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ABSTRACT OF THE DISSERTATION 

The Construction of a Partial Least Squares Biplot 

by 

Opeoluwa Funmilayo Oyedele 

In multivariate analysis, data matrices are often very large, which sometimes makes it difficult to 

describe their structure and to make a visual inspection of the relationship between their 

respective rows (samples) and columns (variables). For this reason, biplots, the joint graphical 

display of the rows and columns of a data matrix, can be useful tools for analysis. Since they 

were first introduced, biplots have been employed in a number of multivariate methods, such as 

Correspondence Analysis (CA), Principal Component Analysis (PCA), Canonical Variate 

Analysis (CVA) and Discriminant Analysis (DA), as a form of graphical display of data. 

Another possible employment is in Partial Least Squares (PLS). First introduced as a regression 

method, PLS is more flexible than multivariate regression, but better suited than Principal 

Component Regression (PCR) for the prediction of a set of response variables from a large set of 

predictor variables. Employing the biplot in PLS gave rise to the PLS biplot, a new addition to 

the biplot family. In the current study, this biplot was successfully applied to the sensory data to 

investigate the relationships between the sensory panel characteristics and the chemical quality 

measurements of sixteen olive oils. It was also applied to a large set of mineral sorting 

production data to investigate the relationships between the output variables and the process 

factors used to produce a final product. Furthermore, the PLS biplot was applied to a Binomial-

distributed data concerning the diabetes testing of Indian women and to a Poisson-distributed 

data showing the diversity of arboreal marsupials (possum) in the Montane ash forest. After 

these applications, it is proposed that the PLS biplot is a useful graphical tool for displaying 

results from the (univariate) Partial Least Squares-Generalized Linear Model (PLS-GLM) 

analysis of a data set. With Partial Least Squares Regression (PLSR) being a valuable method 

for modelling high-dimensional data, especially in chemometrics, the PLS biplot was 

successfully applied to a cereal evaluation containing one hundred and forty five infrared spectra 

and six chemical properties, and a gene expression data with two thousand genes.  

Moreover, as the PLS biplot provides a single graphical representation of the samples, together 

with the predictor variables, response variables and their inter-relationships (in terms of the 

matrix of regression coefficients), two methods of representing the matrix of coefficients in this 



biplot were proposed. First was the calibrated biplot axes style, where the coefficients were 

obtained directly from the orthogonal projections onto the axes that were representing the 

response variables. Here, a different set of markers, differing from the one used for reading the 

response samples, is used to read off the coefficient values. Thus, in this method, the response 

axes are carrying two different sets of markers, one (in black) for reading the response samples 

and one (in purple) for reading the coefficients. Secondly, the utilization of the area biplots was 

proposed. Here, the coefficients are represented by triangles in the area biplot. Akin to the 

advantages of biplots in general, the PLS biplot demonstrates, in graphic form, the association 

between samples and variables. It also provides a single graphical representation for displaying 

results from the PLSR, Sparse Partial Least Squares (SPLS), PLS-GLM and/or Sparse Partial 

Least Squares-Generalized Linear Model (SPLS-GLM) of a data set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

To James, Victoria, Yemisi, John, Ifeolu, and myself. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                  

Firstly, and most importantly, I would like to thank God Almighty for giving me the strength 

and courage to face all the challenges I encountered, and for blessing me with His spiritual 

guidance as well as wisdom throughout this research. 

I wish to express my sincere appreciation to my advisor, Associate Professor Sugnet Lubbe, for 

her valuable contributions, patience, guidance and support throughout this research project. 

Without her constant suggestions, encouragement and guidance, it would not have been possible 

for me to complete it. I convey my deepest thanks to the former Head of Statistical Sciences 

Department, Associate Professor Christien Thiart, for making my registration in the department 

possible and the current Head of Department, Associate Professor Francesca Little for continued 

support.  

My heartfelt gratitude also goes to my parents, Professor James Akindele Oyedele and Professor 

Victoria Iyabode Oyedele, for their support, inspirational talks and advice throughout my 

studies.  

I further wish to acknowledge the Postgraduate Centre and Funding Office, Faculty of Science, 

the Department of Statistical Sciences, Associate Professor Sugnet Lubbe, Professor Niël Le 

Roux from Stellenbosch University and my parents, for their financial assistance towards my 

studies. 

Lastly, but not least importantly, I would like to express my thanks to all the people who directly 

or indirectly contributed to the finalization of this dissertation. 

 

 

 

 

 

 

 

 

 



                  

                                  -  

                          -  

                                            -   

                           -  

                                              -  

                           -  

                                   -  

                                                     -  

                          -  

                                 -   

                                                        -   

                                          -   

                                       -   

                               -  

                                         -  

                                     -  

                        -  

                                         -    

                              -   

                                          -   

                                         -   

                                      -   

                                              -   

                                     -   

                                     -   

                                                 -   

                           -   

                        -   

 



                                                  -  

                          -  

                        -   

                                 -  

                                                   -   

                               -  

                                   -  

                                   -  

                                  -  

                                             -  

                                        -   

                              -  -                    -   

                                                          -   

                        -   

                                           -    

                          -   

                                      -   

                         -   

                        -   

                         -   

                           -   

                          -   

                                        -  

                          -  

                                 -   

                                 -   

                          -  

                         -    

                                               -  

                          -  

                             -  



                                         -  

                                      -  

                                    -  

                                              -  

                          -  

                           -   

                          -   

                                           -   

                                                 -   

                         -    

                         -   

                                                              -  

                  

                          -  

                                        -   

                                                               -  

                                                       -   

                          -   

                         -                   -   

                        -    

                                                        -   

                          -  

                                                                          -   

         -                                    -  

                                             -   

                                                                    -  

                                                                    -   

                                                         -   

                          -  

                                               -  

                                                      -   

                        -   



                                                                -   

                          -  

                                            -   

                                       -  

                                   -  

                                          -  

                         -  

                                              -    

                          -    

                                              -   

                         -   

                                     -   

                               -   

                            -   

                             -   

                        -   

                                              -   

                             -   

                                    -   

                                 -   

                        -   

                                                 -  

                          -  

                              -   

                                              -  

                       -  

 

                     -  

 

 

 



                

    A schematic of the projection of       on     .       -  

    The biplot of the olive oil data.        -    

    Examples of orthogonal projections in the biplot of the olive oil data.   -   

    The correlation values of the olive oil data.       -   

    The       plot of an artificial data.        -   

     The       plot of the olive oil data.        -   

     Plot of the       values of the chemical quality measurements.     -   

     Mean plot of the absolute PLSR coefficients of the olive oil data.    -   

    The covariance biplot of the olive oil data,      .       -  

     The covariance biplot of the olive oil data,      , with calibration markers.    -   

     The covariance monoplot of the sensory panel characteristics.      -   

     The covariance biplot of the olive oil data,    .        -   

     The covariance biplot of the olive oil data,    .        -   

    A schematic of the construction of the prediction axis for the     predictor   -  

 variable in the PLS biplot plane  . 

     The PLS biplot of the olive oil data, using the SIMPLS algorithm (Algorithm  -  
       ).     

    Examples of orthogonal projections in the PLS biplot of the olive oil data.   -  

     The kernel-PLS biplot of the olive oil data (Algorithm     ).    -   

     A schematic of the triangle area of         .       -   

    Example of a triangle visualization in the PLS biplot of the olive oil data.    -   

    The triangles for points   ,          , with bases defined by the Green axis  -   
in the PLS biplot of the olive oil data.   

    The PLS biplot of the olive oil data without axes markers, sample and coeffici-  -   
ent points.   

    The PLS biplot of a Poisson PLS-GLM of the possum diversity data.    -   

     A zoomed-in display of the coefficient points in the PLS biplot of a Poisson   -   
 PLS-GLM of the possum diversity data.       

     The PLS biplot of a Poisson PLS-GLM of the possum diversity data, without  -   
 sample names.       



     The PLS biplot of a Poisson PLS-GLM of the possum diversity data, fitted   -   
using the SIMPLS algorithm (Algorithm     ).   

     The PLS biplot of a Poisson PLS-GLM for species A of the bio-env data.     -    

     The PLS biplot of a Poisson PLS-GLM for species B of the bio-env data.     -    

     The PLS biplot of a Poisson PLS-GLM for species C of the bio-env data.     -    

     The PLS biplot of a Poisson PLS-GLM for species D of the bio-env data.     -    

     The PLS biplot of a Poisson PLS-GLM for species E of the bio-env data.     -    

      A schematic of OPA on two dissimilar triangles.        -    

      The GOPA display of the PLS biplots in Figures       to     , without the    -   
coefficient points. 

      The sample group average points of the GOPA display of the PLS biplots in   -   
Figures       to     , without the coefficient points. 

      The coefficient points of the GOPA display of the PLS biplots in Figures         -   
to     .  

    A    plot of            ,             and their respective         value,   -  
 for the cereal data.   

     A plot of             values and their respective         value, for the  cere-  -  
al data.     

     The PLS biplot for a SPLS of the cereal data (Algorithm     ), with         an-   -   
d      . 

     A zoomed-in display of the coefficient points in the PLS biplot for a SPLS of the   -   
cereal data, with         and      .     

     A plot of            values and their respective         value, for the possum  -   
diversity data.        

     A plot of           values and their respective         value, for the possum  -   
diversity data.    

     The PLS biplot of a Poisson SPLS-GLM of the possum diversity data (Algorithm  -   
   ), with           and      .  

     The PLS biplot of a Poisson SPLS-GLM of the possum diversity data (Algorithm  -   
    ), with no sample point names, for           and      . 

     A zoomed-in display of the coefficient points in the PLS biplot for a SPLS-GLM   -   
of the possum diversity data, with           and      .  

    The       plot of the SOVR data.        -  

    The PLS biplot of the SOVR data, using components   and   .    -   

    The PLS biplot of the SOVR data (Figure     ), with zoomed-in display of the   -  
samples and variable vectors.   



    The triangles for points   ,          , with bases defined by the     -  
Percent_Fe_FAR axis in the PLS biplot of the SOVR data.   

    Mean plot of the absolute PLSR coefficients of the SOVR data, using   -  
components   and   .  

    The PLS biplot of a Binomial PLS-GLM of the Pima.tr data (Algorithm    ).  -   

    The PLS biplot of a Binomial PLS-GLM of the Pima.tr data (Algorithm    ),   -   
without sample names.   

    A zoomed-in display of the coefficient points in the PLS biplot of a Binomial  -   
PLS-GLM of the Pima.tr data.   

    A plot of           values and their respective         value, for the colon  -   
data.   

     The PLS biplot of a Binomial SPLS-GLM of the colon data (Algorithm     ),  -   
 with          and      . 

     A zoomed-in display of the coefficient points in the PLS biplot of a Binomial  -   
SPLS-GLM of the colon data, with           and      .  

     The help file of the cov.biplot function.       -   

     The command prompt window.        -    

     List of installed packages in  .        -    

     The PCA biplot of the glass data.        -    

     The PCA biplot of the glass data, with no sample names.     -   

     The       biplot of the nutrimouse data.         -   

     Mean plot of the absolute PLSR coefficients of the nutrimouse data.   -    

     The covariance monoplot of the sensory panel descriptors.      -    

     The covariance biplot of the cocktail data.        -    

     The PLS biplot of the cocktail data.        -   

     The PLS biplot of the cocktail data, with no sample names.     -   

     The PLS biplot of the cocktail data, without sample, coefficient points and tick  -   

markers labels.  

     The triangles for points   , for           , with base defined by the odor.lemon   -   
  axis in the PLS biplot of the cocktail data.  

     The PLS biplot for a Poisson PLS-GLM for species Trocterr of the spider data.  -   

     A zoomed-in display of the coefficient points in the PLS biplot a Poisson PLS-  -   
GLM for species Trocterr of the spider data.  

     The PLS biplot for a Poisson PLS-GLM for species Trocterr of the spider data,  -   
fitted using the SIMPLS algorithm (Algorithm     ).  

     A plot of             values and their respective         value, for the ash  -   
data.   



     The PLS biplot for a SPLS of the ash data, with          and      .   -   

     A display of the coefficient points in the PLS biplot for a SPLS of the ash data,   -   
with         and      .   

     The PLS biplot for a SPLS of the ash data, with no sample, coefficients points   -   
and tick markers labels, for         and      .  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                

     The approximated olive oil values.         -   

     The olive oil values.           -   

    The column means of the olive oil data.       -   

    The row and column markers     and   .       -   

     The axis predictivity of the PCA biplot of the olive oil data.     -    

    The sample predictivity of the PCA biplot of the olive oil data.    -   

    Summary of the PLSR parameters.        -  

    The weights    and loadings    values of the chemical quality measurements.  -   

    The loadings     values of the sensory panel characteristics.     -   

     The orthogonal latent variables   .         -   

     The estimated sensory panel characteristics values   ̂    .      -   

    Absolute values of the estimated PLSR coefficients.      -    

     The MSE values.          -    

     The estimated sensory panel characteristics values from the MMLR analysis.  -   

     The estimated sensory panel characteristics values from the PCR analysis.   -   

     The estimated MMLR coefficient values ( ̂    ).       -   

     The estimated PCR coefficient values ( ̂   ).       -   

    The matrix  .           -  

     The matrix  .           -   

     The actual correlation values between the chemicals and sensory characteristics.  -   

     The approximated correlation values between the chemicals and sensory charact-  -  
eristics.        

     The approximated olive oil values.        -   

     Axis predictivity of the PLS biplot of the olive oil data.      -   

    The estimated (SIMPLS) PLSR coefficient values.      -    

    The estimated (kernel) PLSR coefficient values.      -   

    The column means and standard deviations of the  -variables.    -    

    The predicted coefficient values.        -   



     The predicted coefficient values from the five Poisson PLS-GLMs.    -    

    The predicted coefficient values.        -    

     The predicted coefficient values.        -   

         values of the process factors.          -  

     The estimated PLSR coefficient values, using components   and   .     -   

     Axis predictivity of the PLS biplot of the SOVR data.       -   

    The predicted coefficient values.        -   

    The predicted values of the variables and the expected type of diabetic.   -   

    The predicted coefficient values.        -   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                   

    NIPALS algorithm.          -  

     Kernel algorithm of Rännar et al. (1994).        -  

     Kernel algorithm of Lindgren et al. (1993).        -  

     SIMPLS algorithm.          -  

    GLM algorithm.           -  

     PLS-GLM algorithm.           -  

     PLS-GLM algorithm using the SIMPLS algorithm.        -  

    SPLS algorithm.          -  

    SPLS-GLM algorithm.         -  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1-1 
 

           

              

                 

Graphical representations are often used as a quick way to summarize and display data sets 

effectively. They offer an opportunity to identify patterns, groupings, outliers, and relationships, 

amongst others, in the data set. Although there are various graphical representations, the most 

commonly used representations are the two- and three-dimensional scatter plots. In these 

representations, the coordinate axes represent the columns of the data, while the points represent 

the rows. In the usual two-dimensional scatter plot, two orthogonal Cartesian axes are used to 

represent the columns of the data. However, data sets are often (very) large, and therefore it can 

be time consuming to make a visual inspection of the data using a two- or three-dimensional 

scatter plot. In addition, all the inter-variable relationships are not displayed in either scatter 

plots. For this reason, biplots can be useful tools for analysis. First introduced by Gabriel (1971), 

biplots are often referred to as the multivariate version of scatter plots, in that they allow for the 

simultaneous display of each column in the data by a non-orthogonal axis on the plot.  

At the core of multivariate statistics is the investigation of relationships between different sets of 

variables. More precisely, the inter-variable relationships and the casual relationships. The latter 

is a regression problem, where one set of variables is referred to as the response variables and 

the other set of variables as the predictor variables. In this situation, the effect of the predictors 

on the response variables is revealed through the regression coefficients. Different solutions 

have been developed to solve the regression problem. For example, the Multivariate Multiple 

Linear Regression (MMLR), Ridge Regression (RR), Principal Component Regression (PCR) 

and Partial Least Squares Regression (PLSR). Furthermore, the biplot can be employed to 

visualize the effect of the predictors on the response variables graphically, and to display results 

of the regression. Since their introduction, many forms of biplots have been developed, such as 

the Correspondence Analysis (CA) biplot, the Principal Component Analysis (PCA) biplot and 

the Canonical Variate Analysis (CVA) biplot. These forms of biplots are all of the type revealing 

the inter-variable relationships.  

In this dissertation, a new addition to the biplot family is developed and termed the Partial Least 

Squares (PLS) biplot. This biplot allows for the simultaneous representation of sample points 

and variables. It further provides a single graphical representation for displaying results from the 
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PLSR analysis of a data set. The graphical visualization is extended to Partial Least Squares 

(PLS). These extensions are based on (i) rephrasing the biplot theory in the PLS context, (ii) 

applying PLS biplots to different data sets, and (iii) developing software for executing these 

applications. As the implementation was developed, different types of response variables led to 

another form of PLS, namely, the Partial Least Squares-Generalized Linear Model (PLS-GLM). 

In addition, the implementation was developed for a sparse version of PLS, referred to as Sparse 

Partial Least Squares (SPLS), and with the different types of response variables, the Sparse 

Partial Least Squares-Generalized Linear Model (SPLS-GLM) was developed. Though PLSR is 

a valuable method for modelling high-dimensional biological data, such as genomics, the PLS 

biplot is proposed as a graphical tool to help reveal any possible variables and inter-variable 

relationships, clustering and multivariate outliers of such data sets, seeing that no such plot 

currently exists.   

 

                                   

Given that PLSR is another popular multivariate method, the biplot is employed in PLS to form 

the PLS biplot. The main objective of this dissertation is to construct the PLS biplot. However, 

before such construction will be described, an overview will be given of biplots, PLS and its 

algorithms, as well as PLSR. After constructing the PLS biplot, it will be briefly compared to the 

popular PCA biplot and the covariance biplot. In addition, the use of the PLS biplot as a 

graphical tool for Generalized Linear Models (GLMs), as well as for a sparse version of PLS and 

PLS-GLM will be explored.  

 

             

A collection of functions has been developed in the   language (  Core Team, 2014). These 

functions can be found in the newly created   package called PLSbiplot1 on the dropbox link: 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya. 

This package is also available on the Comprehensive   Archive Network (CRAN) repository, 

http://cran.r-project.org/. Furthermore, a brief introductory illustration on the use of these 

functions is provided in Section      of this dissertation. A detailed online documentation for all 

routines in this package can also be found on the dropbox link.  

 

 

 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya
http://cran.r-project.org/
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Chapter     of this dissertation explains the essential concepts behind biplots in general. As the 

simplest form of a biplot, the PCA biplot is used to explain the relevant biplot concepts. Chapter 

   states, explains and derives the necessary theory behind PLS as well as PLSR. It also 

discusses and compares three of the algorithms implemented in the   package pls, by Mevik & 

Wehrens (2007). These algorithms are the Nonlinear Iterative PArtial Least Squares (NIPALS) 

algorithm, the kernel algorithm and the Statistical Inspired Modification to Partial Least Squares 

(SIMPLS) algorithm. In addition, it includes a short comparison of PLSR with other popular 

multivariate regression techniques, such as Multivariate Multiple Linear Regression (MMLR) 

and Principal Component Regression (PCR). Since PLS algorithms are based on the covariance 

matrix between the predictor variables and the response variables, Chapter     investigates the 

visual representation of the covariance matrix in a biplot. This is followed in Chapter     by all 

the procedures and methods used in obtaining the PLS biplot. It also includes a discussion of the 

interpolation and prediction of points and axes of a PLS biplot. Alongside these, the PLS biplot 

is compared with the PCA and covariance biplots.  

The PLS biplot constructed in Chapter     assumes a linear relationship between the predictors 

and the response variables. Sometimes the relationship between these two sets of variables may 

follow a non-linear function. Thus, Chapter     investigates the employment of the PLS biplot to 

explore the non-linear relationship between the predictors and response variables. In addition, 

the PLS biplot is explored as a graphical tool for displaying a sparse version of PLS in Chapter 

 . This version of PLS, called Sparse Partial Least Squares (SPLS), is popularly used in 

biological data such as microarray expression data and genomics. The SPLS is further 

implemented into the Generalized Linear Model (GLM) framework, to form the Sparse Partial 

Least Squares-Generalized Linear Model (SPLS-GLM). Furthermore, in Chapters   ,  ,    and 

 , the major theoretical concepts are illustrated using the olive oil data from Mevik & Wehrens 

(2007). This data shows the sensory and chemical quality evaluations of sixteen olive oil 

samples. Moreover, the PLS biplots developed in Chapters   ,   and   are applied to three 

chosen data sets in Chapter   . A brief overview of how and why the chosen data sets were 

collected will be provided. In addition, introductory information on the use of the developed PLS 

biplot software (PLSbiplot1) is provided. Finally, Chapter    concludes the dissertation and 

suggests further research directions. 
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Throughout this dissertation, scalars are defined in italic lower-case characters (e.g.,  ,  ) and 

vectors in bold non-italic lower-case characters (e.g.,  ,  ), while matrices are represented in 

bold non-italic upper-case characters (e.g.,  ,  ). To emphasize their dimensions, matrices will 

be written clearly as, e.g.,    (   ), meaning a matrix     with     rows and     columns. The 

identity matrices are represented as    , with their appropriate dimensions (   ) indicated as a 

subscript. Matrix elements are represented by the corresponding italic lower-case characters with 

row and column index subscripts, e.g.,      is the  (   )   element of a matrix   .  

Superscripts    and     represent transpose and inverse operations respectively, e.g., 

   ,   ,    . Estimated values are emphasized with a mark     on them, e.g.,   ̂,   ̂. Furthermore, 

the following notation is applicable throughout this dissertation. 

        Number of components in a PLS model  

        Number of samples 

        Number of predictor variables ( -variables) 

        Number of response variables ( -variables) 

        Index of components;               

        (   )  Matrix of predictors  

        (   )  Matrix of responses  

         (   )  Matrix of centred predictors  

         (   )  Matrix of centred responses  

        (   )  PLS  -weights matrix 

        (   )  PLS transformed  -weights matrix 

        (   )  PLS  -weights matrix 

        (   )  PLS  -scores or latent variables matrix 

        (   )  PLS  -scores matrix 

        (   )  PLS  -loadings matrix 

        (   )  PLS  -loadings matrix 

            (   )  PLSR coefficients matrix 

            (   )  SPLS coefficients matrix 

           (   )   PLS coefficients vector 

            (   )   SPLS coefficients vector 
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           (   )   PLS-GLM coefficients vector 

           (   )  SPLS-GLM coefficients vector 

               column of     

               column of     

               column of    

               column of    

               column of    

               column of    

               column of     

‖  ‖        Norm of    ;  ‖  ‖  √       

 [   ]        First column of   .  

 [     ]      First three columns of     

   (  )      Variance of      

   ( )        (   )  Covariance matrix of     

   (   )    (   )  Covariance matrix of    and  .  

Additional notation will be specified under the relevant chapters.   

 

                          

BAM  Bi-Additive Model 

CA  Correspondence Analysis 

CRAN  Comprehensive   Archive Network  

CVA   Canonical Variate Analysis 

DA  Discriminant Analysis 

  -    EigenValue-Vector Decomposition 

GLM  Generalized Linear Model 

GOPA  Generalized Orthogonal Procrustes Analysis 

IWLS  Iterative Weighted Least Squares 

LASSO Least Absolute Shrinkage and Selection Operator 

LRA  Log-Ratio Analysis 

MCA  Multiple Correspondence Analysis 

MDS  Multi-Dimensional Scaling 

MET  Multi-Environment Trial 

MMLR Multivariate Multiple Linear Regression  
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MSE  Mean Squared Error 

NIPALS Nonlinear Iterative PArtial Least Squares 

NLA  Non-Linear Analysis 

OPA  Orthogonal Procrustes Analysis 

PA  Procrustes Analysis 

PCA  Principal Component Analysis 

PCR  Principal Component Regression 

PLS  Partial Least Squares 

PLS-GLM Partial Least Squares-Generalized Linear Model 

PLSR  Partial Least Squares Regression 

       PRediction Error Sum-of-Squares 

       Root Mean Squared Error of Prediction  

RR  Ridge Regression 

SIMPLS  Statistical Inspired Modification to Partial Least Squares 

SPLS   Sparse Partial Least Squares 

SPLS-GLM Sparse Partial Least Squares-Generalized Linear Model 

     Singular Value Decomposition 

      Variable Importance in the Projection 

WLS  Weighted Least Squares.  
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A scatter diagram is a useful statistical tool for representing samples as points and variables by 

means of coordinate axes. A form of scatter diagram that can be used for multivariate data is the 

biplot. The biplot allows for the simultaneous display of samples as points, with each variable 

being represented by an axis on the plot. Generally, there are two main kinds of biplots, namely, 

the symmetric biplot and the asymmetric biplot. However, different forms of biplots have been 

developed over the years. Among them is the Principal Component Analysis (PCA) biplot, 

which is the most common and simplest form of asymmetric biplot. In this chapter, the PCA 

biplot will be used to explain the basic biplot concepts, although the specifics of the PCA biplot 

will only be discussed in detail in Section      .    

 

                     

The asymmetric biplot gives information on the rows and columns of a data matrix, while the 

symmetric biplot gives information on the rows and columns of a two-way table (Gower et al., 

2011). The roles of the columns and rows in the symmetric biplot can be interchanged without 

losing any information. However, this is not the case in the asymmetric biplot. In Partial Least 

Squares (PLS), the data has the form of     sample points measured on     predictor variables 

and    response variables. It can be represented as an     (   ) matrix    [  ]  in 

which the roles of the columns and rows cannot be interchanged. Thus, the resulting biplot will 

be an asymmetric biplot, and therefore the focus here will be on asymmetric biplots.   

Biplots, to be precise, asymmetric biplots, are often referred to as the multivariate version of 

scatter plots. In the usual two-dimensional scatter plot, two orthogonal Cartesian axes are used 

for reading off the values of the sample points, as well as for adding points to the plot. The fact 

that biplots are referred to as multivariate scatter plots implies that more than two variables are 

represented by (non-orthogonal) axes (Gardner-Lubbe et al., 2009; Gower & Hand, 1996). Just 

like scatter plots, biplots are helpful for revealing clustering, multivariate outliers, variables and 

inter-variable relationships of a data set (Kohler & Luniak, 2005).   
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Since the biplot was first introduced by Gabriel (1971), its theory has been significantly 

extended with Gower & Hand’s (1996) monograph, Yan & Kang’s (2003) description of various 

methods to visualize and interpret a biplot, Greenacre’s (2010) text on the use of biplots in 

practice and Gower et al.’s (2011) illustration of the construction of various forms of biplots. In 

the first biplots introduced by Gabriel, the rows and columns of a data matrix were represented 

by vectors, but to differentiate between these two sets of vectors, Gabriel (1971) suggested that 

the rows of the data matrix be represented by points. Gower & Hand (1996) went a step further 

by introducing the idea of representing the columns of the data matrix by axes, rather than 

vectors, while still representing the rows of the data matrix by points. This was done to support 

their theory that biplots were the multivariate version of scatter plots. Gower & Hand’s (1996) 

biplot representation is very useful when the data matrix under consideration is a matrix of 

samples by variables. Besides data matrices, other types of matrices and non-matrices can be 

biplotted too. Examples of these include the covariance or correlation matrices and a two-way 

contingency table (Bradu & Gabriel, 1978; Gower et al., 2011; Greenacre, 1993; Underhill, 

1990). In the covariance or correlation biplot, only variables are represented, by axes, in the 

biplot display. As only the variables are represented in the display, and not both the samples and 

variables, Gower et al. (2011) termed this display the monoplot. The specifics of the monoplot 

will be discussed in detail in Section     . The biplot of a two-way table is often referred to as a 

symmetric biplot, due to the advantage of interchanging the roles of the columns and rows of the 

table without any loss of information. An example of such a biplot is the Correspondence 

Analysis (CA) biplot (Greenacre, 1993).     

Since 1971, biplots have been employed in a number of multivariate methods as a form of 

graphical representation of data, pattern and data inspection, as well as for displaying results 

found by well-known statistical methods of analysis (Bradu & Gabriel, 1978; Constantine & 

Gower, 1978; Gabriel, 1981; Gower & Hand, 1996; Gower et al., 2011; Greenacre, 2010). The 

most well-known methods are PCA, CA, Multiple Correspondence Analysis (MCA), Canonical 

Variate Analysis (CVA), Multi-Dimensional Scaling (MDS), Discriminant Analysis (DA), 

regression analysis, and Generalized Linear Models (GLMs). In addition, biplots have been 

employed in some less well-known methods, such as Bi-Additive models (BAMs), Log-Ratio 

Analysis (LRA) and Non-Linear Analysis (NLA) (Gower & Harding, 1988; Greenacre, 2012). 

All these forms of biplots have been applied to diverse fields of specialization, according to 

different needs and requirements. For instance, biplots were applied in the fields of mineral 
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engineering (Gardner et al., 2005), in plant and crop sciences (Cooper & De Lacy, 1994; Yan & 

Kang, 2003; Yan & Rajcan, 2002), agricultural science (Kempton, 1984; Underhill, 1990), 

microarray and gene expression (Gardner-Lubbe et al., 2009), Multi-Environment Trials (METs) 

analysis (Bradu & Gabriel, 1978; Kempton, 1984; Yan & Tinker, 2006), medicine (Osmond, 

1985), ecology (Ter Braak, 1983), accounting (Le Roux et al., 2003) and economics (Barr & 

Affleck-Graves, 1987; Barr et al., 1990). 

 

                                  

A biplot is a joint graphical display of the rows and columns of a data matrix    (of    rows and 

  columns) by means of markers               for its rows and markers              for its 

columns. Each marker is chosen in such a way that the inner product         represents     , the 

(   )   element of the data matrix    (Barnett, 1981). Biplots are often constructed in two 

dimensions. This does not mean that they are limited to two dimensions, but this is the most 

convenient biplot display. However, with     being a (very) large matrix, the rank of     is 

almost always higher than two. As a result, some approximation is done on     to obtain a lower 

rank. Methods such as PCA can be used to perform this approximation. In PCA, the 

approximation is based on the method of least squares. To be precise, the sum-of-squares of the 

differences between     and its approximation   ̂  is minimized. That is,   

minimize       {(   ̂)(   ̂)
 
}  ∑ ∑ (     ̂  )

  
   

 
   . (   ) 

Taking   ̂  as the rank two approximation of   , the biplot of a data matrix     relies on the 

decomposition of   ̂  into the product of two matrices, 

  ̂     ,         (   ) 

its row markers matrix ( ) and its column markers matrix ( ). Matrices   and   are defined as  

  [

          
          
 
   

 
   

    
    

]  

[
 
 
 
 
 ( )
 

 ( )
 

 
 ( )
 
]
 
 
 
 

  the (   ) row markers matrix and  

   [

          
          
 
   

 
   

    
    

]  

[
 
 
 
 
 ( )
 

 ( )
 

 
 ( )
 
]
 
 
 
 

  the (   ) column markers matrix.  

Thus, the approximated rows and columns of a data matrix are represented in biplots. Generally, 

the number of columns in     and     are determined by the rank   approximation of   . In 

practice,      is usually preferred for a convenient biplot display.  
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In asymmetric biplots, the rows of a data matrix are represented by points, while the columns are 

represented by vectors or axes. Traditionally, columns are represented by vectors (Gabriel, 

1971), but Gower & Hand (1996) introduced axes to make the biplot similar to a scatter plot. 

This was done by extending the vectors, which represent the columns, through the biplot space 

to become axes. Thus, the biplot points will be defined by the row markers of the data matrix, 

whereas the biplot axes will be defined by the column markers. More precisely, for the biplot of 

a data matrix   ,   rows of     will serve as the biplot points, while   rows of     will be used in 

calculating the directions of the biplot axes.  

 

                  

With the focus being on asymmetric biplots, as mentioned in Section     above, in the 

asymmetric biplots presented in this dissertation, two out of three aspects can be represented 

optimally, but not all three at once. These aspects are: (i) the distances between the rows of   , 

(ii) the correlations between the rows of   , and, (iii) the relationship between the rows and 

columns in   ̂.  

Consider a data matrix with Singular Value Decomposition (   )       , for    (   ), 

  (   )  and    (   ). Defining the matrices    (   )  [   
  

]  and     (   )  [
  
 
], 

it follows that 
    ̂                    .  

If  

         and         , where       ,   (   ) 
then 

  ̂     .        
However, if       ,  ̂               .  

From (   ), choosing       yields       and  

 
 ̂                               

              

                  

 

with       . Since        [   ] [
  
 
]           and        ,  

 ̂[ ] ̂[ ]
      (    )     

       
       

where   ̂[ ]  is the  -approximation of   . Thus, for row   and row   of   , 
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‖ ̂( )
   ̂( )

 ‖  ( ̂( )
   ̂( )

 )( ̂( )
   ̂( )

 )
 
      

   ̂( )
  ̂( )    ̂( )

  ̂( )   ̂( )
  ̂( )

 
 

  
 

 ( )
  ( )    ( )

  ( )   ( )
  ( ) 

‖ ( )
   ( )

 ‖                                 

 

so that the squared distance between row   and row   of    is approximated by the squared 

distance between row markers   ( )  and   ( ).  

Furthermore, with       , choosing       yields     ,  

 
 ̂                               

               

                

 

and  
  ̂[ ]  ̂[ ]  (    ) (    )            

     , 
where        . 

For     , with either         and       ,  ̂               . Here, the 

emphasis of the graphical displays will be on the relationship between the rows and columns in 

 ̂  as an approximation to the relationship between the rows and columns in   . Greenacre 

(2009) refer to such display as the symmetric plot, for         . Either ways,   ̂     .  

With       , it is impossible to have both      (optimally representing the distances 

between the rows of   ̂ ) and      (optimally representing the correlations between the 

columns of   ̂). For this reason, the arbitrary choice is made to optimally represent the distances 

between the rows, (i.e.,    ), therefore, having       and the angles between the vectors 

representing the columns only indicating the cosine of the correlations, rather than exactly 

approximating the cosine of the correlations between the columns. For a discussion on the biplot 

that optimally approximates the correlation between variables, see Chapter   . The positions of 

the biplot axes give an indication of the correlations between the variables. Axes forming small 

angles are said to be strongly correlated   either positively or negatively. Axes are positively 

correlated when they lie in the same direction, while negatively correlated axes lie in opposite 

directions. In addition, axes that are close to forming right angles are said to be uncorrelated. 

Since  (   ) ̂   ̂[ ]  ̂[ ], for column   and column   of   ,  
 (   ) ̂    ̂   ̂   ( )  ( )  ‖ ( )‖  ‖ ( )‖     ( ( )  ( ))  

with correlation   ̂     
 ̂ 
  ̂ 

 √ ̂ 
  ̂ √ ̂ 

  ̂  

  defined as 
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 ̂    
‖ ( )‖   ‖ ( )‖      ( ( )  ( ))

 √‖ ( )‖   ‖ ( )‖      ( ( )  ( ))√‖ ( )‖   ‖ ( )‖      ( ( )  ( )) 
                   

  
‖ ( )‖   ‖ ( )‖      ( ( )  ( ))

 √‖ ( )‖   ‖ ( )‖    √‖ ( )‖   ‖ ( )‖     
                                                        

 
 
 

 
   
 

 ‖ ( )‖   ‖ ( )‖      ( ( )  ( )) 

 ‖ ( )‖   ‖ ( )‖ 
 

   ( ( )  ( ))                     
                                                                      

 

This shows that the angle between the column markers approximates the correlation between the 

corresponding variables. For a single column of   , say,  ,  

 (   ) ̂   ‖ ( )‖  ‖ ( )‖     ( ( )  ( ))  ‖ ( )‖
 
  (   ) 

where     ( ( )  ( ))     and  ‖ ( )‖  ( ( )  ( ))
 
 . 

 

                               

From (   ), the length of a vector representing a single column (variable) of    is directly 

related to the standard deviation of the column (variable). In this dissertation, since the columns 

of     are represented by axes, the length of a vector is illustrated in the biplot displays by a 

(thicker) arrow, emanating from the origin, on their respective axis. However, the calibration of 

the axes is very important in biplots. This is because different calibrations are used for adding 

points to the biplot and for reading off values from the biplot axes. In addition, calibrated axes 

can be used for interpolation and prediction purposes. Given the values of the variables for a 

sample, interpolation describes the process of finding the position of the sample in the display 

(Gower & Hand, 1996). Conversely, prediction is the process of inferring or deducing the values 

of the original variables for any points in the display. Although calibrated interpolation axes can 

be used in general, these axes will not be used in this dissertation. Instead, using the resulting 

biplots just like scatter plots and with the main objective of both PCA and PLS being the 

approximation of large data matrices, calibrated prediction axes will be used throughout the 

PCA and PLS biplots. It is intuitive to read off values from axes when presented with a biplot 

containing sample points and biplot axes. Using interpolation axes will be misleading as these 

cannot be used to read off values. For this reason, only prediction biplot axes will be shown in 

the figures. Interpolation can be, and is usually, performed algebraically so that there is no need 

for representing biplots with interpolation axes, especially when users tend to automatically refer 

sample points to the biplot axes. 

As each marker is chosen in such a way that the inner product   ( )  ( )  represents the (   )   

element of   ,  ̂    ( )  ( ) prediction is performed graphically by reading off directly from the 
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orthogonal projections of the biplot points onto the calibrated biplot axes, just as in scatter plots, 

where points are projected onto the axes to read their values.  

In general, calibration is done by placing a set of tick marks on each of the biplot axes and then 

labelling them with any set of markers (not necessarily equally spaced) as desired, 

e.g., (           ).   

 
                         

The row and column markers matrices in (   ) can be rewritten as 

    

[
 
 
 
 
 ( )
 

 ( )
 

 
 ( )
 
]
 
 
 
 

  and    

[
 
 
 
 
 ( )
 

 ( )
 

 
 ( )
 
]
 
 
 
 

,  

with  ( )  (      )  being the  (   )      row marker and   ( )  (      ) the (   ) 

      column marker, where           ,            and     . Consider the projection of 

  ( ) on   ( ) as shown below in Figure     .  

 
Figure      A schematic of the projection of   ( )  on   ( ). 
 

The inner product of   ( )  on   ( )  gives the (   )    element of   ̂  as   ̂    ( )  ( ) . From the 

origin   , the length of   ( ) is given by  ‖ ( )‖  ( ( )   ( ))
 
 
 
, while the length of   ( ) is obtained 

by  ‖ ( )‖  ( ( )  ( ))
 
  . The angle between   ( ) and   ( ) is defined by     . The point    ( )   

  is 

the projection of    ( ) on   ( ) with a calibration factor   . The inner product   ( )  ( )  ‖ ( )‖  
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‖ ( )‖    (   )   ‖ ( )‖  ‖ ( )‖    (   ) can be written as the product of  ‖ ( )‖ and the 

length of the projection of   ( ) on   ( ) (‖ ( )‖     (   )). All vectors   ( )  with end points on 

the red dotted line, in Figure     , through   ( )  and    ( )   
 will have the same projection and 

therefore the same length of projection ‖ ( )‖     (   ). Thus,   ( )  ( )  has a constant value 

(say,    ) for all vectors   ( ) with end points on the red dotted line through   ( )  and    ( ) . That 

is,  

  ( )
  ( )   

   ( )
  ( )      (   ) 

for all   ( ) on the red dotted line. Since    ( ) 
  is a point on the red dotted line,   ( )  ( )    . 

Solving for     yields  

   
  

  ( )
  ( ) 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅  .        (   ) 

Equation (   ) can be termed the calibration factor. Replacing     in    ( ) 
  by (   ) gives the 

coordinates of the point on the   ( ) axis that is calibrated with a value      as 

  
  

  ( )
  ( ) 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ( )
 . 

 

             

The following example is an illustration of a biplot, using the olive oil data from Mevik & 

Wehrens (2007). This data shows the sensory and chemical quality evaluations of sixteen olive 

oil samples. There were five chemical quality measurements (Acidity, Peroxide, K232, K270 

and DK) taken, and six sensory panel characteristics (Yellow, Green, Brown, Glossy, 

Transparent and Syrup) were used in this evaluation. The sixteen olive oils are assigned as 

samples, while the chemical quality measurements and sensory panel characteristics are the 

variables. As a result, the olive oil data can be viewed as a (     ) data matrix. This data can 

be obtained from the pls package in   , downloaded freely from CRAN, http://cran.r-

project.org/.  

The row markers     and the column markers     are shown in Table     . To illustrate the 

calibration of the biplot axes (see Section     ), consider the Yellow variable. The column 

marker vector for this variable,  (   ), is given by the sixth row in   . By the definition of a 

biplot,   ( )
  ( )   ̂  , for              and   ( )

  (           ). This defines the inner 

product of the samples and the Yellow variable. Substituting      ̂    in equation (   ) gives 

the calibration factor for the Yellow axis as     
   

       
 . For values ranging between         

http://cran.r-project.org/
http://cran.r-project.org/
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and      ,    ( ) 
  gives the set of tick markers for the Yellow axis. More precisely, with the 

centred values under the Yellow variable given as 

    (
                                                          
                                                                             

), 

the set of tick markers for the Yellow axis is given by  

    ( )
  (

                                                                       
                                                                        

). 

These values are not yet corrected for the mean of Yellow. Correction for the mean of Yellow is 

done by adding the mean of Yellow to     ( )
 . That is,     ( )

   ̅ , where   ̅        is the 

mean of Yellow, as shown in Table     . Thus, corrected for the mean of Yellow, the set of tick 

markers for the Yellow axis is given as 

 (                                                             
                                                          

).  

Rather than using these disproportionate values as the scale markers on the Yellow axis, nicer 

scale markers can be used, such as  (                                  ) , as seen in 

Figure     . The uncentred and original values of the olive oil data are shown in Table     . The 

asymmetric biplot of this data is shown in Figure     . In this figure, the samples of the data are 

represented by the black points, while the variables are represented by the axes. This biplot also 

shows a representation of the variance of each variable, represented by the thicker arrow 

(vector) on each axis. From this display, the standard deviation of Acidity is smaller compared 

to the others, while DK has a large deviation. This is evident from the length of the vector on 

these axes. Furthermore, several relationships can be deduced from this biplot, such as a relation 

between Syrup, K232 and Peroxide. Observing their respective correlation values of      ,      

and       from Figure     , a fairly good relation exists between them. Another relationships 

deduction is the relation between K270, Transp and Glossy, and between Green, Yellow and 

DK. Although the correlations between variables are not optimally approximated in this biplot 

(Figure     ), relationship deductions are done based on the angle between axes. For example, 

the angle between Glossy and Transp is acute and larger than the angle between Syrup and 

K232, corresponding to the former having a higher correlation value of      , while the latter has 

a correlation value of      , as shown in Figure     . 

To get the approximated values of the olive oil data from the biplot in Figure     , each sample 

point in the biplot is orthogonally projected onto the axes and their respective values are read 

off. For example, sample point     projected onto the Peroxide and Brown axes yields the values 

      and       respectively, as shown in Figure     . The approximated values of the olive oil 

data are shown in Table     . 
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Table     The approximated olive oil values. 

 
Acidity Peroxide K232 K270 DK Yellow Green Brown Glossy Transp Syrup 

G1 0.7 13.2 1.8 0.14  0.001 17.0 76.8  8.4 76.0 69.8 49.3 

G2 0.4 13.9 1.8 0.13 -0.001 39.9 47.0 12.2 78.5 74.7 48.9 

G3 0.4 11.1 1.6 0.11 -0.002 50.9 35.5  8.4 83.2 80.7 46.5 

G4 0.5 13.0 1.8 0.13  0.000 28.7 62.1  9.3 77.9 73.0 48.7 

G5 0.5 12.1 1.7 0.12 -0.001 39.0 49.7  8.9 80.4 76.5 47.7 

I1 0.3 19.3 2.2 0.15  0.000 34.4 49.3 21.2 71.8 67.2 52.8 

I2 0.3 14.0 1.8 0.12 -0.002 50.9 32.9 13.6 80.0 77.4 48.5 

I3 0.4 16.2 2.0 0.14  0.000 33.4 53.2 15.6 75.1 70.5 50.7 

I4 0.3 13.5 1.7 0.12 -0.002 55.6 27.3 13.4 81.2 79.0 48.0 

I5 0.1 20.5 2.2 0.14 -0.001 48.7 29.9 24.9 72.6 69.5 53.0 

S1 0.2 10.8 1.5 0.10 -0.003 71.5  9.3 10.4 86.4 86.1 45.5 

S2 0.2  9.2 1.4 0.09 -0.004 72.1  9.9  7.7 88.2 88.0 44.4 

S3 0.2 12.3 1.6 0.11 -0.003 61.0 21.3 11.9 83.3 81.8 46.9 

S4 0.2 12.0 1.6 0.10 -0.003 68.1 12.5 12.2 84.6 83.8 46.5 

S5 0.2 10.2 1.5 0.09 -0.003 71.9  9.3  9.4 87.1 86.9 45.0 

S6 0.2 10.5 1.5 0.10 -0.003 71.0 10.2  9.9 86.6 86.2 45.3 
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Table     The olive oil values. 

 
Acidity Peroxide K232 K270 DK Yellow Green Brown Glossy Transp Syrup 

G1 0.7 12.7 1.9 0.14  0.003 21.4 73.4 10.1 79.7 75.2 50.3 

G2 0.2 12.3 1.7 0.12 -0.004 23.4 66.3  9.8 77.8 68.7 51.7 

G3 0.3 10.3 1.6 0.12 -0.005 32.7 53.5  8.7 82.3 83.2 45.4 

G4 0.7 13.7 1.7 0.17 -0.002 30.2 58.3 12.2 81.1 77.1 47.8 

G5 0.5 11.2 1.5 0.12 -0.001 51.8 32.5  8.0 72.4 65.3 46.5 

I1 0.3 18.7 2.1 0.14  0.001 40.7 42.9 20.1 67.7 63.5 52.2 

I2 0.2 15.3 1.9 0.12  0.000 53.8 30.4 11.5 77.8 77.3 45.2 

I3 0.3 18.5 1.9 0.13  0.001 26.4 66.5 14.2 78.7 74.6 51.8 

I4 0.4 15.6 1.8 0.10  0.000 65.7 12.1 10.3 81.6 79.6 48.3 

I5 0.2 19.4 2.2 0.16 -0.003 45.0 31.9 28.4 75.7 72.9 52.8 

S1 0.2 10.5 1.5 0.12 -0.004 70.9 12.2 10.8 87.7 88.1 44.5 

S2 0.2  8.1 1.5 0.11 -0.002 73.5  9.7  8.3 89.9 89.7 42.3 

S3 0.3 12.5 1.6 0.09 -0.002 68.1 12.0 10.8 78.4 75.1 46.4 

S4 0.2 11.0 1.6 0.09 -0.003 67.6 13.9 11.9 84.6 83.8 48.5 

S5 0.2 10.8 1.3 0.09 -0.003 71.4 10.6 10.8 88.1 88.5 46.7 

S6 0.3 11.4 1.4 0.09 -0.004 71.4 10.0 11.4 89.5 88.5 47.2 

 
 
 
Table     The column means of the olive oil data. 
Acidity Peroxide K232 K270 DK Yellow Green Brown Glossy Transp Syrup 

0.3 13.3 1.7 0.1 0.0 50.9 33.5 12.3 80.8 78.2 48.0 
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Figure      The biplot of the olive oil data. 

 

 

Table     The row and column markers    and  . 

 

Component 

1 

Component 

2   

Component 

1 

Component 

2 

G1 -49.037   8.502 
 

Acidity -0.003  0.002 

G2 -43.814   1.303 
 

Peroxide -0.044 -0.239 

G3 -24.975  11.854 
 

K232 -0.004 -0.015 

G4 -31.675   5.998 
 

K270 -0.001 -0.001 

G5  -1.475 -11.163 
 

DK  0.000  0.000 

I1 -18.004 -18.977 
 

Yellow  0.624 -0.016 

I2   3.774  -2.816 
 

Green -0.751  0.253 

I3 -41.389   2.696 
 

Brown -0.024 -0.346 

I4  25.581  -4.205 
 

Glossy  0.111  0.540 

I5  -4.864 -14.392 
 

Transp  0.168  0.665 

S1  31.296   6.335 
 

Syrup -0.060 -0.159 

S2  35.605   9.690 
    

S3  26.283  -8.117 
    

S4  26.605   1.147 
    

S5  32.776   5.985 
    

S6  33.311   6.157 
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Figure     Examples of orthogonal projections in the biplot of the olive oil data. 

 
Figure      The correlation values of the olive oil data. Nearly empty cells have a value very 

close to zero. 



2-14 
 

                                 

PCA is a multivariate technique that uses an orthogonal transformation to convert a data matrix 

of possibly correlated variables into a new data matrix of uncorrelated (orthogonal) variables 

called principal components (Abdi & Williams, 2010). These principal components are obtained 

as linear combinations of the original variables. The first principal component is chosen to have 

the largest possible variance. Each succeeding component is then computed under the restriction 

of being orthogonal to the previous components, and to have the largest possible variance 

(Holland, 2008). Consider a data matrix     with     samples and     variables, i.e.,   (   ). 

With (   ) in mind, the Huygens’ Principle is implemented on   . According to Huygens’ 

Principle, the sum-of-squares about the mean of a data matrix is smaller than the sum-of-squares 

about any other point. Therefore, without loss of generality, the mean of a data matrix is taken to 

be the origin and all principal components will contain the origin. Let     be column centred by 

subtracting the mean of each variable respectively. Denote the centred     by    . Now, the first 

principal component is given by the linear combination of the  -variables                 . 

That is, 

                          .  

Component      is calculated such that it accounts for the largest possible variation in    . The 

second principal component is then calculated in the same way, 

                          ,  

with the restriction that it is uncorrelated with     and accounts for the next highest variation in 

  . This continues until a total of   (  )  principal components have been calculated.  

Collectively, the principal components can be expressed as   linear combinations of    . That is,  

              (   ) 
where  

   [

           
          
 
   

 
   

    
    

]  

[
 
 
 
 
 ( )
 

 ( )
 

 
 ( )
 
]
 
 
 
 

  

is the (   ) coefficient matrix of the linear combinations and    (     
    

 )   is the 

(   ) matrix of the principal component scores.  

In general, there are two ways to view PCA, namely, as a dimension reduction technique and as 

an approximation technique. As a dimension reduction technique, PCA reduces the 

dimensionality of a large data matrix, described by several inter-correlated variables, while 
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retaining as much as possible of the variation present in the original data matrix (Jolliffe, 1986; 

Mardia et al., 1979). That is,  

       (    )      
   

is maximized, where      is the covariance matrix of    . From (   ), the original  -dimensional 

data matrix has been reduced to   dimensions. However, if      , then there is no dimension 

reduction. Conversely, PCA as an approximation technique approximates a large data matrix 

using only a few ( ) principal components. It works by decomposing the large data matrix as the 

product of two smaller matrices, which can be called the scores and loadings matrices 

respectively. The loadings matrix contains information about the columns of the data matrix, 

while the scores matrix contains information about its rows. To accomplish this, analysis is 

based on the    . Consider the centred data matrix    . By the    ,         , for    (  

 ) ,   (   )  and    (   ) . Since        , it is possible to write the matrix product 

    (   )  as 

              .       (   ) 
This expression has an arrangement similar to (   ), with       and    , for     . Thus, 

the matrix product      gives the values of the principal components. Substituting (   ) into 

      
  approximates     as   ̂       . This makes PCA viewable as an approximation 

technique. From the     of    , it follows that 

   
    (   

 ) (    )                ,  
where        , for         (   )    the covariance matrix of    and    , and     the 

(ordered) eigenvalues of       . In this PCA technique, information is preserved as much as 

possible by ensuring that the sum-of-squares of the differences between the data matrix      and 

its approximation   ̂  is minimized. That is, 

 ‖    ̂ ‖
 
       {(    ̂ )(    ̂ )

 
}  is minimal.  

According to Eckart & Young (1936), the best  -dimensional approximation of     that 

minimizes ‖    ̂ [ ]‖
 

 is obtained by  

  ̂ [ ]      [ ] [ ]
        (   ) 

where   ̂ [ ]  is the  -dimensional approximation of      and   [ ] contains the first    columns of 

  . The matrix product     [ ]  in (   ) is often referred to as the (   ) matrix of (principal 

component) scores or latent variables and denoted by   . Also, the matrix   [ ]  is termed the 

(   )  loadings matrix. When comparing       [ ]  to (   ) , similar arrangement can be 

observed. With   [ ]   ,      [ ]       . 
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Substituting       [ ] into (   ) gives 

  ̂ [ ]    [ ]
 .        (    ) 

This has an arrangement similar to (   ). Thus, for its biplot,  ̂ [ ] is decomposed as a product 

of its row and column markers matrices     and   [ ] respectively. Given that the approximated 

rows and columns of a data matrix are represented in biplots generally, the rows and columns of 

  ̂ [ ] (    ) will be represented in the biplot. This biplot is termed the PCA biplot because 

  ̂ [ ]  was decomposed using PCA. An advantage of the PCA biplot is that it allows for the 

visual assessment of a high-dimensional data matrix in a two- or three-dimensional plot.  

In order to construct a two-dimensional PCA biplot, the best two-dimensional plane, passing 

through the origin, is first obtained. Here, the plane is the vector space generated by the columns 

of   [ ], where     . This plane has to pass through the origin in order to represent the  -

dimensional plot of      optimally in a two-dimensional plane. That is, ‖    ̂ [ ]‖
 

 is 

minimal. Once the biplot plane has been obtained, each point in the   -dimensional plot is 

projected onto this plane (    ). These projections are done orthogonally so that the sum-of-

squares between the original point and its projection is minimized (Gower et al., 2011). The 

biplot plane with the projected points on it is then extracted from the   -dimensional space to a 

new set of orthogonal Cartesian axes, defined by the columns of   [ ]. These axes are referred to 

as the scaffolding axes, and they represent the latent variables ( ) on which the biplot is built.  

 
                                  

In the PCA biplot, interpolation is achieved by orthogonally projecting each sample point onto 

the biplot plane (Gower et al., 2011). Suppose      is a centred sample. With   [ ]  [ ]    ,   [ ]  

in (    ) can be written as 

   [ ]     [ ] [ ]     [ ]( [ ]  [ ])
  
 [ ]
 . 

From (   )  and (    ), the representation of sample      projected onto the biplot plane is given 

by  

   
 
    

   
  [ ]( [ ]

  [ ])
  
 [ ]
     [ ]

 .     (    ) 

As a result, the coordinates of the projections of sample      onto the biplot plane are given by 

   . That is, sample     is interpolated into the biplot plane by  

        [ ].        (    )  
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Consider a point     (   )  described in terms of the coordinate system of the biplot plane. The 

point representing      in the biplot plane also has a coordinate representation        relative to the 

axes of the   -dimensional space. This is true because the biplot plane is a subspace of the   -

dimensional space. In (    ), the coordinates of the point in the   -dimensional space is given 

by           and the coordinates of the point in the  -dimensional space are given by    . So, any 

point     (   ) in terms of the basis for the biplot plane is also a point          (   ) in terms 

of the basis for the   -dimensional space of      and such a point will project onto itself. To be 

precise, 

    
 
    

    
 
    

  [ ] [ ]
 .  

With the interpolation of a point        given by        
  [ ] ,         

      [ ]
 . Therefore, 

sample        is predicted by  

  ̂  
 
     [ ]

  .       (    ) 
 

                            

The column markers for the PCA biplot are defined by the rows of the matrix   [ ]. From the 

axis calibration factor discussed in Section     , replacing      in (   )  by   [ ]     gives the 

calibration factor for the      axis as 

      

   
  [ ] [ ]

    
  

where      is the unit vector with zeros except for a one in the       position. Therefore, the 

marker     on the      prediction biplot axis is obtained by the expression 

    

   
  [ ] [ ]

    
 [ ]
   .     

    

                                     

Since the best two-dimensional biplot plane in which to project the points has been found and so 

have the coordinates of the points when projected onto the plane, the quality of the 

representation provided by these projections is required to determine the adequacy of the 

representation of the original data matrix    . In other words, how close is   ̂ [ ] to    ? To 

evaluate the quality of representation, consider      partitioned into a fitted part   ̂ [ ]  and a 

residual part  (    ̂ [ ]).  That is,  

     ̂ [ ]    (    ̂ [ ]).      (    ) 
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Equation (    ) can be considered as an orthogonal decomposition of    , in that 

 ‖  ‖  ‖ ̂ [ ]‖
 

 ‖    ̂ [ ]‖
 

.     
This is the orthogonality condition of the sum-of-squares decomposition. From (    ), two 

types of orthogonality can be obtained. First is 

        ̂ [ ] ̂ 
 
[ ]
   (    ̂ [ ]) (    ̂ [ ])

 

.  (    ) 

This is true because, from (   ), 

 
  (    ̂ [ ])

 

     
       [ ] [ ]

   
 

      
        

              
                                          

    

and  

 

 ̂ [ ] (    ̂ [ ])
 

    [ ] [ ]
   

       [ ] [ ]
  [ ] [ ]

   
 

      
       [ ] [ ]

   
                           

 
 
 

    
        

                                        
                                                                  

 

for   [ ]  [ ]      and   [ ] [ ]    . The second type of orthogonality is  

        ̂  [ ] ̂ [ ]    (    ̂ [ ])
 

(    ̂ [ ])  (    ) 
where  

 
  
 (    ̂ [ ])    

       
    [ ] [ ]

 

    
        

               
                                         

   

and  

 

 ̂ 
 
[ ]
(    ̂ [ ])   [ ] [ ]

   
       [ ] [ ]

   
    [ ] [ ]

 

    
       [ ] [ ]

   
                             

 
 
 

  
        

                                          
                                                                  

 

for   [ ] [ ]    . Gardner-Lubbe et al. (2008) termed (    ) and (    ) the Type A and the 

Type B orthogonality respectively. 

 
                             

The degree to which the rows of   ̂ [ ] agree with the corresponding rows of      measures how 

far each sample is from its  -dimensional approximation (Gardner-Lubbe et al., 2008). With the 

sum-of-squares of the approximated values for each sample given by the diagonal elements of  

( ̂ [ ] ̂ 
 
[ ]
), expressing these sum-of-squares as a proportion of their respective total sum-of-

squares yield the predictive power of each sample. To be precise, 
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                          ( ̂ [ ] ̂ 
 
[ ]
) [     (    

 )  ]
  
 . 

Due to Type A orthogonality (    ), the sample predictivity values lie between     and   , with 

   indicating that the sample is orthogonal to the two-dimensional biplot plane of approximation 

and     implying that the sample is in the plane.   

 
                            

The evaluation of how well the individual biplot axes reproduce the variables of     can be done 

by measuring the degree to which the columns of   ̂ [ ] agree with the corresponding columns 

of    . Expressing the sum-of-squares of the approximated values for each variable, given by 

     ( ̂ 
 
[ ]
 ̂ [ ]), as a proportion of their respective total sum-of-squares yields the predictive 

power of each axis. More precisely, 

                       ( ̂ 
 
[ ]
 ̂ [ ]) [     (  

   )  ]
  
 .  

Because of Type B orthogonality (    ), the predictivity values lie between     and   . An axis 

predictivity of     means that all values can be read off the axis exactly. The lower the axis 

predictivity value, the less accurately the axis approximates the observed values under that 

variable. 

 
                                          

Overall, the quality of approximation can be measured in terms of the percentage of variation in 

   explained by       [ ]. From the     of    , with        ,  

   
    (   

 ) (    )                .  
Since            ,  

   {      }    {     }    {     }  ∑    
   

   ∑    
   

   , 
where        (          ) ,     is the      singular value of      and           is the      
eigenvalue (and singular value) of     (  ). Thus,  

   

                
   { ̂ 

 
[ ] ̂ [ ]} 

  {  
   }

  
∑   

  
   

 ∑    
   

   

         

  
∑   

  
   

 ∑    
   

   

        

 

 

             

The following example is an illustration of a PCA biplot using the olive oil data discussed in 

Section     . The resulting biplot is shown in Figure      above. This biplot has an overall 
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quality of       . Furthermore, the predictivity of each biplot axis is estimated and is shown in 

Table     .  

 

Each of these axes represents the original data quite well, with the Syrup axis having the highest 

predictive power of       . However, the DK axis has the lowest predictivity power of       . 

This means that the axis represents the original data, but not quite as well as the other axes. 

Likewise, the predictivity of each sample is estimated and is shown in Table     . All sixteen 

samples are in the biplot plane of approximation. These predictivities along with the overall 

quality value indicate that the PCA biplot approximates the olive oil data very well.   

 
 

             

The biplot, a joint graphical display of the rows and of columns of a data matrix, is often referred 

to as the multivariate version of a scatter plot, because it allows for the display of rows (samples) 

as points and each column (variable) by an axis on the plot. An advantage of the biplot includes 

the revelation of the association between rows and columns of a data matrix.  

If the roles of the columns and rows of a data matrix are not interchangeable, the resulting biplot 

will be an asymmetric biplot.  

The simplest form of an asymmetric biplot is the PCA biplot. To construct this biplot, the best 

two-dimensional plane, passing through the origin, is first obtained and the orthogonal 

projections of each point in the high-dimensional plot of the data matrix onto this plane are done. 

Afterwards, the plane, with the projected points on it, is extracted from the high-dimensional 

Table     The axis predictivity of the PCA biplot of the olive oil data. 
Acidity Peroxide K232 K270 DK Yellow Green Brown 

0.935 0.993 0.997 0.987 0.635 0.978 0.940 0.981 

        
Glossy Transp Syrup 

     
0.998 0.997 0.999 

     

 

Table     The sample predictivity of the PCA biplot of the olive oil data. 
G1 G2 G3 G4 G5 I1 I2 I3 

1 1 1 1 1 1 1 1 

        
I4 I5 S1 S2 S3 S4 S5 S6 

1 1 1 1 1 1 1 1 
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space to the scaffolding axes on which the biplot is built. These scaffolding axes are not shown, 

but are defined by the first two columns of the loading matrix   . In the PCA biplot, points are 

defined by the principal components scores ( ), while the directions of the biplot axes are 

calculated using the rows of the loading matrix   .  

To evaluate how good the PCA biplot representation is, the overall quality of approximation 

along with the sample and axis predictivities are required. The latter is measured by expressing 

the sum-of-squares of the approximated values for each variable as a proportion of their 

respective total sum-of-squares. Likewise, sample predictivity is measured by expressing the 

sum-of-squares of the approximated values for each sample as a proportion of their respective 

total sum-of-squares. Overall, the quality of approximation is measured in terms of the 

percentage of variation in the data matrix explained by the extracted principal components 

scores ( ). 

Next, in Chapter   , another popular multivariate technique that can be used to approximate large 

data matrices is discussed. 
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One of the most frequently asked questions in data analysis is how to model one or more 

response variables using a set of predictor variables. In the field of economics, for example, how 

can the supply and demand of commodities be modelled, using their prices and economic 

conditions? In chemistry, how can the properties of chemical samples be modelled, using their 

chemical composition? In microarray and gene expression, how can the type of patients’ tissues 

be modelled, using their gene expression levels? And in quantitative structure activity 

relationship studies, how can the quality and quantity of manufactured products be modelled, 

using the conditions of the manufacturing process (Wold et al., 2001)? Usually the response 

variables are modelled by means of Multivariate Multiple Linear Regression (MMLR), which 

works well as long as the predictors are fairly few and are poorly correlated to each other. 

However, with modern day measuring instruments, data can be very large, strongly correlated 

and sometimes incomplete. As a result, MMLR cannot be used in such cases, unless a careful 

variable selection is carried out. Several methods such as Principal Component Regression 

(PCR) and Partial Least Squares Regression (PLSR) can be useful tools for such modelling 

(Abdi, 2010; Martens & Naes, 1989). When modelling the responses, PCR incorporates PCA. 

More specifically, it uses PCA to extract a set of principal components from the (large set of) 

predictors and takes these components as predictors in the modelling of the responses. PCA aims 

to represent the variation in the predictors optimally, without taking into account their 

relationship with the responses. Conversely, PLSR uses a set of orthogonal latent variables, 

which have been chosen to represent the relationship between predictors and responses 

optimally, as predictors in the modelling of the responses. These latent variables are extracted 

from the (large set of) predictors using PLS. The central idea of both methods is to approximate 

the large set of predictors by a few components and then to regress the responses against these 

components. In this chapter, an outline is presented of the necessary theory behind PLS and 

PLSR, and PLSR is briefly compared to MMLR and PCR.   

 

             

The notation introduced in Chapter   is applicable in this chapter.  
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In general, PLS searches for a set of orthogonal factors, components or latent variables, that 

perform a simultaneous decomposition of     and   , with the restriction that these components 

explain as much as possible of the covariance between      and   . Thus, the PLS model aims to 

find a few (   ) latent variables called  -scores. These scores are denoted by     and, since 

the latent variables are orthogonal,       .  

 

                                            

PLS was first developed by Wold (1966) in econometrics, but became popular in chemometrics 

(Wold, 2001). First presented as an algorithm similar to the power method used for computing 

eigenvectors, PLS was quickly interpreted in a statistical framework (Phatak & De Jong, 1997; 

Tenenhaus, 1998; Ter Braak & De Jong, 1998), and then became the tool of choice as a 

multivariate technique for non-experimental and experimental data like neuroimaging (McIntosh 

& Lobaugh, 2004). Due to its popularity in chemometrics, PLS is popular in industries that 

collect (very) large correlated data. It is also popularly used for the purpose of monitoring and 

controlling of industrial processes, among others. To date, PLS has been used in several 

disciplines for various areas of interest. These have included the application of PLS in sensory 

evaluation (Martens & Naes, 1989), social sciences (Tobias, 1997), microarray and gene 

expression (Boulesteix & Strimmer, 2005; Johansson et al., 2003), chemometrics (Helland, 

1988; Wold, 2001), biological sciences (Palermo et al., 2009), behaviour and brain sciences 

(Krishnan et al., 2011), quality control (Wold et al., 2001), psychology, medicine and 

pharmaceutical science (Wold, 1994).       

 

                   

To compute the latent variables, several algorithms have been developed (Abdi, 2010; De Jong, 

1993; Golub & Kahan, 1965; Lindgren et al., 1993; Martins et al., 2010; Rännar et al., 1994; 

Wold et al., 1984; Wold et al., 2001). Among the most used algorithms are the Nonlinear 

Iterative PArtial Least Squares (NIPALS), kernel, and Statistical Inspired Modification to Partial 

Least Squares (SIMPLS) algorithms. All these algorithms are based on some iterative 

procedures. Let             represent the successive latent variables. The first step is to 

column centre both the     and    matrices by subtracting the mean of each variable respectively. 

Let     and      denote the centred matrices. The columns of the weights ( ,   and  ), scores 

(  and  ) and loadings (  and  ) matrices are then calculated successively. The different 
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algorithms can result in different PLS decompositions, but in all cases,      . The objective 

function of PLS can be formulated as follows. For           ,  

 maximize     (           )     (        )   
 subject to                    and                  ,  

where        ,              and     . This function is solved using several iterative 

algorithms such as the NIPALS and kernel algorithms. For the SIMPLS algorithm, the objective 

function can be expressed as  

maximize     (           )     (        )   
subject to                    and                   

where        . Three algorithms implemented in the   package pls by Mevik & Wehrens 

(2007) are discussed below. 

 
                       

This algorithm starts with     and    column centred. According to Abdi (2010), the iterative 

process begins with the first PLS score vector     (   ) defined by random values. It can also 

be chosen as one of the columns in    , for example, the one having the maximum variance. The 

PLS weight and score vectors for the   -variables are then obtained as           and     

      respectively. Both      and      are later normalized such that  ‖  ‖    and  ‖  ‖   . 

After this step, the weight vector for the  -variables is calculated as           and     is 

updated as         . These iteration steps for obtaining the first PLS vectors are repeated until 

   converges. Convergence is determined with respect to the change in     and is reached when 

this change is small (Wold et al., 2001). Subsequently, the matrices      and     are updated as 

             
  and             , where            represents the loading of     on the 

  -variables. The updated matrices are then used in the computation of the next set of PLS 

vectors. The NIPALS algorithm is summarized as follows. 

              : 

(1)      ,         and     . 

(2) Choose     (   )  as one of the columns in      or as a vector with random values. 

(3) Compute     (   ),     (   ) and     (   ) as 
         ‖     ‖⁄  
        ‖    ‖⁄  
         ‖     ‖⁄ . 

(4) Update      (   ) as 
          ‖    ‖⁄ . 



3-4 
 

(5) Check whether      converges, i.e., is ‖           ‖ ‖     ‖⁄      ? If not, return to 

step (3). 

(6) Compute     (   )  and     (   )  as  
          
         . 

(7) Update     (   )  and     (   ), for the next latent variable, as 
                
              .  

(8) Return to step (3), with       , to compute the next latent variable until       latent 

variables have been reached. 

(9) Store    ,   ,   ,   ,     and     into the successive columns of   ,  ,  ,  ,    and   . 

 
                       

The iterations in steps (3) to (5) of the NIPALS algorithm can be time-consuming, especially 

when dealing with very large data. For this reason, a quick and efficient algorithm, called the 

kernel algorithm, was developed (Lindgren et al., 1993; Rännar et al., 1994). The algorithm 

developed by Lindgren et al. (1993) handles large data with few(er) variables, while Rännar et 

al. (1994) developed an algorithm suitable for handling large data with many variables but 

fewer samples. From            and         ,  in the NIPALS algorithm, 

                                         (   ) 
where          . Likewise, vectors    ,     and     can be formulated as 

                                          
                                        
                                         .  (   ) 

These equations, (   ) and  (   ) , form the core of the power algorithm for calculating 

eigenvectors and they can be written in such a way that vectors    ,    ,     and    are 

determined as eigenvectors to a set of variance-covariance matrices (Höskuldsson, 1988). That 

is,  

                   
                   
                   
                  .      (   ) 

According to the power algorithm for finding the EigenValue-Vector Decomposition (  -  ) of 

a matrix,     to      in (   ) are the maximum eigenvalues of the eigenproblems. The vectors 

   ,   ,     and     in (   ) are the associated eigenvectors of the respective variance-covariance 

matrices corresponding to   ,   ,     and    . The values of      to      are of no interest in 

this chapter. In general, the kernel algorithm replaces the power algorithm with a single 
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eigendecomposition step. With     and     column centred, two association matrices        (  

 ) and        (   ) are created. These two matrices are then multiplied together to form the 

kernel matrix             (   ) . Here, the PLS score vector     is obtained as the first 

eigenvector from the   -   of            , while the first score vector     for the   -variables is 

obtained as          . After these first score vectors have been obtained,        and        are 

updated using the matrix     (   )          . That is,                   and        

      
   . These updated matrices are later used in the computation of the next set of PLS score 

vectors. Once    sets of score vectors have been calculated, the loadings matrix for the  -

variables is obtained by        , for    [       ]. Similarly, the loadings matrix for 

the  -variables is obtained by        . This is the kernel algorithm of Rännar et al. (1994) and 

it can be summarized as follows. 

              : 

(1) (   )        ,  (   )         and     .  

(2) Compute     (   )  and     (   ) as 

( (   ) (  
 )  )      ,  by the   -   

    [  ]      
   (   )    .    

(3) Update the association matrices (   )  (   )  and  (   )  (   ), for the next latent 

variable, as 

    (       
 )   

(   )       (  
 )        

(   )       (  
 )    . 

(4) Return to step (2), with       , to compute the next latent variable until       latent 

variables have been reached. 

(5) Store     and    into the successive columns of     and   . 

(6) Compute    (   )  and    (   ) as 
     

    
    

  .         

For (very) large data with few(er) variables, the kernel algorithm of Lindgren et al. (1993) is 

more appropriate. This algorithm is similar to the one by Rännar et al. (1994), except, instead of 

working with the kernel matrix             (   ), matrix        (   ) and its transposed 

  
    (   ) are multiplied together to form a new kernel matrix             (   ) on which 

the first PLS weight vector     is calculated. The Lindgren et al. (1993) algorithm is 

summarized below. 
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              : 

(1) (   )         ,  (   )         and     .  

(2) Compute     (   ),    (   ) and     (   ) as 

( (   ) ( 
  )  )      ,  by the   -   

    [  ]  
   (   )        
   (   )   .    

(3) Update (   )  (   )  and (   )  (   ), for the next latent variable, as 

   (       
 )   

(   )      
 (   )       

(   )      
 (   ) . 

(4) Return to step (2), with       , to compute the next latent variable until       latent 

variables have been reached. 

(5) Store    ,    and     into the successive columns of   ,   and   . 

(6) Compute    (   ) as 
      .  

 
                       

Another method for computing the latent variables is the SIMPLS algorithm. Proposed by De 

Jong (1993), this algorithm derives the latent variables directly as linear combinations of the 

original centred  -variables. An advantage of this algorithm is that it is not compulsory to update 

    or    , which may result in a faster computation (Martins et al., 2010). This algorithm starts 

with     and    column centred and the covariance matrix  (   )       . The first PLS 

weight vectors      and     are computed in such a way that they can be applied directly to the 

centred data. De Jong (1993) defined      and     as the first left and right singular vectors from 

the     of     respectively. The first score and loading vectors of    are then calculated as 

          and           respectively. After these vectors have been obtained,   is updated 

and used in the computation of the next set of PLS vectors. This update is done by projecting    

onto a subspace orthogonal to    . That is,         (     )      . The SIMPLS algorithm is 

summarized as follows.  

              : 

(1)           and     .  

(2) Compute     (   ),    (   ),    (   ),    (   )  and     (   ) as 

        ,   by the      
     [  ] 
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     [  ] 
        ‖    ‖⁄        
      

    
      

   .  
(3) Update the covariance matrix     (   ), for the next latent variable, as  

     (     (  
   )

    
 )  .      

(4) Return to step (2), with       , to compute the next latent variable until       latent 

variables have been reached. 

(5) Store    ,   ,   ,     and     into the successive columns of   ,  ,  ,    and   .  

The  -weights matrix in the SIMPLS algorithm is defined as  , while in the NIPALS and kernel 

algorithms, it is defined as   . The difference between these two matrices is that the linear 

combinations defined by   are for the updated (centred)  -variables, while the linear 

combinations defined by    are for the original (centred)  -variables. The matrix     needs to be 

converted in such a way that its linear combinations are now defined for the original (centred)  -

variables. With       , 

                    (   ) 
which makes       . For     ,         . Since                , for           , 
           

          
 . Then, 

         (         )  .     (   ) 

Substituting (   ) into (   ) yields 
    (           )     (         )  .   (   ) 

This makes     (         )  . Likewise, for     ,  
                                 

and 
         (                )  .  

From (   ) and (   ),  
    (            (           )      )    

which simplifies to  
      (         )(         )  .    (   ) 

Therefore,     (         )(         )  . Thus, for     , 
           (         )(         )   (             )   

and 
    (         )(         )   (             )  .  (   ) 

De Jong (1993) suggested that (   ) can be represented as         , such that     (   )  
   and         (         ). Since         , 

                           , for             .  

Hence, for       ,        and           , 
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          and                       (   ) 
from which the columns of    (   ) are computed successively. Therefore, the matrix     is 

defined for the original (centred)  -variables through (   ). Alternatively, the PLSR model can 

be used as a means of conversion for   , as shown in the next section. 

 

                                      

Usually the modelling of one  -variable by means of    is done by solving the equation      , 

where    (   ) is the unknown coefficient vector estimated as   ̂  (   )     . This is the 

general idea in regression. However, for      -variables, the modelling is done by solving the 

equation 

     .         
The unknown coefficients matrix    (   ) is estimated by   ̂  (   )     . Therefore,   is 

estimated as 

   ̂   (   )        ̂.       (    ) 
PLSR, on the other hand, models     by means of the  -scores  . For this reason,   is estimated 
as 

 ̂    ( 
  )               (    ) 

where    (   )      .  

To convert the matrix     in such a way that its linear combinations are now defined for the 

original (centred)  -variables, consider       , as in the NIPALS algorithm (Algorithm    ). 

Replacing    in (    )  by         yields, 

  ̂      .        (    ) 
Here, in (    ), the estimated regression coefficients matrix   ̂     (   ) is defined as the 
product matrix   . That is, 

  ̂         (   )      .  

Since       , 
 ̂      ( 

   
    )

      
   .     (    ) 

Moreover, with                 and               ,  
     

     
   and      

     
 .    (    ) 

Substituting (    ) into (    ) yields  
   ̂      (   )    .      (    ) 

From (    ), let the product matrix   (   )   be denoted by   . That is,    (   )  . 

Equation (    ) is then express-able as   ̂        . Therefore, the matrix     can be defined 

for the original (centred)  -variables through 

     (   )  .       (    ) 
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Table     Summary of the PLSR parameters. 
   NIPALS    Kernel    SIMPLS 

For           
 

      

    
 

 

       
       

 (   )    
     

 (   )    
    

        
    

    
 

 

 

                        
  

                      
  

(   )    
 (   )      

(   )    
 (   )    

    (           
 )              

Get weight 

 

 

 

          
     

      
        

   ‖  
   ‖⁄  

     first eigenvector 

 of  (   ) ( 
  )  

     first left singular    
 vector 

 of    

Compute loadings 

 

 

      
      

      
      

    (   )    
    (   )    

      
      

      
      

Store 

  

   ,    and       ,    and       ,    and    

into the successive  

column of  

 

  

  ,   and   

 

  ,   and   

 

  ,   and   

End. 

 

   

Compute scores and 

coefficients 

 

 

    (   )   
        
  ̂       

  

    (   )   
        
  ̂       

  

        
   ̂       

  

 

    Of Lindgren et al. (1993). 

    Since       
        .  

      (       (    
     )

      
 ). 

        vector with random values or any column in   . 
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Equation (    ) makes matrix   , in terms of the original (centred)  -variables, obtainable as 

       . Thus, with matrix     defined in terms of the original (centred)  -variables through 

       ,  , in PLSR, is estimated as 

  ̂      ̂           (    ) 

where   ̂         is the estimated coefficients matrix for the PLSR model. Table     above 

summarizes the PLSR parameters obtained under the PLS algorithms in Section     .  

 

                             

When extracting the PLS components from a large set of (correlated) predictors, there is a 

chance of obtaining an over-fitted model for the responses. For this reason, a test for the 

predictive significance of each PLS component is necessary and this can be used to determine 

the appropriate number of components to use in the modelling of the responses. Several methods 

are used to carry out the predictive significance test (Höskuldsson, 1988; Wakeling & Morris, 

1993; Wold et al., 2001). Among the most used tests are the PRediction Error Sum-of-Squares 

(     ) and Root Mean Squared Error of Prediction (     ) measures. 

     
                              -  -                  

Cross-validation is often applied to test the predictive significance of each PLS component 

(Höskuldsson, 1988; Wold et al., 1993). It is performed by randomly dividing the data (equally) 

into   groups, e.g.,        to    , and then developing a number of fitted models from the 

divided data, with one of the groups deleted. After developing a model, the differences between 

the actual and fitted  -values are calculated for the deleted data. The sum-of-squares of these 

differences are then computed and collected across all the fitted models to form the       

values, which estimate the predictive ability of the model. To be precise, 

        ∑ ∑ (     ̂  )
  

   
 
   .  

To determine the significance of each component, the ratio of the         to the sum-of-squares 

before the current component (     ) is calculated after each component. Here,        denotes 

the sum-of-squares before component  . According to Wakeling & Morris (1993), a component 

is said to be significant if it has a            ⁄  value smaller than       for at least one of the 

  -variables.  

 
                                                       

Alternatively, the        values, per cumulative components, can be evaluated to determine the 

appropriate number of PLS components to use in the final modelling of the responses. This is  
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done by taking the square root of the average of the        values. That is,  

        √       
 

 .   

A plot of the       values can further assist, graphically, in deciding how many PLS 

components to use. Here, the optimistically biased error rate is used, rather than a more 

computing intensive cross-validated version. The number of components corresponding to the 

elbow in the         plot can be suggested as the number of components to use in the final 

model. For example, in Figure      below, three components (i.e.,     ) can be suggested as 

the final number of components to use in the final PLSR model for this data.  

 
Figure     The       plot of an artificial data. 
 

              

The following example is an illustration of a PLSR using the olive oil data discussed in Section 

   . In this data, the five chemical quality measurements (Acidity, Peroxide, K232, K270 and 

DK) and the six sensory panel characteristics (Yellow, Green, Brown, Glossy, Transp and 

Syrup) are assigned as the predictor and response variables respectively. As a result, the olive oil 

data can be viewed as a (     ) data matrix, comprising of an    (    )  matrix as well as a 

  (    )  matrix. A   -component PLS was performed using the SIMPLS algorithm, but after 

the inspection of the       plot in Figure       below, two components (i.e.,    ) can be 

suggested as the final number of components to use in the modelling of   . These are shown in 

Table     . Since the extracted PLS components are uncorrelated to each other, i.e., they are 
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orthogonal, in Table     , the values obtained under the first component are different from the 

ones obtained under the second components.  

 
Figure     The       plot of the olive oil data. 

To see how a typical output of the PLS  -loadings ( ),  -weights ( ),  -loadings ( ) and  -

scores ( ) matrices are, using the olive oil data set, see Tables     ,      and       respectively.  

 
 
Since        , the  -weights matrix     provides the coefficients of the   -variables to form 

the PLS components. Large absolute   -weights values can be used to deduce which   -variables 

are important under the specific PLS component. From the weights matrix in Table     , 

Peroxide can be said to be important for the first component, while Acidity, K232 and K270 are 

important for the second component. However, looking at the value for DK, under both 

components, one can conclude that DK is not important for the first two components. The 

loadings matrices     and     in the relationships   ̂      and   ̂      (see Section     ), 

can be considered as an indication of how strong the original variables are related to the PLS 

components (De Jong, 1993). Note that      provides coefficients for forming the PLS 

components, while      provides coefficients for linear combinations of the PLS components. 

Table     The weights     and loadings     values of the chemical quality measurements.  
 

 

Component 

1 

Component 

2 

   Component 

1 

Component 

2 

Acidity 0.052  0.883   Acidity  0.034  0.647 

Peroxide 0.994 -0.032   Peroxide 12.956 -0.053 

K232 0.092  0.456   K232  0.844  0.206 

K270 0.010  0.109   K270  0.051  0.052 

DK 0.001  0.004   DK  0.004  0.005 
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From Table       above, under the first component, Peroxide is strongly related to the first PLS 

component. Under the second component, Acidity and K232 is related to the second PLS 

component. From these deductions, one can conclude that   -variables Peroxide and K232 are 

important in the first component, while Acidity and K232 are important in the second 

component. Also, K270 can roughly be said to be important in both components, but not as 

strongly as Peroxide, K232 and Acidity. As for DK, one can conclude that it is least important in 

the first two components, prompting the question of its importance in the modelling of   . A 

brief discussion on how to identify important  -variables for the modelling of the  -variables is 

given in the next section. Furthermore, using the two components in Table     , the estimated 

response values   ̂      are shown below in Table     . 

 
 

 

Table     The loadings    values of the  
 sensory panel characteristics.  

 

Component 

1 

Component 

2 

Yellow -31.380  -41.050 

Green  31.040   51.580 

Brown  15.440   -3.340 

Glossy -16.080   -6.090 

Transp -19.250  -10.100 

Syrup   9.010    1.290 

 

Table     The orthogonal latent  
variables   .  

 

Component 

1 

Component 

2 

G1 -0.039  0.709 

G2 -0.074 -0.135 

G3 -0.227  0.020 

G4  0.036  0.452 

G5 -0.158  0.258 

I1  0.421 -0.050 

I2  0.158 -0.070 

I3  0.404 -0.132 

I4  0.181  0.013 

I5  0.475 -0.102 

S1 -0.213 -0.206 

S2 -0.394 -0.078 

S3 -0.059 -0.127 

S4 -0.174 -0.186 

S5 -0.191 -0.237 

S6 -0.144 -0.129 
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Generally, in regression, important predictor variables are selected for the modelling of the 

responses by using the regression coefficients. Specifically, important variables are identified by 

large coefficient values. Since the sign of each coefficient value gives an indication of the effect 

direction on the response variables, relevant predictor variables can be selected based on the 

magnitude of the absolute values of the coefficients. Once the relevant predictor variables have 

been selected, all the unimportant variables may be deleted. Afterwards, a final regression model 

is developed. To date, several variable selection methods have been developed for selecting the 

relevant predictor variables (Chong & Jun, 2005; Wold 1994; Wold et al., 1993; Wold et al., 

2001). Among them is the Variable Importance in the Projection (   ) method. In this method, 

the       value of each predictor is used as a summary of their importance. Chong & Jun (2005) 

proposed the       method to select the relevant predictor variables in PLSR. The       value is 

calculated for each predictor by 

      √(
 

 ∑            
 
   

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )∑   
        (   )  

 
        (    ) 

for           , where   is the number of (predictor)  -variables,   the number of PLS 

components and       the  (   )    element of the transformed   -weights matrix ( ). The vectors  

    and     are the        and      columns of the coefficients (     ) and  -scores ( ) matrices 

Table     The estimated sensory panel characteristics values  
  ̂    .  

 
Yellow Green Brown Glossy Transp Syrup 

G1 23.0 68.9  9.4 77.1 71.8 48.5 

G2 58.7 24.3 11.6 82.8 81.0 47.1 

G3 57.2 27.5  8.8 84.3 82.4 46.0 

G4 31.2 57.9 11.4 77.5 72.9 48.9 

G5 45.2 41.9  9.0 81.8 78.6 46.9 

I1 39.7 44.0 19.0 74.4 70.6 51.7 

I2 48.8 34.8 15.0 78.7 75.9 49.3 

I3 43.6 39.2 19.0 75.1 71.8 51.4 

I4 44.7 39.8 15.1 77.8 74.6 49.6 

I5 40.2 43.0 20.0 73.8 70.1 52.1 

S1 66.0 16.3  9.7 85.5 84.4 45.8 

S2 66.4 17.3  6.5 87.6 86.6 44.3 

S3 57.9 25.1 11.8 82.5 80.6 47.3 

S4 64.0 18.5 10.3 84.8 83.4 46.2 

S5 66.6 15.3 10.2 85.3 84.3 45.9 

S6 60.7 22.4 10.5 83.9 82.3 46.5 
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respectively. A predictor variable having a       value greater than       is generally considered 

a relevant variable (Nash & Lopez, 2010; Wold, 1994; Wold et al., 2001). Moreover, variable 

selection methods can be used to determine which PLSR coefficients are influential. Given that 

the matrix of PLSR coefficients            gives the effect of the predictors on the responses 

variables, the magnitude of the absolute values of         provides an indication of the 

influential coefficients. A small magnitude indicates that the coefficient is not quite influential 

(Wold, 1994). 

 
                 

Consider the olive oil data discussed in Section     . From the plot of       values shown in 

Figure     , it appears that all the chemical quality measurements ( -variables) are important and 

should be included in the PLSR analysis.  

 
Figure     Plot of the     values of the chemical quality measurements. 

Furthermore, the absolute values of the predicted PLSR coefficients of this data are shown in 

Table     . Observing the mean plot of the absolute values of the coefficients, shown in Figure 

   , the following influential coefficients can be deduced. Choosing a benchmark of       as 

moderate, the respective magnitude is given in parenthesis:     Acidity (low),     Peroxide 

(higher),     K232 (higher),     K270 (high), and      DK (low). 
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Figure     Mean plot of the absolute PLSR coefficients of the olive oil data. 
 

                           

In this section, PLSR is compared to other popular multivariate regression analysis methods, 

such as MMLR and PCR. 

 
               

In MMLR, the modelling of     is done from   . That is,   is estimated as 

  ̂   (   )        ̂    ,  
where  

  ̂     (   )       
is the (   )  estimated MMLR coefficients matrix, for       non-singular.  

 
             

PCR uses the few,  , principal components, extracted from   , as predictors in the modelling 

of   . Specifically, it uses      [ ] (   ) as the predictors. As a result,   is estimated as 

Table         Absolute values of the estimated PLSR coefficients.  

 
Yellow Green Brown Glossy Transp Syrup 

Acidity 1.175 1.343 1.112 0.357 0.604 0.119 

Peroxide 0.921 0.675 2.379 1.638 1.364 1.862 

K232 1.169 0.977 1.984 1.646 1.448 1.741 

K270 1.365 1.301 0.942 1.348 1.314 1.206 

DK 1.042 1.071 0.046 0.748 0.818 0.515 
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   ̂   (   )             [ ]      ̂   ,  
where  

  ̂     [ ]     
is the (   ) estimated PCR coefficients matrix and        (   )  . The matrix   [ ]  is 

the first   columns of    (   ) . The main idea here is the dimension reduction of     for 

regression purposes. If     , there is no dimension reduction, thus, the resulting PCR 

performed is a MMLR with predictors   . There is another way to perform dimension reduction 

for regression purposes, namely, PLSR. This way (PLSR) is better suited because it takes into 

consideration both the   - and  -variables when extracting the components, while PCR only 

considers the  -variables. 

 
              

In PLSR, the few ( ) latent variables extracted from     are used as predictors in the modelling 

of   . That is, the  -scores   (see Section    ) are used as predictors. Thus,   is estimated as  

  ̂    (   )                         ̂    ,  
where 

  ̂          
is the (   ) estimated PLSR coefficients matrix, for  (   )      and       . If     , 

there is no dimension reduction, hence, the resulting PLSR performed is a MMLR with 

predictors   .   

 
                 

Consider the olive oil data discussed in Section     . The values of the MMLR-estimated sensory 

panel characteristics are shown in Table     . These values are similar to the ones obtained from 

the PLSR analysis in Table       above. Also, a   -component PCR analysis was performed and 

the resulting estimated sensory panel characteristics values are shown in Table     . These 

values are similar to those obtained from the PLSR analysis in Table       above.  

 

Table         The MSE values. 

 
PLSR MMLR PCR 

Yellow 188.150 160.620 204.520 

Green 290.650 265.400 312.220 

Brown   9.060   5.310   8.640 

Glossy  17.420  16.830  17.960 

Transp  35.160  34.960  35.880 

Syrup   3.630  3.310   3.630 

   PLSR(90.7), MMLR(81.1) and PCR(97.1) 
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Comparing their respective Mean Squared Error (MSE) values for the sensory panel 

characteristics, shown above in Table     , the MMLR analysis can be said to have the lowest 

MSE value of      , followed by the PLSR analysis with      , while the PCR analysis has the 

highest MSE value of      . Overall, the PLSR analysis performed better than the PCR analysis. 

For the individual   -variables, it can be seen that both analyses performed the same for Syrup, 

Table     The estimated sensory panel characteristics values  
from the MMLR analysis.  

 
Yellow Green Brown Glossy Transp Syrup 

G1 26.7 65.0  8.1 76.3 71.4 48.4 

G2 53.7 28.3 13.5 82.5 80.8 47.6 

G3 49.1 32.9 11.6 83.7 82.0 47.0 

G4 25.4 64.6 13.4 78.9 73.6 48.9 

G5 48.1 39.5  7.9 82.4 79.0 46.8 

I1 40.1 45.2 19.0 73.8 70.3 51.0 

I2 51.2 32.9 14.2 78.1 75.5 49.0 

I3 50.1 34.8 16.7 75.8 72.2 50.7 

I4 50.7 32.3 12.8 77.8 74.7 50.0 

I5 29.0 52.2 24.1 73.1 69.6 52.9 

S1 61.8 22.1 11.4 85.4 84.2 45.3 

S2 64.9 21.2  7.4 86.4 85.7 43.3 

S3 62.8 19.7 10.0 82.9 80.9 47.5 

S4 64.5 17.4 10.1 84.3 83.2 46.3 

S5 72.7  9.9  7.8 86.5 85.0 45.8 

S6 63.0 18.4  9.5 85.0 83.0 47.2 

 

Table     The estimated sensory panel characteristics values  
from the PCR analysis.  

 
Yellow Green Brown Glossy Transp Syrup 

G1 27.4 63.9  8.9 77.9 72.7 48.5 

G2 59.3 23.4 11.9 82.9 81.2 47.1 

G3 59.3 24.8  9.0 84.7 82.9 45.9 

G4 30.7 58.9 10.8 77.5 72.7 48.9 

G5 44.6 42.9  8.6 81.8 78.4 46.9 

I1 40.7 42.7 19.2 74.5 70.9 51.7 

I2 49.6 33.7 15.2 78.8 76.1 49.3 

I3 41.0 42.5 18.9 74.7 71.1 51.5 

I4 43.9 40.8 15.0 77.7 74.4 49.7 

I5 42.3 40.2 20.4 74.1 70.6 52.0 

S1 65.9 16.3 10.0 85.4 84.4 45.8 

S2 69.2 13.6  6.9 88.0 87.3 44.2 

S3 55.9 27.6 11.8 82.2 80.1 47.3 

S4 64.1 18.2 10.5 84.7 83.5 46.1 

S5 62.5 20.4 10.0 84.7 83.3 46.1 

S6 57.4 26.4 10.3 83.4 81.5 46.6 
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but the PCR analysis performed better than the PLSR analysis for Brown. However, the fit is 

multivariate and should be compared on an overall level. For example, removing Brown from 

the data set will change the PCR and PLSR for all the other variables.  

Furthermore, comparing the estimated PLSR, MMLR and PCR coefficient values in Tables      

(see Chapter   ),       and       respectively, it can be seen that the values obtained under one 

technique are different from those obtained in the other two techniques. 

 

 
 

 
From the MMLR analysis (Table      ), chemical DK can be seen to have a low effect on 

characteristics Green and Glossy, while chemical K270 has a low effect on characteristics 

Transp and Syrup. However, when compared to their counterparts in the PCR analysis (Table 

    ), different conclusions can be reached. For example, from Table      , chemical Acidity 

has a low effect on characteristics Glossy and Transp, while chemical DK has a low effect on 

characteristic Syrup. This is not the case in the MMLR analysis (Table      ). Also, from the 

PCR analysis (Table      ), all five chemical measurements can be seen to have a negative 

effect on Yellow, Glossy and Transp, but a positive effect on Green and Syrup, with the 

exception of Acidity on Syrup. This is not the case in Table       (MMLR analysis), but it is in 

the PLSR analysis (Table     , see Chapter   ). However, the values in Table       are different 

from those in Table      . In the end, different multivariate regression analysis techniques can 

result in different estimations of the coefficients matrix     and the responses   . 

 

 

Table          The estimated MMLR coefficient values ( ̂    ). 

 
Yellow Green Brown Glossy Transp Syrup 

Acidity -0.463  0.386 -0.223 -0.182 -0.251  0.394 

Peroxide  0.111 -0.155  0.589 -0.285 -0.303  0.696 

K232 -0.590  0.415  0.220 -0.443 -0.311  0.437 

K270 -0.178  0.268  0.261  0.038 -0.008 -0.297 

DK  0.228 -0.073 -0.283 -0.020 -0.013 -0.357 

 

Table          The estimated PCR coefficient values ( ̂   ). 

 
Yellow Green Brown Glossy Transp Syrup 

Acidity -0.220 0.268 -0.347 -0.021 -0.087 -0.090 

Peroxide -0.123 0.081  0.399 -0.252 -0.203  0.293 

K232 -0.148 0.110  0.374 -0.260 -0.216  0.291 

K270 -0.186 0.177  0.131 -0.189 -0.184  0.170 

DK -0.205 0.216 -0.030 -0.138 -0.158  0.086 
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When there is the need to model a set of response variables from a (very) large set of predictor 

variables and there is no practical need to limit the number of predictor variables, PLSR can be a 

useful tool. PLSR does its modelling by using the extracted set of orthogonal components (or 

latent variables) as predictors. The extraction of the latent variable(s) can be done by using any 

of the PLS algorithms developed.  

With numerous and correlated predictor variables, there is a chance of obtaining an over-fitted 

model. For this reason, a test for the predictive significance of each PLS component is necessary 

and this can be used to determine the appropriate number of components to use in the modelling 

of the responses. Measures such as the       and       can be used to perform the test.  

Compared with PCR and MMLR, PLSR maximizes the covariance between the predictor and 

response variables, while PCR maximizes the variance in the predictor variables. Conversely, 

MMLR maximizes the correlation between the predictor and response variables. A PLSR can be 

a MMLR (with predictors defined by the latent variables   ), if the final number of latent 

variables used in the analysis is the same as the number of predictor variables.  

Next, in Chapter   , the graphical representation of the relationships between the predictor and 

response variables is explored using covariance biplots.  
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In a situation where the relationships between different sets of variables are of interest, various 

statistical techniques can be useful tools for analysis. Among them is the covariance matrix. 

Consider two centred matrices           and          . The covariance between      and 

    is defined by 

           ⏟      
     

  
 

     
   

    .            

However, when only one set of variables is under consideration, the variance-covariance matrix 

is defined by 

          ⏟      
     

  
 

     
   

    .            

This is also written as                               . Here, the variances of      are 

given in the diagonal of       , while the covariances are shown off-diagonal. The relationships 

between different sets of variables can be explored using some form of graphical display such as 

biplots (see Chapter   ). Since biplots are useful graphical tools for exploring the relationships 

between variables, the biplot is employed in the form of the covariance biplot.  

In this chapter, the general idea behind the covariance biplot is discussed. It further 

demonstrates, with graphical illustrations, how the covariance biplot can help to reveal variables 

and inter-variables relationships.  

 

                        

In general, there are two kinds of features displayed in biplots. These features can be specified as 

two sets of variables, or as a set of variables and samples, as in the case of the PCA biplot (see 

Chapter   ). This does not mean that biplots cannot be constructed by using only one kind of 

feature, but depending on the data matrix and the choice of features to be analyzed, biplots can 

be constructed to display only one kind of feature. Gower et al. (2011) termed such biplots 

monoplots. In a monoplot, the kind of feature to be represented may be the samples only or one 

set of variables. Including an additional feature in the monoplot, say, another set of variables, 

would result in a biplot. As only variables are represented in the covariance and variance-

covariance matrices       and      , both monoplots and biplots can be used as graphical tools 
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to explore their relationships. More precisely, a monoplot would be suitable for representing a 

variance-covariance matrix       graphically, while a biplot would be more appropriate for a 

covariance matrix      .  

Consider the  -variables only. By the    ,        , for         ,          and       

  . Defining the matrices          [
   
  

]  and           [
  
 
], it follows that 

      ̂                    . 
While    ̂        ,  

  

 ̂ 
  ̂                                    

                     

 
 
 

  
 
  
 

                       

       

     
       

                

  

where  

                and                ,          
for         ,         and      . Since        in      , the rows of either     or      

will be used in the monoplot. Let                . From      ,     
 

     
   

    , making 

  
            . Thus,  ̂ 

  ̂          approximates the variance-covariance matrix 

        . That is, 

   ̂ 
  ̂        ̂  . 

Moreover, given that only one set of variables, in this case   , is under consideration, and as the 

focus is on revealing the relationships within these variables, only one set of axes is needed. 

From      , the directions of these axes are calculated by the   rows of either      or    . 

 

                      

Consider both     and    . The       covariance matrix between     and     is defined in 

     . Let                . By the     ,         , for         ,         and 

        . The matrix           can be written as 

      ̂                          
where 

          and           , for any value of         .       

In      , the matrix     has dimension      , while the matrix       has dimension      . The 

matrix          contains the information about the  -variables, while          contains the 

information about the   -variables. Since   ̂      , the innerproduct between the rows of the 
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matrix     and the rows of the matrix     approximates the covariances between the   -variables 

and the  -variables. Here, the rows of     associates with the   -variables, while the rows of    

associates with the   -variables. Focusing on revealing the relationships between two sets of 

variables,    and   , only axes will be present in the resulting biplot. However, two sets of axes 

are needed, a set for the  -variables and a set for the  -variables. From   ̂      , the 

directions of the axes representing the   -variables are calculated using the     rows of   , while 

    rows of     are used to calculate the directions of the axes representing the  -variables. This 

biplot, called the covariance biplot, reveals the relationships between the two sets of variables as 

well as within each set.  

From      , when     , 

               and               .  
Also,  

         
         

         
        

and  

           
          

           
         

where        ,           and        . For this choice of   , 
       

               
but 

     
               .  

Therefore, from        
     , the row markers    approximate the covariance between the 

rows of     . Since the rows of       are associated with the  -variables, the rows of    

approximate the covariance between these  -variables. Conversely, when     , 

              and                .  
Now,  

          
         

         
       

for          and          , but  
           

          
           

         
where        . Thus, 

    
                  

and 
        

            .  

From     
        , the column markers     approximate the covariance between the columns 

of     . In other words, with the columns of       associated with the  -variables, the rows of    

approximate the covariance between these  -variables.  
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Moreover, any     value between     and    will neither optimally approximate the covariance 

between the   -variables nor the covariance between the  -variables, but rather, it will give an 

indication of both. Since choosing     closer to     better approximates the covariance between 

the  -variables and choosing     closer to     better approximates the covariance between the  -

variables, the symmetric choice of    
 

 
      will be used in the biplot. With this choice of   , 

covariance between the   - and   -variables is both equally approximated, although not optimal 

for either. That is, for             and                     ,  

              
             

                 
       ,  

              
             

                 
       , 

    
               

     
   and        

            
     

 , 
where         and        . In this situation, the rows of     

      approximate (non-

optimally) the covariance between the  -variables, while the rows of     
      approximate (non-

optimally) the covariance between the  -variables. In line with      , the approximated 

covariance can be written as 

          ̂     
         

       

     
            

     

     
     

                 

          

Thus, in      ,      only caters for the covariance between the  -variables optimally, while 

     only caters for the   -variables optimally. On the other hand,        caters for both   - 

and   -variables equally, although not as optimally as when only one set is been catered for. 

Seeing as only variables are being represented in the covariance monoplot/biplot and there are 

no samples to (orthogonally) project onto the axes representing these variables, calibration 

markers are not necessary on these axes. 

 

             

The following example is an illustration of a covariance biplot, using the olive oil data discussed 

in Section     . The five chemical quality measurements (Acidity, Peroxide, K232, K270 and 

DK) and the six sensory panel characteristics (Yellow, Green, Brown, Glossy, Transp and 

Syrup) are assigned as the  - and  -variables respectively. The covariance biplot for the data is 

shown below in Figure    , with       . Since this choice of     does not optimally 

approximate the covariance between the   - and   -variables, using       , the approximated 

correlation values are shown in Table     . The           and          matrices are shown in 

Tables       and       respectively.  
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Figure       The covariance biplot of the olive oil data,      .  

 

Another display of Figure     , with calibration markers on the axes is shown below in Figure 

   . Seeing as only variables are being represented in the covariance biplot and there are no 

samples points to project onto the axes representing these variables, calibration markers are not 

necessary on these axes. For this reason, the form of the display in Figure       above (no 

calibration markers) will be used as the covariance biplot display throughout this dissertation. In 

Figure     , the representation of the variance of each variable, represented by the thicker arrow 

(vector) on each axis, is shown. From this biplot, the standard deviation of chemical DK is 

smaller compared to the other chemicals. This is apparent from the length of the thicker arrow 

Table     The matrix  .             Table     The matrix  .  
 Component 

1 

Component 

2 
   Component 

1 

Component 

2 

Acidity 0.358  0.686   Yellow -0.655   -0.363 

Peroxide 0.886 -0.387   Green  0.600   0.444 

K232 0.932 -0.196   Brown  0.662  -0.611 

K270 0.834  0.179   Glossy -0.735   0.022 

DK 0.510  0.256   Transp -0.688  -0.096 

 
  

  Syrup  0.705  -0.211 
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(vector) on the DK axis. Likewise, characteristic Brown can be seen to have a larger standard 

deviations compared to the other characteristics.  

 
Figure       The covariance biplot of the olive oil data,      , with calibration markers.  

In addition, looking at the angles between the blue vectors in Figure     , all the chemicals 

measurements can be said to be positive related with each other. Similarly, characteristics 

Glossy and Transp can be said to be positively related, while characteristics Green and Yellow 

are said to be negatively related. Characteristics Brown and Syrup can be said to be (some-what) 

positively related. The actual correlation values of this data are shown in Figure     . However, 

an extract from Figure      , showing only the correlation values between the chemical 

measurements and characteristics, is shown below in Table     . Comparing the approximated 

correlation values in Table       with the actual correlation values in Table     , similar 

conclusions can be reached, in terms of the effect directions of each chemical measurement on 

the panel characterisics, but a slightly different conclusions in terms of their respective values. 

For example, from Table      (approximated values), all five chemical measurements have a 

positive effect on characteristics Green and Syrup, but a negative effect on Yellow, Glossy and 

Transp. These can also be deduced from Table      (actual values). However, the lowest 

correlation value of         can be observed under characteristic Brown in Table      (actual 
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values), while in Table      (approximated values), the lowest value of         is observed under 

characteristic Syrup.  

Moreover, various inter-variable relationships can be observed in Figure       above, such as a 

relation between the chemical K270 and characteristics Glossy and Transp. Observing their 

(actual) correlation values (        and        ), shown in Table       or Figure     , indicates 

a fair relationship between them. Also, a relation between characteristic Syrup and chemicals 

K232 and Peroxide (       and       ); and between chemical DK and characteristics Green 

and Yellow (       and        ) can be noted. The latter relation is not quite as strong as the 

former. Acidity and Brown can be seen to have no clear relation with the others.  

 

 
Furthermore, to illustrate how a covariance monoplot can help to reveal relationships within one 

set of variables, consider the monoplot of the sensory panel characteristics shown below in 

Figure     . From this monoplot, several relationships can be deduced, such as the relation 

within characteristics Transp, Glossy and Syrup. Also, a relation within characteristics Yellow 

and Green can be noted. Brown can be seen to have no clear relation with the others. 

Table     The actual correlation values between the chemicals and  
sensory characteristics. 

 
Yellow Green Brown Glossy Transp Syrup 

Acidity -0.485 0.513 -0.197 -0.235 -0.309 0.142 

Peroxide -0.414 0.339  0.777 -0.669 -0.597 0.759 

K232 -0.547 0.472  0.745 -0.695 -0.615 0.686 

K270 -0.687 0.640  0.549 -0.529 -0.522 0.478 

DK -0.334 0.361  0.084 -0.480 -0.462 0.332 

 

Table     The approximated correlation values between the chemicals  
and sensory characteristics. 

 
Yellow Green Brown Glossy Transp Syrup 

Acidity -0.483 0.519 -0.182 -0.248 -0.312 0.108 

Peroxide -0.440 0.360  0.823 -0.660 -0.573 0.707 

K232 -0.540 0.472  0.737 -0.689 -0.623 0.699 

K270 -0.611 0.580  0.442 -0.609 -0.591 0.550 

DK -0.427 0.419  0.181 -0.369 -0.375 0.305 
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Figure       The covariance monoplot of the sensory panel characteristics.   
 

Although not recommended, the biplot displays obtained when       and       are shown in 

Figures       and       respectively. Comparing these displays to that in Figure     , different 

deductions can be made. On one hand, from Figure       (   ), a relation between Green, 

Yellow and Acidity; between DK, K270 and Transp; as well as between Peroxide, K232 and 

Glossy can be observed. Here, Brown and Syrup can be seen to have no clear relation with the 

others. On the other hand, from Figure       (   ), a relation between K270, Green and 

Yellow; between Glossy, Transp and Syrup; as well as between K232 and Brown can be 

deduced. Acidity, DK and Peroxide can be seen to have no clear relation with the others. 

Nevertheless, since there are two sets of variables,    and   , in the covariance matrix       (or in 

Tables       and     ), and       as well as       only caters for one set of variables, while 

the other is ignored, the biplot displays obtained using these two choices of     (Figures       and 

    ) are not recommended. Hence, it is more appropriate to use       , where both sets of 

variables are catered for equally. 

 



4-9 
 

 
Figure       The covariance biplot of the olive oil data,    .  
 

 
Figure       The covariance biplot of the olive oil data,    .  



4-10 
 

             

One of the means used in analysing the relationships between different sets of variables is the 

covariance matrix. It describes how much two sets of variables change together. The covariance 

matrix of two sets of variables can be visualized graphically using the biplot. The resulting biplot 

is termed the covariance biplot.  

If only one set of variables is considered in the covariance analysis, the resulting graphical 

representation is a covariance monoplot.  

Advantages of a covariance biplot include the revelation of the relationships between two sets of 

variables as well as within each set.  

In general, the covariance biplot graphically represents the covariance between a set of predictor 

variables and a set of response variables. Since PLS finds a set of latent variables ( ) that 

maximizes the covariance between these two sets of variables, next, in Chapter   , the biplot is 

employed in the form of the PLS biplot to help explore the relationships between these two sets 

of variables. 
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Employing biplots in regression analysis yields many advantages, including demonstrating the 

association between samples and/or variables graphically. An example of such employment is 

the PLS biplot, which is a graphical display of a PLSR of a data set. As a new addition to the 

biplot family, the PLS biplot has the abovementioned advantage. It further provides a single 

graphical representation of the samples, together with the predictor and response variables, as 

well as their inter-relationships in terms of the matrix of regression coefficients. In this chapter, 

the fundamental idea behind the PLS biplot is discussed, before it is constructed. In addition, two 

ways of representing the matrix of PLSR coefficients in the PLS biplot are introduced. The first 

way involves using calibrated biplot axes, while the second way utilizes the area biplots 

introduced by Gower et al. (2010). Furthermore, the PLS biplot is compared with the PCA and 

covariance biplots. 

 

                

PLS can be viewed as an approximation technique, since it approximates a data matrix using 

only a few     components. For example, PLS approximates          using a set of latent 

variables          and a set of loadings          such that  

 
 ̂              

                       

                          

             

where          . Matrices     and     are obtained using any of the algorithms in Section      

(see Algorithms       to     ). Similarly,         is approximated using the same set of latent 

variables    and a set of loadings          such that 

 
 ̂              

                       

                          

            

where     is defined in Section    . In other words, PLS approximates an           data 

matrix    [  ]  as  

  ̂  [ ̂     ̂ ]  [         ]   [     ] .  
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Here, the matrix     contains information about the samples, while the loadings matrices     and 

   contain information about the   - and   -variables respectively. Corrected for their respective 

means, 

  ̂        ̅   and   ̂        ̅ 
for          a vector of ones,   ̅  and   ̅  the column means of     and    respectively. Thus, the 

PLS approximation of    [  ]  can be written as 

  ̂  [ ̂     ̂]  [      ̅           ̅].           
Analogous to the definition of a biplot in      , for the PLS biplot, sample points are represented 

by the rows of the matrix  , while the directions of the biplot axes are calculated by the rows of 

matrices     and    for the predictor variables and response variables respectively. Although this 

is true for any number of components   , it is only practical to plot in two or three dimensions. 

For two-dimensional biplots,      components will be extracted and plotted in a new   -

dimensional orthogonal Cartesian axes system referred to as the scaffolding axes. These 

scaffolding axes are not shown, but since       , they are defined by the first   columns of 

  , the PLS (transformed)  -weights matrix.  

 
                                  

In the PLS biplot, interpolation is achieved by orthogonally projecting each biplot point onto the 

biplot plane. Here, the plane is the vector space generated by the columns of   . Consider     

and     as a pair of centred predictor and response samples. Since sample points are represented 

by the rows of the matrix        , both      and     are interpolated into the biplot plane using 

the equation 

       
  .              

 
                               

Given that the biplot plane is a subspace of the full-dimensional space, any point in terms of the 

basis for the biplot plane is also a point in terms of the basis for the full space. Thus, a point     in 

terms of the basis for the biplot plane is also a point      in terms of the  -dimensional space 

of    . Thus, such a point will project onto itself, yielding the prediction of      as  

 ̂ 
      .               

Likewise, a point    in terms of the basis for the biplot plane is also a point     in terms of the  -

dimensional space of    . Hence, the prediction of sample      is achieved by 

  ̂ 
      .               
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To construct a prediction biplot axis, consider the     predictor and response variables 

respectively. From      ,    
       for any point   in the biplot plane. For this reason, the     

centred predictor variable value is given by    
          , where     is the unit vector with 

zeros except for a one in the     position. If this value is     
, then   

    
       .              

This defines a line in the two-dimensional biplot plane and for different values,     
       , 

parallel lines are obtained, as shown below in Figure     .  

 
Figure     A schematic of the construction of the prediction axis for the     predictor 

variable in the PLS biplot plane  .         
 

To facilitate orthogonal projection onto the prediction biplot axes, similar to scatter plots, the 

line through the origin orthogonal to       is selected as the biplot axis for variable  . Any point 

on this biplot axis will have the form       . As a result, the point on the biplot axis predicting 

the value     
 for the      predictor variable will have 

     
      .                

Substituting       into       yields     
    

      . Solving for     then yields 

   
   

   
       

.              

Furthermore, replacing   in       by       gives the marker     
 on the     prediction biplot 

axis as  
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    .               

Similarly, from      , any point predicting     
        for the      centred response 

variable will have     
        , with the biplot axis of the form       . For this reason, the 

point on the biplot axis predicting the value      
 for the     response variable will have 

      
      .                 

Substituting         into     
         yields     

    
      . Solving for     then yields 

   
   

   
       

 .              

Moreover, replacing     in        by        gives the marker      
 on the     response 

prediction biplot axis as  

    

   
       

    .               

The values    
 and    

 in        and        are in terms of the centred samples. Thus, 

calibration markers are fitted using sensible scale values 

       
  ̅   and        

  ̅   
where   ̅  and   ̅   are the mean of the       predictor and response variables respectively. In 

other words, to trace the prediction biplot axis for the     original predictor and response 

variables, values of      and     are substituted in the place of      
 and      

 in        and 

       respectively.  

With the PLSR coefficients matrix defined as    ̂        , the     row of   ̂     can be 

written as   ̂   
      

   , akin to    
      , so that the regression coefficients are predicted by 

the prediction biplot axes defining the response variables. Instead of predicting a sample point 

        
  ,    

    are projected onto these axes. That is, projecting each of the rows of     onto 

the prediction axes defined by     yields the estimated PLSR coefficients matrix   ̂    . This is 

true without adjusting for centring, so here,         
 and not        

  ̅ . Hence, two 

different sets of prediction marker calibrations are needed on each of the response axes, a set 

corrected for the mean for    (in black) and a set in terms of the centred values for   ̂     (in 

purple). 

Furthermore, if the       plot indicates that the PLSR should be performed in     

components, the PLS biplot can still be constructed in two dimensions. However, the predictions 

obtained with the biplot axes will be the two-dimensional approximations of   ̂     and the two-

dimensional approximations of the  -dimensional approximations of the matrices      and    . 

In this situation, instead of constructing the PLS biplot from the first two components, any two 
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components         can be used, but any such plot remains a two-dimensional 

approximation of the  -dimensional solution.  

 

                                       

To determine the adequacy of the representation of the original data matrix    [  ], the 

quality of the representation provided by the PLS biplot is required. Barring    ̅  and   ̅  in 

      ,   ̂  can be written as 

 
 ̂  [         ]  [        ]

     [  ]        

                        

 

where    [  ]. Suppose    is partitioned such that  

 
   ̂  (   ̂)                  

                 

                 

            

It follows that  

 
 ̂ (   ̂)                                  

                        
                                                 

 

giving rise to Type B orthogonality: 

  
     [              ]  

                    
           

where        . However, there is no orthogonal decomposition of      due to  

  
 ̂(   ̂)

 
                    [         ]       

                  

                                                

 

where                    . Thus, from        , only the axis predictivity measure (see 

Section      ) will be evaluated and this is done as 

                        ( ̂  ̂)[           ]  .    
Analogous to the PCA biplot, the overall quality of approximation provided by the PLS biplot 

can be measured in terms of the percentage of variation in     explained by the extracted latent 

variables   . More precisely,   

  

                   (    ( ̂  ̂)) [   (         )]
  

               

     (               )[   (         )]
  

     (            )[   (         )]
  

        

        

where        . 

 



5-6 
 

            

The following example is an illustration of the PLS biplot, using the olive oil data discussed in 

Section     . The five chemical quality measurements (Acidity, Peroxide, K232, K270 and DK) 

and the six sensory panel characteristics (Yellow, Green, Brown, Glossy, Transp and Syrup) are 

assigned as the predictor and response variables respectively. The original data is shown in 

Table     . This data was later standardized for the PLS analysis. A data is standardized by first 

centring it and then dividing each variable by their respective standard deviation. A  -

component PLS was performed on the standardized data using the SIMPLS algorithm 

(Algorithm     ). The asymmetric PLS biplot is shown in Figure     . Here, the samples of the 

data are given by the red points, while the purple points are for the (PLSR) coefficient points. 

The predictor variables of the data are represented by the blue axes, while the response variables 

are represented by the black axes.  

In this biplot (Figure     ), the sets of tick markers (blue and black) on the axes have been 

adjusted for standardization. That is, the calibration markers are fitted using sensible scale values 

   (   
  ̅ )   

  and     (   
  ̅ )   

           
where   ̅  ,  ̅ ,    

  and     
  are the means and standard deviations of the     predictor and 

response variables respectively. However, for reading the coefficient values, the calibration 

markers (purple) on the response axes are fitted using sensible scale values        
. 

Furthermore, in the PLS biplot display (Figure     ), a representation of the variance of each 

variable is shown. Here, the representation is expressed as the thicker arrow (vector) on each 

axis. These vectors correspond to one (centred) unit on the biplot axes. Observing the angles 

between the blue vectors, all the predictor variables can be said to be positively related to each 

other. Similarly, observing the angles between the black vectors, Glossy, Transp and Yellow can 

be said to be positively related to each other, likewise Green, Syrup and Brown. However, these 

two collections of relationships have a negative relation between them. For example, a negative 

relation exists between Green and Yellow. The actual correlation values of this data are shown in 

Figure       or Table     .  



5-7 
 

 
Figure         The PLS biplot of the olive oil data, using the SIMPLS algorithm (Algorithm     ). 
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Table         The approximated olive oil values. 

 
Acidity Peroxide K232 K270 DK Yellow Green Brown Glossy Transp Syrup 

G1 0.8 13.5 1.8 0.149  0.002 26.7 65.1  9.5 76.9 71.5 48.7 

G2 0.2 12.9 1.7 0.108 -0.003 58.9 23.2 12.8 82.4 80.7 47.5 

G3 0.2 11.5 1.6 0.104 -0.003 60.5 22.4 10.6 83.9 82.2 46.6 

G4 0.6 13.7 1.8 0.141  0.001 32.9 56.8 10.6 77.7 73.0 48.7 

G5 0.5 10.9 1.6 0.119 -0.001 47.5 40.2  7.7 82.4 79.1 46.6 

I1 0.3 18.8 2.1 0.146  0.000 35.2 49.1 19.8 73.6 69.7 51.8 

I2 0.3 15.4 1.9 0.126 -0.001 46.8 36.9 15.5 78.3 75.5 49.4 

I3 0.3 17.0 2.0 0.137 -0.001 39.9 44.5 17.3 75.8 72.3 50.6 

I4 0.3 14.5 1.8 0.125 -0.001 46.8 37.8 13.9 79.1 76.2 48.8 

I5 0.2 20.1 2.2 0.143 -0.001 38.8 43.2 22.6 72.9 69.6 52.6 

S1 0.2 11.4 1.6 0.100 -0.003 63.0 19.2 10.8 84.3 82.9 46.5 

S2 0.3 10.2 1.5 0.099 -0.003 62.7 20.7  8.6 85.3 83.8 45.8 

S3 0.3 11.5 1.6 0.105 -0.003 59.2 24.1 10.5 83.6 81.8 46.7 

S4 0.2 11.3 1.5 0.099 -0.004 64.2 17.8 10.7 84.6 83.3 46.4 

S5 0.2  9.4 1.4 0.093 -0.004 66.8 16.0  7.9 86.6 85.4 45.2 

S6 0.2 10.1 1.5 0.097 -0.003 64.0 19.1  8.7 85.6 84.2 45.7 

 

 

Table         Axis predictivity of the PLS biplot of the olive oil data.  
Acidity Peroxide K232 K270 DK Yellow Green Brown Glossy Transp Syrup 

0.988 0.995 0.999 0.989 0.753 0.934 0.819 0.963 0.997 0.994 0.998 
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With an overall quality of       , various inter-variable relationships can be deduced from the 

biplot (Figure     ), such as a relation between the response Syrup and the predictors K232 and 

Peroxide; between predictor DK and responses Green and Yellow, as well as, between responses 

Glossy and Transp and predictor K270. Acidity can be seen to have no clear relation with the 

others.  

 
Figure      Examples of orthogonal projections in the PLS biplot of the olive oil data. 
 

Each sample point in the PLS biplot is orthogonally projected onto the axes, and the respective 

values are read off to give the approximated values of the olive oil data. For example, sample 

point     projected onto the Acidity and Syrup axes yields the values        and       

respectively, as shown above in Figure     . Likewise, to get the approximated coefficient values 

from the biplot, the PLSR coefficient points   , for           , are projected onto the 

prediction axes representing the sensory panel characteristics. However, the purple markers on 

these axes are used to read off the coefficient values. Since the coefficients matrix   ̂     

          (Section     ), where      
    are defined in terms of the centred  -variables, 
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and the matrix     used in calculating the directions of the biplot axes representing the  -

variables (responses), two sets of calibrations marker will be  needed on these response axes. To 

be precise, a set (in black) corrected for the mean for    and a set (in purple) in terms of the 

centred values for   ̂    . Thus, the purple markers on the response axes will be used to read off 

the coefficient values. For example, point      projected onto the Syrup axis gives a value of     , 

and not      , as shown above in Figure     . This value,    , can be seen to be the PLS 

regression coefficient for K270 under Syrup, in Table      below. The approximated values of 

the olive oil data as well as the estimated regression coefficient values are shown in Tables      

and      respectively.  

Moreover, the predictivity of each biplot axis is estimated, and this is shown in Table     . Each 

of these axes quite well represents the original data, with the K232 axis having the highest axis 

predictivity value of       , followed by the Syrup axis with       . However, the DK axis has 

the lowest axis predictivity of       . This value for the DK axis is the ratio of the predicted 

sum-of-squares to the total sum-of-squares for all the observations under variable DK. An axis 

predictivity of         means that all values can be read off the axis exactly. The lower the axis 

predictivity value, the less accurately the axis approximates the observed values under that 

variable. Thus, axis DK having the lowest axis predictivity value of         means that the axis 

represents the original data, but not quite as accurate as the other axes. These predictivities and 

the overall quality value (     ) indicate that the PLS biplot approximates the olive oil data 

well. 

 
For comparison reasons, a  -component PLS was performed using the kernel algorithm of 

Rännar et al. (1994), and the resulting PLS biplot is shown in Figure     . This biplot looks quite 

similar to the PLS biplot in Figure     . However, the positions of the coefficient points are 

different in both biplots. This is due to the way the PLS   -weights matrix     was computed in 

both algorithms (see Algorithms       and     ). The estimated regression coefficient values 

obtained from the kernel-PLS analysis are shown in Table     . 

Table         The estimated (SIMPLS) PLSR coefficient values.  

 
Yellow Green Brown Glossy Transp Syrup 

    Acidity -1.175 1.343 -1.112 -0.357 -0.604 -0.119 

    Peroxide -0.921 0.675  2.379 -1.638 -1.364  1.862 

    K232 -1.169 0.977  1.984 -1.646 -1.448  1.741 

    K270 -1.365 1.301  0.942 -1.348 -1.314  1.206 

    DK -1.042 1.071  0.046 -0.748 -0.818  0.515 
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Figure         The kernel-PLS biplot of the olive oil data (Algorithm     ). 
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Generally, there are many different algorithms for performing PLS, out of which three (NIPALS, 

kernel and SIMPLS) were discussed in Chapter     of this dissertation. Refer to Section     . The 

different algorithms produce slightly different results, especially, with regards to the  -weights 

( ) and  -scores ( ) matrices. This is due to the way these matrices are computed in each 

algorithm, as shown in Table     . As yet, no general rule exist as to which algorithm is best. 

Among the three algorithms discussed in this dissertation, the NIPALS algorithm was develop 

first. It can be computationally intensive when dealing with (very) large data sets, due to the 

iterative updating of the centred data matrices      and     (step (7) of Algorithm     ). For this 

reason, the kernel algorithms, by Lindgren et al. (1993) and Rännar et al. (1994), were 

developed. These algorithms are based on the NIPALS algorithm, but are less computationally 

intensive. The algorithm developed by Lindgren et al. (1993) handles large data with fewer 

variables, while the algorithm by Rännar et al. (1994) handles large data with fewer samples. 

On the other hand, the SIMPLS algorithm is slightly different and yields a different solution, but 

has the advantage of no iterative updating of the centred data matrices. In addition, the  -

weights ( ) are directly obtained in terms of the original    , while in the NIPALS and kernel 

algorithms, they are obtained in terms of the updated    , thus, requiring another transformation 

step to convert them into  . See Table      and Section       for more details. 

 

                 

Besides projecting the coefficient points   , for          , onto the prediction axes 

representing the response variables to get their respective values, an alternative method is 

proposed. This method is based on the area biplots idea developed by Gower et al. (2010). In 

general, area biplots require no calibrated axes, just the reader’s eyes to compare areas of 

differently shaped triangles. To be precise, it involves 

(i) a     rotation of one set of points, in this case, the coefficient points   , for    
       , 

(ii) the area spanned by a triangle of the rotated coefficient points, 

Table     The estimated (kernel) PLSR coefficient values.   

 
Yellow Green Brown Glossy Transp Syrup 

    Acidity -0.233 0.277 -0.313 -0.033 -0.096 -0.078 

    Peroxide -0.105 0.056  0.453 -0.262 -0.205  0.321 

    K232 -0.159 0.123  0.352 -0.258 -0.219  0.286 

    K270 -0.217 0.211  0.117 -0.201 -0.200  0.172 

    DK -0.183 0.197 -0.059 -0.104 -0.126  0.051 
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(iii) one unit on the response variable axis, and 

(iv) the origin 

to approximate a data value. Although it is not intuitive to estimate the areas of triangles by eyes, 

for the exact estimated PLSR coefficient values, the coefficients matrix   ̂         can be 

examined. The area biplot method provides an easy way of comparing the relative sizes of the 

PLSR coefficients graphically, thereby, providing an instinctive display of the importance of the 

effect of the predictors on each of the response variables. Since the      row of the PLSR 

coefficients matrix   ̂         can be written as   ̂   
      

   ,      will serve as the row 

point defining the      coefficient point, while    defines the unit points on the axes representing 

the response variables. Let     be a       rotation matrix. In the two-dimensional area biplots, 

   [
             

               
]  [

     
      

], for     

 
  radians.  

Consider the row and      column points       and     respectively. Rotating      through     

brings about       . The inner product of        and     is defined by 

         ‖    ‖  ‖  ‖                       
where      is the angle between        and    . With the      rotation choice in mind,  

             (    
 

 
)     (   )  

for           
 

 
. Thus,     is the angle between the rotated row point         and column 

point    . Replacing            in        by     (   )  yields the inner product of        and     as 

         ‖    ‖  ‖  ‖     (   )  ‖    ‖     (   )  ‖  ‖.        

 
Figure     A schematic of the triangle area of         . 
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Figure       illustrates the construction of a triangle for a row point      and column point    . 

From the origin   , the height of the red triangle is given as ‖     ‖     (   ), while the base is 

defined by ‖  ‖. With the area of a triangle defined as    
 
              , the area of the red 

triangle is obtained as 

                          
 

   
(‖  ‖  ‖     ‖     (   )). 

Twice this area yields 

 
                           ‖  ‖  ‖     ‖     (   ) 

  ‖     ‖  ‖  ‖     (   ) 
         

From   ̂        ,  ̂       
   . Since  ‖     ‖  ‖  ‖     (   )  defines the inner product of 

      and    (    ), twice the area of the red triangle (    ) approximates    , the          element 

of       .  

Furthermore, the length of       can also be used to determine the length of one unit along axis 

   . Recall from   ̂          and   ̂       
   , a particular coefficient value in row      of  

 ̂     will be the product of two lengths, namely, the length of projection of       and the length 

of the biplot axis defined by    . In other words,  

                            (

                     
   
    

)  (

        
  

               

) . 

Fixing the coefficient value to be     and solving for length of projection yields the value of one 

unit on      as 

 (
                     

  
               

)   
 

               
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ .          

Thus, one unit on axis      is inversely proportional to the length of    . With the length of      

defined by  ‖  ‖,        can be re-written as 

 (
                     

  
               

)   
 

 ‖  ‖ 
̅̅ ̅̅ ̅̅ ̅ .           

Since the marker calibrations for   ̂      are in terms of the centred value of   , see Subsection 

       above, the one unit being referred to here is a centred unit. Expression        can be 

referred to as the calibration factor (Section     ), used in determining how far apart the unit tick 

markers (in purple) are on axis    . However, since no calibrated axes are required in area 

biplots generally, these purple markers are not shown in the resulting area biplot displays, but 
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can be seen in the PLS biplot displays. For example, see the black axes representing the  -

variables in the PLS biplot displays in Figures       and     .   

 
                

Consider the PLS biplot of the olive oil data shown in Figure       above. Rotating the matrix 

 ̂      through       brings about Figure        below. In order to obtain the approximated values 

of the PLSR coefficients    , for             and           , triangles spanned by the 

origin and each rotated    , plus the prediction axes representing the sensory panel characteristics 

as bases, are added to the PLS biplot. For example, the triangle spanned by the origin and point 

  , plus the Brown axis as base, is shown (in red) in Figure     . This triangle has an area of 

 
                 ⁄

 
        

 
      . Twice this area gives the approximated value        for     

under the Brown characteristic, as shown in Table     . The values        and        are the mean 

and standard deviation of the Brown characteristic respectively, as shown in Table     . Here, 

      is the value of the one unit on the Brown axis, needed for the red triangle. This value is 

calculated by the length of the Brown variable. In Figure     , the length of the Brown variable is 

expressed as the thicker (black) arrow on the Brown axis.  

 
More than one triangle can be drawn at a time, on a particular axis. To illustrate, consider the 

points    , for           , and the Green axis. The triangles spanned by the origin and these 

points, plus the Green axis as bases, are shown in Figure      . However, caution is needed 

when dealing with large numbers of    . It is not intuitive to estimate the exact area of a triangle 

visually, but as an exploratory tool, larger and smaller coefficients can be easily detected. Large 

triangles indicate large coefficient values, while small triangles indicate small coefficient values. 

From Figure     , coefficient point     can be seen to have a larger value, followed by    ,     

and    . Point      has the smallest value. The exact coefficient values are obtained by printing 

out the coefficients matrix   ̂     , shown in Table      above.  

Table     The column means and standard  
deviations of the  -variables. 

 
Mean 

Standard 

deviation 

Yellow 50.9 19.46 

Green 33.5 23.49 

Brown 12.3  5.13 

Glossy 80.8  6.19 

Transp 78.2  8.31 

Syrup 48.0  3.07 
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Figure     Example of a triangle visualization in the PLS biplot of the olive oil data. 
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Figure     The triangles for points    ,          , with bases defined by the Green axis in the PLS biplot of the olive oil data. 
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The PLS biplot and the PCA biplot are similar, in that they both aim to approximate a high-

dimensional data matrix using only a few components. However, the method of approximation 

differs across these two biplots. Consider an           data matrix   . For its PCA biplot,   

is approximated as   ̂      [ ]
 , by       . As a result, the matrix           gives 

information about the   rows of   , while matrix   [ ]            gives information about its 

      columns. On the other hand, for PLS,   is approximated as   ̂     [     ]        . 

Here, the matrix          contains information on the   rows of    , while the matrix 

[
 
 
]           contains information on its       columns. When compared to each other, 

the matrices     and     differ in the way in which they are constructed, as is true for the matrices 

 [ ] and [ 
 
]. To be precise, both     and   [ ] are constructed through the utilization of PCA on 

 , while     and  [
 
 
] are constructed through the application of PLS on   . To illustrate these 

biplot differences, consider the PCA biplot and the PLS biplot of the olive oil data, as shown in 

Figures        and      respectively. The displays are different as a result of their respective 

approximation method used in approximating the olive oil data. To be precise, there are two 

different sets of points (red and purple) in the PLS biplot (Figure     ), while only one sets of 

points (black) is seen in the PCA biplot (Figure     ). In other words, besides the sample points 

and biplot axes in the PLS biplot display, an additional set of points (purple) are added to the 

display. Furthermore, looking at their respective objective function, PCA treats the two sets of 

variables     and     as one set, say, 

                                        
and aims to maximize the variance within   . On the other hand, PLS treats the two sets of 

variables     and     as two separate sets and aims to maximize the covariance between them 

(Section     ). In other words,  

PLS:  maximize                            ,  subject to ‖     ‖    
while 

PCA:  maximize     (  [ ] [ ]
 )     (  [ ] [ ]

 ),  subject to   [ ]
  [ ]    . 

Also, the constraint imposed on the objective function differs across these two methods. To be 

exact, the scores ( ) in PLS must be orthogonal (      [ ]), while this is not the case in PCA. 

With PCA,  ̂    [ ] [ ]
   and scores      [ ]. Here, the loadings ( [ ]) must be orthogonal, 

i.e.,  [ ]
  [ ]   [ ] but the scores ( ) are not orthogonal (      [ ]). In addition, the position of 

the sample points and biplot axes, as well as the spreading of the sample points, in Figures       
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and       can be seen to be different in both biplots. Hence, different data approximation methods 

can result in different biplot displays. 

 

                                          

Generally, in covariance analysis, the roles of the two sets of variables under consideration can 

be interchanged without losing any information when estimating the covariance between them. 

In the covariance biplot construction, see Chapter   , the covariance matrix       is used. That 

is,  

 ̂ 
  ̂          

   [ ] [ ]
  

              

where  [ ]  and  [ ]  contain the first   columns of    and   respectively. With a similar 

arrangement as in       , only variables are involved in the covariance decompositions in 

      . Thus, the matrix   [ ]       contains information on the   -variables, while the matrix 

  [ ]       contains information about the  -variables. Seeing that PLS can be viewed as an 

approximation technique, it can also be used to approximate the covariance between      and    . 

From equations        and       , the covariance matrix is estimated as  

  ̂ 
  ̂ ⏟  

     

                         

with          . The PLS approximation of the covariance matrix        can be seen to have 

an arrangement similar to      . However, only variables are represented in this decomposition. 

That is, the matrix          contains information about the  -variables, while the 

matrix          contains information about the  -variables. Furthermore, since the PLS 

algorithms are based on the decomposition of the covariance matrix between      and    , the 

PLS biplot can also be viewed as a graphical tool for displaying the approximated covariances 

between     and    .  

Considering the main goal of PLSR, the roles of predictors      and responses   are treated 

asymmetrically. That is, they are not interchangeable. Although not of interest in this 

dissertation, if these roles were interchangeable, the resulting PLSR analysis would be a 

symmetric PLSR (Abdi, 2010). In this analysis, the     is applied once on the covariance matrix 

between    and    to obtain the latent variables  . Let           
    be the       

covariance matrix. By the    ,       . The     columns in the   -weights matrix          

are defined as the first     left singular vectors of   . That is,    [     ]. The matrix     is 

then obtained by       [     ]     . If the roles of    and   are reversed, the       
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covariance matrix           
   . By the    ,        . In this situation, the 

    columns in     are defined as the first     right singular vectors of    . That is,    [     ]. 

Thus, the matrix     is obtained by       [     ]     .  

Furthermore, comparing the PLS biplot to the covariance biplot, from        , the objective 

function of the PLS biplot, with regards to approximating the covariance between      and    , 

can be interpreted as  

 maximize    ̂ 
  ̂         ,  subject to          , 

while from        and Section     , the objective function for the covariance biplot can be 

interpreted as optimally approximate the covariance matrix    
    using the Eckart-Young 

theorem (Eckart & Young, 1936). Although the matrices         and  [ ]       both 

provide the   -variables information, while           and   [ ]       provide the  -

variables information, the method used in obtaining these matrices differs. To be precise,  [ ] 

and   [ ] are obtained through an application of the     on the covariance matrix      , while 

   and     are obtained through the utilization of PLS on the data matrix. From Section     , 

    
    and      

  , while from Section     ,  [ ]           and   [ ]         .  

 
                

 
Figure      The PLS biplot of the olive oil data, without axes markers, sample and 

 coefficient points. 
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Consider the PLS biplot of the olive oil data shown in Figure     . Excluding the sample (red) 

and coefficient (purple) points, as well as the axes calibration markers from this biplot brings 

about Figure      (shown above). Now, consider the covariance biplot of the olive oil data 

shown in Figure     . When compared with the PLS biplot in Figure     , similar deductions can 

be reached. For example, a relation between predictor K270 and responses Glossy and Transp; 

as well as between response Syrup and predictors K232 and Peroxide can be observed from the 

PLS biplot (Figure     ). These deductions can also be made from the covariance biplot (Figure 

   ). Thus, it can be concluded that both biplots approximate the covariances between     and 

   using different decomposition methods. However, different covariance decompositions can 

result in different covariance approximations and graphical displays. Since only variables are 

present in Figure     , regardless of their roles, and with the definition of a monoplot in mind 

(see Section     ), Figure      can be viewed as a PLS monoplot. 

 

            

Results found by the PLSR analysis of a data set can be visualized graphically using biplots, 

specifically, the PLS biplot. A PLS biplot provides a single graphical representation of the 

samples together with the predictor and response variables, as well as their inter-relationships in 

terms of the matrix of PLSR coefficients.  

Based on the definition of the biplot, one can argue that the PLS biplot is actually a PLS triplot. 

Although not of interest in this dissertation, a triplot, by definition, is a joint graphical display 

that has three kinds of features displayed in it. These features can be specified as three sets of 

samples, or as two sets of samples and variables, as in the case of the PLS biplot. Observing the 

PLS biplot generally, three kinds of features can be identified, namely, (i) the samples, (ii) the 

variables, regardless of their roles, and (iii) the coefficient points. Thus, the PLS biplot can be 

viewed as a PLS triplot. 

Analogous to the PCA biplot, the best  -dimensional plane passing through the origin is 

obtained first, and thereafter the orthogonal projections of the points in the high-dimensional plot 

of the data matrix are done onto this plane. The plane, with the projected points on it, is then 

extracted from the high-dimensional plot to the scaffolding axes on which the biplot is built. 

These scaffolding axes are not shown but are defined by the first   columns of the PLS 

(transformed)  -weights matrix   . In the PLS biplot, points are defined by the extracted latent 
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variables ( ), while the directions of the axes are calculated using the rows of the loadings 

matrices   and   for the predictor and response variables respectively.  

Furthermore, to determine the accuracy of the PLS biplot representation, the overall quality of 

approximation along with the axis predictivity must be evaluated. The overall quality of 

approximation is measured in terms of the percentage of variation in the data matrix explained 

by the extracted latent variables    . Axis predictivity is measured by expressing the sum-of-

squares of the approximated value for each variable in   ̂  as a proportion of their respective total 

sum-of-squares.  

The constructed PLS biplot in this chapter assumes a linear relationship between the predictors 

and the response variables. Occasionally, the relationship between these two sets of variables 

may follow a non-linear function. Thus, Chapter     investigates the employment of the PLS 

biplot to explore the non-linear relationship between these two sets of variables. 
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Usually, in regression analysis, the modelling of one response variable        ) by means of 

one or more predictor variables       ) is performed by solving the equation      , where 

        is the unknown coefficient vector that needs to be estimated. This equation,      , 

is often referred to as a linear model, because it assumes that there is some linear function 

relating    to  . It furthers assume that    follows a normal distribution with mean   and constant 

variance   . To be precise, the linear model has a general form  

                      

where       is the expected value of   . However, sometimes     may have a distribution other 

than the normal distribution and the relationship between     and     may follow some non-linear 

function. Of course, the linear model is not a suitable tool for modelling     in this situation. This 

does not necessarily mean that the modelling of    is impossible, but     should rather be 

modelled using a non-linear model. An example of such a model is the Generalized Linear 

Model (GLM). In GLMs,   is assumed to be from any distribution in the exponential family. A 

distribution is said to be from the exponential family if its probability function can be written in 

the form 

                                       
for a single random variable    and a single parameter   , where     ,     ,      and      are 

known functions, varying from one exponential family to another (Dobson, 2002). For a GLM, 

      , making       to be written as 

                         .            
Dobson (2002) referred to       as the standard or canonical form of the exponential family. The 

most well-known distributions from this family are the Normal, Poisson, Binomial and Negative 

Binomial distributions. GLMs further assume a ‘link-linear’ relationship. More precisely, GLMs 

transform the mean of     non-linearly and then model the transformed mean as a linear function 

of   . That is,  

                      

where          and    is a monotone and differentiable link function. An example of       is 

the log-link function, i.e.,          , for a Poisson distributed   . Comparing        to      , 
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GLMs can be viewed as an extension of linear models, in that they relate   to     via a link 

function. Since      transforms      and not  , from      ,                , where       

is the inverse of the link function      .  

In this chapter, a brief overview is provided of GLMs before the extension of PLS to the GLM 

framework is discussed. Furthermore, the PLS biplot is proposed as a visual tool for displaying 

the Partial Least Squares-Generalized Linear Model (PLS-GLM) of a data set.  

 

                               

Consider     having   observations that are independently distributed with mean   . The GLM 

for this     is given by      , where the vector     needs to be estimated. To estimate this vector, 

the maximum likelihood estimation technique is used (McCullagh & Nelder, 1989). The 

maximum likelihood estimation is implemented with an Iterative Weighted Least Squares 

(IWLS) procedure. Suppose    is Poisson distributed. Let              denote   independent 

observations of   . In the IWLS procedure,   is not used as the response variable, but rather a 

linearized form of the link function applied to  . Denote the linearized form as   . For a Poisson 

distributed   , the link function       is a log-link, i.e.,          . Let             , where 

           
  . The linearized form ( ) is calculated as 

              
   

   
 .            

With            , 

    

   
 

 

  
        

  .             

Replacing     

   
  in       by       yields 

                  
  .           

As             
  , it follows that        

   . Then 

               (   
   )    

  .            
and 

       
   (      

  ) (   
   )

   

.           

Furthermore, the weight     in the IWLS procedure is defined as a function of     . More 

precisely, 

     [       (
   

   
)
 

]⁄ .             

Since             for a Poisson distributed   , from      ,      [  (
 

  
)
 

]⁄   [
 

  
] ⁄  which 

simplifies to  
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   .            

The estimated coefficient is then obtained by regressing    on     using the weights   . That is, 

   ̂                            
where          is a diagonal matrix of weights with elements      and          a vector with 

elements    . Seeing that           and            depend on the unknown coefficients in   , the 

Weighted Least Squares (WLS) procedure is iterated until convergence (Dobson, 2002). This 

algorithm can be summarized as follows. 

              : 

(1) Start with an initial estimate for   . Let        denote this estimate. 

(2) At each iteration  , compute      and     as 

  
      

      (      
     

) (   
      )

   

  

   
       

      . 
(3) Update   , for better approximations for     and    , as 

          (       )
  

            
  where           {  

   }  and        is a vector of element       . 

(4) Repeat steps (2) and (3) until convergence of    is reached. 

The general linearized form          and the weight            are defined for any distribution of 

    in the exponential family, besides the Poisson. For example, suppose   is Binomial 

distributed with    samples and a probability of success  . Here, the link function        can be a 

logit-link. That is, 

                 (
  

      
)    

  .            

Since                 for a Binomial distributed   ,    
  

    
 . Substitute     

  

    
 into 

       yields 

        (
  

         
)     

    

which can be written as 
                         

  .            
From       , 

 

 
   

   
 

 

  
      

 

       
    

  
        

           
                      

  
  

           
                      

 

With         , 
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Replacing     

   
  and      in           by        and           respectively yields 

 
               (

 

            
)

     
       

            
                          

           

Furthermore, the weight           turns out to be 

    
 

        (
 

     (    ) 
)
 

 

 .             

Since                      for a Binomial distributed   ,        becomes 

 

   
 

           (
 

     (    ) 
)
 

 

    
(          )

 

          
          

 

which simplifies to 
               .              

As     (
  

      
)    

  , it follows that     
   

  

     
  
 . 

Now, consider a scenario where there are more than one response variable, i.e.,     and   

      ). Obviously        cannot be used to model this response matrix  , but rather, a 

multivariate version of       . With                       , difficulties can be encountered 

when estimating the coefficients       . To explain, consider the weight matrix     in the IWLS. 

In this procedure, for one   -variable,   is defined as a       diagonal matrix of elements     , 

where      [       (
   

   
)
 

]⁄   and        
           and       . Here,          is a scalar. On 

the other hand, for       -variables,         would become        and         is not a 

scalar, but rather, a       vector. This, together with taking the derivative of a vector, poses a 

(computational) problem for     in        . As a result, a multivariate version of      is needed, 

for estimating the coefficients in       . To the knowledge of the author, no general framework 

tackling this problem has been constructed yet. Although several texts, papers and publications 

have been written on GLMs and their extensions to other multivariate techniques, such as DA 

and PLS, none of them have given a (proper) general framework for multivariate       

GLMs. The recently developed PLS-GLM     package plsRglm, by Bertrand et al. (2013), does 

PLS and PLS-GLM regression, works with complete and incomplete data, and uses several 
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criteria for choosing the number of components among others, but it is still limited to       -

variable. Multivariate analysis texts on GLMs, like Fahrmeir and Tutz (2001) and Lattin et al. 

(2003), also only consider       -variable. Lattin et al. (2003) concentrated on a binary 

response variable as well as a response variable having more than two categories in their logit 

and probit GLM applications, see pages 474-519. They called their frameworks the logit and 

probit choice models. They also compared the difference between these two models, using a 

simple example. Even so, they still focused on a       -variable. Fahrmeir and Tutz (2001) 

further focused on     having more than two categories and termed such     the multivariate 

response variable in their GLM applications. The resulting GLM cannot be called the 

multivariate GLM, but rather, a multicategorical response GLM. In addition, papers such as 

Bastien et al. (2005), Ding & Gentleman (2004), Marx (1996), Meyer et al. (2010) and Park et 

al. (2002) only deal with a single response variable in their PLS-GLM frameworks. Although 

Gersende & Lambert-Lacroix (2004) focused on binary responses, they also still use       -

variable in their discussed PLS-GLM framework. Seeing as more work is still needed on the 

development of a general framework for multivariate       GLMs, alternatively, one can 

take each of the response variables in     and model it using      , thereby having    univariate 

GLMs. However, the results obtained using this method cannot be taken as the (multivariate) 

GLM analysis for   .  

 

                                                        

For a response variable        , the PLSR model is expressed as       ̂   , where 

  ̂              from        . Although        ̂     looks exactly like the ordinary GLM 

     , performing PLS-GLM has the dimension reduction advantage as well as finding a 

(smaller) set of orthogonal latent variables      for the non-linear modelling of   . In this chapter, 

the orthogonal latent variables are denoted by     , to differentiate them from the orthogonal 

latent variables ( ) obtained under the standard PLS (Chapter   ). The PLS model can be 

extended to a GLM such that 

         ̂                   
where    ̂             is the PLS-GLM coefficient vector and both      and           are 

computed from the PLS-GLM. With   , a linearized form of the link function applied to   ,  

being used as the response variable in the IWLS procedure for the GLM, instead of    (see 
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Section     ), the objective function of PLS-GLM can be interpreted as follows. For    

       ,  

 maximize     (  
 
 
         

)     (  
 
 
      )   

 subject to      
       

 
 
       

    and      
   

   
 
 
       

  ,  
where           

,              and     . This function is solved using the PLS-

GLM algorithm. Unlike the PLS objective function, see Section     , the constraint imposed here 

involves the PLS scores     and the IWLS weight matrix  , i.e., ‖    
    ‖    and not 

‖  
 
 
   ‖   . Park et al. (2002) proposed an algorithm for a PLS-GLM. This algorithm is 

summarized below. Let             .  

              : 

(1) Start with an initial estimate for   . Let        denote this estimate. Then initialize  

     

         {  
   

}, for             and     defined in         

      
 

 
         

   
   

      
 

 
               

    
 

 
          

   .  
(2) For           , compute the PLS parameters (see Algorithm     ) as 

a.        
          

   
  ‖    

          
   

‖⁄   

b.        
              

c.        
    

              
d.                  

  
e.   

   
     

   
         . 

f. Store          ,          and    into the successive columns of    ,    and 
  

 . 
g. Compute         , where          

    
  . 

h. Get   ̂            . 
(3) Set          ̂         and update   , weight matrix     and     as 

          
      

 

 
             

           {  
     

}, for     defined in         

   
     

    
      

  

  
     . 

(4) Check whether the change in successive estimates is sufficiently small. If not, return to 

step (2), with       . 

(5) Once convergence is reached, select the final number of components   , call this   , and 

take     columns of    ,     and    
  to fit       .  
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This algorithm can also be written using the SIMPLS algorithm (see Algorithm     ). The only 

difference is how the PLS parameters in step (2) are computed. Here, the objective function can 

be expressed as  

 maximize                         
          

subject to      
       

 
 
           and      

   
   

 
 
       

  ,  
where        . 

              : 

(1) Start with an initial estimate for   . Let        denote this estimate. Then initialize 

     

         {  
   

}, for             and     defined in         

      
 

 
         

   
   

      
 

 
               

    
 

 
          

   .  
(2) For           , compute the PLS parameters (see Algorithm    ) as 

a.        , by the    , for       
       

   
   

b.     [  ] 
c.        ‖    ‖⁄  
d.      

        
e.        

    
        

f.               
    

    
    .  

g. Store          ,         ,          and    into the successive columns of 
   ,   ,     and    

 . 
h. Get   ̂            .  

(3) Set          ̂         and update   , weight matrix     and     as 
          

      
 

 
             

           {  
     

}, for     defined in         

   
     

    
      

  

  
     . 

(4) Check whether the change in successive estimates is sufficiently small. If not, return to 

step (2), with       . 

(5) Once convergence is reached, select the final number of components   , call this   , and 

take     columns of    ,     and    
  to fit       .  

 

                                             

The PLS biplot, see Chapter   , can be used as a graphical tool for displaying the PLS-GLM of a 

data set. For a pair of predictor and response samples     and   , both samples will be 
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interpolated into the biplot space using the equation          ̅    . To trace the prediction 

biplot axes for the     original predictor variable, values of    
        are substituted into 

the expression     

   
     

    
  

   , where      is the unit vector with zeros except for a one in the     

position. Here, with         ,          . Any point predicting     
 for the response 

variable will have     
   

   , with the biplot axis of the form     . If the value     
 is 

predicted,       
      and     

    
    so that the marker    

 on the response prediction 

biplot axis is given by  
   

   
    

  . The values      
 and     

 are in terms of the centred samples. 

Hence, calibration markers are fitted, where        
  ̅   and        

  ̅  are sensible 

scale marker values. Furthermore, the estimated PLS-GLM coefficient vector   ̂             

is obtained by projecting    
    onto the prediction axis defined by    

 . 

 

             

The following example is an illustration of the PLS biplot to a Poisson GLM, using the possum 

diversity data from Lindenmayer et al. (1991). This data shows a study done on the diversity of 

arboreal marsupials (possum) in the montane ash forest in Australia. Different species of possum 

were observed on one hundred and one (different) sites. For each site, nine variable measures 

(Diversity, Shrubs, Stumps, Stags, Bark, Habitat, BAcacia, Eucalyptus and Aspect) were 

recorded. With the last two measures being categorical variables, they were further splited up, 

using dummy variables, to form additional variables. As a result, five additional variables were 

created. Thus, the variable measures are Diversity, Shrubs, Stumps, Stags, Bark, Habitat, 

BAcacia, E.regnans, E.delegatensis, E.nitens, NW-NE, NW-SE, SE-SW and SW-NW. The aim 

of this study is to model the relationship between Diversity and the other variables. The one 

hundred and one sites are assigned as the samples. Diversity is assigned as the response variable, 

while the remaining variables are assigned as the predictors. Hence,            and 

           in this example. This data can be obtained from the robustbase package in  , 

downloaded freely from CRAN, http://cran.r-project.org/. Since the Diversity measure is a count 

variable, a Poisson PLS-GLM is fitted. Here,              and        . Using Algorithm 

   , the resulting PLS biplot is shown in Figure     , along with a representation of the variance 

of each variable. In this display, the samples of the data are given by the red points, while the 

purple points are for the (PLS-GLM) coefficient points. The predictor variables of the data are 

represented by the blue axes, while the response variable is represented by the black axis. 

http://cran.r-project.org/
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Comparing the length of the thicker arrows (vectors) to each other, Shrubs, Stumps, NW-NE and 

E.delegatensis can be said to have a large standard deviations. 

 
Figure       The PLS biplot of a Poisson PLS-GLM of the possum diversity data. 

In addition, several relationships can be deduced from this biplot. To start with, the relation 

between Diversity and predictors BAcacia, SE-SW, Habitat, Bark and Stags can be seen. Also, 

the relation within predictors E.regnans, E.nitens, NW-SE and SW-NW; and within predictors 

Shrubs and E.delegatensis can be seen. Another display of Figure     , where the sample point 

names have been excluded, is shown in Figure     .  

Orthogonally projecting each of the coefficient points   , for            , in Figure      onto 

the Diversity axis yields the coefficient values. As discussed in Subsection         and Section 

    , the purple markers on the Diversity axis are used to read off these values. A zoomed-in 

display of the coefficient points, shown below in Figure     , can be used for easier orthogonal 
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projections. For example, coefficient points       and      projected orthogonally onto the 

Diversity axis yields        and        respectively, as shown in Figure       below.  

 
Figure       A zoomed-in display of the coefficient points in the PLS biplot of a Poisson  

PLS-GLM of the possum diversity data. 
 
With a single response variable (   ), such dotted lines in Figure       can easily be used to 

read off the values for the regression coefficients. In most PLS biplots, where there are      

response variables, dotted lines connecting all the coefficient points to the      response axes 

would be confusing and the plot would become too messy. The obtained coefficient values of the 

possum diversity data are shown in Table     , under the PLS-GLM column. From Table     , 

variable Stags can be said to have a high effect on Diversity, followed by Habitat, Bark, SW-

NW and BAcacia. However, the other variables can be seen to have a low to no effect, with 

NW-NE having the lowest effect.  
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Figure       The PLS biplot of a Poisson PLS-GLM of the possum diversity data, without  
  sample names. 

Table         The predicted coefficient values. 

 
PLS-GLM 

SIMPLS fitted 

PLS-GLM 

  :  Shrubs  0.026  0.026 

  :  Stumps -0.067 -0.067 

  :  Stags  0.214  0.214 

  :  Bark  0.153  0.153 

  :  Habitat  0.195  0.195 

  :  BAcacia  0.106  0.106 

  :  E.regnans -0.016 -0.016 

  :  E.delegatensis -0.009 -0.009 

  :  E.nitens  0.039  0.039 

   : NW-NE -0.001 -0.001 

   : NW-SE  0.039  0.039 

   : SE-SW  0.066  0.066 

   : SW-NW -0.128 -0.128 
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Furthermore, for comparison reasons, a separate PLS-GLM using the SIMPLS algorithm 

discussed in Algorithm       was fitted and the resulting PLS biplot is shown in Figure     .  

 
Figure       The PLS biplot of a Poisson PLS-GLM of the possum diversity data, fitted  

using the SIMPLS algorithm (Algorithm     ).  
 

Comparing Figure       to Figure     , similar deductions can be observed. This is obvious, 

seeing as both biplot displays are identical. However, this is not always the case for all data sets. 

For example, consider Figures        and        in Chapter   . Although the same data was used 

for the PLS-GLM fitted using Algorithm       and the SIMPLS algorithm (Algorithm     ), 

different biplot displays were obtained.  

 

                        -           

The following example is an illustration of the PLS biplot to five separate Poisson GLMs, using 

the bio-env data from Greenacre (2010). A copy of this data can be found on the dropbox link 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya 

under the "Data Sets" folder or at 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya
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http://www.multivariatestatistics.org/data.html. 

This data shows the biological species and environmental variables observed at a particular 

location on a sea-bed. There were five groups of species (A, B, C, D and E) considered, and four 

environmental variables (Pollution, Depth, Temperature and Sediment) were used. The first 

three environmental variables are measured on a continuous scale, while the sediment variable is 

a categorical variable that classifies the substrate of the sample into three groups - Sand, Clay 

and Grave. For this reason, the sediment variable was coded as a set of dummy variables with 

Clay left out as the reference category, thereby increasing the number of environmental variables 

used to five (Pollution, Depth, Temperature, Sediment_S and Sediment_G). The thirty sites are 

assigned as the samples. The species and the environmental variables are the response and 

predictor variables respectively. Thus, the bio-env data can be viewed as a data matrix        

   of predictors and a matrix           of responses. As the response variables    are counts, 

the GLM methodology discussed in Section       applies. Each single response variable    is 

analyzed separately since the discussed GLM methodology is only developed for single response 

models. Thus, five separate (Poisson) PLS-GLMs, using Algorithm     , will be fitted for the 

five separate response variables. The resulting PLS biplots are shown in Figures       to     , 

along with a representation of the variance of each variable. In these biplot displays, comparing 

the length of the thicker arrows (vectors) to each other, Temperature can be said to have a large 

standard deviation, while Pollution has a small deviations. Although the same environmental 

variables were used in the PLS-GLMs, the approximated values of the environmental variables 

obtained from one PLS-GLM differ from those obtained in another PLS-GLM. This can be 

observed by the different biplot displays in Figures       to     . The predicted coefficient values 

from the five PLS-GLMs are shown below in Table     .  

 
From the five PLS biplots, Figures       to     , a negative relation exists between environmental 

variable Pollution and Species A, B, and D. On the other hand, a positive relation exists between 

Table         The predicted coefficient values from the five Poisson PLS-GLMs.  

 
A B C D E 

  :Pollution -0.537 -0.339  0.274 -0.274 -0.379 

  :Depth -0.108  0.067  0.027  0.177 -0.392 

  :Temperature -0.111  0.019 -0.058  0.065  0.102 

  :Sediment_S*  0.000  0.000  0.000  0.000  0.000 

  :Sediment_G*  0.000  0.000  0.000  0.000  0.000 

*   indicating Clay 

http://www.multivariatestatistics.org/data.html


6-14 
 
 

Species E and environmental variable Temperature, but a negative relation between Species C 

and Temperature.   

 
Figure       The PLS biplot of a Poisson PLS-GLM for species A of the bio-env data.  
 

 
Figure       The PLS biplot of a Poisson PLS-GLM for species B of the bio-env data. 
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Figure       The PLS biplot of a Poisson PLS-GLM for species C of the bio-env data. 

 

 
Figure       The PLS biplot of a Poisson PLS-GLM for species D of the bio-env data. 
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Figure       The PLS biplot of a Poisson PLS-GLM for species E of the bio-env data. 

It is possible to merge these biplot displays together, to give an impression of what the PLS 

biplot would look like if a multivariate PLS-GLM framework was available and done on the 

data. This merging can be done using the Procrustes Analysis (PA) by Gower & Dijksterhuis 

(2004). The general idea of PA is to superimpose many configurations into one configuration. 

Consider a matrix            and a matrix          , where        . PA, 

specifically, Orthogonal Procrustes Analysis (OPA) in its simplest form transforms     to best 

fit    . This transformation is done using an orthogonal matrix           . To be precise, 

OPA seeks to find an orthogonal matrix    such that ‖      ‖ is minimized. Here,  
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 }                          

    {    
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   }     {  
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where       . Since  ,   and   are orthogonal, this implies that          . 

Therefore,         , implies that 

      .                

Figure        below illustrates the OPA, using two different triangles. In this figure,    (blue 

triangle) has been rotated anti-clockwise to best fit     (black triangle). As a result, triangle 

   
     is obtained. 

 
Figure      A schematic of OPA on two dissimilar triangles. 
 
It is possible to apply OPA to more than two matrices. Let             denote these 

matrices. The general idea of OPA is still the same, except here, matrices             is 

found such that 

  ∑ ‖        ‖  (
   

 
)
 
∑ ‖         ‖

 
   

 
            

is minimized over all    , where  
   

 

 
 ∑     

 
     and     

 

   
 ∑     

 
     

are the group-average and  -excluded group-average configurations. In other words, 

           is transformed to best fit   , using            . This situation is referred to as 

the Generalized Orthogonal Procrustes Analysis (GOPA) and the solution is based on an 

iterative application of OPA. For further in-dept details on GOPA, see Gower & Dijksterhuis 

(2004). With the idea of superimposing the five PLS biplot displays shown in Figures       to 

     into one, the problem can be interpreted as finding             such that 

  ∑ ‖   
      ‖ 
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is minimized, where                   and    
 

 
 ∑    

  
 
   . Note,     

 is the   -

loadings matrix of each of the (five) PLS biplot displays shown in Figures       to    . Since in 

these figures (Figures       to     ),  

  samples points (red) are represented by the rows of    , 

  coefficient points (purple) are represented by the rows of     and  

  axes (blue and black) are represented by the rows of  [
  

  
 ], 

in the forthcoming combined display,  

  samples points (red) will be represented by the rows of     
  , 

  coefficient points (purple) will be represented by the rows of      
   and 

  axes (blue and black) will be represented by the rows of  [
   

  
 
 

]    

for           .  

Applying GOPA to Figures       to       brings about Figure      , without the coefficient 

points. In this figure, there are five (different) Pollution, Depth, Temperature, Sediment_S and 

Sediment_G axes, resulting from the five (different) PLS biplots in Figures       to     . 

Likewise, five different sets of sample points are shown in this figure, due to the five different 

PLS biplots in Figures       to     . However, since there is only one specie variable (black axis) 

per PLS biplot display in Figures       to     , only one A, B, C, D and E axes will be in the 

combined display, as seen in Figure      . To differentiate between these sets of environmental 

variables and sample points, an addition of .a, .b, .c, .d and .e have been added to their respective 

names in Figure      . Here, .a, .b, .c, .d and .e means that the respective entities are from 

Figures     ,    ,    ,      and      respectively. From the combined display (Figure      ), one 

can conclude that there could be a relation between Pollution and species A, B and D, as well as 

between Temperature and species E and C. However, since Figure        is not the PLS biplot 

display of a multivariate PLS-GLM done on the bio-env data, these conclusions cannot be 

authenticated. Another presentation of the combined display (Figure      ) is shown in Figure 

     , where only the sample group average points are shown, along with the combined axes. 

These group average points are defined by the     rows of    
 
 ∑    

  
 
   . Here,     , hence, 

there are     different group average points in Figure      . 
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Figure      The GOPA display of the PLS biplots in Figures       to     , without the coefficient points.  
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Figure      The sample group average points of the GOPA display of the PLS biplots in Figures       to     , without the coefficient points. 
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Figure      The coefficient points of the GOPA display of the PLS biplots in Figures       to     .  
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Furthermore, there will be five different sets of coefficient points in the combined display 

(Figure      ) as a result of the five different PLS biplot displays in Figures       to     . These 

coefficient points are not shown in the combined display (Figure      ), for clear visibility of the 

sample points, but are shown above in Figure      . A representation of the coefficient group 

average points are shown in Figure        as well. These group average points are defined by the 

   rows of   
 
 ∑    

  
 
   , thus, there will be       different coefficient group average points 

in Figure      . To get an impression of the multivariate PLS-GLM coefficient values, each of 

the purple points in Figure        is projected onto their respective axes and their value read off 

using the purple markers on these axes. The respective axis name on which to project on, for a 

particular coefficient point, is given alongside the coefficient’s name. For example, coefficient 

points        and        are to be projected only onto axes D and A respectively, and not onto 

axes B, C or E. However, since the univariate PLS-GLM (Algorithm     ) was used in fitting the 

five species separately in Figures       to     , after which their resulting PLS biplot displays 

were combined together in Figure       (and Figure     ), the predicted coefficient values 

obtained from Figure        are still the univariate PLS-GLM coefficients. Therefore, the 

coefficient values obtained from Figure        are still the values shown in Table     . 

 

             

When there is the need to model a set of response variables from a (very) large set of predictor 

variables and the relationship between the response variables and predictors follows a non-linear 

function, the PLS-GLM can be a useful tool. Results found by the PLS-GLM of a data set can be 

visualized graphically using biplots, specifically, the PLS biplot.  

Furthermore, this chapter only considered a PLS-GLM with       response variables. It can 

be expanded to       response variables, but more work is needed on the development of a 

general framework for multivariate       GLMs and PLS-GLMs. 
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In biological data, such as genomics, the set of predictor variables can be very large and 

sometimes strongly correlated. As a result, for the modelling of the response variables, a careful 

variable selection of the predictors is necessary. Methods such as PLSR can be useful for 

modelling such data. For the application of PLS on biological data, Lê Cao et al. (2008) 

proposed a sparse version of PLS to help facilitate biological interpretations for biologists. They 

termed this method Sparse Partial Least Squares (SPLS). This method is based on the      

application to PLS and the addition of a sparsity constraint with a soft-thresholding 

penalization. More precisely, given a set of predictor variables         and a set of response 

variables        , the     is applied on         and then the PLS  -weight vector 

         or         and  -weight vector         are subjected to the specified sparsity 

constraint.  

In this chapter, a brief introduction to the principle of the     application to PLS approach and 

soft-thresholding penalization is provided, before the SPLS method is discussed. In addition, the 

extension of SPLS to the GLM framework is discussed. This is useful when a non-linear 

relationship exist between the variables. As a visual tool for displaying the SPLS and/or the 

Sparse Partial Least Squares-Generalized Linear Model (SPLS-GLM) of a data set, the PLS 

biplot (Chapter   ) is proposed. 

 

                                                                      

Consider a set of predictor variables          and a set of response variables         . In 

this approach, the     of         is performed once (Lê Cao et al., 2008). By the    , 

       .              

The        and       PLS weight vectors      and     are then obtained as the first left and 

right singular vectors of     respectively. Thereafter, the first set of score vectors           and 

         and loading vectors            and           are computed, as in Algorithm     . 

For the next sets of PLS vectors, the matrix     in       is replaced by 

                     
             

where       is the          singular value of      ,            and        in      .  
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        -                          

Consider a penalty parameter   and a set of numbers          . In general, a soft-

thresholding penalization assigns every number in    closer to zero than     a zero value, while a 

number farther from zero than     is assigned the value obtained after subtracting the number 

from   . To illustrate, consider                       and     . Applying the soft-

thresholding penalization on     yields                .  

 

                                 

Keeping the objective of PLS in mind (Section     ), the objective function for the SPLS can be 

expressed as follows. For           ,  

 maximize                         
          

 subject to        
           and        

           
where   

 
   

                    | 
    |         

   
                    | 

    |          
         

       ,              and     . The SPLS objective function can be solved by using 

the SPLS algorithm (Lê Cao et al., 2008).  

The expressions in       are the Least Absolute Shrinkage and Selection Operator (LASSO) 

penalization function for the weight vectors      and     (Tibshirani, 1996). Hastie et al. (2009) 

and Yoshida et al. (2013) termed these functions the soft-thresholding penalization functions, 

due to the LASSO performing a ‘soft’ version of the Best Subset penalization (another 

penalization function). In the Best Subset penalization, which is termed the hard-thresholding 

penalization, all variables with coefficients smaller than the       largest coefficient are removed 

from the analysis, whereas in the LASSO penalization, only variables having non-zero 

coefficients are selected and used. Thus,       can be referred to as the soft-thresholding LASSO 

penalty function for the weight vectors      and    . The notation discussed in Chapter   is 

applicable in this section. The SPLS algorithm by Lê Cao et al. (2008) is summarized as follows. 

              : 

(1)      
     and     . 

(2) Compute            and           as 
        ,   by the      
     [  ] 
     [  ]. 

(3) Penalize            and            with a soft-thresholding penalization       as  
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       ‖   
      ‖⁄  

       
    

   
     ‖   

   
    ‖⁄  

            where   

        
                  |    |        and  

        
   

            
     |  

   |         
are the soft-thresholding penalization functions, with penalty parameters     and     . 

(4) Check whether       
  and       

  converges. If not, return to step (3), with           
 

and          
. Here, convergence is reached when ‖     

   ‖ ‖  ‖⁄  and 
‖     

   ‖ ‖  ‖⁄  are both small, say, less than     . 
(5) Compute          ,         ,           and            as 

              
‖       

‖⁄  
              

‖       
‖⁄  

      
    

      
   . 

(6) Update          , for the next latent variable, as 
               

    
    

    .  
(7) Return to step (2), with       , to compute the next latent variable until       latent 

variables have been reached. 

(8) Store       
,       

,   ,   ,     and     into the successive columns of    ,   ,   ,   , 
    and    . 

Compared to the standard PLS (Chapter   ), SPLS has an additional advantage of performing 

variables selection, besides components extraction, in its analysis. In the standard PLS, using the 

NIPALS, kernel or SIMPLS algorithms, only components extraction is done in the analysis. One 

has to perform variables selection separately, using techniques such as the     (Section     ), 

prior to the PLS analysis. However, this is not the case in the SPLS analysis. Both components 

extraction and variables selection are done in the SPLS analysis. In the SPLS analysis, the 

variables selection is achieved by introducing the soft-thresholding LASSO penalization on the 

pair of   - and  -weight vectors      and          .  
 

                                                                

Although publications such as Chun & Keles (2010) and Tibshirani (1996) arbitrarily chose the 

values of the penalty parameters      and     in their applications, Hastie et al. (2009) and Lê 

Cao et al. (2008) suggested that these parameters should be chosen so that a minimum error of 

prediction is obtained. With this suggestion in mind, the following experiment is proposed. To 

choose a value for the penalty parameters      and    , the SPLS analysis of the data is performed 
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using various pairs         values, where        and      . Let     be the (desired) number 

of          pairings. The        value (Section     ) per SPLS analysis is recorded. Since there 

are     number of pairs        , there will be   different SPLS analyses performed and    

different        values obtained. Afterwards, the pairs         with the lowest        value 

are recorded. Let     
     

   denote a pair having the lowest        value. Thereafter, the 

value for      and       to be used in the final SPLS analysis of the data is chosen as the value of  

  
   and    

 , with the lowest        value.  

The main purpose of      and      is in the variables selection part of SPLS. With the penalty 

functions 

        
            |    |         and 

       
        

     |  
   |      , 

if the number of   -variables ( ) is small, then there is no need to perform variables selection on 

the  -variables. Thus,        and the search in the abovementioned experiment would be for 

the value of      that gives the minimum       value.  

For         , 

                     |    |            and 
      

            
     |  

   |        
   . 

Then        
 and        

 in step (3) becomes 
        

          ‖        ‖⁄       ‖    ‖⁄   and 
       

      
     ‖     

    ‖⁄    
    ‖  

   ‖⁄ ,  
which is equivalent to the SIMPLS algorithm (Algorithm     ), with           and     

 [  ] (step (2)),  

                         

       
      [  ] ‖     [  ]‖⁄

   [  ]   ‖ [  ]  ‖⁄             
 
  

 
 

     ‖    ‖                          ⁄

   ‖  ‖⁄                                    

   

where      [  ]. Likewise, 

                         

       
      [  ] ‖     [  ]‖⁄

   [  ]   ‖ [  ]  ‖⁄                
 
  

 
 

     ‖    ‖                           ⁄

   ‖  ‖⁄                                    

   

for      [  ]. 
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For a response variable         , the SPLS regression model is expressed as        ̂    , 

where   ̂                 from Algorithm     . This model can be extended to a GLM such 

that 

         ̂                   

where  ̂              is the SPLS-GLM coefficient vector and both          and 

         are computed from the SPLS-GLM. With   , a linearized form of the link function 

applied to   ,  being used as the response variable in the IWLS procedure for the GLM, instead 

of    (see Section     ), the objective function for the SPLS-GLM can be expressed as follows. 

For           ,   

 maximize     (  
 
 
         

)     (  
 
 
      )   

 subject to     
    

(      
)     and    

    
(      

)     
where   

 
   

(      
)      (      

)(|      
|    ) 

   

   
(      

)      (      
)(|      

|    ) 
 
   

         
,             and     . This function is solved using the SPLS-GLM 

algorithm. The SPLS algorithm (Algorithm     ) is employed into a GLM framework, to form 

the SPLS-GLM algorithm, as follows. Let             . The notation discussed in Chapter 

  is applicable in this section. 

              : 

(1) Start with an initial estimate for   . Let        denote this estimate. Then initialize  
     

         {  
   

}, for             and     defined in         

      
 

 
         

   
   

      
 

 
               

    
 

 
          

     

      
       

   .  
(2) For           , compute the SPLS parameters as 

a.        , by the       
b.      [  ]  
c.      [  ] 
d.       

    
       ‖   

      ‖⁄   and  
      

    
   

     ‖   
   

    ‖⁄ ,  
                         where   

                     
                  |    |        and  
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     |  

   |         
are the soft-thresholding penalization functions, with penalty parameters     and 
    . 

e. Check  whether       
  and       

  converges. If not, return to step (e), with 
          

 and          
. 

f.             
‖         

‖⁄  
g.        

             

h.        
    

             
i.                  

  
j.   

   
     

   
          

k.          
         

   . 
l. Store       

      ,          and    into the successive columns of    ,    
and    

 . 
m. Compute         , where          

    
   

n. Get   ̂              
(3) Set          ̂          and update   , weight matrix    and     as 

          
      

 

 
             

           {  
     

}, for     defined in         

   
     

    
      

  

  
     . 

(4) Check whether the change in successive estimates is sufficiently small. If not, return to 

step (2), with       . 

(5) Once convergence is reached, select the final number of components   , call this    , 

and take    columns of    ,     and    
  to fit      .  

 

                                                

Proposing the PLS biplot as a graphical tool for displaying the SPLS of a data set, the PLS biplot 

can be implemented in a SPLS framework as follows. Given a pair of predictor and response 

samples     and   , these samples will be interpolated into the biplot space using the equation 

   
      ̅    . To trace the (prediction) biplot axes for the     original predictor and 

response variables, values of     
         and     

         are substituted into the 

expressions    

   
     

    
  

     and    

   
     

    
  

    respectively. Here, calibration markers are 

fitted, where        
  ̅   and        

  ̅    are sensible scale marker values. 

Furthermore, the estimated SPLS coefficients matrix, defined as   ̂         
  , is obtained by 

projecting     
     onto the prediction axes defined by    . 
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Likewise, with         ,          . For the SPLS-GLM framework, a pair of predictor 

and response samples     and    are both interpolated into the biplot space using the equation 

   
      ̅    . Values of     

         and     
        are substituted into the 

expressions  
   

   
    

    and     

   
     

    
  

   , to trace the prediction biplot axes for the original 

response variable and       original predictor variable respectively. The values      
 and     

 are 

in terms of the centred samples. Therefore, calibration markers are fitted, where        
  ̅   

and        
  ̅  are sensible scale marker values. In addition, the estimated SPLS-GLM 

coefficient vector   ̂               is obtained by projecting     
     onto the prediction axis 

defined by    
 . 

 

             

The following example is an illustration of the PLS biplot to a SPLS and a SPLS-GLM, using 

the cereal data from Varmuza & Filzmoser (2009) and the possum diversity data discussed in 

Section      respectively. The cereal data shows the infrared spectra and chemical properties 

measurements of fifteen cereals. There were one hundred and forty five infrared spectra taken, 

and six chemical properties (Heating.value, C, H, N, Starch and Ash) used. The fifteen cereals 

are assigned as samples, while the infrared spectra measurements and chemical properties are the 

predictors ( ) and responses ( ) respectively. Thus, the cereal data can be viewed as a     

     data matrix, comprising of an             matrix and a           matrix. This data 

can be obtained from the chemometrics package in  , downloaded freely from CRAN, 

http://cran.r-project.org/.  

 
                                      

Before performing an SPLS analysis on this data, the experiment described in Subsection         

was performed, using Algorithm       Different pairs of             and              are 

used in this experiment. When pair             is used, it means that no thresholding is 

applied in the SPLS analysis. A plot of the obtained         values is shown below in Figure 

    , along with their respective      and     value. When evaluating the       for different 

combination of      and     values (Figure     ) obtained from this experiment, it appears that 

different      does not have much of an effect, if any at all. This is not surprising, since     . 

Thus,        will be used in the reminder of this example and much attention is given to the 

value of     that gives the lowest         value. For this reason, the experiment was re-ran 

http://cran.r-project.org/
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using             and      . A plot of the obtained        values is shown below in 

Figure     . Since the         value, which is based on the differences between the actual and 

the fitted  -values 

       √∑ ∑ (     ̂  )
  

   
 
    ⁄ ) 

(see Section     ), measures the variability of the differences between the   - and   ̂-values, 

these differences have to be as small as possible, to get a ‘good’ prediction of   . A ‘good’ 

prediction can be described as the prediction obtained when the   ̂-values are similar to those in 

  . The smaller the         value, the better the prediction, with a zero value indicating a 

perfect prediction. 

 
Figure       A    plot of            ,             and their respective         value,  
  for the cereal data. 
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 If a smaller       value is obtained, it means that the values in   ̂  are similar to their 

counterparts in   . However, if the values in   ̂  are (very) different from those in   , the 

difference between    and   ̂  will be large. As a result, the       value will be large, 

indicating that the prediction is not a good prediction. Hence, one desires the        value to 

be as small as possible, to have a better prediction. The closer to     the value is, the better, 

where     indicates a perfect prediction. The ‘worst’       value that can be obtained is when 

the   ̂-values are all   , for     . In this situation,       √∑ ∑ (   )
  

   
 
    ⁄  , and has a 

value far from   . An example of this can be seen in Figure       below, at       . This is 

because the values of the  -weights matrix     are set to zero, due to the soft-thresholding 

penalization imposed on it. In this plot, the        value starts off at a value of      , when 

     , and decreases to      , at       . As the value for      further increases, so does the 

      value, but stays constant after       . At this point, an       value of       is 

obtained. From Figure     , the minimum        value of        is observed at       . Thus, 

for the SPLS analysis of the cereal data,         and      . 

 
Figure       A plot of              values and their respective         value, for the  

cereal data. 
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Figure       The PLS biplot for a SPLS of the cereal data (Algorithm     ), with         and      . 
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With          and      , one hundred and eight spectra ( -variables) were selected in the 

resulting SPLS analysis, out of the one hundred and forty five spectra used. For this reason, the 

number of   -variables used in the resulting biplot display (Figure     ) was reduced from one 

hundred and forty five to one hundred and eight, i.e.,           . Using Algorithm     , with 

        and      , the resulting PLS biplot is shown above in Figure     . A representation 

of the variance of each variable is also shown in Figure     . Comparing the length of the thicker 

arrows (vectors) to each other, C and Heating.value can be said to have a larger standard 

deviation, followed by H. Axis tick markers have been excluded from Figure     . The high 

number of selected spectra,    , can be seen in the display. Orthogonally projecting each red 

point in the biplot onto the axes will give the approximated values of the cereal data. Samples 

B3, B1, B2 and W1 can be said to have a small standard deviation, compared to the others. 

Although there is no enormous reduction in the number of   -variables (    to    ), the 

resulting display (Figure     ) is useful in revealing the structure in the data. The (selected) 

spectra can be divided into three groups, namely,   

group  : 
X1518.0, X2182.0, X1566.0, X2174.0, X1574.0, X1614.0, X1510.0, X2166.0, X1974.0, 
X1982.0, X1630.0, X1238.0, X1966.0, X1230.0, X1582.0, X1958.0, X1590.0, X2134.0, 
X1622.0, X2102.0, X1606.0, X2110.0, X1830.0, X1814.0, X2158.0, X1942.0, X1638.0, 
X1950.0, X1214.0, X1502.0, X1494.0, X2150.0, X2126.0, X2118.0, X1486.0, X1206.0, 
X1254.0, X1246.0, X2142.0, X1598.0, X1646.0, X1798.0, X1262.0, X1782.0, X1822.0, 
X1806.0, X1478.0, X1222.0, X1790.0, X1774.0,  X1270.0, X1838.0 and X1654.0; 

group  : 
X2046.0, X2054.0, X2062.0, X2070.0, X2038.0, X2030.0, X2078.0, X2214.0, X2230.0, 
X1278.0, X2086.0, X2222.0 and X2238.0; 

group  : 
X1750.0, X1758.0, X1158.0, X1150.0, X1134.0, X1142.0, X1174.0, X1182.0, X1190.0, 
X1326.0, X1334.0, X1406.0, X1198.0, X1438.0, X1166.0, X1126.0, X1414.0, X1446.0, 
X1430.0, X1342.0, X1350.0, X1454.0, X1926.0, X1318.0, X1398.0, X1694.0, X1918.0, 
X1382.0, X1910.0, X1374.0, X1366.0, X1390.0, X1686.0, X1422.0, X1310.0, X1358.0, 
X1702.0, X1302.0, X1710.0 and X1678.0. 

These deductions can be seen by the closeness of the axes. From Figure     , group   can be said 

to be negatively related to groups   and  . In addition, it is negatively related to chemical 

properties Starch and C, but positively related to property N. These relationship directions can be 

seen by the directions of the axes. It can also be deduced from the positive or negative sign 

infront of their respective coefficient values in Table     . On the other hand, group   can be said 

to be positively related to group   and negatively related to group  . With respect to the 
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chemical properties, group   can be is positively related to properties H and Starch, but 

negatively related to properties N and Ash. Group   can be said to be positively related to 

property C. Given their position in Figure     , one can consider spectra X1470.0 and X1662.0 

as outliers. Compared to the above listed spectra groups, from Figure     , spectra X1470.0 and 

X1662.0 can be said to be positively related to group  , but negatively related to groups   and  .  

Furthermore, from Figure     , the SPLS coefficient points   , for             , are 

projected onto the axes representing the chemical properties (in black). Using a zoomed-in 

display of the coefficient points, shown in Figure       below, the obtained coefficient values of 

the cereal data are shown in Table     .  

 
Figure       A zoomed-in display of the coefficient points in the PLS biplot for a SPLS of 

the cereal data, with         and      .  

Figure       can be used for easier orthogonal projections of the coefficient points. For example, 

coefficient point      projected orthogonally onto the Heating.value, C, H, N, Starch and Ash 

axes yields     ,    ,     ,     ,       and       respectively, as shown in Figure     . Though 

only points    ,    ,    ,    ,    ,     ,     ,      and        can be seen clearly in this 
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display (Figure     ), the exact coefficient values can be obtained by printing out the coefficients 

matrix   ̂    . This matrix is shown in Table      below.  

 

Table        The predicted coefficient values.  
 

 
Heating.value C H N Starch Ash 

    X1126.0  0.1481  0.1578 -0.0168 -0.2673  0.3477 -0.2183 

    X1134.0  0.1531  0.1632 -0.0174 -0.2764  0.3596 -0.2258 

    X1142.0  0.1532  0.1633 -0.0174 -0.2765  0.3597 -0.2259 

    X1150.0  0.1514  0.1613 -0.0172 -0.2732  0.3554 -0.2231 

    X1158.0  0.1496  0.1594 -0.0170 -0.2700  0.3512 -0.2205 

    X1166.0  0.1493  0.1591 -0.0169 -0.2695  0.3506 -0.2201 

    X1174.0  0.1538  0.1639 -0.0174 -0.2776  0.3611 -0.2267 

    X1182.0  0.1632  0.1740 -0.0185 -0.2946  0.3833 -0.2407 

    X1190.0  0.1756  0.1871 -0.0199 -0.3169  0.4122 -0.2588 

     X1198.0  0.0709  0.0756 -0.0080 -0.1280  0.1665 -0.1045 

     X1206.0 -0.1692 -0.1804  0.0192  0.3055 -0.3974  0.2495 

     X1214.0 -0.1839 -0.1961  0.0209  0.3320 -0.4319  0.2712 

     X1222.0 -0.1886 -0.2010  0.0214  0.3404 -0.4428  0.2780 

     X1230.0 -0.1898 -0.2023  0.0215  0.3426 -0.4456  0.2798 

     X1238.0 -0.1872 -0.1996  0.0212  0.3380 -0.4396  0.2760 

     X1246.0 -0.1780 -0.1897  0.0202  0.3213 -0.4179  0.2624 

     X1254.0 -0.1598 -0.1704  0.0181  0.2885 -0.3753  0.2357 

     X1262.0 -0.1412 -0.1505  0.0160  0.2550 -0.3317  0.2082 

     X1270.0 -0.1380 -0.1471  0.0156  0.2491 -0.3240  0.2035 

     X1278.0 -0.1157 -0.1233  0.0131  0.2088 -0.2717  0.1706 

     X1302.0  0.0026  0.0027 -0.0003 -0.0046  0.0060 -0.0038 

     X1310.0  0.0542  0.0578 -0.0061 -0.0979  0.1273 -0.0800 

     X1318.0  0.0762  0.0812 -0.0086 -0.1375  0.1788 -0.1123 

     X1326.0  0.0851  0.0907 -0.0096 -0.1537  0.1999 -0.1255 

     X1334.0  0.0884  0.0942 -0.0100 -0.1595  0.2075 -0.1303 

     X1342.0  0.0898  0.0957 -0.0102 -0.1621  0.2109 -0.1324 

     X1350.0  0.0907  0.0967 -0.0103 -0.1638  0.2131 -0.1338 

     X1358.0  0.0882  0.0940 -0.0100 -0.1592  0.2071 -0.1300 

     X1366.0  0.0800  0.0853 -0.0091 -0.1444  0.1879 -0.1180 

     X1374.0  0.0684  0.0729 -0.0078 -0.1234  0.1605 -0.1008 

     X1382.0  0.0600  0.0640 -0.0068 -0.1083  0.1409 -0.0885 

     X1390.0  0.0574  0.0612 -0.0065 -0.1036  0.1347 -0.0846 

     X1398.0  0.0596  0.0635 -0.0068 -0.1076  0.1400 -0.0879 

     X1406.0  0.0661  0.0705 -0.0075 -0.1194  0.1553 -0.0975 

     X1414.0  0.0745  0.0794 -0.0084 -0.1345  0.1750 -0.1099 

     X1422.0  0.0810  0.0864 -0.0092 -0.1463  0.1903 -0.1195 

     X1430.0  0.0835  0.0890 -0.0095 -0.1507  0.1960 -0.1231 

     X1438.0  0.0798  0.0850 -0.0090 -0.1440  0.1874 -0.1176 

     X1446.0  0.0656   0.0699 -0.0074 -0.1184  0.1540 -0.0967 
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Table       ContD.  
 

 
Heating.value C H N Starch Ash 

     X1454.0   0.0289   0.0308  -0.0033  -0.0521   0.0678  -0.0425 

     X1470.0   0.0539   0.0001  -0.1396   0.2590  -0.2563   0.3189 

     X1478.0  -0.1469  -0.1565   0.0166   0.2651  -0.3449   0.2165 

     X1486.0  -0.1162  -0.1238   0.0132   0.2097  -0.2728   0.1713 

     X1494.0  -0.0948  -0.1010   0.0107   0.1711  -0.2226   0.1398 

     X1502.0  -0.0722  -0.0770   0.0082   0.1303  -0.1695   0.1064 

     X1510.0  -0.0444  -0.0473   0.0050   0.0801  -0.1042   0.0654 

     X1518.0  -0.0091  -0.0097   0.0010   0.0164  -0.0213   0.0134 

     X1566.0  -0.0114  -0.0121   0.0013   0.0205  -0.0267   0.0168 

     X1574.0  -0.0542  -0.0578   0.0061   0.0978  -0.1272   0.0799 

     X1582.0  -0.0789  -0.0841   0.0089   0.1425  -0.1854   0.1164 

     X1590.0  -0.0951  -0.1013   0.0108   0.1716  -0.2232   0.1402 

     X1598.0  -0.1053  -0.1123   0.0119   0.1902  -0.2474   0.1553 

     X1606.0  -0.1128  -0.1202   0.0128   0.2035  -0.2648   0.1662 

     X1614.0  -0.1195  -0.1273   0.0135   0.2157  -0.2805   0.1761 

     X1622.0  -0.1259  -0.1342   0.0143   0.2273  -0.2956   0.1856 

     X1630.0  -0.1342  -0.1431   0.0152   0.2423  -0.3152   0.1979 

     X1638.0  -0.1445  -0.1541   0.0164   0.2609  -0.3394   0.2131 

     X1646.0  -0.1591  -0.1696   0.0180   0.2872  -0.3736   0.2346 

     X1654.0  -0.1770  -0.1887   0.0201   0.3195  -0.4156   0.2610 

     X1662.0   0.7100   0.1412  -1.5149   2.5454  -2.4450   3.2320 

     X1678.0   0.0458   0.0488  -0.0052  -0.0827   0.1076  -0.0676 

     X1686.0   0.0941   0.1003  -0.0107  -0.1698   0.2209  -0.1387 

     X1694.0   0.1062   0.1132  -0.0120  -0.1917   0.2493  -0.1566 

     X1702.0  0.0922  0.0983 -0.0105 -0.1665  0.2165 -0.1360 

     X1710.0  0.0310  0.0330 -0.0035 -0.0560  0.0728 -0.0457 

     X1750.0  0.0463  0.0494 -0.0053 -0.0836  0.1088 -0.0683 

     X1758.0  0.0266  0.0284 -0.0030 -0.0481  0.0626 -0.0393 

     X1774.0 -0.2255 -0.2404  0.0256  0.4071 -0.5296  0.3325 

     X1782.0 -0.2240 -0.2387  0.0254  0.4043 -0.5259  0.3302 

     X1790.0 -0.2076 -0.2213  0.0235  0.3748 -0.4876  0.3061 

     X1798.0 -0.1931 -0.2058  0.0219  0.3485 -0.4534  0.2847 

     X1806.0 -0.1809 -0.1928  0.0205  0.3265 -0.4248  0.2667 

     X1814.0 -0.1714 -0.1827  0.0194  0.3093 -0.4024  0.2526 

     X1822.0 -0.1717 -0.1830  0.0195  0.3099 -0.4031  0.2531 

     X1830.0 -0.1938 -0.2065  0.0220  0.3498 -0.4550  0.2857 

     X1838.0 -0.2433 -0.2593  0.0276  0.4392 -0.5713  0.3587 

     X1910.0  0.0021  0.0022 -0.0002 -0.0038  0.0049 -0.0031 

     X1918.0  0.0052  0.0056 -0.0006 -0.0094  0.0123 -0.0077 

     X1926.0  0.0020  0.0022 -0.0002 -0.0037  0.0048 -0.0030 

     X1942.0 -0.0836 -0.0891  0.0095  0.1509 -0.1963  0.1232 

     X1950.0 -0.0844 -0.0899  0.0096  0.1523 -0.1981  0.1244 

     X1958.0 -0.0792 -0.0844  0.0090  0.1430 -0.1860  0.1168 

     X1966.0 -0.0679 -0.0724  0.0077  0.1226 -0.1595  0.1002 

     X1974.0 -0.0512 -0.0545  0.0058  0.0924 -0.1202  0.0754 
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Consider the possum diversity data discussed in Section     . Here, the Diversity variable is 

assigned as the response variable, while the remaining variables are assigned as the predictors. 

That is,             and           . With only       -variable, as discussed in 

Subsection       , there is no need to perform variables selection on the  -variable. As a result, 

       throughout this example and much attention is given to the value of       that gives the 

lowest       value in the experiment described in Subsection       . This experiment is 

performed using Algorithm      . Since the Diversity variable is a count variable, the SPLS-

GLM analyses performed in this experiment are Poisson-fittted, where               and 

      .  Figure       shows a plot of the obtained        values along with their respective 

    value. Here,             and      . From this plot, one can see that the minimum 

      value is found when        . 

Table       ContD.  
 

 
Heating.value C H N Starch Ash 

     X1982.0 -0.0254 -0.0270  0.0029  0.0458 -0.0596  0.0374 

     X2030.0  0.0676  0.0721 -0.0077 -0.1220  0.1587 -0.0997 

     X2038.0  0.1477  0.1574 -0.0167 -0.2665  0.3467 -0.2177 

     X2046.0  0.1868  0.1991 -0.0212 -0.3372  0.4386 -0.2754 

     X2054.0  0.2074  0.2210 -0.0235 -0.3743  0.4869 -0.3057 

     X2062.0  0.2155  0.2297 -0.0244 -0.3889  0.5059 -0.3177 

     X2070.0  0.2138  0.2279 -0.0242 -0.3859  0.5020 -0.3152 

     X2078.0  0.2098  0.2236 -0.0238 -0.3787  0.4926 -0.3093 

     X2086.0  0.0263  0.1381  0.2535 -0.7317  0.7969 -0.8038 

     X2102.0 -0.0595 -0.0634  0.0067  0.1074 -0.1397  0.0877 

     X2110.0 -0.1187 -0.1266  0.0135  0.2143 -0.2788  0.1751 

     X2118.0 -0.1342 -0.1431  0.0152  0.2423 -0.3152  0.1979 

     X2126.0 -0.1416 -0.1509  0.0160  0.2556 -0.3324  0.2087 

     X2134.0 -0.1405 -0.1497  0.0159  0.2536 -0.3298  0.2071 

     X2142.0 -0.1325 -0.1412  0.0150  0.2391 -0.3110  0.1953 

      X2150.0 -0.1180 -0.1257  0.0134  0.2130 -0.2770  0.1739 

      X2158.0 -0.0998 -0.1063  0.0113  0.1801 -0.2342  0.1471 

      X2166.0 -0.0730 -0.0778  0.0083  0.1318 -0.1715  0.1077 

      X2174.0 -0.0427 -0.0455  0.0048  0.0770 -0.1001  0.0629 

      X2182.0 -0.0152 -0.0162  0.0017  0.0274 -0.0356  0.0224 

      X2214.0  0.0622  0.0930  0.0550 -0.2779  0.3240 -0.2769 

      X2222.0  0.0580  0.1445  0.1861 -0.6187  0.6884 -0.6602 

      X2230.0  0.0089  0.1155  0.2459 -0.6750  0.7289 -0.7498 

      X2238.0 -0.1198  0.0351  0.3927 -0.7953  0.8056 -0.9543 
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Figure       A plot of            values and their respective         value, for the  

possum diversity data. 
 

 
Figure       A plot of           values and their respective         value, for the possum 

 diversity data. 
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Figure       above shows a plot of the       values obtained, after the experiment was re-ran 

using            and      . In this plot, the minimum       value of         is observed 

at        . Thus, for the SPLS-GLM analysis of the possum diversity data,          and 

     . In the resulting SPLS-GLM analysis (with          and      ), no values in the  -

weights matrix     was set to zero. This is not surprising, seeing as the number of   -variables 

(    ) can be considered as small. Using these penalty parameters (         and      ) 

and Algorithm     , the resulting PLS biplot is shown in Figure      below. Another display of 

Figure     , where the sample point names have been excluded is shown in Figure     .  

Orthogonally projecting each of the coefficient points   , for            , in Figure       onto 

the Diversity axis yields the coefficient values. As discussed in Subsection         and Section 

   , the purple markers on the Diversity axis are used to read off these values. A zoomed-in 

display of the coefficient points, shown in Figure       below, can be used for easier orthogonal 

projections. For example, coefficient points    and    projected orthogonally onto the Diversity 

axis yields        and        respectively, as shown below in Figure     . The obtained 

coefficient values of the possum diversity data are shown in Table     . With their respective 

sign denoting their respective effect direction on Diversity, all the variables can be said to have a 

positive effect on Diversity, except for Stumps, E.delegatensis, E.regnans, NW-NE and SW-

NW. Variable Stags can be said to have a high effect on Diversity, followed by Habitat, Bark, 

SW-NW and BAcacia. However, the other variables can be seen to have a low effect, with 

E.regnans and NW-NE having the lowest. 

 

Table         The predicted coefficient values.  

 
 Diversity 

  :  Shrubs  0.037 

  :  Stumps -0.063 

  :  Stags  0.233 

  :  Bark  0.152 

  :  Habitat  0.213 

  :  BAcacia  0.107 

  :  E.regnans -0.009 

  :  E.delegatensis -0.016 

  :  E.nitens  0.037 

   : NW-NE -0.006 

   : NW-SE  0.040 

   : SE-SW  0.062 

   : SW-NW -0.142 
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Figure       The PLS biplot of a Poisson SPLS-GLM of the possum diversity data  

(Algorithm     ), with           and      . 
 

 
Figure       The PLS biplot of a Poisson SPLS-GLM of the possum diversity data (Algorithm  
     ), with no sample point names, for           and      . 
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Figure       A zoomed-in display of the coefficient points in the PLS biplot for a SPLS- 

GLM of the possum diversity data, with           and      .  

Furthermore, from Figure     , the relation between Stags, Bark, E.delegatensis, Habitat, 

BAcacia, Diversity and SE-SW; between Shrubs and NW-NE, as well as between SW-NW, 

E.nitens and NW-SE can be seen. These deductions are similar to those observed from the PLS-

GLM biplot of this data (Figure     ). For example, the relation between Diversity, BAcacia, SE-

SW, Habitat, Bark and Stags can be seen in Figure     . This can also be seen in Figure     . 

Also, the relation between E.nitens, NW-SE and SW-NW can be seen in both biplots. However, 

the positions of the coefficient points are slightly different in both biplots. See Figures       and 

   , for clearer displays. This difference is due to the way the  -weights matrix,     in PLS-

GLM and     in SPLS-GLM, was computed in their respective algorithms (see Algorithms      

and     ). The estimated coefficient values from the SPLS-GLM analysis (Figure     ) are 

shown in Table     , while the coefficient values obtained from the PLS-GLM analysis (Figure 

    ) are shown in Table      (see Chapter   ). Although the same data set was used in the PLS-

GLM and SPLS-GLM analyses, one can notice the different biplot displays obtained as a result 

of the different GLM framework used. Hence, different PLS-GLM frameworks can result in 

different biplot displays. For the possum diversity data, there is no detriment in choosing 

Figure       over Figure     . If the minimum       value (      ) occurred when         
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and        , then one can conclude that the PLS-GLM analysis is more suitable for the data, 

than the SPLS-GLM analysis. However, this is not the case here, as the minimum       value 

(      ) occurred when          , indicating that an SPLS-GLM analysis is still suitable 

for this data. An SPLS-GLM analysis is recommended for a (very) large data set, like the colon 

data (see Chapter   ). 

 

             

With large data sets, PLS, SPLS and SPLS-GLM can be useful tools for analysis. Results found 

by the SPLS and/or SPLS-GLM of a data set can be visualized graphically using the PLS biplot. 

With different PLS and PLS-GLM frameworks, comes different PLS biplot displays.  

If some non-linear relationship exists between the   - and   -variables, the PLS-GLM or SPLS-

GLM analysis should be used, else, use the PLS or SPLS analysis, if it is a linear relationship. 

When the number of predictor variables and response variables are small, performing variables 

selection on these variables is unnecessary. As a result, the penalty parameters        and 

     , for the SPLS and/or SPLS-GLM analysis of the data. In addition, when this happens 

(      and      ), it indicates that a standard PLS (PLS-GLM) analysis is more suitable for 

the data, than the SPLS (SPLS-GLM) analysis. Furthermore, if (i)        and      , or (ii) 

       and      , or (iii)        and      , all these indicate that an SPLS or SPLS-GLM 

analysis is suitable for the data under consideration. In these situations, there is no detriment in 

choosing the PLS over the SPLS analysis and/or the PLS-GLM over the SPLS-GLM analysis. 

However, SPLS and SPLS-GLM are useful for (very) large data sets.  

Next, in Chapter   , a detailed discussion of three different applications of the PLS biplot is 

given. 
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In this chapter, the developed PLS biplot is applied to four different data sets, namely, the SOVR 

data from Umetrics MKS (2013), the Pima.tr data from Smith et al. (1988) and the colon data 

from Alon et al. (1999). A copy of the SOVR data set can be found on the dropbox link 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya 

under the "Data Sets" folder. The Pima.tr and colon data sets can be obtained from the MASS 

and plsgenomics packages respectively in   , downloaded freely from CRAN, http://cran.r-

project.org/. As is customary for PLS, both the predictor and response matrices of each data set 

is centred before the analysis. In addition, each of these data matrices is standardized by dividing 

each centred variable by their respectively standard deviation, as this facilitates the direct 

comparison of regression coefficients. In each of the resulting PLS biplots, the blue, black and 

purple calibration markers on the axes are fitted using sensible scale values 

    (     ̅ )   ,    (     ̅ )     and          

respectively.  

Furthermore, the use of the developed PLS biplot software (PLSbiplot1) is illustrated here, in 

Section     , using the ash and glass data from Varmuza & Filzmoser (2009), the cocktail data 

from Husson et al. (2013), the nutrimouse data by Martin et al. (2007) and the spider data from 

Van der Aart & Smeenk-Enserink (1975). The ash and glass data can be obtained from the 

chemometrics package in   , while the spider data can be obtained from the mvabund package. 

Likewise, the cocktail data can be obtained from the SensoMineR package, while the 

nutrimouse data can be obtained from the mixOmics package. These packages can be 

downloaded freely from CRAN, http://cran.r-project.org/. More details are given in Subsection 

     .   

 

                                     

This mineral sorting production data shows the quality evaluation of five hundred and seventy 

two processes used to produce a final product. Twelve process factors were used in the 

evaluation, namely, total load (TON_IN), load of grinder 30 (KR30_IN), load of grinder 40 

(KR40_IN), concentration mull (PARM), velocity of separator 1 (HS_1), velocity of separator 2 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya
http://cran.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/
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(HS_2), effect of grinder 30 (PKR_30), effect of grinder 40 (PKR_40), ore waste (GBA), load of 

separator 3 (TON_S3), waste from grinding (KRAV_F) and total waste (TOTAVF). The aim of 

this evaluation was to investigate the relationships between the process factors and the quality of 

the final product. Six output variables, amount of concentration type 1 (PAR), amount of 

concentration type 2 (FAR), distribution of concentration type 1 and 2 (r-FAR), iron in FAR 

(Percent_Fe_FAR), phosphor in FAR (Percent_P_FAR) and iron in raw ore (Percent_Fe_malm), 

were used to measure the quality of the final product. The processes are assigned as the samples, 

while the process factors and output variables are the predictor and response variables 

respectively. Thus, the SOVR data can be viewed as a (      ) data matrix, comprising of an 

  (      )  matrix and a    (     )  matrix. A copy of this data can be found on the 

dropbox link 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya 

under the "Data Sets" folder. 

 
                                

A   -component PLS was performed using the SIMPLS algorithm, but after inspecting the 

      plot in Figure       below (see Subsection       ), three components can be suggested as 

the final number of PLS components to use in the modelling of   .  

 
Figure      The       plot of the SOVR data.  
 

 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya
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Using the three components, the unimportant process factors are identified based on their      

values. The obtained      value for each predictor variable is shown below in Table     . After 

inspecting these     values, process factors KR40_IN, PKR_40 and KRAV_F were identified as 

unimportant factors for this analysis. For this reason, the number of predictor variables used in 

the (final) PLS biplot was reduced to nine, i.e.,   (     ).   

 
 
                                   

Although three components was suggested as the number of components to use for the 

modelling of the  -variables of this data, for the PLS biplot (Chapter  ), only two components 

are represented. While not discussed in this dissertation, using the newly reduced predictor 

variables    (     ), if a three-dimensional PLS biplot was used on this data, by (    ), the 

resulting biplot would have an overall quality value of       . The two-dimensional PLS biplot 

(Chapter   ) is shown in Figure       below. This display (Figure     ) has an overall quality 

value of       , which is virtually perfect and as good as using three components.  

A zoomed-in display of the samples, with a representation of the variance of each variable, is 

shown in Figure     . Observing the length of the thicker arrows (vectors) on the black axes, 

output variable Percent_Fe_malm can be said to have the smallest standard deviation, compared 

to the others. Likewise, comparing the length of the blue vectors, factor HS_1 has the smallest 

deviation. In addition, observing the angles between the blue vectors, all the (newly reduced) 

predictor variables can be said to be positively related to each other. Similarly, observing the 

angles between the black vectors, all the response variables can be said to be positively related, 

except for Percent_Fe_FAR.  

With an overall quality of        , various inter-variable relationships can be deduced from 

Figure     , such as the relation between output variable PAR and factors TOTAVF and GBA. 

Looking at the directions of these axes in the biplot, this relation is a positive one.  

Table         values of the process factors. 
TON_IN KR30_IN KR40_IN PARM HS_1 HS_2 

0.797 0.822 0.747* 1.130 1.563 1.531 

      
PKR_30 PKR_40 GBA TON_S3 KRAV_F TOTAVF 

0.789 0.686* 1.130 0.760 0.683* 0.809 

*            indicates important predictor variables.  
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Figure       The PLS biplot of the SOVR data, using components    and   .  
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Figure       The PLS biplot of the SOVR data (Figure     ), with zoomed-in display of the samples and variable vectors.  
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Also, the relation between process factor HS_2 and output variables Percent_P_FAR and 

Percent_Fe_FAR can be seen. The relation between factor HS_2 and Percent_P_FAR is a 

negative one, while the relation between factor HS_2 and Percent_Fe_FAR is a positive one. 

More deductions are listed in Subsection       .  

Sample names have been excluded from this biplot (Figure     ). Orthogonally projecting each 

red point in the biplot onto the axes will give the approximated values of the SOVR data. 

Similarly, the PLSR coefficient points   , for           , are projected onto the axes 

representing the output variables. However, the purple markers on these axes are used to read 

off these values, see Subsection       . For example, coefficient point      projected orthogonally 

onto the Percent_Fe_FAR axis yields a value of     , as shown in Figure     . The estimated 

regression coefficient values of the SOVR data are shown below in Table     .  

Alternatively, one can use the area biplot methodology, see Section     , to obtain the coefficient 

values. Here, the coefficients are estimated by the areas of triangles. However, it is not intuitive 

to estimate the exact area of a triangle visually, but as an exploratory tool, larger and smaller 

coefficients can be easily discerned. Large triangles indicate large coefficient values, while small 

triangles indicate small coefficient values. Figure       shows an illustration of the area biplot 

methodology to estimate coefficient points   , for           , under the output variable 

Percent_Fe_FAR. Point      can be seen to have a larger value, followed by    , while point      

has the smallest value. The exact coefficient values can be obtained by printing the coefficient 

matrix   ̂    , shown below in Table     . 

 
 

 

Table     The estimated PLSR coefficient values, using components   and   .  

 
PAR FAR r_FAR 

Percent_Fe_ 

FAR 

Percent_P_ 

FAR 

Percent_Fe_ 

malm 

  : TON_IN 10.030 10.426  7.383 -2.513  1.862 -0.345 

  : KR30_IN  9.970 10.213  7.207 -2.191  1.593 -0.373 

  : PARM  4.600  1.909  0.895  4.496 -3.902 -0.710 

  : HS_1  1.250  0.555  0.275  1.150 -1.000 -0.186 

  : HS_2 -1.790 -5.264 -4.268  7.134 -5.961 -0.591 

  : PKR_30  9.680 10.183  7.230 -2.664  1.999 -0.309 

  : GBA  7.340  6.774  4.660 -0.153 -0.057 -0.417 

  : TON_S3  8.500  7.195  4.833  1.102 -1.143 -0.608 

  : TOTAVF  8.990  8.588  5.960 -0.758  0.411 -0.455 
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Figure      The triangles for points   ,          , with bases defined by the Percent_Fe_FAR axis in the PLS biplot of the SOVR data. 
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Observing the mean plot of the absolute values of these coefficients, shown below in Figure     , 

HS_1 seems to be the process factor with the lowest influence, while TON_IN has the highest 

influence. Choosing a benchmark of      as moderate, the following influential coefficients can 

be deduced, with their respective magnitudes given in parenthesis. A low magnitude indicates 

that the coefficient is not quite influential. 

       TON_IN (highest)     

         KR30_IN (higher)      

         PARM  (lower)      

       HS_1    (lowest) 

       HS_2     (high) 

       PKR_30  (higher)     

         GBA  (low)      

         TON_S3 (medium)      

       TOTAVF (high). 

 

 
Figure      Mean plot of the absolute PLSR coefficients of the SOVR data, using 

components   and   . 
 

Furthermore, for Figure     , the predictivity of each biplot axis is calculated, and this is shown 

below in Table     . Each of these axes represents the original data quite well, with the 

Percent_Fe_FAR axis having the highest axis predictivity value of       , followed by the 
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Percent_Fe_malm axis with       . However, the GBA axis has the lowest axis predictivity 

value of       . These predictivity values, along with the overall quality value (     ), indicate 

that the PLS biplot approximates the SOVR data very well.  

 

               

With the aim of investigating the relationships between the process factors and output variables, 

the PLS biplot of the SOVR data helps to reveal the relation 

(i) within output variables FAR and r-FAR; 

(ii) within process factors TON_IN, KR30_IN and PKR_30;   

(iii) within output variables Percent_P_FAR and Percent_Fe_FAR;  

(iv) within process factors TOTAVF and GBA; 

(v) between process factor HS_2 and output variables Percent_P_FAR and 

Percent_Fe_FAR; and 

(vi) between output variable PAR and process factors TOTAVF and GBA.  

It further reveals quite the lack of relation  

(i) within output variables Percent_P_FAR and Percent_Fe_malm; 

(ii) between process factor TON_S3 and output variable Percent_P_FAR; and  

(iii) between output variable Percent_Fe_malm and process factor HS_2.  

Moreover, a positive relation exists within output variables FAR and r-FAR, within process 

factors TOTAVF and GBA, within process factors TON_IN, KR30_IN and PKR_30, between 

output variable PAR and process factors TOTAVF and GBA, as well as between process factor 

HS_2 and output variable Percent_Fe_FAR. On the other hand, a negative relation exists within 

output variables Percent_P_FAR and Percent_Fe_FAR, and between process factor HS_2 and 

output variable Percent_P_FAR. In addition, process factors TON_IN, PKR_30, KR30_IN, 

TOTAVF and HS_2 have a high influence in the analysis, while factors GBA, PARM and HS_1 

seems to have a low influence. However, factor TON_S3 has a medium influence in the analysis. 

Table         Axis predictivity of the PLS biplot of the SOVR data.  
TON_IN KR30_IN PARM HS_1 HS_2 PKR_30 GBA TON_S3 

0.996 0.993 0.957 0.998 0.997 0.991 0.954 0.994 

        

TOTAVF PAR FAR r_FAR 
Percent_Fe 

_FAR 

Percent_P 

_FAR 

Percent_Fe 

_malm  

0.991 0.988 0.983 0.959 1.000 0.980 0.999 
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From the overall quality and axes predictivity of this PLS biplot, it can be concluded that the 

abovementioned relationships were approximated quite well. Thus, the PLS biplot can be used 

as a graphical tool for displaying the relationships in such multivariate data.  

 

                                        

This data shows the diabetes testing of two hundred women from Pima Indian heritage, living 

near Phoenix Arizona. This testing was done using the World Health Organization criteria. 

Observations were recorded on eight different variables, namely, number of pregnancies (npreg), 

plasma glucose concentration in an oral glucose tolerance test (glu), diastolic blood pressure 

(bp), triceps skin fold thickness (skin), body mass index (bmi), diabetes pedigree function (ped), 

age in years (age) and Yes or No, for diabetic according to the organization’s criteria (type). This 

data can be obtained from the MASS package in   , downloaded freely from CRAN, 

http://cran.r-project.org/. Since the type variable is binary, a Binomial PLS-GLM is fitted. Here, 

     (
 

     
)      and        [      ]⁄ . The two hundred women are assigned as the 

samples. Variables npreg, glu, bp, skin, bmi, ped and age are the predictor variables, while 

variable type is the response variable. Thus,           and           in the analysis.  

Prior to this analysis, the type vector           was recoded as 1 for Yes and 0 for No. The 

resulting PLS biplot is shown in Figure      below, along with a representation of the variance of 

each variable. Here, the PLS-GLM is fitted using Algorithm       and the PLS biplot discussed 

in Chapter   is used. Another display of this biplot, where the sample point names have be 

excluded in the biplot, is shown in Figure       below. Observing the length of the thicker arrows 

(vectors), bmi can be said to have a larger standard deviation, followed by bp. In addition, 

observing the angles between the blue vectors, all the predictor variables can be said to be 

positively related to each other.  

To get the approximated values from Figure     , each sample point is orthogonally projected 

onto the axes and their values read off. Due to the large number of samples,    , only the first 

fifteen predicted values of the seven variables and the expected type of diabetic are shown in 

Table     . Likewise, the PLS-GLM coefficient points   , for           , are projected onto 

the axis representing the type of diabetic, and their values are read off using the purple markers 

on the axis (Subsection         and Section     ). 

http://cran.r-project.org/
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Figure       The PLS biplot of a Binomial PLS-GLM of the Pima.tr data (Algorithm     ). 

 
For a zoomed-in display of the coefficient points, see Figure     . This display can be used for 

easier orthogonal projections of the coefficient points. For example, coefficient points      and 

    projected orthogonally onto the type axis yields        and        respectively, as shown in 

Figure     . The obtained coefficient values from the PLS-GLM are shown below in Table     .  

 
From Table     , all the variables can be said to have a positive effect on the type of diabetic. 

This can also be observed in the biplot display in Figure      above, by looking at the directions 

of the blue axes. Variables glu, ped and age can be said to have a high effect on the type of 

diabetic. Other variables have low effect, with bp having the lowest to no effect.  

 

Table         The predicted coefficient values. 
  : 

npreg 

   : 
glu 

   : 
bp 

  : 
skin 

  : 
bmi 

  : 
ped 

  : 
age 

0.084 0.316 0.004 0.092 0.045 0.217 0.169 
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Figure       The PLS biplot of a Binomial PLS-GLM of the Pima.tr data (Algorithm     ),  
  without sample names. 

 

Table        The predicted values of the variables and the expected type of diabetic. 

 
npreg glu bp skin bmi ped age type* 

1 5 130 74 32 33 0.447 38 0 

2 10 192 82 47 33 0.749 62 1 

3 8 125 82 37 33 0.237 48 0 

4 5 176 70 37 33 0.879 42 1 

5 3 128 70 29 32 0.528 31 0 

6 8 150 82 40 33 0.441 53 1 

7 4 131 72 31 32 0.507 34 0 

8 1 195 61 34 33 1.207 33 1 

9 9 166 82 42 33 0.565 56 1 

10 5 195 69 39 33 1.038 44 1 

11 1 248 56 38 33 1.718 36 1 

12 9 168 83 43 33 0.557 58 1 

13 7 199 74 43 33 0.968 53 1 

14 7 163 77 39 33 0.641 49 1 

15 5 163 72 36 33 0.739 42 1 

*   Yes and    No. 
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Figure        A zoomed-in display of the coefficient points in the PLS biplot of a Bino- 

mial PLS-GLM of the Pima.tr data.  
 

               

In this section, the PLS biplot is used as a graphical tool for the Binomial PLS-GLM. Applying 

the PLS biplot to this Binomial PLS-GLM, the resulting biplot provides a single graphical 

representation for displaying the result from the PLS-GLM analysis of the data set.  

 

                                       

This data shows the gene expression levels from the microarray experiments of colon tissue 

samples taken from sixty two patients. Two thousand genes were used. In addition, the tissue 

samples were categorized into two types, namely, the tumor tissues and the normal tissues. Out 

of the sixty two patients, forty were categorized as having tumor tissues, while twenty two were 

categorized as having normal tissues. The types of tissue samples were coded as one for the 

normal tissues and two for the tumor tissues, thereby forming a vector of ones and twos. In this 

data, this vector is named the tissue variable. The sixty two patients are the samples. The genes 

and tissue variable are assigned as the predictor and response variables respectively. Thus, the 

colon data can be viewed as a data matrix    (       ) of predictors and a matrix   (    ) 
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of responses. Since     , the matrix    (    ) is in fact a vector of length (    ), as 

mentioned above. This data can be obtained from the plsgenomics package in   , downloaded 

freely from CRAN, http://cran.r-project.org/.  

With the large number of   -variables (genes), there is the need to perform variables selection on 

these  -variables, as some of these genes might be irrelevant in the analysis. Thus, an SPLS-

GLM analysis is more appropriate for the colon data, than a PLS-GLM analysis.  

Before performing an SPLS-GLM analysis on this data, the experiment described in Subsection 

       was performed, using Algorithm     . Prior to running this experiment, the tissue vector 

   (    ) was recoded as 0 for normal tissues and 1 for the tumor tissues, to employ the 

Binomial SPLS-GLM, where      (  

     
)      and        [      ]⁄ . Seeing as the 

colon data has only one  -variable, i.e.,    , there is no need to perform variables selection 

on this  -variable. As a result,        throughout this experiment and much attention is given 

to the value of       that gives the lowest        value. Figure        below shows a plot of the 

obtained        values along with their respective     value, for     (   )  and      .  

 
Figure       A plot of     (   ) values and their respective         value, for the 

 colon data. 

http://cran.r-project.org/
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From Figure     , the lowest        value of       is observed at        . Thus, for the SPLS-

GLM analysis of the colon data,          and      . In the resulting SPLS-GLM analysis 

(        and      ), one hundred and twenty eight genes ( -variables) were selected, out of 

the two thousand genes used. For this reason, the number of   -variables used in the resulting 

biplot display (Figure      ) was reduced from two thousand to one hundred and twenty eight, 

i.e.,   (      ). With          and      , using Algorithm     , the resulting PLS biplot 

is shown below in Figure      . A representation of the variance of each variable is also shown 

in this biplot display. Comparing the length of the thicker arrows (vectors) to each other, the 

tissue variable and genes 715 and 22 can be said to have a smaller standard deviation.  

 
Figure        The PLS biplot of a Binomial SPLS-GLM of the colon data (Algorithm     ),  

with          and      . 

Axis tick markers have been excluded, and as mentioned above, there are two types of tissue 

samples in this data, namely, tumor and normal. In the biplot display (Figure      ), the tumor 

tissue samples are represented by the brown sample points, while the normal tissue samples are 
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represented by the green points. Tumor samples 23, 29 and 45 can be classified as outliers. 

Although there is no clear separation between the tumor and normal samples in the biplot, the 

normal samples have less variability. Therefore, one can conclude that the normal samples have 

some characteristics similar to the tumor samples.  

In addition, some tumor samples also appear towards the centre (overall mean) of the biplot 

(Figure      ), however, tumor samples 41 and 58 can be said to have a higher value on genes 

287, 1585, 685, 1312, 1257, 401, 522 and 1737, but a low value on genes 747, 372, 1337, 74 and 

1925. Similarly, tumor sample 29 has a higher value on genes 1907, 830, 1202, 1672, 65, 1870, 

1218 and 668, but a low value on genes 1042, 47, 7 and 1470. Tumor samples 31, 44 and 46 can 

be said to have a high value on genes 1613, 862, 487, 366, 1924, 1928, 801, 1321, 1520, 1317, 

1606, 1108, 1289, 1338, 514, 943, 1577, 999, 1923, 769, 1503, 1243, 1008, 1944, 1555, 1258, 

1744, 995, 1216, 1335, 1783, 1092, 799, 1708, 1121, 378, 492, 191, 1883, 1619, 1441, 534 and 

483, but a low value on gene 460. On the other hand, tumor sample 11 has a low value on gene 

1714, but high a value on genes 170, 1189, 927, 1788, 129, 926, 854, 935, 899, 524 and 1267. In 

addition, tumor sample 45 can be said to have a high value on genes 1534, 802, 1862, 1709, 404, 

266, 1405, 413, 1561, 1211 and 1564, but a low value on genes 715 and 554. Tumor sample 23, 

clearly an outlier as mentioned above, can be said to have a higher value on genes 1042, 47, 7 

and 1470. These deductions can be observed by the closeness of the sample points to the gene 

axes.  

Similarly, the relation between the selected genes can be observed by the closeness of the blue 

axes. To name a few, the relation between genes 684, 1044, 101 and 1666; between genes 1907, 

830, 1202, 668, 1672, 65, 1870, 1218, 1470, 47, 7 and 1042; as well as between genes 18, 523 

and 178.  

Since the name of the genes were not provided in the data source, besides their respective 

number, one might consider consulting a biologist to see if these deductions are insightful and 

extremely meaningful, especially, in a biological context.  

Furthermore, a zoomed-in display of the coefficient points is shown below in Figure      . 

Orthogonally projecting each of the coefficient points    , for             , onto the tissue 

axis yields the coefficient values. For example, coefficient points     ,    ,     and      

projected orthogonally onto the tissue axis yields      ,  ,       and         respectively, as 

shown in Figure      . Although not all coefficient points can be seen clearly in this display 

(Figure      ), the exact coefficient values can be obtained by printing out the coefficients vector 
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  ̂        . This vector is shown in Table       below. The corresponding gene number for each 

coefficient point is given along with the coefficient point number. For example,    and    

denotes genes 7 and 18 respectively, as shown below in Figure       and Table     .  

 
Figure        A zoomed-in display of the coefficient points in the PLS biplot of a Binomial  
  SPLS-GLM of the colon data, with           and      .  
 
In addition, the positive or negative sign before each coefficient value in Table       does not 

measure the effect level of the genes on the tissue variable, but rather, is the effect direction of 

each gene on the tissue variable. For example, genes 7, 18, 22, 47 and 64 all have a negative 

effect on the tissue variable, while genes 65, 101 and 131 have a positive effect. 

 

Table         The predicted coefficient values.  
                                                               

-0.03494 -0.10364 -0.07661 -0.08234 -0.01127 0.02604 -0.08411 -0.11184 

        

                                                                               

0.05364 -0.09549 0.03909 -0.08499 0.14172 -0.00345 0.01745 0.04473 

        

                                                                                

0.04889 0.08193 -0.07902 -0.04653 -0.04785 -0.04732 0.00280 0.13205 
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In this section, the PLS biplot is used as a graphical tool to visualize the SPLS-GLM of a data 

set. After applying the PLS biplot to the SPLS-GLM of a large gene expression large data, the 

resulting biplot demonstrates, graphically, the association between samples and variables as well 

as between the variables. However, since the name of the genes were not provided in the data 

source, besides their respective number, one might consider consulting a biologist to see if the 

observed deductions made from the PLS biplot of the data are insightful and extremely 

meaningful, especially, in a biological context. 

 

 

Table       ContD.  
                                                                                

0.06977 0.03452 0.02031 -0.04067 0.06246 -0.00549 -0.12617 -0.00504 

        

                                                                                

-0.08264 0.07272 -0.03328 -0.07805 -0.03260 0.00770 0.04544 0.06548 

 
                                                                                

0.06861 0.02650 -0.00074 -0.01575 -0.13725 0.03343 -0.12412 -0.04264 

        

                                                                                

0.03523 0.04948 -0.07848 -0.09589 0.00732 -0.06998 -0.01972 -0.01117 

        

                                                                                  

-0.04934 -0.09734 -0.02191 -0.03734 0.01084 -0.01192 0.03876 -0.04179 

        

                                                                                        

-0.06708 0.04475 -0.02467 0.02146 -0.09943 -0.12707 -0.02578 -0.11571 

 
                                                                                        

0.05223 0.04204 -0.03254 0.01267 0.01356 0.01048 -0.01080 0.07090 

        

                                                                                        

-0.02983 -0.07103 -0.14417 0.05054 -0.00305 -0.12470 -0.04710 -0.07898 

        

                                                                                             

0.04043 0.02373 -0.04163 0.04131 0.02136 -0.07707 0.09901 -0.07149 

        

                                                                                                

-0.17971 -0.00779 0.06646 0.04649 0.01539 0.02078 0.02184 0.02375 

        

                                                                                                

0.00605 0.05510 -0.04226 -0.04171 -0.06177 0.02508 0.00234 0.02773 

        

                                                                                                

0.04493 -0.02141 0.06241 -0.06460 -0.11818 -0.10411 -0.07161 -0.06785 
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The PLS biplot is available in the newly developed   package called PLSbiplot1. This package 

is available electronically via CRAN (http://cran.r-project.org/) and the dropbox link  

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya.  

A total of thirty five functions are in this package, namely,  

cov.biplot    (covariance biplot)        

cov.monoplot   (covariance monoplot)        

Mag.Bmat.plot   (mean plot of the absolute values of the PLS coefficients  
  matrix)        

mod.KernelPLS_L   (kernel PLS algorithm by Lindgren et al. (1993))     

mod.KernelPLS_R   (kernel PLS algorithm by Rännar et al. (1994))     

mod.MMLR     (MMLR analysis)                          

mod.NIPALS    (NIPALS algorithm)                  

mod.PCA    (PCA analysis)                      

mod.PCR     (PCR analysis)                  

mod.SIMPLS    (SIMPLS algorithm)                         

mod.SPLS     (SPLS algorithm by Lê Cao et al. (2008))  

mod.VIP     (    values of the  -variables)    

opt.penalty.values     (optimal value of the penalty parameters    and     , for 
  SPLS and SPLS-GLM)         

PCA.biplot    (PCA biplot)              

PCA.biplot_no.SN  (PCA biplot, with no sample names)              

PLS.binomial.GLM   (PLS-GLM algorithm for Binomial-distributed  -variables) 

PLS.biplot    (PLS biplot)                     

PLS.biplot.area    (PLS biplot, with the area biplot idea for approximating the  
  coefficient values)                   

PLS.biplot_no.SN   (PLS biplot with no sample names)             

PLS.biplot_no_labels   (PLS biplot, where the labels of the samples, coefficient  
  points and tick markers have been excluded)                            

PLS.GLM     (PLS-GLM algorithm)              

PLS.GLM.biplot    (PLS biplot for PLS-GLM)              

PLS.GLM.biplot_bvec   (zoomed-in display of the coefficient points in the PLS  
  biplot for PLS-GLM)                  

PLS.GLM.biplot_no.SN   (PLS biplot for PLS-GLM, with no sample names)                   

http://cran.r-project.org/
https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya
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PLS.GLM.biplot_SIMPLS  (PLS biplot for PLS-GLM, fitted using the SIMPLS  
  algorithm)                    

PLS.GLM.biplot_SIMPLS_no.SN 

(PLS biplot for PLS-GLM, fitted using the SIMPLS, with  
 no sample names) 

PLS.GLM_SIMPLS    (PLS-GLM algorithm, fitted using the SIMPLS algorithm)  

SPLS.binomial.GLM  (SPLS-GLM algorithm for Binomial-distributed  - 
       variables) 

SPLS.biplot    (PLS biplot for SPLS)          

SPLS.biplot_Bmat   (zoomed-in display of the coefficient points in the PLS  
  biplot for SPLS)               

SPLS.biplot_no_labels  (PLS biplot for SPLS, where the labels of the samples,  
  coefficient points and tick markers have been excluded)  

SPLS.GLM    (SPLS-GLM algorithm) 

SPLS.GLM.biplot   (PLS biplot for SPLS-GLM)  

SPLS.GLM.biplot_bvec   (zoomed-in display of the coefficient points in the PLS  
  biplot for SPLS-GLM)     

SPLS.GLM.biplot_no.SN  (PLS biplot for SPLS-GLM, with no sample names)                      

with their main purpose given in parenthesis. These functions requires some input parameters, 

such as the number of PLS components   , the   - and  -variables matrices, when utilized.  

For more information on a particular function, type ? followed by the function’s name in the    

console. For example, ?cov.biplot opens a window containing the basic information about 

the cov.biplot function and an example on how to execute the function in   , as shown in 

Figure        below.  

Furthermore, the PLSbiplot1 package was developed in the       version of    (  Core Team, 

2014), using the RStudio software (RStudio, 2012) on a Windows   operating system.  

The purpose of this section is to provide a brief introductory information on the use of the 

PLSbiplot1 package. A detailed documentation for all routines in this package can be found on 

the dropbox link, given above. 
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Figure       The help file of the cov.biplot function. 

 
                   

For easier file navigation, the downloaded PLSbiplot1_0.1.tar.gz file is saved on the operating 

system’s Desktop. To install this PLSbiplot1 package in   , open the command prompt (cmd) 

window of the operating system, (Start menu    Run    cmd), and type  
dir Desktop 

cd Desktop 

R CMD INSTALL PLSbiplot1_0.1.tar.gz 

These commands tell the operating system to install the PLSbiplot1 package into   , from the 

PLSbiplot1_0.1.tar.gz file saved on the desktop. An illustration is shown in Figure      . 

Afterwards, the PLSbiplot1 package is installed successfully into the   library of the operating 

system.  

To check, open    and type library(). Amongst the list of installed packages in the    library 

shown, the PLSbiplot1 package can be seen, as shown in Figure      .   
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To use the PLSbiplot1 package in  , it must first be loaded into  , using any of these 

commands: library(PLSbiplot1)  or  require(PLSbiplot1). 

 
Figure       The command prompt window. 
 

 
Figure       List of installed packages in  . 



8-23 
 

                

Five data sets are used for illustrating the use of the PLSbiplot1 package, namely, the ash and 

glass data from Varmuza & Filzmoser (2009), the cocktail data from Husson et al. (2013), the 

nutrimouse data by Martin et al. (2007) and the spider data from Van der Aart & Smeenk-

Enserink (1975). 

ash 

This data shows the experimental softening temperature (SOT) and elemental 

composition of ninety nine ash samples taken from different biomass. Eight elemental 

compositions (P2O5, SiO2, Fe2O3, Al2O3, CaO, MgO, Na2O and K2O) were used. The 

ash samples from different biomass are assigned as samples, while the elemental 

compositions and SOT are assigned as the predictor and response variables respectively. 

Thus, the ash data can be viewed as a data matrix    (    ) of predictors and a matrix 

  (    ) of responses. Here, since     , the matrix    (    ) is in fact a vector of 

length (    ). 

 
cocktail 

 This data shows the sensory and composition evaluation of sixteen cocktail juices. The 

composition of each cocktail was measured using four ingredients (Orange, Banana, 

Mango and Lemon). There were thirteen sensory panel descriptors (Colour_intensity, 

Odour_intensity, Odour_orange, Odour_banana, Odour_mango, Odour_lemon, 

Strongness, Sweet, Acidity, Bitterness, Persistence, Pulp and Thickness) used in this 

evaluation. The sixteen cocktail juices are assigned as the samples. The ingredients and 

sensory panel descriptors are the predictor and response variables respectively. As a 

result, the cocktail data can be viewed as a data matrix         of predictors and a 

matrix          of responses.  
 

glass 

This data shows the measurements taken from one hundred and eighty archaeological 

glass vessels. Thirteen different measurements were taken, and these are assigned as the 

variables. The glass vessels are assigned as samples. Hence, the glass data can be viewed 

as a (      ) data matrix. 

nutrimouse 

This data shows the expression measure of one hundred and twenty genes potentially 

involved in the nutritional problems and the concentrations of twenty one hepatic fatty 
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acids of forty mice. The forty mice are assigned as the samples. The hepatic fatty 

concentrations and gene expressions are the predictor and response variables 

respectively. Thus, the nutrimouse data can be viewed as a data matrix          of 

predictors and a matrix           of responses. 

spider 

This data shows the distributions of hunting spider species and environmental 

characteristics observed at a dune area. There were twelve spider species used. The 

twenty eight sites are assigned as the samples. The spider species and environmental 

characteristics are the response and predictor variables respectively. Therefore, the spider 

data can be viewed as a data matrix    (    ) of predictors and a matrix    (     ) 

of responses.  

The ash and glass data can be obtained from the chemometrics package in  , while the spider 

data can be obtained from the mvabund package. Similarly, the cocktail data can be obtained 

from the SensoMineR package, while the nutrimouse data can be obtained from the mixOmics 

package. These packages can be downloaded freely from CRAN, http://cran.r-project.org/. To 

use these data sets in   , they must first be loaded into   using 
data(ash, package="chemometrics") 

data(cocktail, package="SensoMineR") 

data(glass, package="chemometrics") 

data(nutrimouse, package="mixOmics") 

data(spider, package="mvabund") 

In addition, to obtain the variable names in each data set, use names()or colnames(). That is,  
names(ash) #for ash data  
names(c(compo.cocktail,senso.cocktail)) #for cocktail data 
colnames(glass)  #for glass data 
names(nutrimouse) #for nutrimouse data 
names(spider)  #for spider data 
 

                 

To obtain the PCA biplot using the PLSbiplot1 package in  , the  
PCA.biplot(D, method=mod.PCA, ax.tickvec.D) 

function is used. Here, D is the data matrix to use for the PCA biplot, method is the PCA 

procedure and ax.tickvec.D is for the tick markers per variable axis in the PCA biplot.  

This function also gives the overall quality value of the biplot (overall.quality), the axis 

and sample predictivity values (axis.pred and sample.pred), as well as the approximated 

values of the data (D.hat). The PCA biplot of the glass data is obtained using  

http://cran.r-project.org/
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Dmat = matrix(glass,nc=13)  

dimnames(Dmat) = list(1:180, paste(c("Na2O", "MgO", "Al2O3", 

        "SiO2", "P2O5", "SO3", "Cl", "K2O",   

        "CaO", "MnO", "Fe2O3", "BaO", "PbO"))) 

   PCA.biplot(D=Dmat, method=mod.PCA, ax.tickvec.D=rep(5, 

 ncol(Dmat))) 

and is shown in Figure      . The output is shown below.  
$overall.quality 

[1] 0.997 

 

$axis.pred             

 Na2O     MgO     Al2O3    SiO2   . . . PbO    

 0.990    0.952   0.977   0.999   . . . 0.611  

 

$sample.pred 

   1    2   . . . 180 

   1    1     . . .  1  

 

$D.hat 

      Na2O     MgO  . . .  PbO 

 1   15.246    2.46  . . . -0.167 

 2   15.026    2.43  . . . -0.104 

 . 

  . 

  . 

 180  11.187    2.71  . . .  0.223 

 

Figure       The PCA biplot of the glass data. 

In the obtained biplot display (Figure      ), a representation of the variance of each variable is 

provided. Observing the length of the thicker arrows (vectors), SO3 can be said to have a large 
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standard deviation, while K2O has a small deviation. With an overall quality value 

(overall.quality) of       , the following relationships can be deduced: a relation between 

measurements Na2O, SO3 and Cl; between PbO and K2O; between SiO2, MnO, P2O5 and 

CaO; as well as between Al2O3, BaO and Fe2O3. However, MgO can be seen to have no clear 

relation with the others. From the axis predictivity values (axis.pred), each of the biplot axes 

quite well represents the original data, with the SiO2 axis having the highest axis predictivity 

value of       , followed by the Na2O axis with       . An axis predictivity of         means 

that all values can be read off the axis exactly. The lower the axis predictivity value, the less 

accurately the axis approximates the observed values under that variable. The PbO axis has the 

lowest predictivity value of       . This means that the axis represents the original data, but not 

quite as well as the other axes. Although the full output is not printed out here, users are 

encouraged to print out the whole output in order to see these deductions. Furthermore, from the 

sample predictivity values (sample.pred), all one hundred and eighty samples are in the biplot 

plane of approximation. These predictivities along with the overall quality value indicate that the 

PCA biplot approximates the glass data well. 

 

Figure       The PCA biplot of the glass data, with no sample names. 
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One can also get a PCA biplot, where sample names have been excluded. For this situation 
   PCA.biplot_no.SN (D=Dmat, method=mod.PCA,  

        ax.tickvec.D=rep(5,ncol(Dmat))) 

is used. The resulting biplot display is shown above in Figure      . 

 
           

The PLSR analysis of a data set is obtained using any of the algorithms discussed in Section 

    . In the PLSbiplot1 package, this can be achieved by using these functions:  

mod.NIPALS(X,Y,A) for the NIPALS algorithm, 

mod.KernelPLS_R(X,Y,A) for the kernel algorithm of Rännar et al. (1994), 
    where there are few(er) variables, 

mod.KernelPLS_L(X,Y,A) for the kernel algorithm of Lindgren et al. (1993),  
    where there are few(er) samples, 

mod.SIMPLS(X,Y,A) for the SIMPLS algorithm. 

In these functions, X is the matrix of predictors, Y the matrix of responses and A the number of 

PLS components. Each function gives an output comprising of the       values (RMSEP), 

  (X.scores),   (X.weights.trans),   (X.loadings),   (Y.loadings) and  ̂     

(Y.hat) matrices.  

Consider the nutrimouse data. Using the SIMPLS algorithm, the PLSR analysis of this data is 

done by  
X1 = as.matrix(nutrimouse$lipid, ncol=21)  

Y1 = as.matrix(nutrimouse$gene, ncol=120) 

    mod.SIMPLS(X=X1, Y=Y1, A=17) 
and the following output is obtained. 

$X.scores 

    Comp 1   Comp 2  . . . Comp 17  

1   0.1644   0.1582  . . . 0.00304 

2   0.0331   0.0815  . . . 0.02840 

 . 

    .  

          . 

40 -0.1938   0.0879  . . . 0.08456 

 

$X.weights.trans 

          Comp 1    Comp 2  . . .   Comp 17  

C14.0    -0.00726  -0.0613  . . .    0.0199 

C16.0     0.40629   0.1482  . . .   -0.2806 

 . 

. 

. 

C22.6n.3  0.25970   0.4559  . . .   -0.0435 

 

$X.loadings 

          Comp 1   Comp 2   . . . Comp 17  

C14.0       1.33   -3.98   . . . -2.92 

C16.0      19.48    5.17   . . . -2.60 

.  

. 
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  . 

C22.6n.3   11.15   24.54   . . . 13.12 

 

$Y.loadings 

          Comp 1   Comp 2   . . .    Comp 17  

X36b4     0.0674  -0.0456   . . .   -0.0719 

ACAT1    -0.0147  -0.0514   . . .   -0.0939 

. 

. 

. 

mHMGCoAS  0.5208   0.1426  . . .   -0.1720 

 

$Y.hat 

, , 1 Comps 

    X36b4   ACAT1  . . .  mHMGCoAS 

1  -0.444  -0.658   . . .  -0.135 

2  -0.453  -0.656   . . .  -0.204 

. 

. 

. 

40 -0.468  -0.652   . . .  -0.322 

 

, , 2 Comps 

    X36b4   ACAT1   . . .  mHMGCoAS 

1  -0.451  -0.666   . . .  -0.113 

2  -0.457  -0.660   . . .  -0.192 

. 

. 

. 

 

40 -0.472  -0.657   . . .  -0.309 

 

 .     .   . 

 .     .   . 

 .     .   . 

 

, , 17 Comps 

    X36b4   ACAT1   . . .  mHMGCoAS 

1  -0.497  -0.632   . . .  -0.0650 

2  -0.451  -0.685   . . .  -0.0952 

. 

. 

. 

 

40 -0.509  -0.687   . . .  -0.4720 

 

$RMSEP 

1.006  0.943  0.911  0.890  0.864  . . .   0.598 

 

The choice of  A=17 is chosen arbitrarily, as the initial number of the PLS components. Thus, to 

determine the final number of components (A.final) to use for the PLSR model, a plot of the 

      is examined. This is done using  
RMSEP = mod.SIMPLS(X=X1, Y=Y1, A=17)$RMSEP  

    plot(t(RMSEP), type = "b", xlab="Number of components",  

   ylab="RMSEP values")       

Looking at the elbow of the       plot in Figure        below, nine components, i.e.,    , 

can be suggested as the number of components to use in the final PLSR analysis for the 

nutrimouse data. Therefore,  
A.final = 9 #from the RMSEP plot in Figure         
mod.SIMPLS(X=X1, Y=Y1, A=A.final) 
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gives the PLSR analysis of the nutrimouse data, using the SIMPLS algorithm. 

 
Figure       The       plot of the nutrimouse data. 

Sometimes, the number of   -variables in the data set can be large. For this reason, the      

analysis (Section     ) of the  -variables is necessary, to identify which variables are important. 

In the PLSbiplot1 package, the     analysis is performed by using  
mod.VIP(X, Y, algorithm=mod.SIMPLS, A=A.final, cutoff=0.80) 

where A=A.final is the final number of PLS components, decided from the       plot and 

cutoff is the desired cut off value to use for selecting the important variables. Here, 

cutoff=0.80 means that the  -variables are identified as important if their respective     

value is greater than or equal to      , i.e.,         .  

The     function gives the     values (VIP.values) for each  -variables and the important 

variables (X.impor) in its output. Although the number of   -variables in the nutrimouse data 

are not large, the output obtained from the     analysis performed, using mod.VIP with 

cutoff=0.80, is shown below. Out of the twenty one  -variables, only sixteen variables were 

identified as important. In this output, under the $X.impor, both the important  -variables and 

their respective column number in the    matrix are shown. For example, the first, third, fourth, 
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fifth, sixth, eighth and ninth  -variables are identified as important, followed by the thirteenth, 

fourteenth, sixteenth, seventeenth, eighteenth, nineteenth, twentieth and twenty first  -variables.  
$VIP.values  

C14.0   C16.0   C18.0   C16.1n.9  C16.1n.7  C18.1n.9  C18.1n.7  C20.1n.9  

 1.012   0.644   0.974   1.115     1.073     0.843     0.738     1.571  

C20.3n.9  C18.2n.6 C18.3n.6 C20.2n.6 C20.3n.6 C20.4n.6 C22.4n.6 C22.5n.6  

   1.058   0.657    1.194    0.597    1.112    1.059    0.737    0.918  

C18.3n.3  C20.3n.3  C20.5n.3  C22.5n.3  C22.6n.3  

   1.268    1.034    0.840     0.927     1.084  

 

$X.impor 

C14.0  C18.0  C16.1n.9  C16.1n.7  C18.1n.9  C20.1n.9  C20.3n.9  C18.3n.6  

  1      3       4         5         6         8         9         11  

C20.3n.6  C20.4n.6 C22.5n.6 C18.3n.3 C20.3n.3 C20.5n.3 C22.5n.3 C22.6n.3  

  13        14       16        17       18       19       20        21  

  

To print out the newly reduced  -variables matrix      , use 
X.important = mod.VIP(X=X1, Y=Y1, algorithm=mod.SIMPLS, A= 

   A.final, cutoff=0.80)$X.impor  

X.new = X1[,c(X.important)]  #important X-variables 

ncol(X.new) #=16 

colnames(X.new) 
Using cutoff=0.75 gives an X.impor output identical to the one obtained when 

cutoff=0.80 was used.  
X.important_B = mod.VIP(X=X1, Y=Y1, algorithm=mod.SIMPLS, A= 

   A.final, cutoff=0.75)$X.impor  

ncol(X1[,c(X.important_B)]) #=16 
This is not always the case for all data sets, seeing as the first     analysis employs           

to select the important variables, while the second analysis employs         . However, since 

none of the  -variables in the nutrimouse data had a     value (VIP.values) between        

and      , as shown above under $VIP.values, the same number of important variables 

(X.new) will be obtained, when cutoff=0.80 and cutoff=0.75 are used.  

Furthermore, to see which PLSR coefficients are influential in the analysis, using the SIMPLS 

algorithm,  
Mag.Bmat.plot(X=X.new, Y1, algorithm=mod.SIMPLS, A=A.final) 

is used. This function gives a plot of the magnitude of the absolute values of the coefficients 

matrix (     ). A small magnitude indicates that the coefficient is not quite influential. For the 

nutrimouse data, using the newly reduced  -variables, the following figure is obtained. 

Alternatively, one can use  
X.scal = scale(X.new, center = TRUE, scale = TRUE) 

Y.scal = scale(Y1, center = TRUE, scale = TRUE) 

main3 = mod.SIMPLS(X.scal, Y.scal, A.final) 

Bmat = main3$X.weights.trans %*% t(main3$Y.loadings) 

#PLSR coefficient matrix 

dimnames(Bmat) = list(colnames(X.new), colnames(Y)) 

Abs.Bmat = abs(Bmat)  #absolute values of the coefficients 
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rowMeans(Abs.Bmat) 

to deduce the influential coefficients, with the following output. 
C14.0    C18.0  C16.1n.9  C16.1n.7  C18.1n.9  C20.1n.9  C20.3n.9  

0.439    1.306    2.387     0.576     2.008     3.970     2.343  

C18.3n.6  C20.3n.6  C20.4n.6  C22.5n.6  C18.3n.3  C20.3n.3  C20.5n.3  

 1.788     1.982     1.135     1.206     1.881     1.030     1.003  

C22.5n.3  C22.6n.3  

  0.485    0.622 

From this output, as well as Figure        below, coefficient    (C20.1n.9) can be said to have 

the highest influence (3.970), followed by     (C16.1n.9) and     (C20.3n.9) with values       

and       respectively. The lowest influence is observed by    (C14.0), with a value of       .  

 
Figure      Mean plot of the absolute PLSR coefficients of the nutrimouse data. 

The following influential coefficients can be deduced, with their respective magnitudes given in 

parenthesis.  

       C14.0  (lowest)     
       C18.0     (moderate)     
       C16.1n.9 (high)     
       C16.1n.7 (low)     
       C18.1n.9 (high)     
       C20.1n.9 (highest)     
       C20.3n.9 (high)     
       C18.3n.6 (high)     
       C20.3n.6 (high)     
      C20.4n.6 (moderate)     
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      C22.5n.6 (moderate)     
      C18.3n.3 (high)     
      C20.3n.3 (moderate)     
      C20.5n.3 (moderate)     
      C22.5n.3 (lower)     
      C22.6n.3 (low). 

In addition, the MMLR and PCR analyses of the nutrimouse data is obtained using functions  
mod.MMLR(X=X.new, Y1) 
mod.PCR(X=X.new, Y1, r=2) 

respectively, where r is the desired number of PCA component. 

 
                                     

The covariance monoplot of one set of variables in a data is obtained using 
cov.monoplot(Y) 

This function gives the row and column markers matrices   (G__VD) and   (H__VD). Consider 

the cocktail data. The covariance monoplot of the  -variables is shown in Figure        and the 

accompanying output is shown below. This monoplot is obtained using  
  Y3 = as.matrix(senso.cocktail, nc=13)  

  cov.monoplot(Y3) 
$G__VD 

                 Comp 1  Comp 2  

color.intensity  -0.533 -1.0310 

odor.intensity    1.215 -0.9866 

odor.orange      -1.977  1.0876 

odor.banana       2.453 -0.0940 

odor.mango       -1.726 -1.2291 

odor.lemon       -1.223 -1.3571 

strongness       -1.913 -0.6901 

sweet             2.451 -0.3782 

acidity          -2.452 -0.2678 

bitterness       -2.327  0.0841 

persistence      -1.364 -1.1710 

pulp              1.844 -0.7879 

thickness         2.324 -0.7528 

 

$H__VD 

                 Comp 1  Comp 2  

color.intensity  -0.533 -1.0310 

odor.intensity    1.215 -0.9866 

odor.orange      -1.977  1.0876 

odor.banana       2.453 -0.0940 

odor.mango       -1.726 -1.2291 

odor.lemon       -1.223 -1.3571 

strongness       -1.913 -0.6901 

sweet             2.451 -0.3782 

acidity          -2.452 -0.2678 

bitterness       -2.327  0.0841 

persistence      -1.364 -1.1710 

pulp              1.844 -0.7879 

thickness         2.324 -0.7528 

 

As discussed in Chapter  , see Section     , the row and column markers of a covariance 

monoplot are the same, i.e.,    . Hence, G__VD and H__VD have the same values in the above 
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output. Comparing the length of the thicker green arrows (vectors) to each other in Figure      , 

odor.lemon can be said to have a small standard deviation.  

Furthermore, several relationships can be deduced from this monoplot. For example, the relation 

between thickness, pulp and odor.orange; between sweet, bitterness, odor.banana and acidity; as 

well as between color.intensity, persistence and odor.mango can be observed. Seeing as only 

variables are being represented in the covariance monoplot and there are no samples to 

(orthogonally) project onto the monoplot axes, calibration markers are not necessary on these 

axes. 

 
Figure       The covariance monoplot of the sensory panel descriptors. 

 
For the covariance biplot, use  cov.biplot(X,Y) as follows.  

  X3 = as.matrix(compo.cocktail, nc=4)   
 cov.biplot(X3,Y3) 

The resulting display is shown below in Figure      . The covariance biplot function gives the 

row and column markers matrices   (G__UDhalf) and   (H__VDhalf) of the data used, for 

      (see Section     ). As discussed in this section, two different sets of variables (X=X3 and 

Y=Y3) are involved in the covariance biplot. Therefore, the row and column markers of a 

covariance biplot will not be the same, i.e.,    . Hence, G__UDhalf and H__VDhalf 
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obtained from cov.biplot(X3,Y3)will have different values in the output. Here, matrix    is 

for the  -variables, while matrix     is for the  -variables. 
$G__UDhalf 

        Comp 1  Comp 2  

orange -1.0729  -0.664 

banana  1.1504  -0.124 

mango   0.0747   0.596 

lemon  -0.6981   0.879 

 

$H__VDhalf 

                 Comp 1  Comp 2  

color.intensity -0.0728  0.0238 

odor.intensity   0.3269  0.4546 

odor.orange     -0.6048 -0.3758 

odor.banana      0.6248 -0.0470 

odor.mango      -0.2929  0.4541 

odor.lemon      -0.1862  0.6782 

strongness      -0.3973  0.4408 

sweet            0.6166  0.0742 

acidity         -0.5540  0.2462 

bitterness      -0.5580  0.0321 

persistence     -0.2308  0.4331 

pulp             0.5740  0.2618 

thickness        0.6633  0.2228 

 

 
Figure       The covariance biplot of the cocktail data. 

Observing the length of the thicker arrows in this biplot display (Figure      ), banana, orange 

and lemon can be said to have a large standard deviation, followed by odor.orange. In addition, 

the relation between strongness, lemon, odor.mango, persistence and odor.lemon; between 
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odor.orange, orange, pulp and thickness; between acidity and color.intensity; as well as between 

banana, odor.banana, bitterness and sweet can be seen. However, mango and odor.intensity can 

be seen to have no clear relation with the others. The actual correlation values of this data can be 

obtained using cor(X3,Y3). Analogous to the covariance monoplot, calibration markers are not 

necessary on the axes in the covariance biplot, seeing as only variables are being represented in 

the biplot and there are no samples to project onto the biplot axes.  

If only one set of variables is used in the cov.biplot(X,Y)function, the resulting display will 

be a monoplot display of that set of variables. For example, cov.biplot(Y3,Y3) will give a 

monoplot display of Y3, just like Figure       above, and matrices   (G__UDhalf) and   

(H__VDhalf)  will have the same output.   

 
                 

From the PLSbiplot1 package, the PLS biplot of a data set can be obtained using the function 
PLS.biplot(X, Y, algorithm, ax.tickvec.X, ax.tickvec.Y)   

where algorithm is any of the PLS algorithms “mod.NIPALS”, “mod.KernelPLS_R”, 

“mod.KernelPLS_L” and “mod.SIMPLS”, ax.tickvec.X and ax.tickvec.Y are for the 

tick markers of the  - and  -variables axes respectively. The PLS.biplot function also gives 

the overall quality value of the biplot (overall.quality), the axis predictivity (axis.pred), 

the approximated values of the data (D.hat) and the PLSR coefficients values (Bmat). For 

example, using the SIMPLS algorithm and the cocktail data, the PLS biplot is shown in Figure 

     . Below is its accompanying output: 
$overall.quality 

[1] 0.972 

 

$axis.pred 

 orange  banana  mango .  .  .  Strongness .  .  .  persistence thickness       

  0.999   0.903  0.796 .  .  .    0.997    .  .  .    0.997        0.997 

 

$D.hat 

   orange   banana   . . .   thickness    

1  0.796    0.862    . . .    5.96  

2  0.896    1.774    . . .    7.03   

. 

. 

  . 

16  2.678   0.707   . . .      4.20   

 

$Bmat 

            color.intensity   odor.intensity   .  .  .  thickness 

b1:orange       0.1931           -1.980         .  .  .   -2.593   

b2:banana      -0.2932            0.949        .  .  .     2.396 

b3:mango        0.0422            0.896        .  .  .     0.428 

b4:lemon        0.2655            0.616        .  .  .    -1.064 
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This biplot (Figure      ), also showing a representation of the variance of each variable, is 

obtained using  
PLS.biplot(X=X3, Y=Y3, algorithm=mod.SIMPLS, ax.tickvec.X=  

rep(2,ncol(X3)), ax.tickvec.Y=rep(3,ncol(Y3))) 

 

 
Figure       The PLS biplot of the cocktail data. 

With an overall quality value (overall.quality) of       , several relationships can be 

observed from this biplot. For example, a relation between strongness, odor.mango, persistence, 

lemon and odor.lemon; between orange and odor.intensity; between odor.orange, thickness and 

pulp; as well as between sweet, bitterness, odor.banana, banana, color.intensity and acidity can 

be observed. However, mango can be seen to have no clear relation with the others.  

In addition, looking at the axis predictivity values (axis.pred), each of the biplot axes quite 

well represents the original data, with the orange axis having the highest axis predictivity of 

      , followed by the strongness, persistence and thickness axes with       . However, the 

mango axis has the lowest axis predictivity of       . This means that the axis represents the 

original data, but not quite as well as the other axes. Although the full output was not printed out 

here, to observe these deductions, users are encouraged to see the full output by typing 
PLS.biplot(X=X3, Y=Y3, algorithm=mod.SIMPLS, ax.tickvec.X=c(8,5, 
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5,5,5), ax.tickvec.Y=c(5,8,5,6,9,8))   
in the   console. These predictivities along with the overall quality value indicate that the PLS 

biplot approximates the cocktail data well.   

To obtain a PLS biplot where the sample names have been excluded, use  
PLS.biplot_no.SN(X=X3, Y=Y3, algorithm=mod.SIMPLS,  

  ax.tickvec.X=rep(2,ncol(X3)), 

   ax.tickvec.Y=rep(3,ncol(Y3))) 

An example of this is shown below in Figure      , for the cocktail data. 

 
Figure       The PLS biplot of the cocktail data, with no sample names. 

Alternatively, for a PLS biplot where the labels of the samples, coefficient points and tick 

markers have been excluded, use  
PLS.biplot_no_labels(X3, Y3, algorithm=mod.SIMPLS, ax.tickvec.X= 

       rep(1,ncol(X3)), ax.tickvec.Y=rep(1,ncol( 

                 Y3))) 

An example is shown below in Figure      . This display can be useful, if the data set under 

consideration is large and emphases are on exploring the relationships between the variables. 
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Figure        The PLS biplot of the cocktail data, without sample, coefficient points and  

 tick markers labels. 

Furthermore, besides orthogonally projecting each of the coefficient points    (for           ) 

in Figure       onto the axes representing the  -variables, to get their respective values, the area 

biplot method can be utilized. In the PLSbiplot1 package, the area biplot method is incorporated 

in the PLS biplot, for the coefficient values, through 
PLS.biplot.area(X, Y, algorithm, ax.tickvec.X, ax.tickvec.Y,    

base.tri, bi.value) 

Here, base.tri is the position number of the desired  -variable in the   matrix, to use as the 

base for the triangle, while bi.value is the desired rotated coefficient points    to approximate 

using the area biplot method. An example of the area biplot method incorporated in the PLS 

biplot is shown in Figure      , using the cocktail data.  
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Figure        The triangles for points   , for           , with base defined by the  

odor.lemon axis in the PLS biplot of the cocktail data. 

Figure        shows an illustration of the area biplot methodology to estimate coefficient points 

  , for           , under response odor.lemon. The resulting biplot is obtained using  
PLS.biplot.area(X3, Y3, algorithm=mod.SIMPLS, ax.tickvec.X=  

rep(2,ncol(X3)), ax.tickvec.Y=rep(3,ncol(Y3)), 

base.tri=6, bi.value=c(1:ncol(X3)))  

and the following output is obtained.  
$Bmat 

            color.intensity   odor.intensity   .  .  .  thickness 

b1:orange       0.1931           -1.980        .  .  .   -2.593   

b2:banana      -0.2932            0.949        .  .  .    2.396 

b3:mango        0.0422            0.896        .  .  .    0.428 

b4:lemon        0.2655            0.616        .  .  .   -1.064 

 

It is not intuitive to estimate the exact area of a triangle visually, but as an exploratory tool, 

larger and smaller coefficients can be easily discerned. Large triangles indicate large coefficient 

values, while small triangles indicate small coefficient values. From Figure      , triangle    

can be seen to have a large coefficient value under the odor.lemon variable, followed by    and 

  . However, triangle    can be said to have a small coefficient value. The exact coefficient 

values are obtained by printing out the coefficient matrix   ̂      (Bmat). Although not fully 

printed out here, using the PLS.biplot.area output, these deductions can be confirmed by 

looking at the coefficient values obtained under the odor.lemon variable, in $Bmat. In the full 
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output, it can be seen that    has a larger value of       , while    has a small value of       . 

The sign of each coefficient value gives an indication of the effect direction on the response 

variables. Here,    and    have a negative effect on the odor.lemon variable, while    and     

have a positive effect.  

 
                         

To get the PLS biplot for the PLS-GLM analysis of a data,  
PLS.GLM.biplot(X, y, algorithm=PLS.GLM, ax.tickvec.X,  

ax.tickvec.y, ax.tickvec.b) 

is used. For        -variables, the  -variables are used individually and separately in the PLS-

GLM analysis. Here, y is one of the  -variables, algorithm=PLS.GLM is the PLS-GLM 

algorithm, while ax.tickvec.X and ax.tickvec.y are for the tick markers of the  -

variables and  -variable axes respectively. The ax.tickvec.b is for the purple tick markers 

on the  -variable axis, used for reading the coefficient points.  

For the PLS biplot of a PLS-GLM fitted using the SIMPLS algorithm,  
PLS.GLM.biplot_SIMPLS(X, y, algorithm=PLS.GLM_SIMPLS, 

 ax.tickvec.X, ax.tickvec.y, 

  ax.tickvec.b) 

is used.  

Both the PLS.GLM.biplot and PLS.GLM.biplot_SIMPLS functions give the approximated 

values of the data (D.hat) and the coefficient vector (b.vec) in their respective output. 

Consider the spider data. The PLS biplot of a Poisson PLS-GLM of this data, using species 

Trocterr, is shown in Figure       and the accompanying output is shown below.  
$D.hat 

    soil.dry  bare.sand  .  .  . Expected_Trocterr 

S1     1.945     1.929  .  .  .   27.74 

S2     2.760     0.672  .  .  .   43.97 

. 

. 

. 

S28    0.757     3.826  .  .  .  -14.21 

 

$bvec 

                  Trocterr 

b1:soil.dry        0.2728 

b2:bare.sand      -0.1562 

b3:fallen.leaves  -0.1310 

b4:moss           -0.1971 

b5:herb.layer      0.3364 

b6:reflection     -0.0151 

 

Looking at the coefficient values (bvec) in the output, all the environmental characteristics can 

be seen to have a negative effect on species Trocterr, except for soil.dry and herb.layer. 
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Characteristic herb.layer can be said to have a high effect on Trocterr, followed by soil.dry, 

moss, bare.sand and fallen.leaves. However, reflection can be said to have a low effect on 

Trocterr.  

 

Figure       The PLS biplot for a Poisson PLS-GLM for species Trocterr of the spider data. 

This display is obtained using 
X2 = as.matrix(cbind(spider$x))   

   rownames(X2) = paste(c("S1","S2","S3","S4","S5","S6","S7","S8", 

"S9","S10","S11","S12","S13","S14","S15", 

"S16","S17","S18","S19","S20","S21", 

"S22","S23","S24","S25","S26","S27", 

"S28")) 

Y2 = as.matrix(cbind(spider$abund))   

rownames(Y2) = rownames(X2) 

which.y.variable = 11  #specifying which y-variable to use 

   y = as.matrix(Y2[,which.y.variable])  

dimnames(y) = list(rownames(Y2), colnames(Y2)[ 

              which.y.variable])  

PLS.GLM.biplot(X=X2, y, algorithm=PLS.GLM, ax.tickvec.X= 

rep(2,ncol(X2)),ax.tickvec.y=3, ax.tickvec.b=3) 

In Figure      , a representation of the variance of each variable is shown. Observing the length 

of the thicker arrows (vectors), reflection can be said to have a large standard deviation, 

followed by fallen.leaves and bare.sand. In addition, observing the angles between the blue 

vectors, all the environmental characteristics can be said to be positively related to each other, 
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except for fallen.leaves. Also, the relation between species Trocterr and environmental 

characteristics soil.dry, moss, bare.sand and herb.layer can be seen. 

 
Figure        A zoomed-in display of the coefficient points in the PLS biplot a Poisson 

 PLS-GLM for species Trocterr of the spider data.  

A zoomed-in display of the coefficient points in Figure        is obtained using  
PLS.GLM.biplot_bvec(X=X2, y, algorithm=PLS.GLM, ax.tickvec.b=15) 

and the resulting output is shown in Figure        above. This can be used for easier orthogonal 

projections of the coefficient points. For example, coefficient points    and    projected 

orthogonally onto the Trocterr axis yields        and       respectively, as shown above in 

Figure      . The obtained coefficient values are shown under $bvec in the output of the 

PLS.GLM.biplot function.  

Figure       shows the display obtained when the SIMPLS-fitted Poisson PLS-GLM is used  
PLS.GLM.biplot(X=X2, y, algorithm=PLS.GLM_SIMPLS, ax.tickvec.X= 

rep(2,ncol(X2)),ax.tickvec.y=3, ax.tickvec.b=3) 

$D.hat 

    soil.dry  bare.sand  .  .  . Expected_Trocterr 

S1     1.919     1.745  .  .  .   27.64 

S2     2.716     0.756  .  .  .   46.58 

 . 

. 

. 

S28    0.934     3.308  .  .  .  -25.49 
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$bvec 

                  Trocterr 

b1:soil.dry        2.556 

b2:bare.sand      -2.276 

b3:fallen.leaves  -1.205 

b4:moss           -2.367 

b5:herb.layer      3.677 

b6:reflection     -0.097 

 

Figure       The PLS biplot for a Poisson PLS-GLM for species Trocterr of the spider data, 
fitted using the SIMPLS algorithm (Algorithm     ). 

Comparing this PLS biplot (Figure      ) to that shown in Figure      , slightly similar 

deductions can be observed. For example, in Figure      , the relation between species Trocterr 

and environmental characteristics bare.sand, soil.dry and moss can be seen. This can also be 

observed in Figure      . However, the positions of the coefficients points    , for    

           , and sample points are different in both biplots. This is due to the method used in 

constructing the  -weights matrix     in both algorithms, see Algorithms       and     . The 

predicted coefficient values are shown under bvec, in their respective output. 

In the PLSbiplot1 package, only the Poisson PLS-GLM (PLS.GLM) and the Binomial PLS-

GLM (PLS.binomial.GLM) were developed, as discussed in Chapter   . To obtain a PLS 

biplot for a Binomial PLS-GLM, use  
PLS.GLM.biplot(X, y, algorithm=PLS.binomial.GLM, ax.tickvec.X, 

ax.tickvec.y, ax.tickvec.b) 

and for the SIMPLS-fitted Binomial PLS-GLM, use 
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PLS.GLM.biplot_SIMPLS(X, y, algorithm=PLS.binomial.GLM,  

    ax.tickvec.X, ax.tickvec.y, ax.tickvec.b) 

 

An application of the Binomial PLS-GLM function can be seen in Figures       to       of 

Section     , obtained using the following. 
data(Pima.tr, package="MASS") 

X = as.matrix(cbind(Pima.tr[,1:7]))   

dimnames(X) = list(1:nrow(X), colnames(X))  

y = as.matrix(as.numeric(Pima.tr$type)-1, ncol=1) 

#0=No and 1=Yes 

dimnames(y) = list(1:nrow(y), paste("type")) 

#Figure 8.6 

PLS.GLM.biplot(X, y, algorithm=PLS.binomial.GLM, ax.tickvec.X= 

    c(3,3,8,7,8,5,2), ax.tickvec.y=3, ax.tickvec.b=3) 

#Figure 8.7  

PLS.GLM.biplot_no.SN(X, y, algorithm=PLS.binomial.GLM,  

ax.tickvec.X=c(3,3,8,7,8,5,2),    

 ax.tickvec.y=3, ax.tickvec.b=3)   

#A zoomed-in display of the coefficient points (Figure 8.8) 

PLS.GLM.biplot_bvec(X, y, algorithm=PLS.binomial.GLM,  

   ax.tickvec.b=10)   

To apply the SIMPLS-fitted Binomial PLS-GLM function to the Pima.tr data, use  
PLS.GLM.biplot_SIMPLS(X, y, algorithm=PLS.binomial.GLM,  

    ax.tickvec.X=c(3,5,8,4,3,7,2),  

     ax.tickvec.y=2, ax.tickvec.b=3) 

#no sample names 

PLS.GLM.biplot_SIMPLS_no.SN(X, y, algorithm=PLS.binomial.GLM,  

         ax.tickvec.X=c(3,5,8,4,3,7,2),  

          ax.tickvec.y=2, ax.tickvec.b=3) 

 

                       

The PLS biplot of a SPLS analysis of a data set is obtained using  
SPLS.biplot(X, Y, algorithm=mod.SPLS, lambdaX, lambdaY, eps, 

  ax.tickvec.X, ax.tickvec.Y) 

Here, algorithm=mod.SPLS is the SPLS algorithm, eps is for the convergence step in the 

SPLS algorithm (see Algorithm    ), lambdaX and lambdaY are the desired penalty 

parameters for the soft-thresholding penalization function for the PLS  -weights and  -weights 

respectively. The SPLS.biplot function also gives the overall quality value of the biplot 

(overall.quality), the axis predictivity (axis.pred), the approximated values of the data 

(D.hat) and the SPLS coefficients values (Bmat).  

Consider the ash data. Prior to the SPLS analysis, the eight elemental compositions were 

subjected to a log-transformation, due to their skewed distribution. For this result, the log-

transformed elements are used in the SPLS analysis. To choose a value for the penalty 
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parameters (    and    ) for this data, the experiment described in Subsection         is conducted 

using Algorithm     . Since     , there is no need to perform variables selection on the     

 -variable. As a result,        in this experiment, and much attention is given to the value of 

    that gives the lowest       value. Here, different pairs of     (     )  and        are 

used as follows.  
X1 = as.matrix(ash[,10:17], nc=8)   

Y1 = as.matrix(ash$SOT)   

colnames(Y1) = paste("SOT") 

#choosing a value for the penalty parameters lambdaX and lambdaY 

#for the ash data  

  main2 = opt.penalty.values(X=scale(X1), Y=scale(Y1), A=2,  

          algorithm=mod.SPLS, eps=1e-5,  

       from.value.X=0, to.value.X=500,  

        from.value.Y=0, to.value.Y=0,  

              lambdaY.len=1, lambdaX.len=100) 

main2 

$RMSEP.values 

    lambdaY    lambdaX RMSEP.value 

1         0   0.000000   0.7723511 

2         0   5.050505   0.7710647 

3         0  10.101010   0.7697669 

. 

. 

. 

100       0 500.000000   0.9949367 

 

$min.RMSEP.value 

[1] 0.7697669 

 

$lambdaY.to.use 

[1] 0 

 

$lambdaX.to.use 

[1] 10.10101 

  

As discussed in Subsection       , the value for      and      is chosen so that a minimum 

       is obtained. To achieved this,     different     values and       were paired together, 

to form the         pairs (     ) . Using the        pairs (     ) and the  

opt.penalty.values function, the value for      and    , to use in the final SPLS analysis, is 

obtained. The opt.penalty.values function performs the experiment described in 

Subsection       , for the data under consideration. In this function, from.value.X and 

to.value.X are the upper and lower limits for    . Likewise, from.value.Y and 

to.value.Y are the upper and lower limits for    . In addition, lambdaX.len and 

lambdaY.len are the total number of      and      to use in the experiment. Therefore,  
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from.value.X=0, to.value.X=500 and lambdaX.len=100 means     (different) values 

of     (     ) , while from.value.Y=0, to.value.Y=0 and lambdaY.len=1 means 

     .  

Furthermore, in the opt.penalty.values function, the       values obtained from the   

SPLS analyses are recorded under RMSEP.values, the minimum       value is recorded 

under min.RMSEP.value, while the value of      and     having the minimum       value is 

recorded under lambdaX.to.use and lambdaY.to.use respectively. Note, algorithm in 

opt.penalty.values can be the SPLS algorithm (mod.SPLS) or the SPLS-GLM algorithm 

(SPLS.GLM or SPLS.binomial.GLM) and eps is for the convergence step of the SPLS/SPLS-

GLM algorithm. For the ash data, a plot of the obtained       values is shown below in Figure 

     , along with their respective     value.  
main2$RMSEP.values 
plot(main2$RMSEP.values[,2], main2$RMSEP.values[,3], type='l',  

 xlab="lambdaX", ylab="RMSEP values")   

 
Figure        A plot of      (     ) values and their respective         value, for the  

ash data. 
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In Figure       , the       value starts off at a value of      , when      , and decreases to 

     , at       . As the value for      further increases, so does the       value until 

        when it becomes constant. At this point, the       value is        and stays constant 

until the last value of     (i.e.,       ) is reached in this experiment. From this plot, the 

minimum       value of        is observed at       . Thus, for the SPLS analysis of the ash 

data,         and      . Alternatively, from the opt.penalty.values output below, the 

minimum        value of          occurred when             and      . Thus, these 

penalty values will be used for the SPLS analysis of the ash data. 
min.RMSEP.value = main2$min.RMSEP.value 

lambdaY.to.use = main2$lambdaY.to.use 

lambdaX.to.use = main2$lambdaX.to.use 

list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use= 

lambdaX.to.use, min.RMSEP.value=min.RMSEP.value)  

  $lambdaY.to.use 

[1] 0 

$lambdaX.to.use 

[1] 10.101 

$min.RMSEP.value 

[1] 0.76977 

With SPLS/SPLS-GLM also performing variables selection, besides components extraction, in 

the final SPLS analysis, all  -variables having a non-zero weight value are selected and used in 

the analysis. Likewise, all  -variables having a non-zero weight value are selected and used in 

the analysis. However, if the number of   -variables is small, then there is no need to perform 

variables selection on the  -variables. Thus,      . Similarly, if the number of   -variables is 

small, there is no need to perform variables selection on these  -variables, therefore,      . 

When         , then no variables selection is needed and no thresholding is applied in the 

SPLS analysis. For the ash data, using the obtained penalty parameters (       and      ), 

the variables selection procedure is obtained as follows. 
  #which X- and Y-variables to use for the SPLS analysis  

main3 = mod.SPLS(X=scale(X1), Y=scale(Y1), A=2, lambdaY= 

            lambdaY.to.use, lambdaX=lambdaX.to.use, eps= 

 1e-5) 

X.to.use = main3$X.select 

Y.to.use = main3$Y.select  #not necessary for the ash data 

X.new = as.matrix(X1[,X.to.use]) 

colnames(X.new) #P=6 

[1] "log(P2O5)"  "log(Fe2O3)" "log(Al2O3)" "log(CaO)"    

[5] "log(Na2O)"  "log(K2O)"   

colnames(X1) #P=8 

[1] "log(P2O5)" "log(SiO2)" "log(Fe2O3)" "log(Al2O3)"  

[5] "log(CaO)" "log(MgO)" "log(Na2O)" "log(K2O)" 

Y.new = as.matrix(Y1[,Y.to.use]) 

colnames(Y.new) = colnames(Y1) 
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colnames(Y.new) 

[1] "SOT" 

From        -variables, in the final SPLS analysis, this value was reduced to     , as seen 

above under colnames(X.new). With     , there is no need to perform variables selection 

on the  -variable, thus, Y.new=Y1. Using the obtained penalty parameters (        and 

     ), the resulting PLS biplot is obtained as follows. 
SPLS.biplot(X.new, Y.new, algorithm=mod.SPLS, lambdaY= 

       lambdaY.to.use, lambdaX=lambdaX.to.use, eps=1e-5,  

   ax.tickvec.X=rep(1,ncol(X.new)), ax.tickvec.Y= 

   rep(5,ncol(Y.new))) 

     
The biplot display is shown below in Figure      .  

 
Figure       The PLS biplot for a SPLS of the ash data, with          and      .  

Below is the resulting output from the SPLS.biplot function.  
$overall.quality 

 [1] 0.983 

 

$axis.pred       

               log(P2O5)      .    .   .   SOT 

         0.736        .    .   .   0.982 

 

$D.hat 

log(P2O5)   log(Fe2O3)      .    .   .   SOT  

13     1.674   -1.3368  .    .   .   935 

14     1.611   -1.2965  .      .   .   953 

    .  

    . 

 . 
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905    1.323    0.9434   .    .   .   1136 

 

$Bmat  

                SOT 

b1:log(P2O5)  -0.239 

b2:log(Fe2O3)  3.640 

b3:log(Al2O3)  3.228 

b4:log(CaO)    1.893 

b5:log(Na2O)   1.096 

b6:log(K2O)   -3.089 

 

In this biplot display (Figure      ), a representation of the variance of each variable is provided.  

Observing the length of the thicker arrows (vectors), log(P2O5) can be said to have a large 

standard deviation. In addition, looking at the coefficient values under $Bmat above, all the 

compositions can be seen to have a positive effect on SOT, except for log(P2O5) and log(K2O). 

Composition log(Fe2O3) can be said to have a high effect on SOT, followed by log(Al2O3) and 

log(K2O). However, composition log(P2O5) can be said to have a low effect on SOT. With an 

overall quality (overall.quality) of       , the relation between SOT and log(K2O) and 

log(P2O5); as well as between log(CaO), log(Fe2O3) and log(Al2O3) can be observed in the 

biplot (Figure      ). On the other hand, log(Na2O) can be seen to have no clear relation with 

the others.  

 
Figure        A display of the coefficient points in the PLS biplot for a SPLS of the ash data,  
  with         and      .   
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Orthogonally projecting each of the coefficient points    in Figure      , for           , onto 

the SOT axis yields the coefficient values. As discussed in Subsection         and Section     , 

the purple markers on the SOT axis are used to read off these values. A display of the coefficient 

points in Figure        is shown above in Figure      . This display can be used for easier 

orthogonal projections of the coefficient points    , for           , onto the SOT axis, to get 

their respective values. For example, coefficient points    ,   ,   ,   ,   , and    projected 

orthogonally onto the SOT axis yields     ,     ,    ,     ,      and      respectively, as 

shown in Figure      . The obtained coefficient values are shown under $Bmat, in the 

SPLS.biplot output above. This display (Figure      ) is obtained using 

SPLS.biplot_Bmat(X.new, Y.new, algorithm=mod.SPLS, lambdaY= 

      lambdaY.to.use, lambdaX=lambdaX.to.use,  

eps=1e-5, ax.tickvec.B=5)     

Here, lambdaX.to.use=10 and lambdaY.to.use=0 is obtained from the 

opt.penalty.values output above. 

For a display where the labels of the samples, coefficient points and tick markers have been 

excluded (Figure      ), use   
SPLS.biplot_no_labels(X.new, Y.new, algorithm=mod.SPLS, lambdaY= 

     lambdaY.to.use, lambdaX=lambdaX.to.use,  

     eps=1e-5, ax.tickvec.X=rep(1,ncol(X.new)),  

     ax.tickvec.Y=rep(5,ncol(Y.new))) 

 

 
Figure        The PLS biplot for a SPLS of the ash data, with no sample, coefficients points   

and tick markers labels, for         and      .  
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Moreover, looking at the ash data, with the small number of   - and  -variables (     and 

    respectively), performing variables selection on these variables is unnecessary. Thus, a 

PLS analysis can be performed on this data, rather than a SPLS analysis.  

Furthermore, the PLS biplot of a SPLS-GLM of a data set can be obtained using  
SPLS.GLM.biplot(X, y, algorithm, eps=1e-3, lambdaY, lambdaX,  

     ax.tickvec.X, ax.tickvec.y, ax.tickvec.b)    

where algorithm is any of the SPLS-GLM algorithms, “SPLS.binomial.GLM” for a 

Binomial     and “SPLS.GLM” for a Poisson   . This function SPLS.GLM.biplot gives a PLS 

biplot display with the labels of the coefficient points and tick markers inclusive. An application 

of this function can be seen in Figure     , see Chapter   . Since the data is Poisson-distributed, 

algorithm=SPLS.GLM is used. The following is used in obtaining the display in Figure     . 

The accompanying explanations of the resulting display are given in Subsection       . 
library(robustbase) 

possum.mat  

y = as.matrix(possum.mat[,1], nc=1)  

dimnames(y) = list(paste("S", 1:nrow(possum.mat), seq=""),  

     "Diversity") 

X = as.matrix(possum.mat[,2:14], nc=13)  

dimnames(X) = list(paste("S", 1:nrow(possum.mat), seq=""),  

     colnames(possum.mat[,2:14]))  

#choosing a value for the penalty parameters lambdaY and lambdaX 

#for this data  

main2 = opt.penalty.values(X=scale(X), Y=scale(y), A=2,  

        algorithm=SPLS.GLM, eps=1e-3,  

         from.value.X=0, to.value.X=48,  

     from.value.Y=0, to.value.Y=0,  

      lambdaY.len=1, lambdaX.len=100) 

min.RMSEP.value = main2$min.RMSEP.value 

lambdaY.to.use = main2$lambdaY.to.use 

lambdaX.to.use = main2$lambdaX.to.use 

list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use= 

lambdaX.to.use, min.RMSEP.value=min.RMSEP.value) 

#2D plot of the obtained RMSEP values (Figure 7.5) 

plot(main2$RMSEP.values[,2], main2$RMSEP.values[,3], type='l',  

xlab="lambdaX", ylab="RMSEP values")  

main2B = opt.penalty.values(X=scale(X), Y=scale(y), A=2,  

        algorithm=SPLS.GLM, eps=1e-3,  

         from.value.X=1, to.value.X=4,  

     from.value.Y=0, to.value.Y=0,  

      lambdaY.len=1, lambdaX.len=100) 

min.RMSEP.value = main2B$min.RMSEP.value 

lambdaY.to.use = main2B$lambdaY.to.use 

lambdaX.to.use = main2B$lambdaX.to.use 

list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use= 

lambdaX.to.use, min.RMSEP.value=min.RMSEP.value) 

main2B$RMSEP.values 

#2D plot of the obtained RMSEP values (Figure 7.6) 

plot(main2B$RMSEP.values[,2], main2B$RMSEP.values[,3], xlim= 

c(0,4.5), type='l', xlab="lambdaX", ylab="RMSEP values")     
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#which X-variables to use for the SPLS-GLM analysis #which X-

#variables to use for the SPLS-GLM analysis  

main3 = SPLS.GLM(scale(X), scale(y), A=2, lambdaY=lambdaY.to.use,  

        lambdaX=lambdaX.to.use, eps=1e-3) 

X.to.use = main3$X.select 

X.new = as.matrix(X[,names(X.to.use)]) 

colnames(X.new) 

main3$Y.select #note 

#SPLS-GLM biplot (Figure 7.7) 

SPLS.GLM.biplot(X.new, y, algorithm=SPLS.GLM, eps=1e-3,  

       lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,  

   ax.tickvec.X=c(10,5,5,5,5,5,5,5,5,5,5,5,5),  

    ax.tickvec.y=8, ax.tickvec.b=12) 

#no sample point names (Figure 7.8) 

SPLS.GLM.biplot_no.SN(X.new, y, algorithm=SPLS.GLM, eps=1e-3,  

        lambdaY=lambdaY.to.use, lambdaX= 

      lambdaX.to.use, ax.tickvec.X= 

 c(10,5,5,5,5,5,5,5,5,5,5,5,5),  

 ax.tickvec.y=8, ax.tickvec.b=12)  

#zoomed-in display of the coefficient points in the PLS-GLM 

#biplot (Figure 7.9) 

SPLS.GLM.biplot_bvec(X.new, y, algorithm=SPLS.GLM, eps=1e-3,  

    lambdaY=lambdaY.to.use, lambdaX= 

     lambdaX.to.use, ax.tickvec.b=30)    

To obtain a PLS biplot for a Binomial SPLS-GLM, use  
SPLS.GLM.biplot(X, y, algorithm=SPLS.binomial.GLM, lambdaY,  

       lambdaX, ax.tickvec.X, ax.tickvec.y,  

        ax.tickvec.b) 

An example of this biplot can be seen in Figure        of Section     , using  
data(Colon, package="plsgenomics") 

X = as.matrix(cbind(Colon$X))   

dimnames(X) = list(1:nrow(X), colnames(X)) 

y = as.matrix(as.numeric(Colon$Y)-1, ncol=1)   

#0=normal and 1=tumor 

dimnames(y) = list(1:nrow(y), paste("tissue")) 

#SPLS-GLM biplots  

#choosing a value for the penalty parameters lambdaY and lambdaX 

#for this data  

  main2 = opt.penalty.values(X=scale(X), Y=scale(y), A=2,  

          algorithm=SPLS.binomial.GLM, eps= 

     1e-3, from.value.X=0, to.value.X= 

8.5, from.value.Y=0, to.value.Y=0,  

lambdaY.len=1, lambdaX.len=500) 

min.RMSEP.value = main2$min.RMSEP.value 

lambdaY.to.use = main2$lambdaY.to.use 

lambdaX.to.use = main2$lambdaX.to.use 

list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use= 

lambdaX.to.use, min.RMSEP.value=min.RMSEP.value) 

main2$RMSEP.values 

#2D plot of the obtained RMSEP values (Figure 8.9) 

plot(main2$RMSEP.values[,2], main2$RMSEP.values[,3], type='l',  

 xlab="lambdaX", ylab="RMSEP values")   

#which X-variables to use for the SPLS-GLM analysis  

main3 = SPLS.binomial.GLM(scale(X), scale(y), A=2, lambdaY= 

   lambdaY.to.use, lambdaX= 
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                                        lambdaX.to.use, eps=1e-3) 

X.to.use = main3$X.select 

X.new = as.matrix(X[,names(X.to.use)]) 

#there are still some X-variables with zero coefficient values  

#that need to be dropped.  

main.rerun = function(X.new) 

{   

  repeat{ 

          P.previous = ncol(X.new) 

          Rmat = SPLS.binomial.GLM(scale(X.new), scale(y), A=2,  

lambdaY=lambdaY.to.use,  

lambdaX=lambdaX.to.use,  

eps=1e-3)$X.weights.trans 

          X.select = which(!Rmat[,1]==0, arr.ind=TRUE) 

          X.new = as.matrix(X[,names(X.select)]) 

     P.now = ncol(X.new) 

          if(P.now==P.previous){ 

            break 

            } 

            else{ 

                  Rmat = SPLS.binomial.GLM(scale(X.new), scale(y), A=2, 

lambdaY=lambdaY.to.use,           

                                                            lambdaX=lambdaX.to.use,    

eps=1e-3)$X.weights.trans 

                  X.select = which(!Rmat[,1]==0, arr.ind=TRUE) 

                  X.new = as.matrix(X[,names(X.select)]) 

             }          

       } 

  list(X.to.use=colnames(X.new), P.final=P.now, X.final=X.new,     

  Rmat=Rmat) 

} 

main.final = main.rerun(X.new) 

main.final$P.final  #final number of selected X-variables 

X.new.to.use = main.final$X.final #final selected X-variables 

#Figure 8.10 

SPLS.GLM.biplot(X.new.to.use, y, algorithm=SPLS.binomial.GLM,  

       eps=1e-3, lambdaY=lambdaY.to.use, lambdaX= 

      lambdaX.to.use, ax.tickvec.X=rep(1,ncol( 

 X.new.to.use)),ax.tickvec.y=5, ax.tickvec.b=1)  

#zoomed-in display of the coefficient points in the PLS-GLM 

#biplot (Figure 8.11) 

SPLS.GLM.biplot_bvec(X.new.to.use, y, algorithm= 

                SPLS.binomial.GLM, eps=1e-3, lambdaY= 

          lambdaY.to.use, lambdaX=lambdaX.to.use,  

       ax.tickvec.b=75)    

     
              

The developed PLSbiplot1     package can be used for six main purposes, among others. These 

main purposes are: (i) for the Principal Component Analysis (PCA) biplots, (ii) the covariance 

monoplots and biplots, (iii) Partial Least Squares (PLS) biplots, (iv) Partial Least Squares for 

Generalized Linear Model (PLS-GLM) biplots, (v) Sparse Partial Least Squares (SPLS) biplots, 

and (vi) Sparse Partial Least Squares for Generalized Linear Model (SPLS-GLM) biplots. 
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To obtain the PCA biplot of a data set, function  
PCA.biplot(D, method=mod.PCA, ax.tickvec.D) 

is used, or  
PCA.biplot_no.SN(D, method=mod.PCA, ax.tickvec.D)  

for a display with no sample names.  

In this package, the PLS parameters of a data set are found using any of these functions  
mod.SIMPLS(X, Y, A=A.final) #SIMPLS algorithm 

mod.NIPALS(X, Y, A=A.final) #NIPALS algorithm 

mod.KernelPLS_R(X, Y, A=A.final) #Kernel algorithm by  

               #Rännar et al.(1994) 

mod.KernelPLS_L(X, Y, A=A.final) #Kernel algorithm by  

       #Lindgren et al.(1993) 

where  A.final is the final number of PLS components to use in each analysis. This number is  

determined with the aid of the respective       plot of each analysis:  
plot(t(mod.SIMPLS(X, Y, A)$RMSEP), type="b",  

xlab="Number of components", ylab="RMSEP values")    

   #SIMPLS algorithm (Algorithm    ) 
plot(t(mod.NIPALS(X, Y, A)$RMSEP), type="b",  

xlab="Number of components", ylab="RMSEP values")    

    #NIPALS algorithm (Algorithm    ) 
plot(t(mod.KernelPLS_R(X, Y, A)$RMSEP), type="b",  

   xlab="Number of components", ylab="RMSEP values")    

    #Kernel algorithm by Rännar et al.(1994) 

#(Algorithm    ) 
plot(t(mod.KernelPLS_L(X, Y, A)$RMSEP), type="b",  

   xlab="Number of components", ylab="RMSEP values")    

    #Kernel algorithm by Lindgren et al.(1993) 

   #(Algorithm    ) 

For the     analysis of a data use 
mod.VIP(X, Y, algorithm=mod.SIMPLS, A, cutoff) 

In addition, for the MMLR and PCR analyses of a data set, functions  
mod.MMLR(X, Y) 

mod.PCR(X, Y, r) 

are used respectively. Here, r is the desired number of PCA components.  

For the covariance monoplot of one set of variables and the covariance biplot of the data,  
    cov.monoplot(X)  #for the  -variables  

    cov.biplot(X, Y) 

are used respectively.  

Furthermore, to obtain various displays of the PLS biplot of a data set, functions  
PLS.biplot(X, Y, algorithm, ax.tickvec.X, ax.tickvec.Y)  

PLS.biplot_no.SN(X, Y, algorithm, ax.tickvec.X, ax.tickvec.Y) 

#with no sample names 
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PLS.biplot_no_labels(X, Y, algorithm, ax.tickvec.X, ax.tickvec.Y) 

#with no labels for the samples, coefficient points  

#and tick markers 

PLS.biplot.area(X, Y, algorithm, ax.tickvec.X, ax.tickvec.Y,  

   base.tri, bi.value)  

#with area biplot idea 

are used. In these functions, algorithm is any of the PLS algorithms “mod.NIPALS”, 

“mod.KernelPLS_R”, “mod.KernelPLS_L” and “mod.SIMPLS”.  

Likewise, for the PLS-GLM, the five different displays of the PLS biplot are found by using 

functions 
PLS.GLM.biplot(X, y, algorithm, ax.tickvec.X, ax.tickvec.y,  
       ax.tickvec.b) 

#(Algorithm    ) 
PLS.GLM.biplot_no.SN(X, y, algorithm, ax.tickvec.X,  

         ax.tickvec.y, ax.tickvec.b)  

#with no labels for the samples  

PLS.GLM.biplot_bvec(X, y, algorithm, ax.tickvec.b) 

#Zoomed-in display of the coefficient points  

PLS.GLM.biplot_SIMPLS(X, y, algorithm=PLS.GLM_SIMPLS, 

 ax.tickvec.X, ax.tickvec.y, 

  ax.tickvec.b) 

#fitted using the SIMPLS algorithm (Algorithm    ) 

PLS.GLM.biplot_SIMPLS_no.SN(X, y, algorithm, ax.tickvec.X,  

       ax.tickvec.y, ax.tickvec.b)  

#with no labels for the samples 

Here, algorithm is any of the PLS-GLM algorithms “PLS.GLM” and “PLS.binomial.GLM”.  

For the SPLS and SPLS-GLM, various displays of the PLS biplot can be obtained using 

functions  
SPLS.biplot(X, Y, algorithm=mod.SPLS, lambdaY, lambdaX,  

    ax.tickvec.X, ax.tickvec.Y)   

 #(Algorithm    ) 

SPLS.biplot_no_labels(X, Y, algorithm=mod.SPLS, lambdaY, lambdaX,  

     ax.tickvec.X, ax.tickvec.Y)  

#with no labels for the samples, coefficient points  

#and tick markers  

SPLS.biplot_Bmat(X, Y, algorithm=mod.SPLS, lambdaY, lambdaX,  

    ax.tickvec.B) 

#Zoomed-in display of the coefficient points  

SPLS.GLM.biplot(X, y, algorithm, lambdaY, lambdaX, ax.tickvec.X,  

    ax.tickvec.y, ax.tickvec.b) 

#PLS biplot for the SPLS-GLM    

#(Algorithm    ) 

SPLS.GLM.biplot_no.SN(X, y, algorithm, lambdaY, lambdaX, 

ax.tickvec.X, ax.tickvec.y, ax.tickvec.b) 

#PLS biplot for the SPLS-GLM, with no sample names    

SPLS.GLM.biplot_bvec(X, y, algorithm, lambdaY, lambdaX, 

ax.tickvec.b) 

#Zoomed-in display of the coefficient points  
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In the SPLS.GLM.biplot, SPLS.GLM.biplot_no.SN and SPLS.GLM.biplot_bvec 

functions, algorithm is any of the SPLS-GLM algorithms “SPLS.GLM” and 

“SPLS.binomial.GLM”.  

Moreover, the PLSbiplot1 package is compatible with both the 32 and 64 bits of the RGui of the 

      version of    (  Core Team, 2014). Thus, it is suggested that the   version       be used.   
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At the core of multivariate statistics is the investigation of relationships between different sets of 

variables. Biplots like the CA biplot, PCA biplot and CVA biplot already existed for the inter-

variable relationships revelation. The PLS biplot provides for this revelation as well as the casual 

relationships between two sets of variables (predictors and responses) in terms of the matrix of 

regression coefficients. In addition, the PLS biplot provides a single graphical representation for 

displaying results from the PLSR analysis of a data set. In Chapter   , the biplot theory was 

applied in the PLS context, to form the PLS biplot. Further extensions were discussed in Chapter 

   (for the GLM framework) and Chapter    (for the SPLS and SPLS-GLM). The PLS biplot 

software (PLSbiplot1) was developed for executing these applications. The PLSbiplot1 

package is utilized for extensive applications of the PLS biplot to different data sets, namely, the 

olive oil data from Mevik & Wehrens (2007), the SOVR data from Umetrics MKS (2013), the 

Pima.tr data from Smith et al. (1988), the cereal data from Varmuza & Filzmoser (2009), the 

possum diversity data from Lindenmayer et al. (1991), the bio-env data from Greenacre (2010) 

and the colon data from Alon et al. (1999). A brief step by step illustration of the use of this 

package is given in Section     , using the ash and glass data from Varmuza & Filzmoser (2009), 

the cocktail data from Husson et al. (2013), the nutrimouse data by Martin et al. (2007) and the 

spider data from Van der Aart & Smeenk-Enserink (1975).  

The main aim of this dissertation was to construct a PLS biplot to display multivariate data 

graphically. This was accomplished and tested using both small and large data sets. In the PLS 

biplot, besides simultaneously representing both the samples and the predictor and response 

variables on the same plot, it was found that the matrix of PLSR coefficients could be added to 

the plot. For this reason, two different PLS biplot styles were discussed in this dissertation to 

make it easier to represent these coefficients. The first style involved fitting a second set of 

markers (in purple) on the prediction biplot axes representing the response variables, and 

thereafter obtaining the coefficient values directly from the orthogonal projections onto these 

biplot axes. The coefficient values are read off using the purple markers on these axes. The 

second style used twice the areas of triangles spanned at the origin and the PLS vectors     and 

    to approximate the  (   )    element of the coefficients matrix. It is not intrinsic to estimate the 
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exact area of a triangle visually, but it can be used as an exploratory tool, as larger and smaller 

coefficients can be easily distinguished. By means of this approach, the exact coefficient values 

can be obtained by printing out the matrix   ̂    . Furthermore, the PLS biplot was implemented 

within the framework of (univariate) PLS-GLMs. This was tested using a small Binomial-

distributed dataset (Pima.tr data) and three Poisson-distributed data sets (bio-env, possum 

diversity and spider data). In addition, the PLS biplot was employed in the SPLS and 

(univariate) SPLS-GLM frameworks and the resulting outcomes were tested using the possum 

diversity data from Lindenmayer et al. (1991), the cereal data from Varmuza & Filzmoser 

(2009) and the colon data from Alon et al. (1999).  

 

                   

The discussed methods and developed biplots have only been tested on nine small data sets ( -, 

 -,   -,   -,   -,   -,   - and   -dimensions) and three large data sets (   -,    - and     -

dimensions). After applying the developed PLS biplot to these data sets, variables and inter-

variable relationships were revealed. Considering PLS as an approximation technique, it was 

found that the PLS biplot approximates the data sets quite well, using     components.  

Furthermore, comparing the PLS biplot with the PCA biplot, it was found that both biplots 

approximate a large-dimensional data matrix using only a few components, to be exact,   

components. However, the method of approximation differs across these biplots, hence, the 

different biplot displays. The PCA biplot treats the two sets of variables as one set, while the 

PLS biplot treats them as two separate sets of variables. Also, when comparing the PLS biplot 

with the covariance biplot, different graphical displays were observed. This was due to the 

approximation method used in approximating the covariance matrix in each technique.  

In addition, comparing the PLS biplots obtained under the standard PLS, PLS-GLMs, SPLS and 

SPLS-GLMs frameworks, different graphical displays were observed. This was attributed to the 

different PLS computation under each framework.  

Seeing that the PLS biplot approximates a large data matrix and that it helps to reveal variables 

and inter-variable relationships, it can be regarded as another useful graphical tool for displaying 

large data sets, alongside the PCA biplot. The PLS biplot can also be used as a graphical tool for 

displaying the approximated covariances between two sets of variables.   

For extremely large-dimensional data sets, the SPLS, SPLS-GLM and their resulting biplots are 

recommended, since the number of variables can be reduced to a minimum. However, with the 
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main aim of this dissertation being to construct a biplot for large-dimensional data in the form of 

the PLS biplot, after applying the constructed biplot to several large-dimensional data sets, it was 

found that the PLS biplot can handle a fairly large data, but not extremely large data sets. Since 

no biplot such as the PLS biplot currently exists, this dissertation serves as a pioneer work on 

which others can build upon. The following are proposed, and hopefully, can result in a PLS 

biplot that can handle extremely large data sets.   

 

                                    

This work initiates another biplot into the biplot family, namely, the PLS biplot. However, some 

areas of this work could be further expanded. The following are possible areas. 

(i) Data sets: 

The PLS biplot developed in this dissertation was applied to eleven data sets, in 

sensory analysis, mineral sorting production, chemometrics, gene expression, 

ecology and biological sciences. It should also be applicable to wider scope of 

data, e.g., astronomy data and geographical data, whose foremost aim is to 

investigate the associations between variables and/or samples. 

(ii) Interactive PLS biplot: 

Sample names can be excluded in the PLS biplot, especially, when large samples 

are involved and the emphasis is more on analysing the relationships between the 

variables. An interactive PLS biplot can provide a more modest tool, allowing the 

user to click on a sample point to reveal its name and other information associated 

with it. 

(iii) Other GLM frameworks: 

Besides the Binomial and Poisson frameworks, PLS can be implemented into 

other members of the exponential family frameworks, such as the Negative 

Binomial, Logistic and Multinomial frameworks. This implementation can be 

explored. 

(iv) Multivariate GLMs: 

With the PLS biplot proposed as a graphical tool for univariate PLS-GLMs and 

SPLS-GLMs, it can be proposed for a multivariate PLS-GLM and SPLS-GLM. 

However, more work is still needed to develop the general framework for 

multivariate GLMs and PLS-GLMs, as well as SPLS-GLMs.  
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(v) PLS algorithms: 

Since there is no general rule as to which PLS algorithm is the best, one can use 

the time factor, i.e., the computational time, to choose which algorithm to use for 

the data. This rules out the NIPALS algorithm, especially, for large data sets. 

Nonetheless, there is still other PLS algorithms, such as the kernel and SIMPLS 

algorithms, to choose from. Alternatively, one can compute the PLS analysis of 

the data using more than one algorithms, and afterwards, choose the algorithm 

that gives the minimum MSE or       value for the response variables of the 

data. However, this method mostly depends on the size of the data set.  

(vi) Number of PLS components: 

In this dissertation, the number of components to use in the PLS analysis is 

suggested based on the optimistically biased error rate, in the form of the       

value. Several authors, such as Chong & Jun (2005), Lê Cao et al. (2008), Mevik 

& Wehrens (2007), Wakeling & Morris (1993) and Yoshida et al. (2013), 

suggested different guidelines. Nevertheless, the exact choice of the number of 

PLS component to use in a PLS analysis still remains an open question.   

(vii) Identifying irrelevant variables: 

The constructed PLS biplot can be applied to fairly large-dimensional data sets, 

after variables selection technique, such as the     technique, has been applied on 

the data, prior to the PLS biplot analysis. In the     technique, one has to apply 

discretion when it comes to choosing the cut-off value for selecting the relevant 

 -variables. In Section       of this dissertation, any   -variables having     

     are selected for analysis. With this rule, one cannot help but wonder what 

about those variables with a      value between        and       inclusive? Thus, 

the question remains, how close to       is close? Chong & Jun (2005) suggests 

choosing variables having      value close to    . Then again, the question still 

remains, how close to      is close? 

(viii) PLS/PLS-GLM  versus SPLS/SPLS-GLM: 

For the PLS and SPLS, it is assumed that a linear form of relationship exist 

between the   - and   -variables, whereas for the PLS-GLM/SPLS-GLM, it is 

assumed that the relationship follows some non-linear function. However, for the 

PLS/PLS-GLM analysis, variables selection is only performed on the  -variables, 
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while for the SPLS/SPLS-GLM analysis, variables selection is performed on both 

the   - and  -variables. The latter comes in handy when both the number of   - 

and  -variables in the data set are (very) large. Also, the variables selection 

process in SPLS/SPLS-GLM is based on the penalty parameters      and    . 

Though if        and       , i.e., there is no need to perform variables 

selection on the   - and   -variables, then PLS (or PLS-GLM) is more appropriate 

for the data, than SPLS (or SPLS-GLM). When        and        (i.e., 

variables selection on the  -variables only), how does one choose between the 

PLS (or PLS-GLM) analysis and the SPLS (or SPLS-GLM) analysis, especially, 

for fairly large data sets? Hence, a rule to determine when to use PLS or SPLS for 

fairly large data sets can be looked into, especially, if variables selection is only 

needed on the  -variables. This also applies to their respective GLM framework. 

(ix) Mixed models: 

Since the relationship between the   - and   -variables of a data set can also 

follow a mixture of both linear and non-linear functions, a future expansion of the 

PLS biplot and its software (PLSbiplot1) to such situation can be explored. 

(x) Penalization  functions: 

Although applying the soft-thresholding LASSO penalty function (Sections      

and     ) in the SPLS and SPLS-GLM algorithms did not reduce the very large 

number of   -variables substantially, as noted in Sections       and       for the 

cereal and colon data respectively, one can consider implementing other 

penalization functions, such as the Best Subset (hard-thresholding), Ridge (hard-

thresholding) and Elastic Net (mixture of soft- and hard-thresholding) 

penalization functions (Hastie et al., 2009; Zou & Hastie, 2005), in the SPLS and 

SPLS-GLM algorithms. 

(xi) 3D PLS biplot: 

Since the PLS biplot was constructed using      components, a future 

expansion of the PLS biplot software (PLSbiplot1) to       components can be 

explored. 
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#All functions used here are stored in the "PLSbiplot1" R package and  

#this package (PLSbiplot1) needs to be installed in R, before running any of  

#the code below.   

 

#Installation of the PLSbiplot1 package 

#First download the PLSbiplot1_0.1.tar.gz file from the dropbox link at 

# https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya 

#and install into R. 

#This package is also available on CRAN http://cran.r-project.org/ 

 

#Loading the PLSbiplot1 package   

library(PLSbiplot1)  #or  require(PLSbiplot1)   

 

#The following packages are needed for the data sets used in this Appendix 

#"chemometrics", "MASS", "mixOmics", "mvabund", "pls", "plsgenomics",  

#"rgl", "robustbase" and "SensoMineR" 

 

#Example sections of Chapter 2  

  #Section 2.8 

  #olive oil data  

  data(oliveoil, package="pls") 

  Dmat = as.matrix(oliveoil) 

  dimnames(Dmat) = list(paste(c("G1","G2","G3","G4","G5","I1","I2","I3","I4", 

"I5","S1","S2","S3","S4","S5","S6")), 

paste(c("Acidity","Peroxide","K232","K270","DK", 

"Yellow","Green","Brown","Glossy","Transp","Syrup"))) 

  PCA.biplot(D=Dmat, method=mod.PCA, ax.tickvec.D=c(8,5,5,7,6,4,5,5,8,7,7))  

 

  #Section 2.12 

  main = PCA.biplot(D=Dmat, method=mod.PCA, ax.tickvec.D=c(8,5,5,7,6,4,5,5,8, 

   7,7)) 

  main$overall.quality 

  main$axis.pred 

  options(digits=0) 

  main$sample.pred    

 

#Example sections of Chapter 3  

  #Section 3.8 

  #olive oil data already specified in "Example sections of Chapter 2"  

  X = as.matrix(oliveoil$chemical, ncol=5)   

  dimnames(X) = list(paste(c("G1","G2","G3","G4","G5","I1","I2","I3","I4", 

    "I5","S1","S2","S3","S4","S5","S6")),paste(c("Acidity", 

    "Peroxide","K232","K270","DK")))    

  Y = as.matrix(oliveoil$sensory, ncol=6)  

  dimnames(Y) = list(paste(c("G1","G2","G3","G4","G5","I1","I2","I3","I4", 

    "I5","S1","S2","S3","S4","S5","S6")),paste(c("Yellow", 

    "Green","Brown","Glossy","Transp","Syrup")))    

  #final number of PLS components 

  RMSEP = mod.SIMPLS(X, Y, A=min(ncol(X),ncol(Y)))$RMSEP #SIMPLS algorithm 

  plot(t(RMSEP), type = "b", xlab="Number of components",  

  ylab="RMSEP  values")    

  A.final = 2 #from the RMSEP plot  

  #PLS matrices R, P, T, Q, and Y.hat from SIMPLS algorithm 

  options(digits=3) 

  main = mod.SIMPLS(X, Y, A=A.final) 

 

https://www.dropbox.com/sh/wr66u07t1vjm9da/AACg_E4h8MvgOHuCXk69yDIya
http://cran.r-project.org/
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  main$X.weights.trans #matrix_R 

  main$X.loadings #matrix_P 

  main$X.scores #matrix_T 

  main$Y.loadings #matrix_Q 

  main$Y.hat[,,A.final] #Y.hat.PLSR 

      

  #Sub-section 3.9.1 

  #which PLSR coefficients are influential?       

  Mag.Bmat.plot(X, Y, algorithm=mod.SIMPLS, A=A.final)    

   

  #Sub-section 3.10.4 

  options(digits=3) 

  mod.MMLR(scale(X),scale(Y))$B.mmlr  ##B.hat.MMLR      

  mod.PCR(scale(X),scale(Y),r=2)$B.pcr[,,r=2]  #B.hat.PCR  

  

#Example section of Chapter 4  

  #Section 4.4   

  #X and Y already specified in "Example sections of Chapter 3"   

  #covariance biplot 

  cov.biplot(X,Y) 

  #covariance monoplot     

  #Y-variables only 

  cov.monoplot(Y) 

   

#Example sections of Chapter 5    

  #Section 5.4 

  #X and Y already specified in "Example sections of Chapter 3"  

  #SIMPLS biplot 

  PLS.biplot(X, Y, algorithm=mod.SIMPLS, ax.tickvec.X=c(8,5,5,5,5),  

    ax.tickvec.Y=c(5,8,5,6,9,8))   

  #Kernel PLS biplot 

  PLS.biplot(X, Y, algorithm=mod.KernelPLS_R, ax.tickvec.X=c(3,3,4,5,2),  

    ax.tickvec.Y=c(3,3,5,6,7,6))   

        

  #Sub-section 5.5.1        

  #SIMPLS biplots with 1 triangle 

  PLS.biplot.area(X, Y, algorithm=mod.SIMPLS, ax.tickvec.X=c(8,5,5,5,5),  

    ax.tickvec.Y=c(5,10,5,6,7,10), base.tri=3, bi.value=4)  

  #SIMPLS biplots with 4 triangles     

  PLS.biplot.area(X, Y, algorithm=mod.SIMPLS, ax.tickvec.X=c(8,5,5,5,5),  

    ax.tickvec.Y=c(5,10,5,6,7,10), base.tri=2,  

    bi.value=c(1,2,3,4,5))  

    

#Example sections of Chapter 6  

  #Section 6.5 

  #possum diversity data 

  library(robustbase) 

  possum.mat  

  y = as.matrix(possum.mat[,1], nc=1)  

  dimnames(y) = list(paste("S", 1:nrow(possum.mat), seq=""), "Diversity") 

  X = as.matrix(possum.mat[,2:14], nc=13)  

  dimnames(X) = list(paste("S", 1:nrow(possum.mat), seq=""), 

                      colnames(possum.mat[,2:14])) 

  #Poisson-fitted PLS-GLM  

  PLS.GLM.biplot(X, y, algorithm=PLS.GLM, ax.tickvec.X=rep(5,ncol(X)),  

   ax.tickvec.y=10, ax.tickvec.b=7)$bvec  

  #zoomed-in display of the coefficient points  

  PLS.GLM.biplot_bvec(X, y, algorithm=PLS.GLM, ax.tickvec.b=10) 
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  #without samples names 

  PLS.GLM.biplot_no.SN(X, y, algorithm=PLS.GLM, ax.tickvec.X=rep(5,ncol(X)),  

    ax.tickvec.y=10, ax.tickvec.b=7)$bvec      

  #using the SIMPLS-GLM algorithm 

  #with samples names 

  PLS.GLM.biplot_SIMPLS(X, y, algorithm=PLS.GLM, ax.tickvec.X=rep(5,ncol(X)),  

     ax.tickvec.y=10, ax.tickvec.b=7)$bvec    

   

  #Section 6.6 

  #bio-env data  

  bioenv.data = read.table(file.choose(), header=TRUE)    

  #choose the file named "bioenv_data" from the "Data Sets" folder.   

  rownames(bioenv.data) = paste("S", 1:nrow(bioenv.data))  

  Y = as.matrix(bioenv.data[,1:5]) 

  dimnames(Y) = dimnames(bioenv.data[,1:5]) 

  sediment = bioenv.data[,9] #sediment variable 

  S = (sediment=="S")  #locating sediment S 

  Sediment_S = replace(S, S[TRUE],1)   

  C = (sediment=="C")  #locating sediment C 

  Sediment_C = replace(C, C[TRUE],1)   

  G = (sediment=="G")  #locating sediment G 

  Sediment_G = replace(G, G[TRUE],1)  # 

  #leaving C as the reference category 

  X = as.matrix(cbind(bioenv.data[,6:8],Sediment_S,Sediment_G))  

  #Poisson-fitted PLS-GLM biplots 

  for (i in 1:5) 

  { 

    which.y.variable = i  #specifying which y-variable to use 

    y = as.matrix(Y[,which.y.variable])  #using only 1 Y-variable 

    dimnames(y) = list(rownames(Y), colnames(Y)[which.y.variable]) 

    dev.new()  #opens an empty plotting window  

    print(PLS.GLM.biplot(X, y, algorithm=PLS.GLM,  

  ax.tickvec.X=rep(3,ncol(X)), ax.tickvec.y=5, ax.tickvec.b=3))  

   }       

     #for nicer axis markers in PLS biplot displays 

      #for y=Y[,1]: use ax.tickvec.X=c(2,3,20,3,1), ax.tickvec.y=5, ax.tickvec.b=4    

       #for y=Y[,2]: use ax.tickvec.X=c(2,3,10,3,2), ax.tickvec.y=7, ax.tickvec.b=5   

       #for y=Y[,3]: use ax.tickvec.X=c(8,5,15,4,3), ax.tickvec.y=12, ax.tickvec.b=10  

       #for y=Y[,4]: use ax.tickvec.X=c(8,5,15,3,3), ax.tickvec.y=7, ax.tickvec.b=10  

       #for y=Y[,5]: use ax.tickvec.X=c(5,4,20,4,3), ax.tickvec.y=9, ax.tickvec.b=10    

        

#Example sections of Chapter 7 

  #Section 7.7.1 

  #cereal data   

  data(cereal, package="chemometrics") 

  X1 = as.matrix(cbind(cereal$X))   

  Y1 = as.matrix(cbind(cereal$Y))   

  #choosing a value for the penalty parameters lambdaY and lambdaX for this  

  #data  

  main2 = opt.penalty.values(X=scale(X1), Y=scale(Y1), A=2,  

  algorithm=mod.SPLS, eps=1e-5, from.value.X=0, to.value.X=100,  

  from.value.Y=0, to.value.Y=100, lambdaY.len=10, lambdaX.len=100) 

  #3D plot of the obtained RMSEP values 

  library(rgl) 

  x = seq(from=0, to=100, length.out=10) 

  y = seq(from=0, to=100, length.out=100) 

  z = main2$RMSEP.values[,3] 

  persp3d(x,y,z, asp=1, col="red",alpha=0.9, xlab="lambdaY", ylab="lambdaX", 

zlab="RMSEP values") 
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  main3 = opt.penalty.values(X=scale(X1), Y=scale(Y1), A=2, 

algorithm=mod.SPLS, eps=1e-5, from.value.X=0, to.value.X=500,  

from.value.Y=0, to.value.Y=0, lambdaY.len=1, lambdaX.len=50) 

  min.RMSEP.value = main3$min.RMSEP.value 

  lambdaY.to.use = main3$lambdaY.to.use 

  lambdaX.to.use = main3$lambdaX.to.use 

  list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use=lambdaX.to.use,  

  min.RMSEP.value=min.RMSEP.value)  

  main3$RMSEP.values 

  #2D plot of the obtained RMSEP values 

  plot(main3$RMSEP.values[,2], main3$RMSEP.values[,3], type='l',  

  xlab="lambdaX", ylab="RMSEP values")   

  #which X- and Y-variables to use for the SPLS analysis  

  main4 = mod.SPLS(scale(X1), scale(Y1), A=2, lambdaY=lambdaY.to.use,  

    lambdaX=lambdaX.to.use, eps=1e-5) 

  X.to.use = main4$X.select 

  Y.to.use = main4$Y.select 

  X.new = as.matrix(X1[,names(X.to.use)]) 

  ncol(X.new) #108   

  #no axes labels 

  SPLS.biplot_no_ax.labels(X.new, Y1, algorithm=mod.SPLS,  

  lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use, eps=1e-5,  

  ax.tickvec.X=rep(1,ncol(X.new)), ax.tickvec.Y=rep(8,ncol(Y1))) 

  #zoomed-in display of the coefficient points  

  SPLS.biplot_Bmat(X.new, Y1, algorithm=mod.SPLS, lambdaY=lambdaY.to.use,  

  lambdaX=lambdaX.to.use, eps=1e-5, ax.tickvec.B=c(8,10,5,5,3,3)) 

  

  #Section 7.7.2   

  #possum.mat data    

  library(robustbase) 

  possum.mat  

  y = as.matrix(possum.mat[,1], nc=1)  

  dimnames(y) = list(paste("S", 1:nrow(possum.mat), seq=""), "Diversity") 

  X = as.matrix(possum.mat[,2:14], nc=13)  

  dimnames(X) = list(paste("S", 1:nrow(possum.mat), seq=""),  

    colnames(possum.mat[,2:14]))  

  #choosing a value for the penalty parameters lambdaY and lambdaX for this  

  #data  

  main2 = opt.penalty.values(X=scale(X), Y=scale(y), A=2, algorithm=SPLS.GLM,  

  eps=1e-3, from.value.X=0, to.value.X=48, from.value.Y=0,  

  to.value.Y=0, lambdaY.len=1, lambdaX.len=100) 

  min.RMSEP.value = main2$min.RMSEP.value 

  lambdaY.to.use = main2$lambdaY.to.use 

  lambdaX.to.use = main2$lambdaX.to.use 

  list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use=lambdaX.to.use,  

  min.RMSEP.value=min.RMSEP.value) 

  main2$RMSEP.values 

  #2D plot of the obtained RMSEP values 

  plot(main2$RMSEP.values[,2], main2$RMSEP.values[,3], type='l',  

  xlab="lambdaX", ylab="RMSEP values")  

  main2B = opt.penalty.values(X=scale(X), Y=scale(y), A=2,  

  algorithm=SPLS.GLM, eps=1e-3, from.value.X=1, to.value.X=4,  

  from.value.Y=0, to.value.Y=0, lambdaY.len=1, lambdaX.len=100) 

  min.RMSEP.value = main2B$min.RMSEP.value 

  lambdaY.to.use = main2B$lambdaY.to.use 

  lambdaX.to.use = main2B$lambdaX.to.use 

  list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use=lambdaX.to.use,  

  min.RMSEP.value=min.RMSEP.value) 

  main2B$RMSEP.values 

  #2D plot of the obtained RMSEP values 
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  plot(main2B$RMSEP.values[,2], main2B$RMSEP.values[,3], xlim=c(0,4.5),  

  type='l', xlab="lambdaX", ylab="RMSEP values")     

  #which X-variables to use for the SPLS-GLM analysis  

  main3 = SPLS.GLM(scale(X), scale(y), A=2, lambdaY=lambdaY.to.use,  

    lambdaX=lambdaX.to.use, eps=1e-3) 

  X.to.use = main3$X.select 

  X.new = as.matrix(X[,names(X.to.use)]) 

  colnames(X.new) 

  main3$Y.select #note 

  #SPLS-GLM biplot 

  SPLS.GLM.biplot(X.new, y, algorithm=SPLS.GLM, eps=1e-3,  

  lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,  

  ax.tickvec.X=c(10,5,5,5,5,5,5,5,5,5,5,5,5), ax.tickvec.y=8,  

  ax.tickvec.b=12) 

  #no sample point names 

  SPLS.GLM.biplot_no.SN(X.new, y, algorithm=SPLS.GLM, eps=1e-3,  

  lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,  

  ax.tickvec.X=c(10,5,5,5,5,5,5,5,5,5,5,5,5), ax.tickvec.y=8,  

  ax.tickvec.b=12)  

  #zoomed-in display of the coefficient points  

  SPLS.GLM.biplot_bvec(X.new, y, algorithm=SPLS.GLM, eps=1e-3,  

  lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use, ax.tickvec.b=30)    

     

#Chapter 8   

  #Section 8.2 

  #SOVR data 

  SOVR.data = read.table(file.choose(), header=TRUE)  

  #choose the file named "SOVR_data" from the "Data Sets" folder.  

  X = as.matrix(SOVR.data[,1:12])   

  dimnames(X) = dimnames(SOVR.data[,1:12]) 

  Y = as.matrix(SOVR.data[,13:18])  

  dimnames(Y) = dimnames(SOVR.data[,13:18])   

  

  #Section 8.2.2 

  #which X-variables are important/relevant?       

  main2 = mod.VIP(X, Y, algorithm=mod.SIMPLS, A=3, cutoff=0.75)  

  main2$VIP.values 

  main2$X.impor  

  X.new = X[,c(main2$X.impor)]  #important X-variables 

    

  #Section 8.2.3   

  #PLS biplot   

  main3 = PLS.biplot_no.SN(X.new, Y, algorithm=mod.SIMPLS,  

  ax.tickvec.X=rep(1,ncol(X.new)), ax.tickvec.Y=rep(3,ncol(Y))) 

  #overall quality 

  main3$overall.quality     

  #approximated PLSR coefficients values 

  main3$Bmat  

  #SIMPLS biplots with 9 triangles 

  PLS.biplot.area(X.new, Y, algorithm=mod.SIMPLS,  

  ax.tickvec.X=rep(1,ncol(X.new)), ax.tickvec.Y=rep(2,ncol(Y)),  

  base.tri=4, bi.value=1:9)             

  #axis predictivity 

  main3$axis.pred       

  #which PLS coefficients are influential? 

  #using components 1 and 2  

  main = mod.SIMPLS(scale(X.new),scale(Y),A=2) 

  Qmat = main$Y.loadings  

  Rmat = main$X.weights.trans  

  Bmat = Rmat %*% t(Qmat)  #(PxM) estimated PLS coefficients matrix   

  dimnames(Bmat) = list(colnames(X.new), colnames(Y))   
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  Mag.Bmat.plot(X.new, Y, algorithm=mod.SIMPLS, A=2)     

  list(Bmat=Bmat)   

  #using all three components  

  main.new = mod.SIMPLS(scale(X.new),scale(Y),A=A.final) 

  Qmat = main.new$Y.loadings  

  Rmat = main.new$X.weights.trans  

  Bmat = Rmat %*% t(Qmat)  #(PxM) estimated PLS coefficients matrix   

  dimnames(Bmat) = list(colnames(X.new), colnames(Y))   

  Mag.Bmat.plot(X.new, Y, algorithm=mod.SIMPLS, A=A.final)     

  list(Bmat=Bmat)  

  

  #Section 8.3 

  #Pima.tr data 

  data(Pima.tr, package="MASS") 

  X = as.matrix(cbind(Pima.tr[,1:7]))   

  dimnames(X) = list(1:nrow(X), colnames(X))  

  y = as.matrix(as.numeric(Pima.tr$type)-1, ncol=1) 

  #0=No and 1=Yes 

  dimnames(y) = list(1:nrow(y), paste("type"))     

  #PLS-GLM biplots 

  #with samples names 

  PLS.GLM.biplot(X, y, algorithm=PLS.binomial.GLM,  

  ax.tickvec.X=c(3,3,8,7,8,5,2), ax.tickvec.y=3, ax.tickvec.b=3) 

  #zoomed-in display of the coefficient points 

  PLS.GLM.biplot_bvec(X, y, algorithm=PLS.binomial.GLM, ax.tickvec.b=10) 

  #without samples names 

  PLS.GLM.biplot_no.SN(X, y, algorithm=PLS.binomial.GLM,  

  ax.tickvec.X=c(3,3,8,7,8,5,2), ax.tickvec.y=3, ax.tickvec.b=3)     

     

  #Section 8.4    

  #colon data 

  data(Colon, package="plsgenomics") 

  X = as.matrix(cbind(Colon$X))   

  dimnames(X) = list(1:nrow(X), colnames(X)) 

  y = as.matrix(as.numeric(Colon$Y)-1, ncol=1)   

  #0=normal and 1=tumor 

  dimnames(y) = list(1:nrow(y), paste("tissue"))  

  #Section 8.4.1 

  #choosing a value for the penalty parameters lambdaY and lambdaX for this  

  #data  

  main2 = opt.penalty.values(X=scale(X), Y=scale(y), A=2,  

  algorithm=SPLS.binomial.GLM, eps=1e-3, from.value.X=0,  

  to.value.X=8.5, from.value.Y=0, to.value.Y=0, lambdaY.len=1,  

  lambdaX.len=500) 

  min.RMSEP.value = main2$min.RMSEP.value 

  lambdaY.to.use = main2$lambdaY.to.use 

  lambdaX.to.use = main2$lambdaX.to.use 

  list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use=lambdaX.to.use, 

 min.RMSEP.value=min.RMSEP.value)  

  main2$RMSEP.values 

  #2D plot of the obtained RMSEP values 

  plot(main2$RMSEP.values[,2], main2$RMSEP.values[,3], type='l',  

  xlab="lambdaX", ylab="RMSEP values")    

  #which X-variables to use for the SPLS-GLM analysis  

  main3 = SPLS.binomial.GLM(scale(X), scale(y), A=2, lambdaY=lambdaY.to.use,  

     lambdaX=lambdaX.to.use, eps=1e-3) 

  main3$Y.select #note  

  X.to.use = main3$X.select 

  X.new = as.matrix(X[,names(X.to.use)]) 

  colnames(X.new) #857 

  #there are still some X-variables with zero coefficient values  
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  #that need to be dropped.  

  main.rerun = function(X.new) 

  {   

    repeat{ 

            P.previous = ncol(X.new) 

            Rmat = SPLS.binomial.GLM(scale(X.new), scale(y), A=2,  

     lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,  

     eps=1e-3)$X.weights.trans 

            X.select = which(!Rmat[,1]==0, arr.ind=TRUE) 

            X.new = as.matrix(X[,names(X.select)]) 

  P.now = ncol(X.new) 

            if(P.now==P.previous){ 

              break 

             } 

            else{ 

                  Rmat = SPLS.binomial.GLM(scale(X.new), scale(y), A=2,  

     lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,  

     eps=1e-3)$X.weights.trans 

                  X.select = which(!Rmat[,1]==0, arr.ind=TRUE) 

                  X.new = as.matrix(X[,names(X.select)]) 

             }          

        } 

    list(X.to.use=colnames(X.new), P.final=P.now, X.final=X.new, Rmat=Rmat) 

   } 

  main.final = main.rerun(X.new) 

  main.final$P.final  #final number of selected X-variables 

  X.new.to.use = main.final$X.final  #final selected X-variables 

  #SPLS-GLM biplot   

  SPLS.GLM.biplot(X.new.to.use, y, algorithm=SPLS.binomial.GLM, eps=1e-3,  

   lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use,  

   ax.tickvec.X=rep(1,ncol(X.new.to.use)), ax.tickvec.y=5,  

   ax.tickvec.b=1)  

  #zoomed-in display of the coefficient points  

  SPLS.GLM.biplot_bvec(X.new.to.use, y, algorithm=SPLS.binomial.GLM,  

eps=1e-3, lambdaY=lambdaY.to.use,  

lambdaX=lambdaX.to.use, ax.tickvec.b=20)  

     

  

  #Section 8.5.3: PCA biplot 

  #glass data 

  data(glass, package="chemometrics") 

  Dmat = matrix(glass,nc=13)   

  dimnames(Dmat) = list(1:180, paste(c("Na2O", "MgO", "Al2O3", "SiO2",  

    "P2O5", "SO3", "Cl", "K2O", "CaO", "MnO", "Fe2O3",  

    "BaO", "PbO"))) 

  PCA.biplot(D=Dmat, method=mod.PCA, ax.tickvec.D=rep(5,ncol(Dmat)))      

  PCA.biplot_no.SN(D=Dmat, method=mod.PCA, ax.tickvec.D=rep(5,ncol(Dmat)))   

  

  #Section 8.5.4: PLSR 

  #nutrimouse data 

  data(nutrimouse, package="mixOmics")   

  X1 = as.matrix(nutrimouse$lipid, ncol=21)  

  Y1 = as.matrix(nutrimouse$gene, ncol=120)  

  main = mod.SIMPLS(X=X1, Y=Y1, A=17) #using the SIMPLS algorithm 

  main 

  #RMSEP 

  RMSEP = main$RMSEP  

  plot(t(RMSEP), type = "b", xlab="Number of components",  

ylab="RMSEP  values")    

  A.final = 9 #from the RMSEP plot  
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  #Final PLSR 

  mod.SIMPLS(X=X1, Y=Y1, A=A.final)     

  #VIP  

  main2 = mod.VIP(X=X1, Y=Y1, algorithm=mod.SIMPLS, A=A.final, cutoff=0.8)  

  main2 

  #which X-variables are important/relevant?       

  main2$X.impor 

  X.new = X1[,c(main2$X.impor)]  #important X-variables  

  ncol(X.new)   

  colnames(X.new) 

  main2B = mod.VIP(X=X1, Y=Y1, algorithm=mod.SIMPLS, A=A.final, cutoff=0.75) 

  main2B$X.impor  

  colnames(X1[,c(main2B$X.impor)]) 

  #influential coefficients 

  Mag.Bmat.plot(X=X.new, Y1, algorithm=mod.SIMPLS, A=A.final) 

  #alternatively 

  X.scal = scale(X.new, center=TRUE, scale=TRUE) 

  Y.scal = scale(Y1, center=TRUE, scale=TRUE) 

  main3 = mod.SIMPLS(X.scal, Y.scal, A.final) 

  #PLSR coefficients matrix 

  Bmat = main3$X.weights.trans %*% t(main3$Y.loadings)  

  dimnames(Bmat) = list(colnames(X.new), colnames(Y1)) 

  Abs.Bmat = abs(Bmat) #absolute values of the coefficients 

  rowMeans(Abs.Bmat) 

   

  #Section 8.5.5: Covariance monoplot and biplot 

  data(cocktail, package="SensoMineR") 

  X3 = as.matrix(compo.cocktail, nc=4)   

  Y3 = as.matrix(senso.cocktail, nc=13)  

  cov.monoplot(Y3) 

  cov.biplot(X3,Y3) 

  

  #Section 8.5.6: PLS biplot 

  PLS.biplot(X=X3, Y3, algorithm=mod.SIMPLS, ax.tickvec.X=rep(2,ncol(X3)),  

   ax.tickvec.Y=rep(3,ncol(Y3)))   

  #No sample names 

  PLS.biplot_no.SN(X=X3, Y3, algorithm=mod.SIMPLS,  

   ax.tickvec.X=rep(2,ncol(X3)), ax.tickvec.Y=rep(3,ncol(Y3)))   

  #No sample and tick markers names 

  PLS.biplot_no_labels(X=X3, Y3, algorithm=mod.SIMPLS,  

   ax.tickvec.X=rep(2,ncol(X3)), ax.tickvec.Y=rep(3,ncol(Y3)))   

  #With area biplot idea 

  PLS.biplot.area(X=X3, Y3, algorithm=mod.SIMPLS,  

   ax.tickvec.X=rep(2,ncol(X3)), ax.tickvec.Y=rep(3,ncol(Y3)),   

        base.tri=6, bi.value=c(1:ncol(X3)))  

  

  #Section 8.5.7: PLS biplot for GLM 

  #spider data 

  data(spider, package="mvabund")   

  X2 = as.matrix(cbind(spider$x))   

  rownames(X2) = paste( c("S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8",  

    "S9", "S10", "S11", "S12", "S13", "S14", "S15",  

    "S16", "S17", "S18", "S19", "S20", "S21", "S22",  

    "S23", "S24", "S25", "S26", "S27", "S28") ) 

  Y2 = as.matrix(cbind(spider$abund))   

  rownames(Y2) = rownames(X2)          

  which.y.variable = 11  #specifying which y-variable to use 

  y = as.matrix(Y2[,which.y.variable])  #using only 1 Y-variable 

  dimnames(y) = list(rownames(Y2), colnames(Y2)[which.y.variable]) 

  PLS.GLM.biplot(X=X2, y, algorithm=PLS.GLM, ax.tickvec.X=rep(2, ncol(X2)),  

   ax.tickvec.y=3, ax.tickvec.b=3)  
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  #zoomed-in display of the coefficient points   

  PLS.GLM.biplot_bvec(X=X2, y, algorithm=PLS.GLM, ax.tickvec.b=15)  

  #using SIMPLS 

  PLS.GLM.biplot(X=X2, y, algorithm=PLS.GLM_SIMPLS, ax.tickvec.X=rep(2, 

 ncol(X2)), ax.tickvec.y=3, ax.tickvec.b=3) 

   

  #Pima.tr data  

  data(Pima.tr, package="MASS") 

  X = as.matrix(cbind(Pima.tr[,1:7]))   

  dimnames(X) = list(1:nrow(X), colnames(X))  

  y = as.matrix(as.numeric(Pima.tr$type)-1, ncol=1) 

  #0=No and 1=Yes 

  dimnames(y) = list(1:nrow(y), paste("type"))       

  #Figure 8.6 

  PLS.GLM.biplot(X, y, algorithm=PLS.binomial.GLM,  

  ax.tickvec.X=c(3,3,8,7,8,5,2), ax.tickvec.y=3, ax.tickvec.b=3) 

  #Figure 8.7  

  PLS.GLM.biplot_no.SN(X, y, algorithm=PLS.binomial.GLM,  

  ax.tickvec.X=c(3,3,8,7,8,5,2), ax.tickvec.y=3, ax.tickvec.b=3) 

  #A zoomed-in display of the coefficient points #(Figure 8.8) 

  PLS.GLM.biplot_bvec(X, y, algorithm=PLS.binomial.GLM,ax.tickvec.b=10)     

  #using the SIMPLS-GLM algorithm  

  PLS.GLM.biplot_SIMPLS(X, y, algorithm=PLS.binomial.GLM,  

  ax.tickvec.X=c(3,5,8,4,3,7,2), ax.tickvec.y=2, ax.tickvec.b=3) 

  #no sample names 

  PLS.GLM.biplot_SIMPLS_no.SN(X, y, algorithm=PLS.binomial.GLM,  

  ax.tickvec.X=c(3,5,8,4,3,7,2), ax.tickvec.y=2, ax.tickvec.b=3) 

 

  #Section 8.5.8: Biplot for SPLS   

  #ash data   

  data(ash, package="chemometrics") 

  X1 = as.matrix(ash[,10:17], nc=8)   

  Y1 = as.matrix(ash$SOT)    

  colnames(Y1) = paste("SOT") 

  #choosing a value for the penalty parameters lambdaY and lambdaX for this  

  #data  

  main2 = opt.penalty.values(X=scale(X1), Y=scale(Y1), A=2,  

  algorithm=mod.SPLS, eps=1e-5, from.value.X=0, to.value.X=500,  

  from.value.Y=0, to.value.Y=0, lambdaY.len=1, lambdaX.len=100) 

  min.RMSEP.value = main2$min.RMSEP.value 

  lambdaY.to.use = main2$lambdaY.to.use 

  lambdaX.to.use = main2$lambdaX.to.use 

  list(lambdaY.to.use=lambdaY.to.use, lambdaX.to.use=lambdaX.to.use,  

  min.RMSEP.value=min.RMSEP.value)  

  main2$RMSEP.values 

  #2D plot of the obtained RMSEP values 

  plot(main2$RMSEP.values[,2], main2$RMSEP.values[,3], type='l',  

  xlab="lambdaX", ylab="RMSEP values")   

  #which X- and Y-variables to use for the SPLS analysis  

  main3 = mod.SPLS(X=scale(X1), Y=scale(Y1), A=2, lambdaY=lambdaY.to.use,  

    lambdaX=lambdaX.to.use, eps=1e-5) 

  X.to.use = main3$X.select 

  Y.to.use = main3$Y.select #not necessary for the ash data 

  X.new = as.matrix(X1[,X.to.use]) 

  colnames(X.new)  #P=6 

  colnames(X1)  #P=8 

  Y.new = as.matrix(Y1[,Y.to.use]) 

  colnames(Y.new) = colnames(Y1) 

  colnames(Y.new) 
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  #SPLS biplot 

  SPLS.biplot(X.new, Y.new, algorithm=mod.SPLS, lambdaY=lambdaY.to.use,  

  lambdaX=lambdaX.to.use, eps=1e-5,  

  ax.tickvec.X=rep(1,ncol(X.new)), ax.tickvec.Y=rep(5,ncol(Y.new))) 

  #no labels 

  SPLS.biplot_no_labels(X.new, Y.new, algorithm=mod.SPLS,  

  lambdaY=lambdaY.to.use, lambdaX=lambdaX.to.use, eps=1e-5,  

  ax.tickvec.X=rep(1,ncol(X.new)), ax.tickvec.Y=rep(5,ncol(Y.new))) 

  #A display of the coefficient points in the PLS biplot 

  SPLS.biplot_Bmat(X.new, Y.new, algorithm=mod.SPLS, lambdaY=lambdaY.to.use,  

  lambdaX=lambdaX.to.use, eps=1e-5, ax.tickvec.B=5) 
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