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In this article, we study a flat homogeneous FLRW model in Lyra geometry which is described by
a time-dependent displacement vector. We consider an appropriate parametrization of the energy
density of scalar field ρφ in terms of the cosmic scale factor. The result shows two transitions from
deceleration to acceleration. Furthermore, we constrain the model parameter α and the displacement
field vector β using the recent supernovae data, Hubble data set of 77 points and their joint data
which predicts the accelerated expanding phase of the universe in late times. The effective equation
of state parameter ωeff speculate ΛCDM in late times. Finally, we use the statefinder diagnostic
to differentiate our model from the various dark energy models.
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I. INTRODUCTION

From various observations, the accelerating behavior of the Universe is confirmed. However, figuring out the

reason for acceleration is still a big challenge in cosmology. In standard cosmology, dark energy models are supported

as a resolution to this fundamental question. Here, the cosmological constant Λ, which can be associated with the

vacuum quantum energy, is most prominent to describe the dark energy [1, 2]. Another reassuring way to understand

the recent probes for cosmic expansion is Einstein theory of general relativity [3, 4]. The Einstein’s GR models seize

up at large cosmic scales and a more generic action characterizes the gravitational field. To generalize the Einstein-

Hilbert action of GR, there are various models where standard action is replaced by the generic function f(R), where

R is the Ricci scalar [5–12]. Using these f(R) models, the early inflation of the universe and the concept of dark

energy are discussed. In the extension of f(R) gravity theory, an explicit coupling of matter Lagrangian density Lm

is included with f(R) [13–23]. For a proper description of the early universe, homogeneous and isotropic cosmological

models play a significant role.

It is noteworthy that among all of the alternative theories of gravitation, Lyra geometry is one of the important

theory, which is proposed by Lyra [24]. Lyra geometry comes with a modification of Riemannian geometry and may

be considered as a modification of Weyl’s geometry. In Weyl’s geometry, the change in the length of vectors under

parallel transport is non-zero and depends on a new vector quantity ζi, which is used for electromagnetic potential.

In 1951, Lyra proposed a different way to maintain the vector length integrability by adopting a gauge function β(t)

as an intrinsic part of the manifold’s geometric structure [25–36]. Further, Sen [37] formulate a static cosmological

model where he obtained the EFE through the variational principle. Singh and Shri Ram [38] discussed the spatially

homogeneous Bianchi type-I metric in the normal gauge for Lyra’s geometry.
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In the literature, a reconstructing technique or model-independent technique has been employed. Nowadays, this

model-independent technique is of great interest to configure of some DE candidates. Initially, this approach is dis-

cussed by Starobinsky [16]. Many authors proposed this parametrization scheme on density, pressure, deceleration

parameter, Hubble parameter, and scale factor. This method has two categories: (1) non-parametric and (2) paramet-

ric. The non-parametric method has certain restrictions because it could not be able to explain all the incidents of the

present Universe while the parametric method includes a specific parametrization of the distinct types of cosmological

parameters which are used to explore the cosmological models [39].

The present work is organized as follows: In Sec. II, we present the model field equations using Lyra’s geometry

frame transformation for flat FLRW space-time metric. We parametrize the energy density for the scalar field and

obtain the analytical solutions of the Hubble parameter and other cosmological parameters. In Sec. III, we discuss a

brief introduction of Type Ia supernova data and observational Hubble data to derive the constraints on the model

parameters. In Sec. IV, we study the evolution of various quantities of the universe. Finally, we discuss and conclude

our findings in Sec. V.

II. FIELD EQUATIONS IN LYRA GEOMETRY

The gravitational action proposed by Sen [37] is defined as

A =

∫
(β4R+ Lφ + Lm)

√
−gd4x, (1)

Using Lyra’s reference frame transformation the field equations obtained as:

Rγδ −
1

2
Rgγδ +

3

2
ζγζδ −

3

4
gγδζλζ

λ = κTγδ, (2)

where κ = 8πG which is normalized to 1 for further calculation, Rγδ is Ricci tensor, R is scalar curvature, and ζγ

is the time-like displacement vector, defined as (β(t), 0, 0, 0).

The flat FLRW space-time metric is given by

ds2 = −a2(t)(dx2 + dy2 + dz2) + dt2, (3)

where a(t) is the scale factor of the universe. From Eq. (2), we get

3H2 − 3β2

4
= ρeff = ρφ + ρm, (4)

2Ḣ + 3H2 +
3β2

4
= −peff = pφ. (5)

Overhead dot is used for derivative w.r.t. time. ρeff and peff signifies the total amount of energy density and pressure

contained in the universe. Also ρφ, ρm, pφ depict the energy density of the scalar field, energy density of matter,

and pressure of scalar field respectively. According to the present Universe is filled with two types of fluid, one is

corresponding to the scalar field and another is pressureless cold matter.

The action of the scalar field is defined as:
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Lφ =

∫
[
1

2
∂νφ∂

νφ− V (φ)]
√
−gd4x. (6)

In the study regarding an isotropy and homogeneity of the model, we require a dominant unit of the scalar field φ.

As dependency of scalar field is on time therefore this may assume as perfect fluid with ρφ and φ. And for FLRW

cosmology energy density and pressure for scalar field can be obtained as

ρφ =
φ̇2

2
+ V (φ), (7)

pφ =
φ̇2

2
− V (φ), (8)

where V (φ) and 1
2 φ̇

2 are potential energy and kinetic energy depending on scalar field φ. Now the conservation

equations for matter field and scalar field read as

˙ρm + 3Hρm = 0, (9)

ρ̇φ + 3H(ρφ + pφ) = 0. (10)

As EoS parameter ωφ =
pφ
ρφ

, thus Eq. (10) leads

ρ̇φ + 3H(1 + ωφ)ρφ = 0, (11)

or

ωφ = −(1 + a
1

3ρφ

dρφ
da

), (12)

Since we have four unknowns in three independent Eqs. (9), (10), (12), thus in order to solve the system of

independent equations we need one more constraint equation. Therefore, we consider an appropriate parametrization

of ρφ as

ρφ(a) = e−αatan−1(a−α). (13)

This kind of approach is also been used by Singh et al. [39]. In this expression α ∈ (0, 0.2) is the model parameter

and will be constrained from observational datasets. The value of ρφ can be written in terms of redshift by using the

relation a = a0
(1+z) , where a0 = 1 is the present value of scale factor, as

ρφ(z) = e
−α
1+z tan−1(1 + z)α, (14)
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and the present value of energy density i.e. at z=0,

ρφ0
=
π

4
e−α. (15)

Eq. (14) and (15) yield

ρφ(z) =
4

π
ρφ0

e
αz
1+z tan−1(1 + z)α, (16)

Also using Eq. (9), energy density of matter field ρm can be calculated in terms of redshift z as

ρm(z) = ρm0(1 + z)3 (17)

Together Eqs. (4), (16) and (17), we have

3H2 =
3β2

4
+ ρm0

(1 + z)3 +
4

π
ρφ0

e
αz
1+z tan−1(1 + z)α, (18)

Now, by taking the gauge function β2 = 3β0H
2
0a
−2α and considering the density parameter Ω = ρ

ρc
which plays

the key role to explain the whole content of the Universe. Here ρc = 3H2

8πG is the critical density of the Universe.

Eq. (18) can be written in terms of density parameter of scalar field and matter,

H =

√
1

4
β0(1 + z)2α +

4

3π
Ωφ0

e
αz
z+1 tan−1(z + 1)α +

1

3
Ωm0

(z + 1)3, (19)

where H0, Ωm0 and Ωφ0 are the current values of Hubble parameter, density parameters of matter and scalar field

respectively. We consider the Hubble parameter H as dimensionless quantity by dividing Eq. (18) by
√

3H0, which

yields Eq. (19).

The expression for deceleration parameter q given by

q = −aä
ȧ2

= −1 +
1 + z

H

dH

dz
. (20)

Thus, the deceleration parameter q and EoS parameter for scalar field ωφ can be evaluated as

q(z) = −
− 1

2αβ0( 1
z+1 )−2α−1 − 4αΩφ0e

α(1− 1
z+1

)
( 1
z+1 )−α−1

3π(( 1
z+1 )−2α+1)

− 4αΩφ0e
α(1− 1

z+1
)

tan−1(( 1
z+1 )−α)

3π − Ωm0(z + 1)4

2(z + 1)( 1
4β0( 1

z+1 )−2α +
4Ωφ0e

α(1− 1
z+1

)
tan−1(( 1

z+1 )−α)

3π + 1
3Ωm0

(z + 1)3)

− 1, (21)

ωφ(z) = −
πeα( 1

z+1−1)(− 4αΩφe
α(1− 1

z+1
)
( 1
z+1 )−α−1

π(( 1
z+1 )−2α+1)

− 4αΩφ0e
α(1− 1

z+1
)

tan−1(( 1
z+1 )−α)

π )

12Ωφ0
(z + 1)2 tan−1(( 1

z+1 )−α)

×

√
1
4β0( 1

z+1 t)
−2α +

4Ωφe
α(1− 1

z+1
)

tan−1(( 1
z+1 )−α)

3π + 1
3Ωm0

(z + 1)3

12Ωφ0
(z + 1)2 tan−1(( 1

z+1 )−α)
− 1. (22)

In the next section, we constrain the model parameter α and β0 using different observational datasets and obtain

their best fit value. Thereafter use these values to examine the behaviours of various physical parameters.
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III. STATISTICAL OBSERVATION FOR MODEL PARAMETERS

Observational cosmology plays a major role to explore the evolution of the Universe. Therefore, in the current

section, we are using the expression for the Hubble parameter from Eq. (19) to perform statistical analysis with

three observational datasets namely the Hubble dataset (77 points) [40], Type Ia Supernovae dataset [41] and their

joint datasets and to acquire the present best fit value of the model parameters α and β0. Here, for the likelihoods

minimization of χ2 for the goodness of fit of the model, we use the Markov chain Monte Carlo (MCMC) method

to investigate the parameter space from the python package emcee [42], which is extensively used in observational

cosmology.

In this process, the present value of Hubble parameter, density parameters of matter, and scalar field are taken as

67.4KmSec−1Mpc−1, 0.315, 0.685 respectively, which are given in recent Planck data [43].

A. Supernovae type Ia Data

We use SNeIa Union 2.1 compilation dataset and constrained both the model parameters. For flat universe

Chi-square function χ2
SN (α, β0, H0) can be stated as

χ2
SN (α, β0, H0) =

580∑
i=1

[
µth(α, β0, H0, zi)− µobs(zi)

σµ(zi)

]2

. (23)

where SN is stand for the observational SNeIa dataset. µth and µobs represents theoretical and observed distance

modulus of the model. The standard error in the observed value is denoted by σµ(zi). Also, the theoretical distance

modulus µ(z) is defined by

µ(z) = m−M = 5LogDl(z) + µ0, (24)

where m and M are used for the apparent and absolute magnitudes of a standard candle respectively. The luminosity

distance Dl(z) for flat Universe and the nuisance parameter µ0 are given by

Dl(z) = (1 + z)c

∫ z

0

1

H(z∗)
dz∗, (25)

and

µ0 = 5Log
( H−1

0

1Mpc

)
+ 25, (26)

respectively. Here, we perform a global fitting to dictate the model parameters using the Markov chain Monte Carlo

method and Python implementation of the ensemble sampler for the MCMC method with the EMCEE library,

introduced by Foreman-Mackey et al. to show the best-fit value of model parameters written in Table-I.

B. Hubble Dataset

Since Hubble data is directly based on differential ages of the galaxies and related to the expansion history of

the universe thus this is very useful to understand the dark section i.e. dark energy, dark matter, and dark ages of
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(a) (b)

(c)

FIG. 1: Figs. (a), (b) and (c) illustrate the constraints on the model for the data OHD, SNeIa, and joint dataset OHD + SNeIa respectively
corresponding to 1σ and 2σ confidence regions.

the universe. The value H can be written in terms of z as

H(z) = −(1 + z)−1 dz

dt
. (27)

The best-fit values of the model parameters are determined by minimizing the Chi-square value

χ2
HD(α, β0) =

77∑
i=1

[H(α, β0, zi)−Hobs(zi)]
2

σ2
zi

, (28)
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where H(α, β0, zi) and Hobs represent the theoretical and observed values respectively and σzi indicates the standard

deviation for every H(zi). For H(z) 77 data points, the best fit values of α and β0 are estimated in Table-I.

TABLE I: Best fit values of model parameters.

Dataset α β0

SNeIa 0.635+0.060
−0.060 0.1935+0.0083

−0.0083

H(z) 0.687+0.013
−0.0025 0.157+0.044

−0.0098

H(z) + SNeIa 0.686+0.014
−0.0027 0.1868+0.0025

−0.0031

The Gelman-Rubin convergence test [44] is a widely used statistical tool in Bayesian inference that

allows to access the convergence of the chains. The test is based on the idea that multiple MCMC

chains with different starting points should converge to the same posterior distribution if they have

been run for long enough, that is, after a number of steps. Basically, this test measures, for each

parameter of the considered model, the quantity called potential scale reduction R̂, which is the ratio

between the variance W within a chain and the variance Var(θ) among the chains:

R̂ =

√
V̂ar(θ)

W
. (29)

The value of R̂ for a perfectly converged chain should be 1, so R̂ ≈ 1.1 corresponds to the maximum

allowed value for this parameter for which the convergence of the chain is achieved.

We then apply the Gelman-Rubin convergence test to chains of the fits of α and β0 from Hubble

data alone. The test yielded R̂ = 1.03008001, for α and R̂ = 1.02498708 for β0, respectively. As 1000 steps

with 100 steps of burn-in were used to run the MCMC chains, in Fig. 2 we verify that convergence,

for both parameters, is reached just after approximately 250 steps when crossing the horizontal line

that represents the convergence criterion.

C. Joint Datasets (H(z) + SNeIa)

The χ2 function for joint analysis is given by

χ2
HS = χ2

HD + χ2
SN . (30)

Using this joint statistical analysis, the stronger constraints of the model parameter can be obtained. For joint

datasets, the best fit values of α and β0, can be seen in Fig. 1(c) and Table-I. Now to compare our model with

ΛCDM , we use error bar plots for Hubble datasets and Supernovae datasets. The values of model parameters are

constrained from observational datasets. In Fig. 3, the error bar plots of the Hubble and Type Ia Supernovae dataset

show the best fit plots.
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FIG. 2: The evolution of the potential scale reduction R̂ with the chain length for α and β.
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FIG. 3: The error bar plots in respect of H(z) and Type Ia Supernovae datasets show the similarity between our model and ΛCDM.

IV. EVOLUTION OF THE UNIVERSE

In this section, we study the evolution of various cosmological quantities using the best-fit values of the model

parameters obtained from different observational datasets. Energy density for the scalar field is decreasing with

respect to redshift z. In Fig. 4(a), It is clearly visible that ρφ monotonically decreases and approaches zero in late

times, which indicates that amount of dark energy density of the scalar field diminished in the future. In Fig. 4(b),

the isotropic pressure of the scalar field is negative for all values of z, which indicates the presence of dark energy

up to late times. Also the plots of EoS parameter ωφ and ωeff =
pφ

ρφ+ρm
show the quintessence model in late times.

Finally, our model shows the quintessence model in late times as it transits from the quintessence region to a perfect
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FIG. 4: The graphs of ρφ and pφ w.r.t. z.

fluid state and again converges to the quintessence region in the future (see Fig. 5).

TABLE II: The present values of the cosmological parameters.

Dataset H q ωeff

SNeIa 70.802 −0.1961 −0.5283

H(z) 70.2202 −0.1604 −0.5384

H(z) + SNeIa 70.6396 −0.1640 −0.5270

Fig. 6(a) shows the evolution of the deceleration parameter for different observational datasets. In this model,

we observe that the Universe has three transit points during the evolution of each observational data. In early time

universe transited from deceleration to acceleration, at present, it shows the acceleration phase. In late time again the

universe is having a transition from acceleration to deceleration and afterwords deceleration to acceleration. These

transition points are shown in Table II. In our model, we observe that the present value of q is not very

near to 0.5 and it is relevant to point out that q ≈ −0.5 stands for ΛCDM model and constraints over

this parameter using the CMB data. Therefore, new theories of gravity may admit different values for

the deceleration parameter, as we can see in the following works [45, 46]. Moreover, the crises over

H0 in different regimes of redshift may also open the possibility of different values for q0 and ω0, as we

can see in [47, 48].



10

-1 0 1 2 3 4 5

-1.0

-0.5

0.0

0.5

1.0

z

ω
ϕ

H(z)
SNeIa
H(z)+SNeIa

(a)

-1 0 1 2 3 4 5

-0.6

-0.4

-0.2

0.0

0.2

z

ω
ef
f

H(z)
SNeIa
H(z)+SNeIa

(b)

FIG. 5: The graphs of ωφ and ωeff vs. z for distinct observational data.

TABLE III: Transition points of deceleration parameter for different datasets.

Dataset ztr1 ztr2 ztr3

SNeIa 0.7578 −0.5815 −0.8824

H(z) 0.7093 −0.4942 −0.8824

H(z) + SNeIa 0.7189 −0.5136 −0.8824

To understand the evolution of the expanding universe in a more significant way, we explore some cosmographic

parameters which contain the higher-order derivatives of scale factor a. Here, we intend to discuss a kinematic quantity

that contains the third-order derivative and is known as the jerk parameter. The Jerk parameter j is defined as

j =

...
a

aH3
= −q + 2q(1 + q) + (1 + z)

dq

dz
. (31)

The standard value of the Jerk parameter j for ΛCDM model is one, thus digression from j = 1 explores the evolution

of different kinds of dark energy models. Fig. 6(b) highlights that at the early time our model is similar to ΛCDM

model and afterward this deviates from ΛCDM till the late times.

To differentiate our model with ΛCDM, we also use statefinder diagnostic technique, which is established by Sahni

et al. [49, 50]. The two geometrical diagnostic parameters (s, r), known as statefinder parameters are defined as

r =

...
a

aH3
s =

r − 1

3(q − 1
2 )
, q 6= 1

2
(32)

Using statefinder diagnostic parameters, we can compare the goodness of various dark energy models with ΛCDM.
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FIG. 6: The plot of q and jerk parameter w.r.t. z.

In s − r plot, the points (0, 1) and (1, 1) represent ΛCDM model and SCDM respectively. From Eqs. (21), (31)

and (32), r and s can be calculated, and by using the best-fit values of model parameters we draw these trajecto-

ries (see Fig. 7(a)). The arrows on the curves show the direction of evolution. In our model r < 1 and s > 0

at an early time, which corresponds to the quintessence DE model. The present values of (s, r) are evaluated

(0.5214,−0.0330), (0.4729,−0.0125), (0.5190,−0.0338) from OHD, SNeIa and their joint datasets respectively, which

show the deviations from ΛCDM at present.

In Fig. 7(b), it is highlighted that the q − r curves start from SCDM (1, 1
2 ) and enter into the acceleration zone

for all datasets in the future. In this plot, the dotted horizontal line r = 1 denotes ΛCDM. Here, we observe that the

trajectories are crossing the transition line thrice from early evolution up to late times. As q is negative in late times,

therefore this model shows an acceleration phase of the universe in the future.

V. CONCLUSION

In this model, we have explored the late-time cosmic expansion of the universe in the framework of a flat FLRW

space-time metric with time-dependent displacement vectors based on Lyra’s geometry. We have derived EEF from

the principal action (1) and find solutions. Using the recent observational datasets OHD, SNeIa and OHD+SNeIa,

we have obtained the best-fit values of model parameters α, β by applying MCMC method with emcee package in

Python. Furthermore, we investigated the behavior of cosmological parameters for the constrained values of model

parameters, which are evaluated in Tables I, and II.

The energy density of scalar field ρφ decreases monotonically from high redshift to low redshift and ρφ → 0 as

z → −1, ∀ observations. The pressure pφ is having negative finite value throughout the range, which indicates the

accelerating behavior of the Universe (see Fig. 4). The EoS parameter of the scalar field ωφ depicts that our model is

a quintessence dark energy model as ωφ is having a value between -1 to 0 for the large range of z. Its value becomes

positive for a while, and at the end, it converges to -1 for all datasets. In addition, it clearly highlighted the evolution
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FIG. 7: The Statefinder plots s− r and q − r

profile of the deceleration parameter involving three transitions for each dataset which are shown in Table III. The

jerk parameter shows that our model is similar to ΛCDM in the early universe and it deviates in the future (see Fig.

5,6). The statefinder diagnostic graphs show that for all datasets, s− r trajectories are looking in the form of loops in

our model and passing through the ΛCDM model. Also, three q − r trajectories, which are also loops for the present

model, starts from SCDM and show acceleration at its final phase (see Fig. 7). Thus, in this paper, we conclude

that this model is an accelerated expanding model having the characteristics of the quintessence model studied in

Lyra geometry, which is different from ΛCDM model. It is relevant to point that the approach here presented could

be applied in other theories of gravity, such as f(R) [51], f(R, T ) [52], f(Q) [53, 54], and f(Q,T ) [55, 56]. Such

applications could give us extra parameters to test the viability of Lyra geometry with respect to experimental data.

We hope to report these extra contributions in near future.
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