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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We introduce a parameter that measures the “ con- 

strainedness”  of an ensemble of combinatorial prob- 

lems. If problems are over-constrained, they are likely 

to be insoluble. If problems are under-constrained, 

they are likely to be soluble. This constrainedness 

parameter generalizes a number of parameters previ- 

ously used in different NP-complete problem classes. 

Phase transitions in different NP classes can thus be 

directly compared. This parameter can also be used in 

a heuristic to guide search. The heuristic captures the 

intuition of making the most constrained choice first, 

since it is often useful to branch into the least con- 

strained subproblem. Many widely disparate heuris- 

tics can be seen as minimizing constrainedness. 

Introduction 

Will a problem be soluble or insoluble? Will it be hard 

or easy? How can we develop heuristics for new prob- 

lem domains? All these questions have been the sub- 

ject of intensive study in recent years in a large num- 

ber of problem domains including for example satisfi- 

ability, graph colouring, constraint satisfaction prob- 

lems, and hamiltonian circuits (Cheeseman, Kanefsky, 

& Taylor 1991; Mitchell, Selman, & Levesque 1992; 

Williams & Hogg 1994; Smith & Dyer 1996). Here, we 

introduce some general methods which help to answer 

these questions in a wide range of problems. These 

methods are based on a definition of the constrained- 

ness of an ensemble of combinatorial problems. 

Problems which are very over-constrained are insol- 

uble and it is usually easy to determine this. Problems 

which are very under-constrained are soluble and it is 

usually easy to guess one of the many solutions. A 

phase transition tends to occur inbetween when prob- 

lems are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“ critically constrained”  and it is difficult to de- 

termine if they are soluble or not (Cheeseman, Kanef- 

sky, & Taylor 1991). As problem size increases, this 
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phase transition occurs more rapidly as we vary the 

constrainedness. Surprisingly, we can often character- 

ize an ensemble of problems using just two parameters: 

their size, and their constrainedness. 

We will first define a parameter K (the Greek letter 

‘kappa’) which we use to measure constrainedness. We 

show how it can be calculated in several classes of com- 

binatorial problems where phase transitions have been 

intensively studied, and also one where they have not. 

Then we show that K: can be used in a heuristic to guide 

search, and that it can outperform a good heuristic for 

constraint satisfaction problems. Finally we show how 

many existing heuristics for combinatorial search can 

be understood as heuristics to minimize K. 

Constrainedness 

By studying the parameters introduced in a variety 

of domains like graph colouring and satisfiability, we 

propose a definition of the “ constrainedness”  of an en- 

semble of problems. We assume that each problem in 

an ensemble has a state space S with ISI elements and 

a number, Sol of these states are solutions. Any point 

in the state space can be represented by a N-bit binary 

vector where N = log,(lSJ). Let (So/ > be the expected 

number of solutions averaged over the ensemble. We 

will define constrainedness, K, of an ensemble by, 

K =def 1 - 
l%UW) 

N 
(1) 

It is very important to note that this defines the con- 

strainedness of an ensemble of problems, not of an in- 

dividual problem. In following sections, we will show 

that this definition generalizes, unifies, and extends a 

large body of previous work on randomly generated 

problems. In such cases, the method of generation de- 

fines the ensemble of problems, so K is well defined. 

Further motivation for this definition comes from 

considering the probability that we can set the bits 

in the N-bit binary vector and arrive at a solution. If 

the problems are under-constrained, there will be many 

solutions and the probability that a bit can be set cor- 

rectly will be high. If problems are over-constrained, 

there are very few or no solutions, and the probabil- 

ity that a bit can be set correctly will be much lower. 
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Constrainedness is thus closely related to this prob- 

ability. Unfortunately, it is difficult to compute this 

probability directly. We do know, however, the prob- 

ability that all the bits can be set correctly as this is 

just the expected number of solutions divided by the 

size of the state space. This equals the product of the 

N probabilities for each bit. In the absence of any 

other evidence, we assume that all these probabilities 

are equal. That is, we estimate a single probability by 

the geometric mean. We then take IG as the negative 

logarithm of this estimate. 

Since log,( (Sol)) < N, )c is bounded in the range 

[O,oo). A value K = 0 corresponds to a completely un- 

constrained ensemble with Sob = 15’1, while a value of 

K: = 00 corresponds to a completely constrained ensem- 

ble with Sol = 0. In constraint satisfaction, (Williams 

& Hogg 1994; Smith & Dyer 1996) predict a phase tran- 

sition between soluble and insoluble problems when 

(So4 M 1. In line with this prediction, using (1) we 

conjecture that a transition will occur when K M 1. If 

K: < 1, problems are under-constrained and are typi- 

cally soluble. If K > 1, problems are over-constrained 

and are typically insoluble. The equality K: M 1 only 

gives a first approximation of the location of the phase 

transition: we will see that yi is typically between about 

0.75 and 1 at the phase transition. More refined esti- 

mates take account of the variance in the number of so- 

lutions at the phase boundary (Williams & Hogg 1994; 

Smith & Dyer 1996). 

There is no difference between the prediction of a 

phase transition at K: M 1 or at (So!) M 1. The value 

of the definition of cc. is as a parameter for measuring 

problems. While (Sol) can grow exponentially with 

N, we will see that the value of f~ at the phase tran- 

sition varies very little. What variation there is can 

be modelled by the technique of finite size scaling. In- 

deed, R is such a good parameter that it has been used 

independently in a number of problem classes, as we 

show below. For the first time, we can see that these 

assorted parameters all measure the same thing. 

An example 

It is often quite straightforward to compute (Sol) and 

therefore R. Consider, for example, constraint satis- 

faction problems (CSP’s). Each variable o E V, has a 

domain of values MV of size m, . Each constraint c E C 

of arity a restricts a tuple of variables (~1, . . . , va), and 

rules out some proportion p, of possible values from 

the Cartesian product A&, x . . . x A&,, . We call pe the 

“ tightness” . of a constraint. To avoid trivial problems 

we insist that all arities are at least one, but make no 

further restrictions. Problems may have variables with 

many different domain sizes, and constraints of many 

different arities and tightnesses. 

The state space has size nvEV m,. Each constraint 

rules out a proportion pe of these states, so we have 

Substituting this into (1) gives 

K = 
- LCEC 

CvEV h32@4 

(Williams & Hogg 1994) present a similar model for 

constraint satisfaction problems. The approach pre- 

sented here can, as we show later, be applied to other 

problems of a very different nature like number parti- 

tioning and the travelling salesman problem. 

Comparison with existing parameters 

The definition of constrainedness generalizes several 

parameters introduced recently for satisfiability, con- 

straint satisfaction, graph colouring, and number par- 

titioning. We predict that it will prove useful in many 

other domains. 

In satisfiability, we are given a formula with n vari- 

ables and a clauses each of which has a literals. We 

can view this as an instance of a constraint satisfac- 

tion problem. Each variable has two values, true and 

false, so m, = 2 for all V. Each clause rules out one of 

the 2”  possible tuples of values of the variables in the 

clause. So each clause is a constraint of tightness l/ 2” , 

and there are a such constraints. Equation (2) gives 

K = -loga(l - ;)A 

That is, a constant times l/n for fixed a. The ratio l/n 

has been used as an “ order parameter”  for satisfiabil- 

ity. A phase transition in satisfiability occurs around 

a critical value of I/n (Mitchell, Selman, & Levesque 

1992). For large a, this phase transition occurs at a 

value close to -l/  log,( 1 - &) (Kirkpatrick & Selman 

1994), that is around K M 1, as expected. 

In graph colouring, we are given a graph with n 

nodes and e edges, and wish to colour it with m colours. 

As a CSP, each node represents a variable with a fixed 

domain of size m, and each edge represents a binary 

constraint ruling out m of the m2 possible pairs of 

colours, a tightness of l/ m. So (2) gives 

e- ,m. 

This is a constant, namely log,(a)/ 2, times the av- 

erage degree of a node in the graph. The average de- 

gree has been used as an order parameter for describing 

the phase transition in colouring problems (Cheese- 

man, Kanefsky, & Taylor 1991). A phase transition 

has been observed in random 3-colouring problems at 

an average degree of 4.6 (Hogg & Williams 1994), cor- 

responding to K = 0.84. 

In binary CSP’s (in which constraints only have a bi- 

nary arity), a standard means of generating test prob- 

lems is to have n variables each with the same domain 

size of m. Given a constraint density of pl, exactly 

w(n - 1)/z constraints are chosen, each with a tight- 

ness of p2 (Prosser 1996; Smith & Dyer 1996). Such 

Phase Transition 247 



problems are described by 

ing these values, (2) gives 

the tuple, (n, m,Pl,Pz). us- 

n- 
K = $Pl lo&(+ 

1 - P2 

This has been used as a parameter for binary constraint 

satisfaction problems (Gent et al. 1995). The phase 

transition again occurs around K M 1. 

In number partitioning, we have n numbers from 

the range (0, a] and wish to find an exact partition into 

m bags with the same sum. We have N = n log, m as 

there are mn possible partitions. (Gent & Walsh 1996) 

present an “ annealed”  theory in which the expected 

number of exact partitions is 

(Sol) a mn(2L)(m-1)10g2(l) 

Y 

Although (2) no longer applies, substituting N and 

(Sol) into (1) gives 

K = (m _ l)logno 
m-l 

parameter used was based on an asymptotic result and 

its relationship to constrainedness is, as yet, uncertain. 

The state space S contains all (n - l)! possible dis- 

tinct tours (one city is designated the starting point 

arbitrarily). Each of these tours has some length d. As 

the sum of n normal distributions, d has a normal dis- 

tribution with mean np and standard deviation ~fi. 

If we normalise I to Î  = (t - np)/afi then i is dis- 

tributed normally with mean 0 and standard deviation 

1. The probability that a randomly chosen tour has a 

length I less than or equal to some given length d is 

s 

Li 

prob(l 5 d) = 

e-xs/2 

-  
-m &G dz 

For z < 0 (Abramowitz & Stegun ) gives the equality 

In two-way partitioning, i.e. m 1’2, a phase transition 

in solubility occurs at K = 0.96 (Gent & Walsh 1996). 

We thus see that our definition of r(; generalises a 

number of parameters introduced in a variety of prob- 

lem classes. This suggests that “ constrainedness”  is a 

fundamental property of problem ensembles. In ad- 

dition to unifying existing parameters, we can now 

compare problems between classes. For example, the 

phase transition in 3-satisfiability problems occurs at 

vn = 4.24 (Crawford & Auton 1993) which corre- 

sponds to CE = 0.82, roughly comparable to that in 

3-colouring at K = 0.84, while the phase transition in 

number partitioning occurs at K: = 0.96. This suggests 

that number partitioning problems at the phase tran- 

sition may in some sense be more constrained. The 

definition of K also allows us to treat a wider range 

of problems within a class. For example, we now deal 

with problems having mixed arity constraints, mixed 

domain sizes and mixed constraint tightnesses. This 

permits the computation of K: during search as domain 

sizes change and constraints are removed. We will see 

(3) 

. I 

The optimal tour length will tend to have d^ << 0 so 

the error term will be small. Accordingly we use the 

approximation 
,-c&2 

Multiplying this by ( n - l)!, the number of distinct 

tours, gives (Soa), the expected number of tours less 

than or equal to d. Substituting this into (1) gives, 

the value of this in a later section. 

The travelling salesman problem 

K = 
ci2/a + log,( Id(&) 

log2(n - l)! 

We expect a phase transition in the decision prob- 

lem when K e 1. We tested this experimentally us- 

ing a branch and bound algorithm with the Hungarian 

heuristic for branching (Carpaneto & Toth 1980). For 

n=6 to 48, we randomly generated 1000 problems with 

inter-city distances independently normally distributed 

with p=106 and a=10 5. Figure 1 shows the probabil- 

ity that there was a tour less than distance d, plotted 

against K. There is a clear phase transition from sol- 

uble to insoluble problems that becomes sharper with 

more cities. Except for problems with 6 cities, there is 

a critical value of K = 0.75 which gives the probability 

of a tour existing of 0.45 f 0.04 at all sizes. 

We now give a case study of using our definition of con- 

strainedness in a new problem class. We consider the 

asymmetric travelling salesman problem (ATSP) with 

inter-city distances drawn from a normal distribution 

with mean 1-1 and standard deviation CT. We consider 

the decision problem of determining if there is a tour 

of length d or less which visits all n cities. Most com- 

putational studies of the travelling salesman problem 

have been on the optimisation rather than the deci- 

sion problem (Cheeseman, Kanefsky, & Taylor 1991; 

Zhang & Korf 1992). Although a phase transition 

has been observed in the decision problem in the two- 

dimensional Euclidean TSP (Gent & Walsh 1995b), the 

Finite size transitions 

We can use the constrainedness, 6, to predict the shape 

as well as the location of phase transitions. Phase tran- 

sitions in physical systems have been successfully de- 

scribed using finite size scaling methods (Barber 1983). 

Around a critical temperature T,, problems of all sizes 

tend to be indistinguishable except for a change of scale 

given by a power law in a characteristic length. Here 

we propose that the constrainedness, K, plays the role 

of temperature whilst the problem size, N, plays the 

role of the characteristic length. This analogy suggests 

that around some critical constrainedness K,, problems 
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Figure 1. Probability of tour of required length ex- Figure 2. Probability of tour of required length ex- 

isting in ATSP, plotted against IC, for 6 to 48 cities. isting in ATSP, against “ izG N1/ ”  for 6 to 48 cities. 

of all sizes will tend to be indistinguishable except for 

a simple change of scale given by a power law in N. 

For example, we conjecture that a macroscopic prop- 

erty like the probability of a solution averaged over an 

ensemble of problems will obey the equation, 

prob(Sob > 0) = f( 7 N+) 

where f is some fundamental function, “ ;:Q is analo- 

gous to the reduced temperature *TTc, and N1/ ”  pro- 

vides the change of scale. Such scaling has been shown 

to model the probability of a solution in finite size 

phase transitions in satisfiability (Kirkpatrick & Sel- 

man 1994), constraint satisfaction (Gent et ad. 1995), 

and number partitioning (Gent & Walsh 1996). 

To test this conjecture for the ATSP, in Figure 2 

we replot our data against the parameter Icirc N1/ ”  

using ~~ = 0.75 and u = 2, both values derived from 

examination of the data. If (4) holds, the curves will 

line up when plotted against this resealed parameter. 

As predicted, except at n = 6, finite size scaling models 

the probability of a tour existing. A discrepancy at 

small problem sizes has also been seen in other classes 

such as satisfiability (Kirkpatrick & Selman 1994) and 

suggests that finite size scaling provides a very useful 

but incomplete description of scaling behaviour. 

Other macroscopic measures like search cost can of- 

ten be modelled by finite size scaling (Selman & Kirk- 

patrick 1996; Gent et al. 1995). In Figure 3, we plot 

the search cost against the resealed parameter with the 

same values of )E, and u. We use the 90th percentile 

of the number of nodes searched, as lower percentiles 

such as median cost were always trivial in that no back- 

tracking occurred. As in many other problem classes, 

e.g. satisfiability (Mitchell, Selman, & Levesque 1992), 

search cost displays a distinctive easy-hard-easy pat- 

tern through the phase transition. 

This case study clearly illustrates that our definition 

of constrainedness is useful in new problem classes. A 

0.8 

0.6 

-4 -2 0 2 4 

Figure 3. 90th percentile of nodes searched to solve 

ATSP instances, plotted against “ ~ZC N1/ V. 

phase transition occurs, as predicted, at K x 1. And 

as expected, by means of finite size scaling we are able 

to model scaling behaviour of the phase transition. 

Constrainedness as a heuristic 

Many existing heuristics branch on the most con- 

strained variable, resulting in the least constrained 

subproblem; i.e. the subproblem with smallest 6. 

Hence, we propose the heuristic of minimizing K. 

To test this idea, we performed experiments on 

randomly generated binary CSP’s from the class 

(n, m, pl , ~2) described earlier. We encoded mini- 

mizing K: as a dynamic variable ordering heuristic 

within the algorithm fc-cbj (i.e. forward checking with 

conflict-directed backjumping)(Prosser 1993). After 

instantiating a variable, domain filtering is performed. 

This may result in a reduction in the size of the do- 

mains of future (i.e. uninstantiated) variables and con- 

sequently alter the tightness of future constraints (i.e. 

constraints acting between pairs of future variables). 

The future sub-problem may then be non-uniform in 
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domain sizes and constraint tightnesses. To measure 

K: for this reduced problem, we assume it is a repre- 

sentative of the ensemble of problems with the same 

number of variables, the same domain sizes, and the 

same number of constraints each of the same tightness 

as the reduced problem. This is a heuristic assumption 

which seems to be justified by our results. 

When considering a variable zli as the new current 

variable we remove it and all constraints involving it 

from the future sub-problem. We then calculate K; for 

the future sub-problem using equation (2) and take 

this as the cost of selecting variable vi. This is done 

for all future variables and the variable with minimum 

cost is selected as the current variable. 

minimize-k b%uistic --- 

loo 1 
I I I I I 

0 0.5 1 1.5 2 2.5 

Figure 4. Fail First (FF) and minimize-K heuristics 

applied to (2O,lO,pl) problems using fc-cbj. Mean 

search effort on y-axis, K on x-axis. Contours for 

Pl = 1.0 (top), Pl = 0.5 (middle), pl = 0.2 (bottom). 

We compared the minimize-s heuristic with an en- 

coding of the fail first (FF) principle (Haralick & Elliott 

1980) i.e. selecting the variable with smallest domain. 

Figure 4 shows the results of experiments performed on 

(2O,lO,pl,p2) problems (i.e. 20 variables, uniform do- 

main size of 10). Constraint density p1 was varied from 

0.2 up to 1.0, for each value of pl constraint tightness 

p2 was varied, and at each value of pl and ~ 2 1006 prob- 

lems were generated. The contours shown are for the 

mean search effort, measured as consistency checks. As 

can be seen, minimize-K: outperforms the FF heuristic, 

especially around the phase transition. Although not 

shown, the same holds for median performance. When 

search effort is measured as number of trial instanti- 

ations of variables, minimize-K: again shows superior 

mean and median performance. (Gent et ad. 1996) 

reports more extensive experiments on the minimize-K 

heuristic with similar results. At the peak in search 

costs, paired-sample t-tests gave values of t = 12.3 at 

Pl = 0.2,t = 24.4atpr = 0.5, andt = 46.3atpr = 1.0, 

all in favour of minimize-K. To check the significance 

of these values we performed an approximaterandom- 

ization version of the test (Cohen 1995) with a sample 

of 1000 in each case, which never gave a value above 

t = 3.5. This provides strong statis&cal evidence that 

minimize-K is better than FF in these problem classes. 

(Tsang, Borrett, & Kwan 1995) give results on the 

same problem classes seen in Figure 4, on a range of 

algorithm/ heuristic combinations. For high values of 

pl they report that fc-cbj with the FF heuristic was 

the best combination studied for problems near the 

phase transition. That the minimize-K heuristic can 

do better is strong evidence that it is a good heuristic. 

Unfortunately, the complexity of (2) leads to signifi- 

cant overheads in computation, so the heuristic may 

not give optimal run-times for general CSP solving. 

We return to this later. 

Constrainedness in number partitioning 

Many existing heuristics can be justified in terms of 

minimizing K. Consider, for example, the Karmarkar- 

Karp (KK) h euristic for two-way number partitioning 

(Karmarkar & Karp 1982). The KK heuristic takes a 

bag B of n numbers to partition and reduces it to a 

new bag C by removing the largest two numbers a: and 

y, and replacing them by z-y (we assume that x 2 y). 

This commits us to those solutions in which x and y 

are in opposite partitions. 

Let b = CIE~ i and c = ciEci. For n num- 

bers drawn uniformly at random from (0, I], set- 

ting m = 2 in (3) gives the constrainedness K: = 

log,(I)/ n. We will approximate d by 2b/n, i.e. twice 

the mean value of the numbers. As c = b - x -  

y+(x-y)=b- 2y, IC goes from (log2(2b/n))/n to 

(log2(2(b - 2y)/n - l))/ (n - 1). Since we have no con- 

trol over n, / c is minimized by maximizing y. Given 

that 2 2 y, the maximum y is the second largest el- 

ement of B. And thus the KK heuristic minimizes K 

by picking the two largest elements of B for x and y. 

Note that we improve the claim of (Karmarkar & Karp 

1982) that the motivation behind the KK heuristic is 

to pick x and y so that x - y is small. The motivation 

is to pick x and y to minimize the sum of the remain- 

ing numbers. Indeed picking x and y so that x - y is 

minimal (instead of picking x and y maximal) is likely 

to give very poor performance. 

The greedy heuristic for number partitioning (Korf 

1995) can also be seen as minimizing K. The analysis 

is a little more complex since, unlike the KK heuristic, 

the greedy heuristic builds partial partitions: it picks 

the largest number remaining to be partitioned and 

adds it to the currently smaller partial partition. We 

will show that this choice is optimal with respect to 

minimizing tc. We observe that if we have partial par- 

titions with sums si and s2 and a bag B of numbers re- 

maining to be partitioned then this is equivalent to the 

problem of partitioning B U {sr - ~2) (we assume that 

sr 2 ~2). We minimize K by maximizing the reduction 

inthesumofBU{sr-sz). Ifweaddanumberx tothe 

bigger partition, then the sum (and K) is uncha,nged. 

If, however, we add it to the smaller partition then 

the sum (and K) decreases. So it is better to put any 

number in the smaller partition. There are now two 

cases to consider, depending on whether x > sr - s2 
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or 2 5 sr-~2. First suppose that z > sr - ~2. 

The sum reduces by x + si - s2 - ((x + ~2) - si) = 

2(q - ~2). If, however, x < si - ~2, the sum reduces 

byx+sr-2 - (sl - (x + ~2)) = 2x 2 2(sl - ~2). The 

first difference is always the larger and is therefore pre- 

ferred. To minimize K a heuristic should pick a x in B 

such that x 2 si - ~2, or failing that the largest x in 

B. The greedy heuristic achieves this by picking the 

largest x in B and putting it in the smaller partition. 

Although both the greedy and KK heuristics min- 

imize K;, the KK heuristic appears to perform signifi- 

cantly better (Korf 1995; Gent & Walsh 1996). This is 

due to the different methods used by the two heuris- 

tics in decomposing problems into subproblems. For its 

method, each heuristic does as well as possible with re- 

spect to minimizing K. Comparisons of the changes in 

K between the two methods of decomposition may offer 

an explanation of the superiority of KK over greedy. 

Not all proposed heuristics minimize tc: for example 

(Horowitz & Sahni 1974) consider partitioning num- 

bers in increasing order. However, constrainedness 

suggests considering numbers in decreasing order. This 

was shown to be superior in (Rubin 1976). 

Proxies for constrainedness 

Although minimizing tc appears to be a good heuristic, 

it can be expensive to compute according to formula 

(2), as in the CSP experiments discussed earlier. We 

may therefore use a proxy which is cheaper to compute. 

If we assume that all constraints in a problem have 

the same tightness, and that each variable is in the 

same number of constraints, we can ignore the numer- 

ator of (2) as it will be the same whichever variable 

we instantiate. The variable chosen should then be 

the one that maximizes the denominator of (2)) and is 

equivalent to instantiating the variable with smallest 

domain. This is the fail-first (FF) heuristic (Haralick 

& Elliott 1980). 

An alternative assumption is that all variables have 

the same domain size. This is valid if all variables have 

identical domain sizes and we use a backward checking 

algorithm, i.e. an algorithm that does not perform do- 

main filtering of the future variables. The denominator 

will now be the same whichever variable we instanti- 

ate. If we further assume that all constraint tightnesses 

are the same, the numerator becomes the cardinality 

of the set of constraints acting between future vari- 

ables and between future and past variables. We min- 

imize the numerator of (2) by choosing a variable that 

has most constraints with past variables. This corre- 

sponds to the maximum cardinality heuristic described 

in (Dechter & Meiri 1994). 

We may take advantage of both numerator and de- 

nominator of (2). One way to do this is to choose the 

variable with smallest domain size (maximizing the de- 

nominator) and break ties by choosing the tied variable 

in most constraints (minimizing the numerator, assum- 

ing uniform constraint tightness). This is the Brelaz 

heuristic (Brelaz 1979). 

This analysis has identified three state of the art 

heuristics for CSP. Domain knowledge may still be 

needed to convert the idea of minimizing K into a 

heuristic with low overheads. However, by consider- 

ing how to minimize K, we can remove much of the 

intuition involved in developing heuristics for a new 

domain. While intuition is valuable, it can often be 

misleading or even wrong, as we saw in discussing 

heuristics for number partitioning. Furthermore, intu- 

ition about new domains can be hard to achieve. We 

therefore see this reduction in the role of intuition in 

heuristic design as a significant contribution. 

Related work 

(Smith 1995) proposed a heuristic that simply maxi- 

mizes the expected number of solutions, (Sol). Given a 

choice of two subproblems with equal (Sol), the heuris- 

tic of minimizing K: will branch into the smaller prob- 

lem in the expectation that this is less constrained. 

Initial experiments have failed to show which heuris- 

tic, if either, is better (Gent et al. 1996). 

(Hooker & Vinay 1995) investigate the Jeroslow- 

Wang heuristic for satisfiability. They propose the 

“ satisfaction hypothesis” , that it is best to branch into 

subproblems that are more likely to be satisfiable, but 

reject this in favour of the “ simplification hypothesis” , 

that it is best to branch into simpler subproblems with 

fewer and shorter clauses after unit propagation. Min- 

imizing IC, is related but not identical to both these 

hypotheses: in general it will seek out simple problems 

that are likely to be soluble. 

(Musick & Russell 1992) model search using an ab- 

stracted Markov process. They identify regions where 

problems are easy and outside which it is very hard to 

find a solution. It would be fruitful to explore the con- 

nections between constrainedness, and the transition 

probabilities of such Markov processes. 

(Gent & Walsh 1996) suggest that we use K; to com- 

pare heuristics. For example, in number partitioning 

the KK heuristic almost always returns the optimal 

and exact partition when K; < 0.4, but the greedy 

heuristic only performs well for K: < 0.2. 

Phase transitions have also been observed in prob- 

lems based on real data (Gent & Walsh 1995a). The 

constrainedness of a problem depends on the ensemble 

from which it is drawn. We may not know the en- 

semble from which a real problem is drawn, so naive 

measurements of K may mislead us. The role of prob- 

lem representation must also be taken into account, as 

in a study such as (Borrett & Tsang 1995). Further 

work in this area is vital if this research is to be of 

value in understanding and solving real problems. 

Conclusions 

We have defined a very general parameter K, pro- 

nounced ‘kappa’, that measures the constrainedness 
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of an ensemble of combinatorial problems. This gen- 

eralises and unifies many parameters previously used 

to study phase transitions in NP-complete problem 

classes, and allows the rapid identification of phase 

transitions in new problem domains. It also allows the 

direct comparison of transitions in previously incom- 

parable classes. 

Constrainedness is also useful as a heuristic to guide 

search. Many existing heuristics can be seen as mini- 

mizing H: or proxies for K. This offers a unified under- 

standing of many widely disparate heuristics. 
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