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Solving systems of parametric polynomial equations symbolically is in demand for an increasing num-
ber of applications such as program verification, optimization and the study of dynamical systems. Gröbner
bases and triangular decompositions are classical techniques for processing parametric systems. Recent re-
search has focused on enhancing theories and algorithms to meet the practical requirement of these systems.
The ParametricSystemTools is a new module of the RegularChains library [7] in Maple which im-
plements comprehensive triangular decompositions (CTD), a new algorithmic approach introduced in [1]
for studying polynomial systems with parameters.

Constructible sets are the geometrical objects naturally attached to triangular decompositions, as poly-
nomial ideals are the algebraic concept underlying the computation of Gröbner bases. This relation becomes
even more complex and essential in the case of systems with infinitely many solutions, and in particular with
parametric polynomial equations. The ConstructibleSetTools module of the RegularChains library
is, up to our knowledge, the first computer algebra package providing constructible set as a type and ex-
porting a rich collection of operations for manipulating constructible sets. Meanwhile, this module provides
routines in support of solving parametric polynomial systems.

During this software presentation, we give a brief overview of these new modules, see Section 1. Then,
we provide an experimental comparison with related software packages, see Section 2. Finally, we present
three applications: an algorithmic realization of Chevalley’s Theorem for constructible sets, a classifica-
tion problem in Classical Invariant Theory and a verification software tool for polynomial system solvers,
Section 3 gives one of them.

1 Specification and Implementation

The interplay between constructible sets and triangular decompositions was underlying since the early work
of W.T. Wu [11] and through the work of his followers such as D.M. Wang [10]. This relation became
explicit in [1] where the authors develop procedures for computing the set theoretical difference and the
intersection of two constructible sets represented by triangular decompositions. These operations, which are
at the core of the ConstructibleSetTools module, have led us to the following implementation design.

We represent a constructible set C by a list [[T1, h1], . . . , [Te, he]] of so-called regular systems, where
each Ti is a regular chain and each hi is a polynomial regular w.r.t. the saturated ideal of Ti. Then the points
of C are formed by the points that belong to at least one quasi-component W (Ti) without canceling the as-
sociated polynomial hi. Since the zero set of a regular system is always nonempty (in fact unmixed), a con-
structible set is empty if and only if it is given by an empty list of regular systems. However, such represen-
tation may contain redundant (or superfluous) components: the zero sets W (Ti)\V (hi) and W (Tj)\V (hj)
of two of the defining regular systems of C may not be disjoint. The operation MakePairwiseDisjoint

of the module ConstructibleSetTools replaces the representation of C by an irredundant one. There-
fore our design allows lazy evaluation (or unevaluated expressions) for efficiency reasons while providing
efficient simplification tools, as reported in [3].
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Redundant components appear naturally when decomposing polynomial systems with both symbolic
and numerical methods. A typical situation of this phenomenon is when computing the union of (non-
disjoint) constructible sets C1, . . . , Ce. In this case one may want to replace the Ci’s by pairwise disjoint
constructible sets D1, . . . , Df such that each Ci can be written as a union of some of the Dj’s. The operation
RefiningPartition of ConstructibleSetTools computes such “intersecion-free basis”.

As mentioned before, one of the purposes of this module is to support the implementation of Parame-
tricSystemTools and thus the solving of parametric polynomial systems. In particular, the two simplifi-
cation tools MakePairwiseDisjoint and RefiningPartition are used for partitioning the parameter
space during the computation of a CTD. In return, the CTD is the back-engine for advanced operations
of ConstructibleSetTools such as the image (or pre-image) of a constructible set by a rational map,
providing an algorithmic realization of Chevalley’s Theorem for constructible sets (Corollary 14.7 in [5]).

2 Comparison with Related Packages

Several software packages, many of them in the computer algebra system Maple, are available for solv-
ing parametric polynomial systems. Among them: the Epsilon library by D.M. Wang, the DISPGB by
A. Montes [8] and SACGB by A. Suzuki and Y. Sato [9]. In [1] we report on comparative benchmarks
between Epsilon, DISPGB and our implementation of the CTD in the ParametricSystemTools. The
CTD can solve all the test systems that we use (all taken from A. Montes, D.M. Wang and D. Lazard)
whereas the other packages fail (generally for memory consumption reasons) on some of them. In [2] we
report on comparative benchmarks between SACGB and our CTD; using the examples of [9] we reach again
conclusions favorable to the CTD.

During our software presentation, we aim at demonstrating that the output decompositions produced
by our ComprehensiveTriangularize, that is, our CTD command, are often more concise than those
produced by the other methods. Moreover, they are easy to handle thanks to the ConstructibleSetTools
module.

3 Applications

During our software presentation, we will discuss the three applications mentioned above. Below, as an
example of CTD, we show one from Classical Invariant Theory, which is taken from [6].

While regarding u and v as parameters, the following polynomials g1 and g2 define two families of
elliptic curves:

g1 = x3 + ux− y2 + 1 and g2 = x3 + vx− y2 + 1.

In invariant theory, a classical question is to ask whether there exists a linear rational map f between these
two curves:

f : (x, y) 7→
(

A x + B y + C

G x + H y + K
,
D x + E y + F

G x + H y + K

)
.

Assuming for simplicity that the origin is mapped to the origin, which sets C = F = 0, we obtain the
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following polynomial equations:

(?)



K3 − 1 = 0
(vA + 3G)K2 − u = 0
(vB + 3H)K2 = 0
A3 + G3 + vAG2 −D2G− 1 = 0
B3 + H3 + vBH2 − E2H = 0
(E2 − 2vBH − 3H2)K − 1 = 0
(D2 − 2vAG− 3G2)K = 0
3A2B + 3G2H + vBG2 + 2vAGH − 2GDE −HD2 = 0
3AB2 + 3GH2 + vAH2 + 2vBGH − 2HDE −GE2 = 0
(3GH + vBG + vAH −DE)K = 0.

A CTD of the system (?), as computed by our command ComprehensiveTriangularize, is

[regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,
regular_chain,regular_chain,regular_chain,regular_chain,regular_chain],

[[constructible_set, [1, 2, 3, 10, 11]],
[constructible_set, [4, 5, 6, 7, 8, 9]],
[constructible_set, [1, 2, 3]]]

There are three constructible sets in this output:
C1 : u3 = v3 = 9,
C2 : u = v = 0,
C3 : u3 = v3, u 6= 0, v3 6= 9.

The union of the Ci’s is the answer to our question; taking the union produces a single component, with
equation u3 = v3. In the above output the eleven regular chains T1, . . . , T11 are used as follows to describe
the solutions for the unknowns A,B, D, E,G, H,K: for i = 1, 2, 3 the solutions arising from the parameter
values in Ci are given by the regular chains whose indicies are in the list associated with Ci. Above each Ci

the “geometry” of the solution set is different (different degrees), which explains the partition {C1, C2, C3}.

4 Conclusion and Future Work

This software presentation introduces the audience to two new modules of the RegularChains library for
manipulating constructible sets and solving parametric polynomial systems. One of the main motivations
for developing a rich collection of commands for handling constructible sets was the need to partition the
parameter space during the computation of a comprehensive triangular decomposition. However, the Cons-
tructibleSetTools module is also of great interest as an independent package. For example, as shown
in [4], it serves well as a program verifier.

Another ongoing project is the development of a module dedicated to parametric semi-algebraic sets,
allowing the manipulations of parametric polynomial systems with equations, inequations and inequalities.
The mathematical theory of comprehensive triangular decomposition of such sets is actually well engaged.
We hope that in a near future this new module will provide a helpful support for problems in real algebraic
geometry.
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33(2):183–208, 2002.

[9] A. Suzuki and Y. Sato. A simple algorithm to compute comprehensive Gröbner bases using Gröbner
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