960) and Montague {1963). Our intention is that the paradoxes can 
be avoided by restricting the axioms concerning knowledge, and necessity of statements 
about necessity. The restrictions will be somewhat unintuitive as are the restrictions 
necessary to avoid the paradoxes of naive set theory. {McCarthy, [8, p. 146l} 

This research has at tempted to allay these fears. It shows that any intensional operator 
governed by a reasonable modal theory, that  is, a theory containing all the extended theorems 

and closed under modus ponens, can be treated syntactically in a simple and intuitive way. 
This certainly applies to (more or less) conventional logics of knowledge such as [7], but also 

to non-standard ones such as [4] and [5]. There is no danger of introducing inconsistency as 
long as the t reatment  does not explicitly insist on more than its modal logic counterpart. It 

is only those that  go beyond this, for example to deal with self-reference directly, that  are 

at risk. This, we feel, vindicates Quine and should help to dispel the erroneous impression 

suggested by the results of Montague and Thomason to the effect that classical first-order 

languages were unable to serve as the basis for logics of the modalities and the propositional 

attitudes, in effect forcing one to employ intensional logics. As our results shows predicate 
approaches are the more expressive of the two (or, at any rate, not the less expressive). 

Clearly more care is required with them in order to avoid inconsistencies~ but perhaps this 

is a direct consequence of their greater expressive power. 

°However, such sentences may not themselves be regular, and, for that reason, need not be among the 
sentences that are explicitly beUeved (or known, or whatever other propositional attitude the logic might 
be formalizing). An interesting open problem is to identify whether or not these irregular sentences can 
also be made objects of belief without causing problems. 
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