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The Consistent Labeling Problem: Part I

ROBERT M. HARALICK, SENIOR MEMBER, IEEE, AND LINDA G. SHAPIRO

Abstract-In this first part of a two-part paper we introduce a general
consistent labeling problem based on a unit constraint relation T con-

taining N-tuples of units which constrain one another, and a compatibil-
ity relation R containing N-tuples of unit-label pairs specifying which
N-tuples of units are compatible with which N-tuples of labels. We
show that Latin square puzzles, finding N-ary relations, graph or auto-
mata homomorphisms, graph colorings, as well as determining satisfiabil-
ity of propositional logic statements and solving scene and edge labeling
problems, are all special cases of the general consistent labeling prob-
lem. We then discuss the various approaches that researchers have used
to speed up the tree search required to find consistent labelings. Each
of these approaches uses a particular look-ahead operator to help elim-
inate backtracking in the tree search. Finally, we define the 4KP
two-parameter class of look-ahead operators which includes, as special
cases, the operators other researchers have used.

Index Terms-Backtracking, consistent labeling, graph coloring, ho-
morphisms, isomorphisms, look-ahead operators, matching, N-ary
relations, relaxation, scene analysis, subgraph, tree search.

1. INTRODUCTION
IN THIS paper we formulate a general network constraint

analysis problem which we call the labeling problem. The
labeling problem is a generalization of specific problems from
each of several different specialty areas. Some of these spe-
cific problems include the subgraph isomorphism problem
[24], the graph homomorphism problem [161, the automata
homomorphism problem [9], the graph coloring problem
[16], the relational homomorphism problem [151, the pack-
ing problem [5], the scene labeling problem [1], the shape
matching problem [4], the Latin square puzzle [27], con-
straint satisfaction problems [6], [7], and theorem proving
[18]. The generalized problem involves a set of units which
usually represent a set of objects to be given names, a set of
labels which are the possible names for the units, and a com-
patibility model containing ordered groups of units which mu-
tually constrain one another and ordered groups of unit-label
pairs which are compatible. The compatibility model is some-
times called a world model. The problem is to find a label for
each unit such that the resulting set of unit-label pairs is con-
sistent with the constraints of the world model.
Before we can fully state the labeling problem, we need some

additional concepts and definitions. Let U = { 1, -, M} be a
set ofM units and let L be a set of labels. IfuI, * * UN=E U
and 1l, - * *, IN E L, then we call the N-tuple (1l, * * , 1N) a
labeling of units (u1, * * *, UN). The labeling problem is to use
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the world model to find a particular kind of labeling called a
consistent labeling for allM units in U.
The problem of labeling is that not all of the labelings in LM

are consistent because some of the units are a priori known
to mutually constrain one another. If an N-tuple of units
(u1, - * *, UN) are known to mutually constrain one another,
then not all labelings are permitted or legal for units (ul,
... , UN). The compatibility model tells us which units mu-
tually constrain one another N at a time and which labelings
are permitted or legal for those units which do constrain one
another. One way of representing this compatibility model is
by a quadruple (U, L, T, R) where TC UN is the set of all
N-tuples of units which mutually constrain one another and
the constraint relation R C (U X L)N is the set of all 2N-
tuples (uI, 11, * * *, UN, IN) where (11, * * *, IN) is a permitted
or legal labeling of units (uI,'* * , UN). We call T the unit
constraint relation and R the unit-label constraint relation.
A labeling (1l, * * * , lp) is a consistent labeling of units

(ul, .. , up) with respect to the compatibility model (U, L,
T, R) if and only if {il, * - - , i {1, * , P} and (ui, * * ,

uiN) E T imply the 2N-tuple (uil, lilX, UiN, liN) E R; that
is, the labeling (li1, * *, i4N) is a permitted or legal labeling of
units (ui1,, * * , uiN). Where U and L are understood, such a
labeling (1l, , lp) is called a (T, R)-consistent labeling of
(ul, - * *, up). The consistent labeling problem is to find all
consistent labelings of units (1, . . . ,M) with respect to the
compatibility model.
In this paper we discuss the consistent labeling problem and

define a two-parameter class of look-ahead operators that can
be used to aid in finding solutions to a given labeling problem.
In Section II we describe how a variety of combinatorial
problems are special cases of the consistent labeling problem.
In Section III we give a brief perspective of a procedure for
solving the consistent labeling problem and discuss how re-
searchers have used "relaxation" and "look-ahead" operators
to accelerate the search time. Section III also gives a short
summary of a recent paper [14] which addressed the labeling
problem.

In Section IV we show the relationship between (T, R)-
consistency as defined in this paper and global consistency
with respect to R, as defined in the Haralick et al. paper, and
we define the look-ahead operator 4KP which generalizes the
Op operator in the earlier paper. In Section V we show that
the q5Kp operator can be implemented as a recursive procedure.

II. SOME EXAMPLES OF LABELING PROBLEMS

A. The Latin Square Puzzle

Latin square puzzles consist of a matrix and a set of objects
to be arranged on the matrix. The objects each have a set of
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attributes, and there are constraints on which objects can be
placed next to each other based on their attributes. One sim-
ple Latin square puzzle consists of a 4 X 4 matrix and 16 ob-
jects, each object having one of four possible colors and one

of four possible shapes. The problem is to arrange the objects
in the 4 X 4 matrix such that each row, each column, and each
of the two main diagonals of the matrix contains exactly one

object of each color and exactly one object of each shape.
In order to see how the Latin square puzzle reduces to a

labeling problem, assume the colors are red, blue, yellow, and
green; the shapes are circle, triangle, octagon, and square; and
the elements of the matrix are numbered as in Fig. 1. The
elements of the matrix can be thought of as the set of 16 units
U = {1,... , 16}. Each object can be described by a label
consisting of the first letter of its color followed by the first
letter of its shape. Thus, the red circle is RC, the green tri-
angle is GT, and so on.

Let Ls = {C, T, 0, S} and Lc = {R, B, Y, G} be the sets of

shape labels and color labels, respectively. Let the label set L
be defined by L = Lc X Ls. Let TC U4 consist of the 10
4-tuples of units which form the rows, columns, and diagonals
of the 4 X 4 matrix and R C (U X L)4 consists of all 8-tuples
of the form (uI, (c I,sI),u2, (c2,s2),u3, (c3,s3),u4,(c4,s4))
where

1) (Ul,U2,U3,U4)eT,

2) (ci, si) E L, i = I *..* 4, and
3) iEj implies ci 0c1 and si=s1.

In order to examine the size of the compatibility model
(U, L, T, R), consider the column consisting of units 1, 5, 9,
and 13. There are 24 allowable 4-tuples of labels for these
units. Consider one such 4-tuple (RC, BT, YO, GS). Putting
in the labels together with the units, we see that the 8-tuple
(1, RC, 5, BT, 9, YO, 13, GS) is a member of R. Hence, posi-
tion 1 can be occupied by the red circle while position 5 can

be occupied by the blue triangle, position 9 by the yellow
octagon, and position 13 by the green square. According to
the original rules of the Latin square puzzle, (1, BT, 5, RC, 9,
YO, 13, GS) is also a valid 8-tuple since it represents unique
labels for each of the four positions in a row. Thus, any per-

mutation of the labels RC, BT, YO, GS can be combined with
units 1, 5,9, and 13 giving 24 8-tuples from (RC, BT, YO, GS).
The constraints on one column of the array translate into
242 = 576 8-tuple in R. Similarly, the constraints on one row

or one major diagonal of the array translate into 576 8-tuples
in R. Since there are 4 rows, 4 columns, and 2 diagonals, the

constraints on the array translate into 5760 8-tuples in R. The

compatibility model, therefore, consists of a relation Thaving
10 4-tuples and a constraint relation R having 5760 8-tuples.
The labels in Fig. 1 are one solution to the simple Latin square

puzzle.

B. Scene Labeling

The scene labeling problem arises in the context where a

picture is taken of a scene (such as an office) that has objects
(like chairs, tables, desks, file cabinets, and so on) which need
to be identified. A low-level computer vision system analyzes
the picture, segments it, and perhaps even assigns one or more

1 2 3 4

RC YT GO BS

5 6 7 8

BO GS YC RT

9 10 11 12

YS RO BT GC

13 1 15 6

GT BC RS YO

Fig. 1. Numbering of the matrix elements and a solution to the Latin
square puzzle.

labels to some of the objects in the picture. Given the world
model information which describes allowable spatial relation-
ships among pieces of office furniture, and given the spatial
relationships that exist among segments in the image, the scene
labeling problem is to use the world model to find labels for
each segment in the picture. This involves labeling those seg-
ments which have not been given labels and reducing the label-
ing ambiguities for those segments which have been given
tenative labels by the low-level vision system.
Let U= {ul, - * *, UM} be the set of segments in the office

image. By a spatial analysis of the image, we can produce a
list of N-ary relationships that hold among the segments of U.
Each item of the list can be expressed as a predicate and N
possible segments for which the predicate holds. For example,
with N = 2, the spatial analysis might discover that segment
ul is above segment U3, segment u2 is on segment ul, and
segment u5 is behind segment u6. We write these kinds of
relations in the shorthand form

ABOVE (U1, U3)
ON(U2, U1)
BEHIND (u5, u6)

The world model constraint is also a list of N-ary relation-
ships. Each item of the list consists of a predicate andN pos-
sible object names for which the predicate holds. For ex-
ample, with N = 2, the following constraints between object
names may hold: pictures can be above chairs, books can be
on desks, and chairs can be behind desks. In the shorthand
form we write

ABOVE(PICTURE, CHAIR)
ON(BOOK, DESK)
BEHIND(CHAIR, DESK)

To put the scene labeling problem into the format of the
general labeling problem, we must define the relation T of
segments which mutually constrain one another and the rela-
tion R of constraints between segments and labels. We can
construct the relations T and R as follows. Let P be a predi-
cate. If for some segments uI, * - *, UN, a spatial analysis of
the image shows P(uI, * * *, UN) is true and if for some labels
11, * * *, IN the world model constraint permits P(l1, * * -, 1N)
to be true, and the low level vision analysis does not pro-
hibit label In for segment u-,- n = 1, * *, N, then the N-tuple
(U1, * * *, UN) is a member of T and the 2N-tuple (ul, 1 , * * ,

UN, IN) is a member of R. For example, if one of the labels
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that the low-level vision system allows for segment ul is
PICTURE and one of the labels it allows for segment U3 iS
CHAIR and ifP is the predicate ABOVE, since ABOVE(PICTURE,
CHAIR) iS true and ABOVE(U1, U3) iS true, then T contains
(U1, U3) and R contains (u1, PICTURE, U3, CHAIR). Each con-
sistent labeling based on T and R is a possible labeling of the
scene; and since consistent labelings are subsets of possible
labelings, the number of labeling ambiguities will be reduced.

C. The Edge Orientation Problem

There are a variety of approaches to finding edges in a pic-
ture [22]. Most of them begin with the application of some
local operator to determine the strength of an edge passing
through each resolution cell in a particular direction. The
problem with these local operators is that they tend to be
noisy; their variance is high. Since most meaningful edges in
real world images tend to be highly continuous with little cur-
vature, it should be possible to combine the prior knowledge
low curvature condition and the local gradient operator values
to produce cleaner edges.
We define the orientation of an edge to be an angle between

00 and 3600. The edge lies along a line in the given angular
direction and a person traveling along the edge in the angular
direction of the edge will always find the darker side of the
edge to his right. Low curvature edges mean that the maxi-
mum angle by which any small edge segment can bend with
respect to its predecessor edge or successor edge segment is
limited to some maximum bending angle which we call A (for
example, 600). With this kind of prior knowledge, we can
formulate the edge orientation problem as a labeling problem.
Let U= {(i, j) I i = 1, * * *,N and j = 1, * * *, M} be the set

of resolution cells of an N-row by M-column image. Let L be
a set consisting of possible edge orientations (including the
possibility of no edge). For example, L could be {none, 0,
45, 90, 135, 180, 225, 270, 315}. For each resolution cell
(i, j) let E(i, j) C L be the set of its possible edge orientations
computed on the basis of the strength of some local edge op-
erator. Let the neighborhood of resolution cell (i, j) be N(i, j).
N(i, j) could be a 4-neighborhood, an 8-neighborhood, or per-
haps something more complex. Only edge orientations of
resolution cells in the neighborhood of a given resolution cell
can constrain the edge orientation of the given resolution cell.
On this basis we can define the compatibility model by (U, L,
T, R) where

T= {((i, j), (i', j')) (i', j') E N(i, j)}
and

R = {((i, j), I, (i', j'), l ') (i', j') E N(i, j), l E E(i, j), l' E E(i, '

and 1, 1' : none implies I1 - 1'1<A}.

D. The Edge Interpretation Problem

Once all edges have been identified, we might wish to dis-
cover what role each edge plays in a three-dimensional scene.
In particular, suppose we have a scene consisting of an ideal
line drawing representing a set of polyhedra. Clowes [2],
Huffman [171, and Waltz [26] have investigated the use of
constraints in the analysis of such scenes, and Rosenfeld et al.

Fig. 2. Four possible labels for the edges of an object with trihedral
vertices.

+ Convex edge.
- Concave edge.

Boundary edge with the face of the object to the
right of the arrow.

[22] presented a formal model of the process based on the
work of Waltz. We will discuss the constraints that can be
used in a simple scene and how they fit our model.
Suppose we have a line drawing of a blocks world scene hav-

ing only trihedral vertices (vertices where, at most, three sur-
faces meet). We would like to label each edge in the scene so
that the label describes the physical role of the edge in the
structure. For a scene with no cracks or shadows, Clowes and
Huffman suggested that each edge can be labeled as either con-
vex, concave, or a boundary edge of an object. Boundary
edges can be divided further, depending on which side of the
edge is a face of the object. A scene can be labeled by marking
convex edges with the symbol +, concave edges with the sym-
bol -, and boundary edges with an arrow directed so that the
surface to the right of the arrow is part of the object. The ob-
ject of Fig. 2 illustrates all four types of edges. For a scene
with cracks and shadows, Waltz has suggested additional labels
that can be added to the set.
The constraints come in when we look at the vertices of the

scene. Guzman [10] gave names to each possible type of
vertex that can appear in a scene. For example, the type of
vertex in Fig. 3(a) is called a fork vertex. An analysis of the
types of edges which can meet in a fork vertex in a trihedral
block world scene, without shadows or cracks, shows that only
certain combinations are physically possible. Fig. 3(b) shows
the only five possible edge combinations for fork vertices in
this type of scene.
An order N vertex is a vertex at which N edges meet. Each

type of vertex is of a particular order; for example, the FORK
vertex is of order 3. The set of orderN vertices in a scene in-
duces an Nth order constraint relation as follows.
Let V be the set of order N vertices in the scene, E= {1,

* **,M} be the set of edges in the scene, L be the set of edge
labels, and X be the set of vertex labels. Let f: V -+ X be the
function that assigns labels to vertices and g: E -* 5P (L) be the
function that assigns sets of possible labels to edges. Let
h :X *51(LN) be the function that specifies N-tuples of labels
that can meet at each type of vertex. For each order N vertex
type x E X, we define T, and Rx as follows.
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FORK

(a)

(b)

Fig. 3. FORK vertex (a) and the five physically possible edge combina-
tions that can meet at a FORK vertex (b). These five combinations
yield the 15 triplets of edge labels that the function h associates with
the FORK vertex.

Tx ={(el, -, eN) I el, -, eN meet in vertex type x, edge

en+ 1 is the first edge in a clockwise direction after edge

en, n = 1, ***,N- 1 and el is the designated starting

edge for vertex type x}.

RX = {(el, 1, * * e, IN) I (el, *, eN) E Tx and

N
(ll,. 1,N)ECh(x)fnlX(g(efl)

n=l

Thus, Tx consists of all N-tuples of edges that constrain each
other because they meet in a vertex of type x, and RX consists
of all 2N-tuples of edge-label pairs where the edges meet in a

vertex of type x and the labels are a physically possible set of
labels for a vertex of type x.

Let TN = UvEv Tf(v) and RN = UvEVRf(v). TN consists of
all N-tuples of edges that constrain each other because they
meet in some orderN vertex and RN is the corresponding con-

straint relation. Thus, for each N such that there is at least
one order N vertex in the scene, there is a labeling probem
with a compatibility model (E, L, TN, RN). A solution to the
scene labeling problem is a labeling of edges 1, * - * ,M that is
a solution to each of the order N labeling problems. That is,

(li lM) is a scene-consistent labeling of edges 1, , M

if (11, - , IM) is (TN, RN)-consistent for each N such that
there is an orderN vertex in the scene.

E. The Relational Homomorphism Problem

For an N-ary relationR c AN and a function f: A -- B from
set A to set B, we define the composition ofR with f, R o f, as

the relation R' C BN where R' = {(b 1, , bN) E BN there
exists (al, * * *, aN) in R with f(ai) = bi, i = 1, - , N}. Let
TC AN and S C BN be two N-ary relations. A function
f A -e B which satisfies T o f C S is called a relational homo-
morphism. Given two arbitrary N-ary relations, the relational
homomorphism problem is the problem of determining all
relational homomorphisms between them. The scene labeling

problem is an example of a relational homomorphism prob-
lem. Automata homomorphisms, graph homomorphisms, and
graph colorings are other examples of relational homomor-
phism problems.

In the following theorem we prove that the relational homo-
morphism problem can be expressed as a consistent labeling
problem.
Theorem 1: The relational homomorphism problem can be

expressed as a consistent labeling problem.
Proof: Let U = { 1, * * ,M} be a set of units, T C UN, and

S C LN. Define R C (U X L)N byR = {(ul, 11,l * *, UN, IN) E
(UXL)NI(ul,.-,uN)ETand (11, -,IN)CS}. Letfbe
a function from U to L. We will show that the labeling (f(l),
... , f(M)) of units (1, *- *, M) is consistent with respect to
the compatibility model (U, L, T, R ) if and only if T o f C S.
Suppose (f(l), , f(M)) is a consistent labeling with re-

spect to (T, R) of units (1,- ,M). Let (11, * 1N) E T of
Then there exists (u1, * * , UN) E T such that ln = f(un),
n = 1, * - *, N. But since (f(l), - - *, f(M)) is a consistent la-
beling, (u1, f(u1), * * *, UN,f(U)) E R. Now by definition of
R, (f(u ), * * *, f(uN)) E S. Hence, (11, - * -, IN) E S. Suppose
Tof C S. Let (ul,---,uN)E T. Since TofCSandfisa
function defined everywhere on U, (f(u1), * *, f(uN)) E S.
Now by definition of R, (u1,* , UN) E T and (f(u 1), - - - a
f(UN)) C S imply (ul, f(u0), * , UN,f(UN)) E R. Hence,
(f(U1), - - , f(UN)) is a (T, R)-consistent labeling of units

(1,---* ,M).
Because of the natural correspondence between graphs and

binary relations, the subgraph isomorphism problem and the
graph homomorphism problem can be expressed as relational
homomorphism problems. Also, as proved in the next propo-
sition, the automata homomorphism problem is equivalent to

the relational homomorphism problem so that automata ho-
momorphisms can be found by finding consistent labelings.
A finite state automaton is a triple (S, X, 6) where S is a

finite set of states, , is a finite alphabet of input symbols, and
6: S X I -+ S is a function that maps state-input pairs into
states. An automata homomorphism from an automaton
(5, X, 6) to an automaton (Q, , 71) is a function h: S e Q
such that h(6(s, a)) = rq(h(s), a) for every s E S and a E E:.
Proposition 1: Let A 1 = (S, , 6) and A2 (Q, , 71) be two

finite-state automata and suppose S = {a,, * , aN}. Define
T = {(so, * * *, SN) E SN, I I Sn = 6(so, an), n 1, *,N} and
R ={(qO, * *, qN) E_ QN Iqn = 7Z(qo, an), n = 1, * * *, N}.
Then h: S - Q is an automata homomorphism from A 1 to A2
if and only if To h C R.

Proof: Suppose h(6(s, a)) = r(h(s), a) for all a E E and
s E S. Let (qo, - - , qN) E T o h. Then there exists (so,- --*
SN) E T such that h(sn) = qn, n = 0, - -- , N. By definition of
T, (so, - - -,sN) E: T implies sn = 6(so, an),n = 1, - - -, N. Now

qn= h(sn) = h(6(so, an)) = r?(h(so), an) = rl(qo, an), n = 1,
* ,N. By definition ofR, qn = 7Z(qo, an), n N1,*** im-

plies (qo, - - - ,qN)eR. Hence, To h CR.
Suppose To h C R. Let so E S be given. Define sn = 6(so,

on), n = 1, * * *, N. By definition of T, sn = 6(so, an), n = 1,
* ,N implies (so, * ,SN) EE T. Let qn = h(sn), n = O, * *

N. By definition of To h, (so, * * *, sN) E T and q, = h(s,),
n = O, * ,N implies (qo, - -- , qN) C T o h. By supposition
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To h C R. Hence, (q0, * - *, qN) E R. Now by definition of
R, qn r=qo, an), n =1, * * *, N. But q0 = h(so) so that qn =

h(sn) = h(5(so, an)) = 7n(h(so), an), n = 1,--,- N Hence,
h(6(s, a)) = q (h(s), a) for all a E E and s E S.
The K-coloring graph problem can also be expressed as an

N-ary relational homomorphism problem. Let G= (V, E) be
the graph to be colored. Let L be the set ofK colors. Define
R CL XLbyR= {(11,12)EL XL 1I1 12}. Thenh:V-*L

is a homomorphism from E to R if and only if h is a K-coloring
of G.
The packing problem [5] is defined as follows. Given a set

of elements E = {el, - - -, en }, a set of boxes B = {b 1, * * ,

bm }, and a symmetric incompatibility relation I C E X E, put
each element of E in one box ofB such that if ei and e1 are in-
compatible ((ei, e1) E I), they cannot be placed in the same

box. The packing problem is equivalent to the graph coloring
problem with the boxes taking the role of the colors.

E Satisfiability and Consistent Labeling

The problem of satisfiability is as follows: given an expres-

sion in the propositional calculus, determine whether there is
any assignment of the values true or false to each statement
which makes the expression true. This NP-complete problem
[3] is related to theorem proving, but it is simpler to under-
stand and simpler to relate to the consistent labeling problem
than theorem proving.
Whatever the given propositional expression may be, it is

always possible to construct an equivalent expression which
is in a conjunctive normal form (a conjunction of a set of
clauses, each of which is a disjunction of simple statements
and/or negation of simple statements). For example, the five
clause expression (L VK)A (K7VM)A (MVL) A (L VKVM)A
(KVL VM ) is in conjunction normal form. To translate the
satisfiability for this expression into a labeling problem, we will
let the unit set be { 1, 2, 3, 4, 5 } and associate the first clause
(L VK) with the unit 1, the second clause (KVM) with the
unit 2, and so on. In order to make the expression true, it is
necessary and sufficient for one term in each clause to take the
value true. The constraint is that if a statement in one clause
takes the value true (false), then its negation if it occurs in
any clause cannot simultaneously take the value true (false).
The unit constraint relation T then consists of all pairs of

units involving simple statements which are negatives of one

another. The unit-clause association and the unit-constraint
relation are listed below.

Unit-Clause Association Unit-Constraint Relation

1 LVK (1,2) (2,4)
2 KVM (1,4) (3,4)
3 MVL (1, 5) (3, 5)
4 LVKVM (2,3) (4,5)
5 KvTvM

The labels are the set of simple statements and their nega-

tions. In our example they are: L, K, M, L, K, M. To make
our tabulation shorter, we will define the unit-label con-

straint relation R by tabulating all elements of the form (u, 1,
v, l') R where (u, v) E T.

Label Pairs for Constrained Units Not in
the Unit-Label Constraint Relation R

(1, K, 2, K) (3, M, 4, M)
(1,L,4,L) (3,L,4,L)
(1,L, 5,L) (3,L,S,L)
(1, K, 5, K) (3, M, 5, M)
(2, M, 3, M) (4, K, 5, K)
(2, K, 4, K)

Each (T, R)-consistent labeling corresponds to an assignment
of the value true to all those statements selected as labels
to any of the units. In our example, the labeling (K, M, L,
K, M) is a (T, R)-consistent labeling of units (1, 2, 3, 4, 5),
and the value true for statements K, M, and L will make the
expression true. Hence, to satisfy the expression, take K true,
M false, and L true.
To summarize, if the expression to be satisfied is

A Vsij}
iXl j=

Then we define

U= {1, ml,
T = {(i1, i2)Ifor somej, and j2 Sill= Si2 i2}
L = {S I S = Sij for some i andj},

and

R= {(ul,11,u2,12) I(ul,u2)ETand for some j, and j2,

SUlil = 11, Su2j2 = 12 implies

Su lil :*Su2 i2 }

where the equality of two statements means that the state-
ments are symbolically identical and not that the truth values
of the statements are the same. If (11, - * *, IM) is a (T, R)-
consistent labeling, then there exists indexes l, , m such
that S.j1 l= ,1- i *= *, M and the expression will be satis-
fied by each Sii =1i, i = 1, M, taking the value true.

III. RELATED LITERATURE

One general technique that can be used to solve a labeling
problem is a depth-first search. The search procedure fixes
labels to units as long as it can find a label for each new unit
that is compatible, according to the constraint relation R, with
the labels already fixed to previous units. Whenever the pro-
cedure cannot find a label for a new unit, it backtracks to the
previous unit and tries to find a different label for that unit.
If the procedure finds a label for all M units, it has found a
consistent labeling. If the procedure backs up all the way to
the first unit without finding any consistent labelings and
there are no more possible labels for the first unit, the pro-
cedure fails and there exists no consistent labeling.
The depth-first search procedure suffers from thrashing. A

poor choice of labels for one of the first units can cause fail-
ure of all paths stemming from that choice. To make the
depth-first search more efficient, we must eliminate those
paths which terminate because they are not contained in any
consistent labeling. In Part 1I of this paper we will show that
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these terminating paths exist for one reason: there exists
N-tuples of unit-label pairs in R which do not contribute to
any consistent labeling. Thus, to do an efficient search, we
must first remove from R all N-tuples of unit-label pairs which
do not participate in a consistent labeling. Montanari [20]
showed that this problem itself is NP-complete. However,
compatibility relations can be graded with respect to the dif-
ficulty of removing those N-tuples. A minimal compatibility
relation is a compatibility relation where the removal of any
one N-tuple of unit-label pairs eliminates at least one consis-
tent labeling with respect to that relation. The initial work by
Waltz [26] on line labeling indicated that, although the com-
patibility relation he employed was not minimal, the amount
of work to make it minimal using a sequentially implement-
able look-ahead operator was small. Gashnig [8] reported
similar results. Hence, it may be that the worst case problems
do not seem to arise very frequently in practice, and look-
ahead operators of low-order complexity can be of great help.
To help us discuss some related literature, we need to define

arc consistent and path consistent relations. A binary unit-
label constraint relation R is arc consistent if, whenever the
pair (ul, 11, u2, 12) is an element of R, then for every unit u,
(u1, u) E 2- implies (u1, 11, u, 1) ER for some label 1 and (u,
u2) E T implies (u, 1', u2, 12)ER for some label 1'. A binary
unit-label constraint relation R is path consistent if whenever
the pair (ul, 11, u2, 12) is an element of R, then for every unit
u, there exists a label 1 such that (ul, u) E T implies (ul, 11,
u, 1) E R and (u, u2) E Timplies(u, 1,U2,12)E R. The Waltz
filtering algorithm [26], which was first described by Ullman
[24a], uses a polynomial time look-ahead operator which
reduces any binary compatibility relation to its maximal arc
consistent piece. Montanari [20] discusses various aspects of
the constrained labeling problem for binary relations. He
shows that the largest path consistent relation contained in the
compatibility relation can be computed in polynomial time by
a look-ahead operator. Rosenfeld [211 and Rosenfeld et al.
[22] show that arc and path consistent relations can be
computed by look-ahead operators working in parallel. They
name such look-ahead procedures discrete relaxation. Inde-
pendently, Ullman [24] describes the efficacy of the Waltz
look-ahead operator for the subgraph isomorphism problem.
Haralick and Kartus [15] give a look-ahead operator generali-
zation of arc consistency to N-ary relations, and Haralick [ 12]
describes how the look-ahead operator can be used to help
determine binary relational homomorphisms. Haralick [13]
discusses the use of the look-ahead operator to find order-N
arrangement homomorphisms and describe their applications
in scene analysis. Mackworth [19] describes several imple-
mentations of look-ahead operators to compute arc and path
consistent relations.
Rosenfeld et al. [22] also discuss fuzzy and probabilistic

generalizations to discrete relaxation. Such generalizations
have been used by Rosenfeld et al. [22], by Vanderbrug [25],
by Hanson and Riseman [11] for edge enhancement, by
Barrow and Tenenbaum [1] for scene analysis, by Davis [4]
for shape matching, and by Zucker and Hummel [28] for
clustering. However, since the probabilistic generalizations
have not been shown to solve any optimization problem, it is
not yet understood exactly what these relaxation generaliza-
tions do.

In a recent paper, Haralick et al. [14] describe a labeling
problem and discuss look-ahead operators for reducing the
size of the constraint relation. In that paper, a labeling prob-
lem is defined as follows. Given a set ofM units U= {u1,- - - ,

UM }, a set of labels L, and a constraint relationR C (U X L)N,
find an M-tuple of labels (1l, -- - , IM) such that for every com-
bination il, - - - , iN of the integers 1, - - - M,A (uil, Ii, * * *,
UiN, liN) is an element of R. Such an M-tuple is called a
globally consistent labeling of u1, * , UM and corresponds, in
our definition of the labeling problem, to a consistent labeling
of units (u1, * * , UM) with respect to the compatibility model
(U, L, UN, R). We will present a brief summary of the main
result of that paper.
Let R C (U X L)N be a constraint relation. Denote by £(R)

the set of globally consistent labelings defined by R. The min-
imal relation SR C R that has the same set of globally consis-
tent labelings as R does is defined by

SR = n {R' C (U X L)N I £(R') = £(R)}.
SR can be characterized by the following properties:

1) SR = {(U4l, 11, * UN, 1lI) E R for some globally con-
sistent labeling (1l, IN,IN) and for some combination i1,
* ,iN of 1, * ,M, (Ul, 11 ,UXIt)=(i,ll

UiN iN)}'
2) SR # q iff there exists a globally consistent labeling of U.
3) SR is symmetric.
A look-ahead operator for removing 2N-tuples from R keeps

only those 2N-tuples of R that are extendable to consistent
labelings of P-tuples for some P > N. To this end, the look-
ahead operator Op(R) is defined by

p(R) = {(U1, 11, - * *, UN, IN) ER l for alluNl, -, up E U
there exist 1N+1, - - - , IP EL such that (11, * * *,Ip)
is a consistent labeling of (uI, - * *, up)}.

The relationship of the 'p operator to SR can be character-
ized by the following properties:

1) P(SR) = SR -

2) SR C§ip(R)CR.
3) SR C pK(R) for all K > 0.

The remainder of this paper generalizes these results to the
more general class of look-ahead operators which are of use in
determining (T, R)-consistent labelings. The introduction of
T into the compatibility model has direct consequences in
implementation. Our results show that only the units which
mutually constrain each other need to be stored and manipu-
lated to achieve the same effect the 'p operator has on the
Haralick et al. model which assumes T = UN and requires more
work.

IV. FINDING (T, R)-CONSISTENT LABELINGS WITH THE
HELP OF A GENERALIZED LOOK-AHEAD

OPERATOR 'KP

A. Relationship Between Global Consistency and
(T, R)-Consistency

In the Haralick et al. paper, an M-tuple of labels (1l, * * *, lM)
is a globally consistent labeling of units 1, - - , M with re-
spect to R if for every combination iI, - - - iN of the integers
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1,**, Ml, the 2N-tuple (ui1, lil, -* *, ujN, ljN) is an element
of R. In a real-world labeling problem, it is often the case that
a relatively small number of N-tuples of units constrain each
other. This suggests that instead of checking every N-tuple of
units, we need to only check those N-tuples of units that mu-
tually constrain each other. We will say that the N-tuple of
units (ul, * * *, UN) mutually constrain each other if and only
if for some N-tuple of labels (11, * * -, IN), the 2N-tuple
(ul, 11,.* *, UN, IN) 0 R. The following proposition states
that a labeling is a globally consistent labeling if and only if it
is a (T, S)-consistent labeling, where T is the set of N-tuples
that mutually constrain each other and S is that subset of R
involving only N-tuples of unit-label pairs in which the corre-
sponding N-tuples of units do mutually constrain each other.
This proposition tells us two important facts about the

(U, L, T, R) model. First, the (U, L, T, R) model can find
consistent labeling of units 1, - * *, M faster than the Haralick
et al. model, since only those N-tuples of units that constrain
each other need be checked. Second, the (U, L, T, R) model
often requires less memory since only those 2N-tuples of R
containing units that constrain each other need be stored.
Thus, the (U, L, T, R) model leads to a more efficient imple-
mentation than the Haralick et al. model.
Proposition 2: Let U {1,*.* , M} andR C (U X L)N. Let

S {(u= , l,,UN, IN) E RI for some 1 *,l E L,
(u1, 1, , UN, IN) OR}, and T= {(ul, , UN) E UN Ifor
some 11 * ,Ir E L, (u1, '1,* * N,1N,) R}. Then (11,

IM) is a globally consistent labeling of units (1, , M)
with respect to R if and only if (11,* *, IM) is a (T, S)-
consistent labeling of (1, , M).

Proof: Suppose (11, , lM) is a globally consistent label-
ing of (1, * - *, M) with respect to R. To show that it is a
(T, S)-consistent labeling, we need to show (u1, lu1,...
UN, lUN) E S for every (u1, *, UN) C T. Let (u1,
UN) E T. Then by definition of T, there exist labels 1
IN E L SUCh that (U 1, 11, .. *,UN )R
Since ( * , IM) is a globally consistent labeling of units

(1,*I* , M) with respect to R, (u1, lul1 * , UN, IlU) ER.
Now by definition of S, (u1, lu1v * , UN, lUN) E R and
(Ul,il,1,- ,)UN, Iy) ¢R iMPIY (Ul,lul, ,UN, luN)E-S.
Hence, labeling (11, * *, IM) is a (T, S)-consistent labeling of

Suppose (11, * *, IM) is a (T, S)-consistent labeling of (1,
... , M). To show it is globally consistent labeling with re-
spect to R, we need to show (u1, lu1 * , UN, IuN) E R for
every ul,**, UN C U. Let U ,UN C U. Either (tu,

,UN) E T or not. If (u1, , UN) E T, then by defini-
tion of (T, S)-consistency, (u1, lul , UN luN) E S Since
SCR, (Ul ,lul, **,UN,IuN) E-R. If(Ul,*** UN)0 T, then
by definition of T, for every 1, *,l E L, (u1, 1,.**
UN, N) E R. In particular then, (u1, lu1 , * *, UN, UN) E R.
Hence, labeling (11, . *, IM) is a globally consistent labeling
of (1, * * *, M) with respect to R.

B. The Generalized Look-Ahead Operator

The Haralick et al. paper defines a look-ahead operator Op
which, when applied to a constraint relation R, removes some
2N-tuples which do not contribute to a globally consistent
labeling. We can generalize this look-ahead operator 'p not
only to work within the framework of the (U, L,7T, R) model,

but also to have an additional parameter K to give us more
control over the use of the operator.
Let U = {1, * * *, M} be a set of units, L be a set of labels,

T C UN, andR C (UX L)N. LetK .N.P withK <P. The
look-ahead operator 'KP is defined by 'KP R = {(u1, * ,

UN, IN) E R for every combination jl, * * *, jK of 1, *,N
and for every u4+., , up E U, there exists IK+1,*
PI E-L such that (I1, * * * IK+1, *,IP) is a (T,R)-consis-
tent labeling of (u1 * , U UK+ 1,**, UP)}.
Thus, to apply the 'KP operator to R, we individually check

each N-tuple of R. We fix anyK of the N units (uj1, * * *, UjK)
to their labels in the N-tuple and check every set ofP - K units
to determine if there are P - K labels which make the K fixed
labels (Q1, *, jK) plus the P - K free labels (Ik+ 1 * * , 1I) a
consistent labeling of all P units (u1, * * , UiK, UK+ 1, , UP).
We repeat this process for every combination of K out of the
N units in the N-tuple. If for any combination of K fixed
units and labels, there is a set of P - K units for which P - K
labels, to make a consistent labeling, cannot be found, the 2N-
tuple is thrown out. Mackworth [19] uses the '23 operator,
the 'p operator of Haralick et al. [14] is the 'NP operator,
Haralick and Kartus [151 use the 'IN operator, and Ullman
[21 ] uses the 012 operator.
We illustrate the use of the 'KP operator with an example

whereN= 3,K = 2, andP= 4.

C Example
Let

U= {1, 2,3,4, 5}

L {a,b}

T= {(1,2,3),(1,2,4),(1,2,5),(2,3,4),(2,3,5),(3,4,5)}
N= 3, M = 5, K = 2, P = 4

and

R= {(1,a,2,a,3,a)

(1, a, 2, a, 4, a)

(1, a, 2, a, 5, a)

(1, a, 2, b, 3, a)

(1, a, 2, b, 4, b)

(1, b, 2, b, 5, b)

(2, a, 3, a, 4, a)

(2, a, 3, a, 5, a)

(2, b, 3, a, 4, b)

(3, a, 4, a, 5, a)}.

The results of examining three 2N-tuples (1, a, 2, a, 3, a),
(1, a, 2, b, 3, a), and (1, a, 2, b, 5, b) are shown in Fig. 4. The
2N-tuple (1, a, 2, a, 3, a) passed all tests and is, therefore, an
element of '2,4R. The 2N-tuple (1, a, 2, b, 3, a) passed its
first test since with the fixed unit-label pairs (1, a) and (2, b)
and free units 3, 4 the 4-tuple (a, b, a, b) of labels is a con-
sistent labeling of (1, 2, 3, 4). However, with (1, a) and (2, b)
still fixed and free units 3, 5, there is no consistent labeling of
(1, 2, 3, 5). (There is no label x with 2N-tuple (1, a, 2, b, 5, x)
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2N-Tuple K = 2 P - K = 2 P - K = 2 labels for
Fixed unit- free the free units that
label pairs units contribute to a con-

sistent labeling of
all P = 4 units

(1,a,2,a,3,a) l,a,2,a 3,4 3,a,4,a
3,5 3,a,5,a
4,5 4,a,5,a

1,a,3,a 2,4 2,a,4,a
2,5 2,a,5,a
4,5 4,a,5,a

2,a,3,a 1,4 l,a,4,a
1,5 l,a,5,,a
4,5 4,a,5,a

(I,a,2,b,3,a) l,a,2,b 3,4 3,a,4,b
3,5 NONE

No more combinat ons need be looked at for this
2N-tuple

(1,b,2,b,5,b) l,b,2,b 3,4 NONE

No more combinat ons need be looked at for this
2N-tuple

Fig. 4. Application of the 4Kp operator to three 2N-tuples of R.

in R.) Thus (1, a, 2, b, 3, a) is not in O2,4R. Similarly, the
2N-tuple (1, b, 2, b, 5, b) fails its first test and is not in k2,4R.
After testing each 2N-tuple ofR, we obtain

02,4R= {(l,a,2,a,3,a)
(1, a, 2, a, 4, a)

(l,a, 2,a, 5,a)

(2, a, 3, a, 4, a)

(2, a, 3, a, 5, a)

(3, a, 4, a, 5, a)}.

At this point, every 2N-tuple of R contributes to the one
consistent labeling (a, a, a, a, a) of (1, 2, 3, 4, 5).
In the above example, the look-ahead operator removed

every 2N-tuple of R that did not directly contribute to a con-
sistent labeling of the units (1, * * * , M). We cannot expect
4KP to always reduce every R to only those 2N-tuples that
contribute to a consistent labeling, since some relations are
much more complex than the R in our example. Also, for
large M and small P, oKP may not be as powerful as the O2, 4
above. However, we can expect that 'KP will never remove a
2N-tuple that does contribute to a consistent labeling of (1,
. .. , M). The following proposition ensures this by show-
ing that a labeling is (T, R)-consistent if and only if it is
(T, OKpR)-consistent. To make our notation easier, we let
£(T, R) be the set of all (T, R)-consistent labelings.
Lemmal: Let U={=1, ,M},TCUN,RC(UXL)N.

and S C (U X L)N. Then R C S implies £(T, R) C £(T, S).
Proposition 3: Let U = {1, * * *, M} be a set of units, L be

a set of labels, and R C (U X L)N. Let T C UN, K N <P,
P>K, and 'KP be a look-ahead operator on R. Then
£(T, R) =C(T, OKPR).

Proof: Since qKpR C R, by Lemma 1, £(T, OKpR) C
£(T, R).
Suppose (11,* l* IM) is a (T, R)-consistent labeling. Let

(U1, , UN) E T. Then, since (11, , lM) is a (T, R)-consis-
tent labeling (ul, 1 * UN, IUN) E R. Let UK+ ,E
u'p E U andj,j*, jK be a combination of 1 , N. Since

(I1,. , IM) is a (T, R)-consistent labeling of (1, , M) and
since {uj*, U. K, UK+ , U } { , , }, (11'1
* *u 1 , is a (T, R)-consistent labeling of (ui,

* K*, U XK+1 , UP). Now by definition of the look-ahead
operator (PKP, (U1, lul **. *, UN, lUN) E OKpR. Finally, since

(I1, IM) is a labeling and (u , *..., UN) E T imply (u1,
lUX* UN, lUN) E 'KpR, we have by definition of a consis-
tent labeling that (11, * IM) is a (T, OKpR)-consistent
labeling. Hence, (11, * *, IM) E £(T, oKpR) and £(T, R) C
£(T, OKpR).
We can summarize the results from Propositions 2 and 3 in

the following theorem.
Theorem 2: Let U = 1, , M} be a set of units,L be a set

of labels, and R C (U X L)N . LetT={(uj,** ,UN)EUNI
for some 11, *,- I E L, (U1, 11,--* , UN, IN) 0 R} and
S = 1, ...* * UN) IN) (E R for some 11, * - -*, 1|N E L,
(u1, 11, , UN) IN) CR}. Let K .N.P andP>K. Let
PKP be a look-ahead operator for (U, L, T, S) and oKp* be a

look-ahead operator for (U, L, UN, R). Then the following
statements are equivalent:

1) (l, - * *, IM) is a globally consistent labeling of (1,
*. , M) with respect to oKp*R;
2) (1i,--- iM) is a globally consistent labeling of (1,
* , M) with respect to R;
3) (I1, *, lM) is a (T, S)-consistent labeling of (1, * M);
4) (11, lM) is a (T, OKpS)-consistent labeling of (1,

* , M).
Proof: By Proposition 3, 1) holds if and only if 2) holds;

also by Proposition 3, 3) holds if and only if 4) holds. By
Proposition 1, 2) holds if and only if 3) holds. Therefore,
statements I)-4) are all equivalent.

V. A RECURSIVE APPROACH TO APPLYING THE

OKP OPERATOR

The Haralick et al. paper outlined a method for incorporat-
ing the relaxation operators into a depth-first search procedure
for finding globally consistent labelings. In this section we will
discuss the incorporation of the OKP operator into a depth-
first search and show that the 'Kp operator is really a recur-
sive procedure.
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Fig. 5. Tree which must be searched to find a consistent labeling.

Suppose U= {1,2, 3,4},L = {a,b},TCUN,andRC
(U X L)N. Fig. 5 shows a tree structure which must be
searched to find a consistent labeling of {1, 2, 3, 4}. At the
first step of the search procedure, label a is fixed to unit 1, and
R is checked to see if (a) is a consistent labeling of (1) with
respect to (T, R). If so, the procedure continues down the
leftmost branch of the tree. The next step is to fix label a to
unit 2 and check if (a, a) is a consistent labeling of (1, 2) with
respect to (T, R). Again, if it is, the procedure continues down
the leftmost branch, fixes the label a to unit 3 and checks if
(a, a, a) is a consistent labeling of (1, 2, 3) with respect to

(T, R). The procedure continues down the left branch of the
tree until it reaches a unit-label pair that is inconsistent with
the other unit-label pairs already fixed higher in the tree.
Then it backs up and tries the next label for the unit of the
offending unit-label pair. For instance, if (a, a, a) is not a con-

sistent labeling of (1, 2, 3), the procedure would next fix label
b to unit 3 and check if (a, a, b) is a consistent labeling of
(1, 2, 3). If it is, the procedure continues down the tree again.
If not, since there are no more labels for unit 3, the procedure
backs up another level, fixes label b to unit 2 and checks if
(a, b) is a consistent labeling of (1, 2). The procedure con-

tinues until it either finds a consistent labeling of (1, 2, 3, 4)
or backs all the way up to the root of the tree and has no more

labels left to try for unit 1. In this case, it fails.
The tree search, without )KP, fixes a label In to unit n at

level n in the tree and checks if (11, I, In) is a consistent
labeling of (1, * * , n) with respect to (T, R). The same tree
search, with the )KP operator incorporated, fixes label ln to
unit n at level n, calculates Rn = R restricted to those 2N-
tuples where 1i is the label for unit i, i = 1, * - *, n, and applies
the kKP operator to Rn until a fixed point is reached. Sup-
pose the fixed point is reached in m applications of OKp.
There are three possible results of applying o'Kp to the re-

stricted relation Rn:
1) OKmp Rn 0
2) OKmp Rn and pKmp Rn is a single valued relation;

therefore, the set of labels that are left are a consistent
labeling (this is easy to prove).

3) Neither of the above.

In case 1) there are no consistent labelings with respect to

(T, Rn). The current path is abandoned, and the procedure
backs up. In case 2) a consistent labeling has been found. The
procedure can record its answer and either quit or continue
looking for more consistent labelings. In case 3) the procedure
must search further down the tree.
Example: Let

U= {1,2,3,4,5}

L= {a,b}

T= {(l, 3), (2, 3), (3, 4), (4, 5)}

R= {(1,a,3,a),(1,a,3,b),(1,a,4,a),(1,a,4,b),

(2, a, 3, a), (2, a, 3, b), (3, a, 4, b), (3, b, 4, a),

(4, a, 5, a), (4, b, 5, b)}

N= 2, K = 2, P = 4.

The search proceeds as follows. Unit 1 is fixed to label a.
R1 = R since label a is the only label for unit 1 that can be
found in R. 024R1 = R1, which is neither single-valued and
consistent nor null, so the procedure must search further down
the tree. Unit 2 is fixed to label a. R2 = R1 since label a
is the only label for unit 2 that can be found in R1. Again
024R2 = R2 and the search continues. Unit 3 is fixed to
label a. The restricted relation R3 is given by

R3= {(1,a,3,a,),(1,a,4,a),(1,a,4,b),(2,a,3,a),

(3, a, 4, b), (4, a, 5, a), (4, b, 5, b)}.

NowO24R3 = {(1,a,3,a,), (1,a,4,b),(2,a, 3,a),(3,a,4,b),
(4, b, 5, b)} and k24R3 = 014R3. Since 014R3 is single-
valued, (a, a, a, b, b) is a (T, R)-consistent labeling of (1, 2,
3, 4, 5).

If the procedure is going to find all consistent labelings, it
now backs up and fixes unit 3 to label b. The restricted rela-
tion R3 becomes

R3 ={(1,a,3,b),(1,a,4,a),(1,a,4,b),(2,a,3,b),

(3, b, 4, a) (4, a, 5, a), (4, b, 5, b)}.

This time /14R3 = {(1, a, 3, b), (1, a, 4, a), (2, a, 3, b), (3, b,
4, a), (4, a, 5, a)} and q24R3 =014R3. Again, 014R3 is
single-valued. Thus, (a, a, b, a, a) is a second consistent label-
ing of (1, 2, 3, 4, 5) with respect to (T, R). Now there are no
more labels left to try for unit 3. The procedure backs up to
level 2 in the tree and there are no more labels left to try for
unit 2. The procedure backs up to level 1 in the tree, there
are no more labels left to try for unit 1, and the procedure
terminates.
Since the search procedure is a tree search, it is most natu-

rally described by a recursive algorithm. The following algo-
rithm, TREESEARCH, performs a depth-first search with the
oKP operator incorporated. TREESEARCH expects as input the
relations R and T, a unit u, which is the first unit to be fixed
to a label, a list LIST of possible labels for u, and the param-
eters N, K, and P. Instead of fixing units to labels in order of
unit number, TREESEARCH chooses some new unit at each
level in the tree which has the least number, greater than one,
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of labels left in the current relation. TREESEARCH calls on
three other procedures: REMOVE-ONE-LABEL which removes
and returns the first label of a list, LABELING which returns
the consistent labeling from a single-valued relation R, and
FIXED) which applies the (KP operator to a fixed point.
TREESEARCH returns a consistent labeling if it finds one and
false otherwise.

procedure TREESEARCH (R, T,u, LIST,N,K,P)
do while true

begin
if (LIST = null) then return (false);
1 = REMOVE-ONE-LABEL (LIST);
RI = R restricted to N-tuples where unit u has label 1;
if R' is single-valued then return (LABELING (R'));
OPR' = FIXEDO (R, T,N,K,P);
case

(OR' = null):
continue;

(OPR' is single-valued):
return (LABELING(QR'));

((R' is not single-valued):
begin

v = a unit such that v has more than one possible
label left in (R' and has the smallest possible
number of labels of all such units;

NEWLIST = the list of possible labels for v;
CL = TREESEARCH (OR', T, v, NEWLIST, N,K,P);
if (CL = false)
then continue
else return (CL);

end;
end case;
end

end TREESEARCH.

procedure (KP (R, T,N,K,P)
ifP<N then return (R);
PR = null;
do for each 2N-tuple NT = (U 1, l ,* *

begin

The procedure REMOVE-ONE-LABEL and CONSISTENT are
dependent on the data structure used to represent T and R in
the implemetation. The procedure FIXED( calls on the (KP
operator and is given by

procedure FIXED( (R, T,N,K,P);
R* =R;
do while (true)

begin
OR = (Kp(R*, T,N,K,P);
if (OR = R* or (R is single-valued)
then return (OR)
else R* = OR

end
end FIXED(P

Now only the (KP operator is left to define. By definition,
it must examine each 2N-tuple in R. For each 2N-tuple (u1,
11, ... , UN, IN), it must try every combination il, * - * jK
of 1, * * , N. For each such combination, it must fix u1i to
IXi = 1 , K and try for every possible P- K units uK+
* , up to determine if there is a (T, R)-consistent labeling
of all P units (u,1 . , u I,UK+1,-* * , UP) such that ui. is
fixed to li,, i = 1,---, K. But this last step is just the labeling
problem all over again with P units instead ofM and a re-
stricted relation instead of R. Since it is efficient to use (KP
on the larger labeling problem, we might expect that using
(KP* with P* <P will be efficient for solving the smaller
labeling problem. We have not done enough experiments to
determine the most efficient P* and in our algorithms we
showP* =P- 1.
The following procedure implements the recursive algo-

rithm for (PKP:

I UN, IN) ER

FLAG = true;
do for each combination {il,. K* } of {1, , N} while (FLAG # false)

begin
UFIXED = {U,*, UjK };

LFIXED = { IKX ' };

do for each combination {il,'* ip } of {1,*,' ,M}- UFIXED
while (FLAG *false)

begin
UFREE= {Ui1, ,'UiP K};

R {(uI, 11, , UN IN)} E R Iui E UFIXED U UFREE
and ui E UFIXED, implies li is the corresponding
element of LFIXED, i = 1,* K};

T {(U1,- ,uN)ETIUiECUFIXED UUFREE};
if (R is not single-valued)
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then begin
v = a unit such that v has more than one possible

label left in R and has the smallest number
of possible labels of all such units;

NEWLIST = the list of all possible labels of v;
P*=P- 1;
FLAG = TREESEARCH (R, T, NEWLI ST, N, K,P*)

end
end (of combination il, iP_K)

end (of combination jI, * * *, jK)
if(FLAG false) then add NT to OR

end (of N-tuple NT);
return (OR)

end ¢bKP

VI. CONCLUSION

In this first part of a two-part paper we have introduced a

model for a general problem called the consistent labeling
problem. We have shown that many different problems in-
cluding puzzles, scene analysis problems, finding automata
homomorphisms, and Boolean satisfiability are examples of
the consistent labeling problem. We have defined a two-
parameter look-ahead operator oKP that removes 2N-tuples
from the unit-label constraint relation R that do not lead to
consistent labelings, and we have shown that oKP never re-

moves any 2N-tuples from R that do lead to consistent label-
ings. Thus, oKP can help solve a consistent labeling problem
by reducing the size ofR and thus reducing the size of the tree
searched for a consistent labeling. Finally, we have illustrated
how to incorporate OKp into a tree search and have shown that
the @KP operator can be described by a recursive procedure.
In Part II we will present a number of theoretical results con-

cerning the power of the 'KP operator. We will introduce an-

other look-ahead operator ~/KP which is the generalization of
several more relaxation operators used by other researchers,
discuss its properties, and show its relation to OKP. Finally,
we will discuss the complexity of the tree search with look-
ahead operators.
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Experiments in Text Recognition with the Modified
Viterbi Algorithm
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Abstract-In this paper a modification of the Viterbi algorithm is
formally described, and a measure of its complexity is derived. The
modified algorithm uses aheuristic to limit the search through a directed
graph or trellis. The effectiveness of the algorithm is investigated via
exhaustive experimentation on an input of machine-printed text. The
algorithm assumes language to be a Markov chain and uses transition
probabilities between characters. The results empirically answer the
long-standing question of what is the benefit, if any, of using transi-
tion probabilities that depend on the length of a word and their posi-
tion in it.

Index Terns-Computational complexity, contextual information,
cost, feature vector, N-gram probabilities, probability of misclassifica-
tion, text recognition.
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I. INTRODUCTION
ALGORITHMS using contextual information in spoken

or printed text recognition fall into two main categories:
dictionary look-up methods and Markov methods [20]. The
dictionary look-up methods require that the words to be
classified or recognized exist in a previously compiled dictio-
nary available to the classifier [3], [4], [6], [8], [17], [18],
[23], [24], and they represent a top-down philosophy in ap-
proaching the problem. The Markov methods [1], [5], [7],
[9], [11] , [15] , [16], [18], [19] invoke the assumption that
the language is a Markov source and use transition probabilities,
thus representing a bottom-up approach.

It should be noted that other bottom-up approaches are
possible; for example, using syntactic rules [12] . At the
moment it appears difficult to determine whether the semantic-
syntactic approach or the purely statistical approach is sounder
[13] . It is of interest to determine how much can be gained
with a purely statistical bottom-up approach such as the
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