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The Construction and Use of
Approximations for Missing

Quarterly Observations: A

Model-Based Approach

T. E. Nijman

Tilburg University, Department of Econometrics, P.O. Box 90153, 5000 LE Tilburg, The Netherlands.

F. C. Palm

University of Limburg, Department of Economics, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

We use a model-based approach to derive quarterly figures on several variables for the aggregate
labor market in the Netherlands that are only observed annually. These approximations are
conditional expectations derived from univariate and bivariate quarterly time series models for
the series under consideration. They are subsequently used as proxies to estimate and analyze
the structural labor market equations. Attention is given to the properties of estimation procedures

based on proxy variables.

KEY WORDS: Proxy variables; Interpolation; Smoothing; Structural model; Kalman filter.

1. INTRODUCTION

Frequently in empirical economic modeling, observations
are not available for the time periods for which the model
is specified. For instance, for the aggregate labor market in
the Netherlands, labor supply and employment are annually
observed, whereas unemployment figures are available on a
monthly basis. In the recently published quarterly macro-
economic model for the Dutch economy [Central Planning
Bureau (CPB) 1983], quarterly figures for the missing labor
market data were derived by interpolation and subsequently
used to estimate and analyze the quarterly model.

[n this article we propose a model-based approach to the
problem of missing observations and apply it to the aggregate
labor market data for the Netherlands. Given a joint model
for the data and for the missing observations, we show how
to estimate the latter as mathematical expectations of the
missing variable, conditional on the sample information.
Usually, the model can be written in different forms, the
role of which in deriving estimates of the missing obser-
vations will be discussed and illustrated. The derivation of
approximations for the missing variables and their use in
model building are closely interrelated. On the one hand,
interpolation by means of conditional expectations requires
parameter estimates. On the other hand, the parameters of
the model can often be consistently estimated using the 1n-
terpolated figures as proxies for the unobserved values, pro-
vided one takes into account the stochastic properties of the
interpolations. This means, of course, that some information
about the structure of the model is available. We shall ex-
plicitly pay attention to the relationship between interpolat-
ing the data and estimating the parameters in the model. In
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particular, we consider consistent parameter estimation based
on proxies for the unobserved variables. These methods are
in general computationally attractive and fairly accurate. The
terms interpolations, approximations, proxy variables, and
estimates of the missing observations will be used as syn-
onyms throughout this article.

A model-based approach has the advantage that the in-
formation available on the model and the series 1s incor-
porated in a coherent way in the analysis. Ideally, one would
like to specify and estimate the joint model for the data and
the missing observations and then derive interpolations for
the missing values from the estimated model. In practice,
however, the model is often not completely specified, or it
is too large to be used to generate estimates of the missing
figures. A limited information approach then has to be adopted
in which the estimates of the missing observations and of
the parameters are derived from part of the model only.
Some forms of a structural model are adequate for the in-
terpolation of the missing observations under limited infor-
mation. The accuracy of the approximations generally de-
pends on the amount of reliable information incorporated 1n
the interpolation procedure. Other types of unobservables,
such as measurement errors and expectational variables, can
be approached along the same lines.

The article is organized as follows. Section 2 1s devoted
to methods for the interpolation of the missing observations.
We also briefly review the properties of estimation proce-
dures based on the interpolated values. We show how con-
sistency of the estimates can be achieved. In Section 3, we
present the structural model for the labor market. Sections
4 and 5 contain the empirical results. In Section 4.1, we
specify quarterly univariate autoregressive integrated mov-
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ing average (ARIMA) models for employment in the private
and public sectors. These models are estimated from annual
data and are used to generate smoothed estimates of the
missing values. The use of indicator variables, which are
observed quarterly, is considered in Section 4.2. The joint
interpolation of several series 1s discussed i1n Section 4.3.
Quarterly observations on unemployment are included to
improve the smoothed estimates of the unobserved employ-
ment and labor supply figures. In Section 5, the newly con-
structed approximations for the employment and labor sup-
ply series are used as proxies to estimate a structural adjustment
equation for labor demand. The results are compared with
those obtained using the series constructed by the CPB as a
proxy. The robustness of the empirical results 1s checked by
allowing for measurement errors in the desired labor demand
series. Section 6 presents some concluding remarks. Con-
sistent estimators for the standard errors of the proxy vari-
ables estimators are given in the Appendix.

2. INTERPOLATION AND
PARAMETER ESTIMATION

Consider the problem of interpolating the unobserved
quarterly figures of a variable that 1s observed annually. A
first approach consists in assuming that the quarterly values
are generated by some univariate ARIMA model. This model
could be interpreted as the marginal process implied by some
linear quarterly simultaneous-equation model (SEM) for which
the exogenous variables are generated by an ARIMA model
(see Zellner and Palm 1974). By integrating the quarterly
ARIMA model with respect to the missing observations, we
get an ARIMA process for the annual data. The ARIMA
model for the annual observations can be estimated from the
data. The parameters of the quarterly ARIMA model can be
estimated from the annual data, provided they are identified
(see Palm and Nijman 1984). The conditional expectation
of the quarterly values, given past annual observations or
given all annual observations, can then be computed by
means of the Kalman filter or the Wiener—Kolmogorov fil-
tering theory to yield proxies for the missing variable. This
approach has been adopted by Harvey and Pierse (1984)
among others. The interpolation method put forward by Boot,
Feibes, and Lisman (1967), which consists in minimizing
the first or second squared difference of the interpolations
given the sample information, i1s an approximation to this
approach. It 1s exact when the appropriate model 1s a first-
or second-order integrated scheme.

When a nonlinear SEM is appropriate, a univariate AR-
IMA model corresponds to or approximates the Wold rep-
resentation of the quarterly or annual data. The normality
assumption for the single variable may not be adequate 1n
this case. Likelihood estimation methods based on the nor-
mal distribution then have to be interpreted as pseudolike-
lithood methods, and expectations are least squares approx-
imations.

Second, related variables that are observed quarterly can
be included in the conditioning set of the expectations of the
missing variables. The regression model analyzed by Palm

and Nijman (1984) will then often be an appropriate tool for
estimating the missing observations. It is likely that when
the parameters of the conditional expectation of a quarterly
variable, given its past annual values or past and future
annual observations, are not identified, those of its condi-
tional expectation given some indicator variable are identi-
fied. An indicator variable will then be required for inter-
polating the missing figures. If the prediction errors from
conditioning on indicator variables only have an ARIMA
correlation structure and are independent of these indicators,
the errors can be interpolated along the lines of the first
approach to get estimates of the missing observations that
are conditional expectations given the sample information
on the indicator variables and the variable to be interpolated.
This procedure is a direct generalization of the procedures
put forward by Chow and Lin (1971), Ginsburgh (1973),
Fernandez (1981), and Litterman (1983).

Third, if several variables are not observed for all periods
in the sample or if, for instance, their aggregate value 1s
observed for some periods, one can model them jointly using
a multivariate time series model or a structural SEM. In this
way it becomes possible to take account of dependencies
between the series and to derive sets of approximations for
the missing figures that are internally consistent and that
satisfy, for example, some adding-up restrictions across var-
1ables.

The amount of information incorporated in the interpo-
lated series increases as we move from the first to the second
and third approaches. In Section 4, the three approaches will
be applied to aggregate labor market data for the Nether-
lands.

Now we briefly consider the estimation of the parameters
in the model. When the joint density function for the data
and the missing observations 1s given, the maximum like-
lithood (ML) method can be used. There are various ways
to implement ML. By marginalizing with respect to the
unobserved variables, one obtains the likelihood function,
which can be maximized with respect to the parameters of
the joint model, provided these parameters are identified.
Some ML procedures do not require explicit marginalization
with respect to the unobserved variables. For instance, the
log-likelithood function in prediction error decomposition form
and its derivatives can be evaluated by means of the Kalman
filter to obtain ML estimates of the parameters and predic-
tions for the missing data points. Similarly, the use of the
EM algorithm put forward by Dempster, Laird, and Rubin
(1977) avoids explicit marginalization of the model with
respect to the unobserved variables.

Frequently, however, in applied work the model 1s too
large to be jointly estimated or it i1s only specified in part.
[t may then be necessary to use a consistent estimation method
instead of a fully efficient estimator. Consistent estimation
procedures that are based on proxies for the missing figures
are usually computationally attractive. [For details, we refer
to Nijman and Palm (1984) and Pagan (1984).] When the
proxies take into account important features of the model,
their accuracy can be close to that of ML (see Niyjman and
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Palm 1984). Proxy variable estimators will often be more
robust than the ML estimator, as they do not require a com-
pletely specified model.

To show how consistent proxy variable estimators can be
obtained, consider the following regression model:

Y, = %P+, (2.1)

where y, 1s the endogenous variable, x, 1s a vector of ex-
ogenous variables, ff is a vector of regression coefficients,
¢, 18 normally independently distributed with mean 0 and
variance ¢°, and ¢, and x, are independent for all ¢, t'. Define
xx, = (y,, x,)". Assume that the conditional expectation of
xx, glven some information set z, exists, and define

2, 0) and “%x, = Elxslz;, 0); "(2.2)

X, = E(xx,

where 0 and 0 are vectors of parameters 1n the conditional
expectation and their estimate, respectively.

When xx, 1s not observed for some or all 7, Xx, can be
used as a proxy for xx,, provided a consistent estimate 0 is
available. The proxy equals the observed value, whenever
the latter i1s available. Substitution of £x, into (2.1) yields

Vo= %0+ s (2.3)

where ¥, and £, are the appropriate elements of Xx,, u, =
g, + (xx, — Xx,) Px, and fx = (=1, f')".

Ordinary least squares (OLS) applied to (2.3) will be
consistent for f provided (X'X)~'X'u converges to 0 in prob-
ability. Notice that mechanical interpolations that are not
based on structural considerations, such as the method of
Boot et al. (1967), usually do not satisfy this requirement.
Palm and Niyman (1984) showed that the asymptotic bias
can be important. Variables that are independent of ¢,, how-
ever, are also asymptotically independent of «,, provided
they are included in the conditioning set of (2.2). In this
case, they are appropriate instrumental variables to estimate
f consistently from (2.3). The larger the conditioning set is,
the larger the number of valid instruments will be. Nijman
and Palm (1984) showed how the efficiency of proxy var-
1able estimators can be increased by incorporating additional
information in the proxy. Finally, even if a regression of y,
on X, ylelds a consistent estimate of f#, the commonly used
formula for the computation of standard errors of regression
estimates will usually not yield consistent estimates of the
standard errors. Consistent estimation of the standard errors
of proxy variable estimators 1s discussed in the Appendix.

3. THE LABOR MARKET MODEL

The model for the labor market that we consider 1s a
modified version of the quarterly CPB (1983) model. It
describes the short-run adjustment of the labor demand and
supply to desired labor demand and the trend 1n labor supply,
respectively. Desired labor demand and the trend in labor
supply depend on economic variables such as the real wage
rate. In the present short-run model, however, they are as-
sumed to be predetermined. Aggregate employment is de-
termined by actual labor demand and supply. The model
consists of three structural relationships, four definitions,

and an autoregressive integrated model for an exogenous
variable. It reads as follows:

(L)Ad, = o0,(L)Ad}

=8 B (dasdd) S Retsey, (351)

v>(L)As, = 0,(L)As}
=S (ST =T T —NES ) WS S (3772
[, = a,sb, + a,d, (3.3)
n =1 + g (3.4)
sb, = s, — g, (3.5)
WA= s i=rin (3.6)
ys(L)Ag, = &, (3.7)

where d,, dj¥ = labor demand and desired labor demand by
the private sector, respectively; s,, s;* = total labor supply
and 1its trend value, respectively; /[, = employment in the
private sector; sb, = labor supply available for the private
sector; g, = employment in the public sector; n, = total
employment; ¥, = unemployment; y,(L), 0,(L) denote finite-
degree polynomials in the lag operator L, for which at most
a second degree for y,(L) and a zeroth degree for 0,(L) will
be sufficient in the sequel [i.e., y;,(L) = 1 — y,L — y,L°
and 0,(L) = 0,]; A = the first difference operator; a;,, = a
variable weight that is assumed to be predetermined; and
¢, = a normally distributed white noise with mean 0 and
constant variance o;. The ¢;,’s are mutually independent.

A short explanation 1s in order. In (3.1) and (3.2), labor
demand and supply are assumed to adjust to their respective
target values d;* and s;* + ¢, according to an error correction
model (ECM). In the case of labor supply, this target value
deviates from the trend value s* because of a different treat-
ment of some minor groups in the labor force in the definition
of s, and s}*. Notice that an adjustment according to (3.1)
or (3.2) could be inappropriate when the target i1s nonsta-
tionary. However, the additional restriction o, + 7;, +
vi» = 1, implying a zero mean lag, solves this problem for
a linearly trending target (see Salmon 1982) and for a target
variable generated by an ARIMA(p, 1, g) process (see Kloek
1984).

Equation (3.3) 1s a linearized version of a relationship
derived by Kooiman and Kloek (1979), who aggregated over
a normally distributed continuum of demand- or supply-
constrained micro—labor markets to establish a nonlinear
relationship between aggregate employment and aggregate
excess labor supply. The weights a;, depend on excess labor
supply 1n period ¢+ — 1. (For details, we refer to Kooiman
and Kloek 1979.) The main difference between the system
(3.1)—(3.7) and the model of the CPB (1983) is that there
d, 1s assumed to be equal to d}¥.

We analyze the quarterly model (3.1)—(3.7) for the period
1968—1981. In the empirical analysis we use the quarterly
observations for u,. The variables d*, s*, a,,, and a,, are not
observed. It is reasonable to assume that these series are
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smooth. The values for dj*, a,,, and a,, generated in the
model of the CPB are used as approximations. The variable
d; 1s determined by the real wage rate, the depreciation rate
of capital, the rate of technical change, and new investments.
The weights a,, and a,, depend on labor supply and demand
In the private sector. The variable s;* constructed by the CPB
1S used. The determinants of s* are labor supply, partici-
pation rates, and demographic variables. The labor demand
(d,) 1s not observed and will be estimated in Section 4. For
n,, g. and s,, the annual average i1s observed. An overbar
denotes the annual average [e.g., n, = .25(n, + n,_, +
n,_» + n,_3)]. Quarterly values of n,, g,, and s, will be
estimated 1n the next section. The variables are measured in
millions of man-years and have been seasonally adjusted.
The data have been prepared by the CPB (1983) and are
available on request. In Section 5.1, the errors involved in
the approximations for &, s, a,,, and a,, are assumed to
be negligible. In Section 5.2, this assumption will be weak-
ened as far as d;* 1s concerned by adopting a measurement-
errors framework.

4. ESTIMATION OF THE
MISSING OBSERVATIONS

4.1 Estimates Derived From Univariate
ARIMA Models

We start the empirical part of the analysis by interpolating
total employment n, for the Netherlands, assuming that the
variable 1s generated by a univariate ARIMA scheme. This
assumption 1s approximately in agreement with the structural
model that we proposed in the previous section.

A first-order autoregressive (AR) model for the annual
change 1n n, is found to be consistent with the information
in the data (standard errors are given in parentheses):

Agn, = .005 + S5S0Amn,_4 + V..

CO11).. (:30)
g5 = 14" %= 102" (4.1)
for & Ty By .. iweidenote . thesetsims:  2minceai - BUTE:

assuming for simplicity that 7" is a multiple of m. T, denotes
the set 7)\7,,,. The disturbances of the various quarterly models
will be denoted by ¢, if no confusion is possible, whereas v,
denotes the disturbance of the annual models. Because the
sample size 7/4 = 15 is small, the information in the annual
observations is probably limited.

Several models for n,, t € T, are in agreement with (4.1).
For instance, the specification

An, = c, + pAn,_, + ¢, S (4.2)
implies the following model for n,, t € T,:
(=Nl CIe="L")n,
= .25+ pL + p2L> + pL3)
XL+ L) e F ey, (4.3)

which is 1dentical to (4.1) except for the presence of a sec-
ond-order moving average (MA) polynomial in L? in (4.3).

Notice that it may be difficult to detect small MA coefficients

such as those in (4.3) from the 15 annual observations.
ML estimation of (4.2) from the annual data using the

prediction error decomposition method (e.g., see Harvey

1981) yields

(1 — .80L)(An, — .000) = g,
(.09) (.005)
g% =a6:0ix02wi(4:4)

with a log-likelihood value of 32.4. The numerical opti-
mization for ML estimation was initialized at p = (.50)%
= .84, obtained from (4.1). A diffuse density function was
assumed for the presample values of n,, as proposed by
Ansley and Kohn (1983). The standard errors have been
computed using an expression for the information matrix
given in Watson and Engle (1983), which requires only first
derivatives of the log-likelihood function. Details on the
computational aspects of ML estimation are given in Nijman
(1985).
Alternatively, the model

(15— ..34L%)(An, — .003). = &.
(.29) (.004)

Osn="410"X"10=% "t.e T (4.5)

with a log-likelihood value of 31.4 is in agreement with
(4.1), since it implies an ARMAC(I, 1) model in the lag L®
for A;n, with a small MA coefficient. We are confronted
with an i1dentification problem. Several ARMA models for
the quarterly data are approximately consistent with (4.1)
for annual data. The choice between these models has to be
based on prior information. We choose the model (4.4) be-
cause 1t 1s consistent with the structural model set out in
Section 3 and because the data are seasonally adjusted. This
model 1s used to compute two-sided conditional expectations
forn,t&€T,, givenn,, t € T,, by means of the fixed interval
smoother (see Anderson and Moore 1979). The approxi-
mations will be presented in Figure 1.

Although limited, the information in the annual data is
not negligible. The random walk model, which implicitly
underlies the interpolation scheme proposed by Boot et al.
(1967), when d = 1, 1s rejected at the margin against the
model (4.4) because it has a log-likelihood value of 30.1.
When a Box—Pierce test is applied to the estimated inno-
vations of the random walk model, no misspecification is
detected. This test, however, 1s known to be conservative.

An explanation of the information in the data might be
provided by the presence of the factor (1 + L + L* + L°)°
In (4.3). As shown by Palm and Nijman (1984), the asymp-
totic efficiency of the ML estimate of p for complete data
compared to that for an incomplete sample is 2.3 when
p = .8. Therefore the information in the 14 annual changes
equals that of 2.3 X 14 = 32 observed quarterly changes.
The presence of the factor (1 + L + L* + L*)* also explains
why multiple maxima of the log-likelihood function were
not found here.

A quarterly AR(1) model has also been assumed for the
annual changes in the employment in the public sector g,.
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The estimated annual model 1s

Az =, 15A% s Ol k07
(.27) (.004)

0= 157 asl 0 (4.6)

where g, i1s the annual average of g¢,. The result in (4.6)
approximately corresponds to the first-order AR model (3.7)
for g,, t € T,, with }n*;;l = .62. Estimating the model for Ag,
by ML from annual data yields

(1= STL)(Ag; —*003) = &
(.12) (.000)

62 =15 % 10 (4.7)

The model (4.7) has been used to approximate the unob-
served quarterly values of g, by two-sided expectations con-
ditional on the observed g,, t € T,.

4.2 Interpolation by Means of
Indicator Variables

Since one of the main determinants of the labor supply s,
1S the trend s;*, which we assumed to be observed quarterly,
the dynamic regression equation (3.2) can be used to con-
struct approximations for the unobserved values of s,. ML
estimation of (3.2) yields

Asre = 9124 — . 024[s = s** ="5130)=;
(.018) (.003) (.007)
+ . 106As* + &,
(.020)
02 =4 EXEl0F: (4.8)

with a log-likelihood value of 57.80.

The mean lag of (4.8) equals (y,, + 0, — 1)f5' = —.75.
Stationarity of error-correction terms in the presence of a
trending target requires a zero mean lag. If we impose the
constraint ., + 0, = | on (4.8), we find that

AS: = .909AL§'I_| S 025(.3 e S:k =% .l34)r__|
(.017) (.003) (.004)
+ (l =z 909)&5;*: + é:,,
(.017)
63 = 4.2 x 1077, (4.9)

with a log-likelithood value of 57.77. Evidently this model
1s close to the unrestricted version (4.8). This 1s not sur-
prising if we realize that the value of the mean lag in (4.8)
1s strongly influenced by lags in a distant past.

4.3 Joint Interpolation of Several Series

Equation (4.9) can be used to compute the expectations
of the unobserved quarterly values of s, conditional on the
annual observations on s, and the quarterly observations on
s;*. These approximations for s, and the approximations for
n, obtained from (4.2) are not consistent with the observed
quarterly data on unemployment because they do not satisfy
identity (3.6). This problem can be solved by specifying a

joint model for labor supply and employment and adding
the quarterly unemployment data to the information set used
to compute approximations. If the changes in employment
n, and labor supply s, are approximately independent, the
unemployment series u, 1S informative about these variables.
First, we determine a univariate ARIMA model for the
seasonally adjusted unemployment series u«,. Models for n,
and s, that are not in agreement with that for «, can be safely
ignored. The following model i1s found to be appropriate:

Au, = .0005 + 1.65Au,_, — .73Au,_, + & — .43%,_,,
(.0004) (.24) (.24) (.30)
a2 = 201053 (4.10)

The AR polynomial in (4.10) has roots equal to (.82 =
.22i). Independent AR(1) models for An, and As, imply an
ARMA(2, 1) model with real roots for Au,:

(i=pB) (1 — o) Du,

= caqa S =npsl)e cs=il(s=mpill) e sil(4 a14li)

where the subscripts refer to the univariate processes for n,
and s,, respectively. If we ignore the imaginary part of the
roots, the result in (4.10) 1s in agreement with AR(I) pro-
cesses for An, and As,, with p, = p,. Alternatively, AR(2)
models for An, and As, with approximately the same AR
parts imply a specification close to (4.10) for Au,.

We estimate the bivariate model

(l iy .{)nIL S /);:EL:)(A”': £ Cn) — &py (412)
and
Qi s P.-.:L:)(ﬁﬁ =t CHR=HEF (4.13)

where (¢,,, €;,)" 1s assumed to be independently distributed
with mean O and covariances Ee2, = o2, Eg,e., = 0, and
Ee;, = puo=. When p,, and p,, are assumed to be zero, ML
estimation of (4.12) and (4.13), given annual data on n, and
s, and quarterly data on u, = s, — n,, gives

pu = 911, p, = .898, ¢, = .000,

(.041) (.019) (.008)
CE=V012: Yirm="310% To= =525 @] Q22 (4714)
(.004) (.034)
a log-likelihood value of 271.4, r, = .25, r, = .18, r; =
.09, and r, = — .16, where the r;’s are estimated residual
autocorrelations for u,, t € T,. The approximate standard
error for the residual autocorrelations is 7' = .13. For

the unrestricted model (4.12) and (4.13), the ML estimates
are

ﬁ,” — 1240, ,5"2 — "‘3711 ij“ — I2I6.
(.146) (.134) (.099)
Dior=1=0367; ¢ =001 ca—=1r 0L
(.074) (.005) (.003)
b= 26108 6= =20 X ul0F3: (4.15)
(.019)
with a log-likelihood value of 277.3, r, = — .14, r, = .13,

rv = .16, and r, = .19. The bivariate AR(2) model (4.15)
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Figure 1. Total Employment and Labor Supply: Approximated Quarterly Data and Annual Observations in Millions of Man-Years. Employment

annual observations (

differs significantly from the AR(1) model (4.14), which is
not surprising, given the values of the residual autocorre-
lations 1n (4.14). We choose the bivariate model (4.15) to
compute interpolations for the missing observations and their
derivatives with respect to the parameters in (4.15) by means
of the fixed interval smoother. The approximations for the
missing observations on n, and s, generated by the bivariate
model (4.15) and the univariate models (4.4) and (4.9) are
given in Figure 1. At first sight, alternative estimates of the
missing observations appear to be close to each other, which
1S not surprising because they are restricted to sum to the
observed annual figure. The asymptotic standard errors of
the approximation error of proxies generated by the univar-
late models are .0074 and .0030 for employment and labor
supply, respectively. For the bivariate model (4.15), we get
a standard error of .0027 for both series. The differences
between alternative estimates of the missing observations
are 1n some quarters statistically significant. The use of un-
employment data considerably improves the accuracy of the
approximations. Moreover, the serial correlation properties
of these approximations and the estimates that are obtained
when they are used as proxies for unobserved regressors can
be quite different (see also Wilcox 1983 and Sec. 5).

An obvious extension of (4.15) consists in the inclusion
of the trend in labor supply s as an indicator of s,, as done
in (4.8). Joint estimation of (3.2) and (4.12) subject to the
restriction y,, + 0, = 1, given annual observations on n,

). ——, approx. (4.4), ---, approx. (4.15). Labor supply annual observations (), —, approx. (4.9); -+, approx. (4.15).

and s, and quarterly data for «, and s;*, yields

pm = 1.196, p,, = —.305, ¢, = .000,
(.019) (.026) H (.000)

‘[f — 317, ?3] = 839. /J): = _025,
(.024) (.013) (.004)
=186 " 0a =12 0102 (4.16)

(.015)
a log-likelihood value of 277.6, r, = .00, r, = .14, r; =
14, and r;, = .17. The asymptotic standard errors of the

estimation error of the missing observations generated by
(4.16) are .0025 for both series. Apparently, the information
In s 1s not important for predicting s,.

Note, finally, that for the models we estimate, indepen-
dence of the innovations in #, and s, has been assumed. This
assumption 1s only approximately in accordance with the
structural model presented in the previous section and could
be omitted. However, no empirical results on this extension
are available at present.

5. THE USE OF ESTIMATES OF
THE MISSING DATA

Structural Analysis of the Adjustment
Equation of Labor Demand

5.1

In this section we analyze Equation (3.1) for actual labor
demand d,. As d, 1s not directly observed for any period,
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(3.1) cannot be estimated by ML. If the a,'s were constant
within the year, the annual average of d, could be computed
from (3.3), because the annual averages of n,, g,, and s, are
observed. We use (3.3) to compute proxy values for d,:

dr = [(”f > gf) Py fi”(S, Foh gr)l/aln (51)

where the weights a; obtained by the CPB and the inter-
polations for n,, g,, and s, derived in the previous section
are used. Actually, one might add a disturbance term to
(5.1) to account for measurement errors in d, due to the
approximate character of (3.3). This point has not been 1n-
vestigated. The series [, = n, — g,, sb,, d,, and d}* are given
in Figure 2. The proxies are obtained from (4.7) and (4.15).
Notice the increase of employment in 1979-1980, a period
in which the desired labor demand 1s smaller than employ-
ment and steadily decreases. The temporary increase of ac-
tual labor demand estimated by (5.1) in that period, however,
possibly explains the increase in employment. An adjustment
model that distinguishes between ¢, and d;* seems to be more
in agreement with the empirical evidence than the assump-
tion that d, = d}*.

When the proxy for d, 1s substituted into (3.1), one gets

n(L)Ad, = Bi(d — d*),_, + 6(L)ALF + &, + w,
(5.2)

the regressors and the disturbance term in (5.2) required for
the consistency of OLS estimates can be violated even if the
regressors in (3.1) are orthogonal to ¢,,, which we assume.
First, the proxies can be correlated with w,, as not all re-
gressors are contained in the information set that generates
the proxies. For instance, the information on g, that might
be contained in n, has not been used in (4.7). Since the main
determinants of the missing observations have been taken
Into account, however, this correlation will be neglected. A
second possible cause of correlation between regressors and
the error term ¢,, + w, 1s the use of two-sided conditional
expectations to generate proxies. Although, for example,
Ad,_, and ¢,, are assumed to be orthogonal, Ad,_, might
depend on Ad, and therefore be correlated with ¢,,. This
problem can be avoided by using proxies that are conditional
expectations, given past observations only. For most prox-
ies, however, the dependence on future information 1s ex-
pected to be small, so regressors and disturbance 1n (5.2)
can be assumed to be at least approximately orthogonal.
Two alternative specifications for (5.2) have been esti-
mated for the sample period 1969-1981. Proxies for n, and
s, have been generated in three different ways: (a) from the
univariate models (4.4) and (4.9), (b) from the bivariate AR
model (4.15), and (¢) from the bivariate ARX model (4.16).
In all of these cases, approximations for g, are obtained from
the AR model (4.7). The three sets of proxies and the proxies

where w, = [f,L — Ay, (L)](d — d),. The orthogonality of constructed by the CPB are given 1n Table 1.
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Figure 2. Labor Demand in the Private Sector and Some Related Series: Approximated Quarterly Data in Millions of Man-Years. —,
Employment; ---, labor supply; ---, labor demand; — - —, desired labor demand.
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Table 1. Approximated Quarterly Data on Employment and Labor Supply in Millions of Man-Years
Employment Labor Supply

Quarter (4.4) (4.15) (4.76) CPB (4.9) (4.15) (4.76) CPB

1967:1 4.535 4.535 4.535 4.563 4.627 4.627 4.627 4.654
1967:2 4.539 4.540 4.540 4.543 4.629 4.628 4.628 4.632
1967:3 4.544 4.544 4.544 4.534 4.633 4.633 4.633 4.623
1967:4 4.551 4.549 4.549 4.528 4.639 4.640 4.640 4.619
1968:1 4.560 4.558 4.558 4.547 4.648 4.649 4.649 4.638
1968:2 4.574 4.572 4.572 4.571 4.660 4.660 4.660 4.659
1968:3 4.591 4.591 4.591 4.595 4.674 4.674 4.674 4.678
1968:4 4.611 4.615 4.615 4.624 4.690 4.689 4.689 4.699
1969:1 4.633 4.637 4.636 4.620 4.706 4.705 4.704 4.688
1969:2 4.653 4.653 4.653 4.652 4.720 4.721 4.721 4.720
1969:3 4.670 4.668 4.668 4.674 4.733 4.734 4.734 4.740
1969:4 4.685 4.683 4.683 4.692 4.745 4.745 4.745 4.755
1970:1 4.697 4.697 4.697 4.698 4.755 4.755 4.755 4.757
1970:2 4.709 4.711 4.711 4.712 4.766 4.765 4.765 4.766
1970:3 4.722 4.722 4.722 4.720 4.777 4.777 4.777 4.775
1970:4 4.735 4.734 4.734 4.732 4.790 4.790 4.790 4.788
1971:1 4.746 4.744 4.744 4.750 4.802 4.802 4.802 4.808
1971:2 4.750 4.750 4.750 4.753 4.812 4,812 4.812 4.814
1971:3 4.746 4.748 4.747 4.746 4.818 4.818 4.817 4.815
1971:4 4.734 4.735 4.734 4.729 4.821 4.821 4.820 4.815
19721 4.719 4716 4.716 4.710 4.820 4.822 4.822 4.815
1972:2 4.705 4.704 4.704 4.704 4.819 4.819 4.819 4.818
1972:3 4.696 4.697 4.697 4.699 4.817 4.817 4.817 4.819
1972:4 4.693 4.695 4.696 4.699 4.816 4.815 4.816 4.820
1973:1 4.697 4.701 4.701 4.705 4.817 4.815 4.815 4.820
1973:2 4.702 4.700 4.701 4.700 4.819 4.819 4.820 4.818
1973:3 4.708 4.707 4.707 4.706 4.823 4.824 4.824 4.822
1973:4 4713 4.712 4.712 4.710 4.829 4.830 4.830 4.828
19741 4.715 4.711 4.711 4.710 4.837 4.838 4.838 4.838
1974:2 4713 4.711 4.711 4.709 4.846 4.847 4.847 4.845
1974:3 4.707 4.709 4.709 4.710 4.856 4.855 4.855 4.856
1974:4 4.698 4.701 4.701 4.702 4.865 4.864 4.864 4.865
1975:1 4.688 4.690 4.689 4.688 4.873 4.873 4.872 4.871

1975:2 4.679 4.676 4.677 4.689 4.881 4.881 4.882 4.894
1975:3 4.672 4.673 4.673 4.668 4.887 4.887 4.887 4.882
1975:4 4.669 4.669 4.670 4.663 4.891 4.891 4.892 4.885
1976:1 4.668 4.668 4.669 4.669 4.894 4.893 4.894 4.894
1976:2 4.669 4.669 4.669 4.671 4.895 4.894 4.894 4.896
1976:3 4.670 4.669 4.669 4.669 4.894 4.895 4.895 4.895
1976:4 4.672 4.674 4.673 4.670 4.893 4.894 4.893 4.890
19771 4.674 4.677 4.676 4.673 4.893 4.893 4.892 4.889
1977:2 4.677 4.679 4.678 4.678 4.895 4.895 4.894 4.894
1977:3 4.681 4.679 4.680 4.681 4.899 4.899 4.900 4.901

1977:4 4.687 4.685 4.686 4.688 4.905 4.905 4.906 4.908
1978:1 4.695 4.694 4.694 4.694 4914 4.914 4.914 4914
1978:2 4.705 4.706 4.706 4.704 4.926 4.926 4.926 4.924
1978:3 4.718 4.719 4.719 4718 4.940 4.940 4.940 4.939
1978:4 4.733 4.734 4.733 4.736 4.956 4.957 4.956 4.959
1979:1 4.750 4.748 4.748 4.750 4.974 4.974 4.974 4.977
1979:2 4.766 4.764 4.764 4.767 4.991 4.991 4.991 4.994
1979:3 4.782 4.781 4,782 4.782 5.007 5.006 5.007 5.006
1979:4 4.794 4.798 4.798 4.793 5.021 5.020 5.020 5.015
1980:1 4.802 4.804 4.805 4.799 5.035 5.034 5.035 5.029
1980:2 4.803 4.805 4.805 4.802 5.050 5.049 5.049 5.046
1980:3 4.796 4.795 4.795 4.798 5.066 5.067 5.067 5.070
1980:4 4.783 4.779 4.779 4.785 5.085 5.086 5.086 5.092
1981:1 4.764 4.762 4.761 4.766 5.105 5.107 5.106 9:lili2
1981:2 4.744 4.743 4.743 4.748 5.126 5.127 5.127 5.132
1981:3 4.726 4.728 4.728 4.727 5.148 5.147 5.147 5.147
1981:4 4.710 4.711 4.712 4.702 5.169 5.166 5.167 5.157

OLS point estimates are given in the first row of Table
2. Notice that the disturbance in (5.2) 1s heteroscedastic and
autocorrelated. Therefore OLS i1s not efficient. Moreover,
the estimation of standard errors (SE’s) of OLS estimates
can be intricate (see the Appendix). ‘‘Standard errors,’’ ob-
tained using the standard formula for OLS standard errors

and denoted by SE-OLS, are presented in the second row
in Table 2. Subsequently, we present consistent estimates
of the upper and lower bounds for the standard errors based
on straightforward extensions of the results in the Appendix
(details can be found in Nijman and Palm 1984). We give
the White—Domowitz (1984) estimates for the standard er-
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Table 2. The Adjustment Equation (5.2) for Labor Demand

95

Model-Based Proxies

(a) (D) (c) Proxies Generated by the CPB
iR 11 12 0, [ S /12 0 /s 711 /12 04 P 71 12 0,
T2 o
OLS —.036 .789 .092 —.039 .700 139 —.039 705 .138 —.014 674 222
SE-OLS 016 .071 051 019 .082 062 .019 .081 .061 020 .086 067
WDO-0 014 079 067 019 095 074 018 .094 074
WDO-4 016 078 074 .018 .088 075 018 .087 075
Unrestricted estimates
OLS —.036 773 .019 .092 —.041 .652 .060 140 —.040 675 .037 .138 —.021 517 210 223
SE-OLS 016 134 133 051 019 129 127 .061 019 129 127 .061 .020 125 124 .065
WDO-0 015 121 Wi .068 .019 =139 122 075 .018 134 124 074
WDO-4 .016 119 130 .074 017 130 3t 074 017 127 131 074

NOTE: OLS = ordinary least squares; SE-OLS = OLS standard error; WDO = White—Domowilz estimate for standard error.

rors (WDO-r), which only take account of nonzero elements
on the main diagonal (heteroscedasticity) when » = 0 and
up to a four-period dependence in the disturbance covariance
matrix when r = 4. Upper and lower bounds for the SE’s
have been computed for r = 4. Since the first four decimal
points of these bounds equal WDO-4, they have not been
reported separately. The SE’s are found to be hardly sensitive
to changes in r. More important, it appears that the effect
on the SE’s of estimating parameters in the proxies is almost
negligible. If this holds true more generally, the computation
of SE’s could be greatly simplified.

The following conclusions can be drawn from the results
In Table 2. As expected, the estimate of /5, is negative. It is
significantly different from zero when the proxies (a), (b),
and (c) are used. The coefficients /5, and y,, are significant,
but y,, 1s not. The coefficient 0, i1s not significant when
proxy (a) 1s used. The algebraic SE’s (SE-OLS) are some-
times larger than the SE’s that account for the impact on the
disturbance of using proxies. Instrumental variable (IV) es-
timates for model (5.2), where the 1V’s are Ad, s, (d —
d*),_s, and Ad}*, have also been computed. These instru-
ments are more likely to be uncorrelated with ¢, + w, than
the explanatory variables 1n (5.2). IV estimates are close to
those obtained by OLS, confirming our assumption that the
explanatory variables in (5.2) are orthogonal to the distur-
bance term. When the proxies derived by the CPB are used,
f3, is insignificantly different from zero. Its estimate is small
In absolute value. This finding indicates that an error-cor-
rection model could hardly have been obtained from an em-
pirical analysis of these data-based approximations for the
missing observations.

Table 3. Estimates of Model (5.5) and (5.6)

Log-
P C ¢ I G* likelihood

pi=l1or=10 —.004 790 39 x 10° 130.98
(.002) (1.83)

p =0 =004 =24 3115151 2 0 xes] 0588 311517
(.002) (.36) (3.56)

=0 35 —.004 RS BRI ORXE1 05 e 13119
(.23) (.003) (.76)

To validate the model (5.2), one can investigate the re-
sponse of actual labor demand to a shift in desired labor
demand. Error-correction models completely adjust to a step
change 1n the target variable. When the mean lag is 0, they
also completely adjust to a trend in the target. The mean lag
(0, + yiu + 71 — 1)/f, can be readily estimated from the
results 1n Table 2. For the specifications reported in Table
2, 1t 1s much larger than 1. However, the variable ¢ is at
most locally trending in the sample period, so in this respect,
the choice of an error-correction model with a nonzero mean
lag may be reasonable for the period 1969—-1981.

With the exception of &7, consistent estimates are avail-
able for all of the parameters of the model (3.1)—(3.7).
Notice, however, that a consistent estimate of ;7 cannot be
directly obtained from the residuals of (5.2). When all of
the structural parameters in (3.1)—(3.7) have been consis-
tently estimated, the structural form can be used to compute
the conditional expectations of the missing observations given
the complete system (3.1)—(3.7) and the complete sample
information.

5.2 Sensitivity Analysis: Measurement Errors

In the previous sections, we concentrated on the impli-
cations of missing observations for the empirical analysis.
Now we investigate the robustness of our results with respect
to the impact of errors of measurement on desired labor
demand 1n (3.1). Assume that the available series is a mea-
surement with error d" of the desired labor demand d*.
Formally, we have

da' = d¥ + m,, (553)

where m, 1s assumed to be independent of the latent desired
labor demand d;*. To estimate the parameters in (3.1), ad-
ditional assumptions are needed. One possibility is to assume
that ¢;* and m, are generated by independent ARIMA pro-
cesses and to check whether the parameters of these pro-
cesses can be identified from those of the implied process
for d;" (on this point see, e.g., Maravall 1979 and Nijman
1985).

The measurements of desired labor demand, d}", are ap-
proximately generated by a random walk. Estimation of the
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Table 4. The Model for d7 Table 5. Estimates for the Labor Demand Equation (5.2) Subject
_ - to Errors of Measurement, Proxy Set (c)
Restrictions P (), (), ¢ G
Model for dT" it Y11 04
p=¢ = =10 —.004 3.8 X 10~*
;J=0 — .43 .30 —.005 3 104 p=rf}=0
b =20 3o =149 —.09 —.004 38X 10" OLS —.036 .692 .188
SE-OLS 019 .081 075
WDO-0 .018 .096 .088
slightly more general IMA(1, 1) model yields a0 OAC it o
p =0
Ad'" = v, — .10v,_, — .004, OLS —.035 693 194
(.14) (.003) SE-OLS 019 .080 072
WDO-0 018 096 085
o = WDO-4 017 .090 083
o —14"4" X 105", (5.4)
¢ =0
Several models for d* and m, are in accordance with the gESOLS “-823 649 .328
2 - 5 : : - - . = 01 .082 108
empirical evidence 1n (5.4). To illustrate this point, consider WDO-0 018 099 116
the models WDO-4 016 .095 117

(1 — pL)Ad* = v,, + ¢ (5.5)

and

(5.6)

p— 1*1:‘

(1 ="oL)m,

where v, and v,, are independent white noise processes with
variances uo” and ¢, respectively.

ML estimation subject to the restrictions (a) p ¢
0, (b) p = 0, and (c) ¢ = 0, respectively, yields the results
reported in Table 3. The economic implications of the three
models are markedly different. The ratio of the variances of
Ad¥ and m,, u(1 — ¢*)(1 — p?)~', equals 7.90, 12.64, and

4.20

.80 for the three models, respectively. We write the model
ford" as (1 — p,L)YAd™ = ¢ + (1 + @,.L + 06,L?)v,. The
estimates implied by these three models, given in Table 4,
are all close to each other and to the estimates reported 1n
(5.4). It 1s obvious that the data cannot discriminate among
the three models (5.5). Such a situation 1s expected to arise
frequently 1n the presence of unobservables. At present, we
are primarily interested in the parameters of (5.2). Therefore
we investigate the sensitivity of the parameter estimates of
(5.2) with respect to assumptions on p and ¢. Moreover,
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Figure 3. Desired Labor Demand by the Private Sector: Observations and Corrections for Measurement Errors in Millions of Man-Years.

——, Observations. -, approxs. (5.5) and (5.6), p

¢ = 0. ---, approxs. (5.5) and (56.6), p = 0. — - —, approxs. (5.5) and (5.6), ¢ = 0.
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we compare the results with those obtained 1n Section 5.1,
where we neglected measurement error 1n d;*. The expected
values of d*, given all observations on d}", are displayed 1n
Figure 3. Not surprisingly, model (c) implies the largest
corrections to measured data.

The parameter estimates of (5.2) for y,, = 0 are given in
Table 5. Only the set of proxies (c) described in Section 4.3
is used with a proxy for d;* generated by models (a), (b)
and (c), respectively. The significance of coefficients 1s hardly
affected by the way in which the measurement errors are
treated. The estimate of o0, substantially increases when the
specification (c) is used. Similar conclusions hold true for
other versions of (5.2), the results for which are not reported
here. Therefore we can conclude that the empirical results
of Section 5.1 are fairly robust with respect to the impact
of possible measurement errors in d;*.

6. CONCLUSION

In this article we showed how model-based approxima-
tions for the missing observations can be obtained and how
these approximations can be used as proxies in a subsequent
econometric analysis. The information set from which the
approximations were derived was gradually extended. Using
univariate and bivariate models, we generated proxies for
the quarterly total employment, employment in the public
sector, and the labor supply in the Netherlands. In the bi-
variate models we made use of the quarterly observations
on unemployment to improve the accuracy of the proxies.
This is an extension of interpolation procedures proposed In
the literature.

The proxies were substituted in a structural equation for
the adjustment of labor demand. The resulting equation was
analyzed by methods that take account of the approximation
error inherent in the proxies for the missing observations.
These methods were subsequently applied to investigate the
sensitivity of the empirical findings with respect to the eftect
of possible measurement errors in the explanatory variable
of the adjustment equation for labor demand. Standard errors
for the estimated regression coefficients were computed us-
ing the methods presented in the Appendix. The etfect of
estimated parameters in the models for the proxies on the
finally reported standard errors was small 1n this example.
[t is important for applied work to investigate whether this
holds true in general. Finally, the dynamic properties of the
labor demand equation were analyzed. The models per-
formed reasonably well.
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APPENDIX

For simplicity, we assume that y, in (2.1) 1s observed for
all periods ¢ and is explained by one exogenous variable x;;
X, 18 linear in 0, say, X, = z,/0; and %, 1s orthogonal to u, In
large samples, so ordinary least squares are consistent for
(2.3). The error term in (2.3) can be written as

u, = uy, + u,, (A.1)

with u,: =&+ (er="x)pand u;, = (X, = X)p =
Bz'(0 — 0). The large sample variance of the OLS estimator
based on the proxy X, 1s given by

var( \/_/)’ ) =

where £ 1s a 7 X 1 column vector with typical element Xx,.
The matrix A 1s defined as A = A,l + A + Ay + Ao,
where A; = £'(};X and {); = Ew;u; (assumed to exist). The
effect of estlmdtlon of 0/ on the variance of /)’;, 1S nOot asymp-
totically negligible and has to be taken into account.

In many applications, one can obtain {,, as a function of
the parameters of the model and substitute a consistent es-
timate for these parameters to get a consistent estimate of
A,,. Alternatively, consider the White and Domowitz (1984)
estimator, which reads in our notation as

plim(x'2/T) " 'AX'X/T)~"', (A.2)

A, = T"[ 1253
[

r
+ 0 Bk, + % ) AT
!

with iz, = y, — ﬂ,,.f,. Notice that although an estimate of «,
is substituted in (A.3), A,, will generally converge to A,
and not to A. Loosely speaking, the estimator A, does not
take account of the estimated parameters in the proxy. (For
more details, see Nijyjman and Palm 1984.)

Provided certain regularity conditions are fulfilled, A,,
can be consistently estimated by

Ay =522 12VyziR, (A.4)
where V, is a consistent estimate of the asymptotic covari-
ance matrix of V70. Estimation of A, = A, can cause
problems. In applied work, one may be satisfied with lower

and upper bounds for the asymptotic variance of /J’f, in (A.2),
which can be obtained without estimating A,,.

Define
B, = plim(£'2/T)'A;(®'%/T)~".

The B;;’s are the large sample variances of the two com-
ponents of

B, = B = @2T)'[#u/T + £'uy/T]

and the covariance between these components. Using the
Cauchy-Schwarz inequality, we have

B, + B,, — 2Bii’B} 2= var(\/?/);;,)

< B, + B,, + 2B!’B!2. (A.5)

Consistent estimates of the bounds can be readily obtained
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when consistent estimates of A,, and A,, are available. Al-
ternative ways to compute standard errors and extensions to
more general models with missing observations and other
types of unobservables can be found in Nijman and Palm
(1984), where results on the efficiency of various proxy
variable estimates are also given.

|[Received August 1984. Revised June 1985.]
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