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THE CONSTRUCTION OF A-SOLVABLE ABELIAN GROUPS 

ULRICH ALBRECHT, Auburn 

(Received May 25, 1992) 

1. INTRODUCTION 

One of the many ways to investigate universal properties of a torsion-free abelian 

group A is to consider A as a left module over its endomorphism ring E(A). This 

approach was initiated by Arnold and Lady in [8] for torsion-free abelian groups of 

finite rank, and extended to larger classes of groups by Arnold and Murley in [9]. 

Several others, including the author of this note, continued the discussion initiated 

in [8] and [9] to obtain further insight in the way in which an abelian group A and 

its endomorphism ring E(A) are related, see for instance [11], [12], [16], [7], and [17]. 

One of the main difficulties encountered in this approach to the structure problem 

of abelian groups is the generality of the arising classes of groups. As desirable as 

this generality may be, it severely limits the tools available in the discussion. The 

perhaps most useful of these is the adjoint pair of functors (Hom(A., —), — 0E{A) A) 

between the category of abelian groups and the category of right L?(A)-modules. 

The way these functors are used in the discussion of abelian groups is by considering 

full subcategories of the category of abelian groups on which the functors induce 

category equivalences. The largest of these classes is *£&, the class of A-solvable 

abelian groups. It is equivalent under these functors to a class of right £(j4)-modules, 

which is denoted by .//A-

Arnold and Murley showed that ^4 contains the class of A-projective abelian 

groups if A is self-small, i.e. the functor Hom(A, —) preserves direct sums of copies 

of A. In addition, they investigated under which conditions locally A-projective 

groups are A-solvable. While it is possible to obtain a satisfactory insight in the 

categorical properties of the class VA [3], it proved difficult to construct examples 

of A-solvable groups which are not subgroups of A1 for some index-set I, unless A 

is completely decomposable. In the case that A C Q , Warfield showed that every 

torsion-free group G of finite rank with IT(G) ^ type A is A-solvable [19], A first 
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step in the direction of general existence theorem for ,4-solvable groups was taken 

in [5], where we constructed A-solvable groups which are not subgroups of products o! 

A in the case that E(A) is a hereditary ring whose quasi-endomorphism ring QE(A) 

is semi-simple Ar t inian . 

It is one of the goals of this paper to prove such an existence theorem for more 

general classes of A-solvable groups than those constructed in [5]. In particular, we 

do not impose any immediate restrictions on A as in [5] except for the s tandard 

requirement tha t A is self-small and faithfully flat as an F(A)-module. 

T h e o r e m 1.1. (ZFC + V = L) Let A be a torsion-free abelian group which is self-

small and faithfully flat as an E(A)-module. There exists a proper class of pairwise 

non-isomorphic A-solvable groups G with H o m ( G , A ) = 0 whose endomorphism ring 

is the center of E(A). 

The groups in this theorem are constructed as colimits of a directed system of 

A-projective groups in the category of A-solvable groups. The categorical results 

which are needed in this construction are consequences of a more general discussion 

in Sections 2 and 3 which investigates when limits and colimits exist in the category 

of A-solvable groups. By [18], this question is equivalent to whether or not %\ is 

a preabelian category with direct sums and products. The question whether c6 A 

is preabelian has been addressed in [3] in the case that A is an indecomposable 

generalized rank 1 group. Although this paper uses several results of [3] in a more 

general setting, no new proofs are given unless the originally used argumen ts do 

no t carry over. Theorem 2.3 shows that limits and colimits exist in the category of 

A-solvable groups provided JIA is the torsion-free class of a torsion-theory of right 

JF(A)-modules. 

While Proposi t ion 2.2 shows that the colimit of a functor 3 between a small 

category and c6\, if it exists in ^ A , is the largest A-solvable epimorphic image of 

the colimit of 3 in the category of abelian groups, Theorem 2.3 does not give a 

similar description for limits in % . In Section 3, we investigate when the ^ - l i m i t 

of a functor 3 is isomorphic to the largest A-solvable subgroup of its limit in the 

category of abelian groups. Theorem 3.2 gives a complete answer to this question 

and relates our results to work by Gruson and Raynaud in [15] concerning tensor-

products and Cartesian produc ts. 
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2. LIMITS AND COLIMITS IN ^A 

Consider abelian groups A and G. Composition of maps induces a right E(A)-

module-structure on HA(G) = Hom(/l,G). Since A is a left £(.A)-modiile, TA(M) — 

M ®E{A) A defines a functor from the category of right F?(A)-modules, ^E{A)->
 t 0 

the category of abelian groups, &/b, which is a right adjoint to HA- The natural 

transformations associated with the adjoint pair (HA,TA) are denoted by 0 and <D 

respectively. The functors HA and TA restrict to a category equivalence between %\ 

and the category ~//A of right F(A)-modules M for which (DM is an isomorphism. 

Lemma 2 .1 . [2, Lemma 2.1 and Theorem 2.2] Let A be a self-small abelian group 

which is flat as an E(A)-module. 

i) An exact sequence 0 ^ 5 4 C - > G - ^ 0 o f abelian groups, in which C is 

A-solvable, induces an exact sequence 0 -» TAHA(B) A B —>• TA(M) —•> G —> 0 in 

which M = imHA(/3) said 0: TA(M) —•> G is the evaluation map. 

ii) ^M is A-closed; i.e. it is closed with respect to subgroups and finite direct 

sums, and kernels of homomorphisins between A-solvable groups arc A-solvable. 

Consider a functor & from a small category I into VA- The colimit of & in the 

categories VA and &/b is defined as in [18], from which the following notation is 

taken: 

Let fij: &(i) —> 0 5 ( i ) be the embedding into the j th-coordinate. For an I-
iei 

morphism A: i -» j define 5\ = fijt^
r(X) — /t;. In the category of abelian groups, 

lim & = [ 0 &{%)]/B where B = (imo"A | A G Mor(I)). The associated compati-
v
s/b iei 

ble family of maps <D;: &(i) —> lim & is given by ipi(x) = Si(x) + B for all x G Ji^. 
— • . o f 6 

If we try to compute the colimit of the same functor & in ^A as the cokerncl of 

the embedding B —•> 0 7 j ^ ; , we encounter the problem that this map not always is 

in ((>A since C&A need not be closed under arbitrary direct sums even if A C Q [3]. 

While this prohibits a direct application of the cokernel construction of [3], it can 

be modified to prove the following result. Because of the similarity of the proofs, 

we only present those parts where modifications of [3] are necessary and refer to [3] 

otherwise. 

Proposition 2.2. Let A be a self-small abelian group which is flat as an E(A)-

module. A functor & from a small category I into ^A has a colimit in C6"A if and only 

if there is a smallest subgroup V of @ &(i) such that B C V and [ 0 &(i)\ /V G C£A • 
iei iei 

P r o o f . Assume that the A-solvable group G together with a compatible family 

of maps Gi G Hom(J r(i),G) is the colimit of & in VA- TO simplify our notation, we 
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write H for the colimit of /F in s/b. There is a homomorphism O: H -> G with Of = 

cnpi for all i G I. Since H is A-generated, the group O*(H) is A-soIvable by Lemma 2.L 

To show that O(H) together with the maps <O; is the colimit of /P in ^/ i , we consider 

an .4-solvable group K and a compatible family of maps A, G Hom(<^,IO- There 

exists a unique map A: G —•> K with A, = AO; for all i G I. We can, in addition, find 

a unique map Q: H -> Iv" with A, = D(D; for all i G I. We denote the restriction of A to 

O(H) by e, and observe eoi = AO, = A,. If 5 G Hom(O(H),Iv") also satisfies Soi = A; 

for each i, then (5o)(p{ = 6O; = A; = AO; = (Xo)(pi yields So = g = AO. For every 

T G O(H), we choose h G II with x = <r(/i). Then, S(x) = oO(li) = AO-(li) = e(x). 

This shows that O(H) indeed is the colimit of /£ in ^4-

Let V be the subgroup of 0 /P(i) which contains D and satisfies kerO = V/B. 
iei 

Obviously, [ 0 ^ ~ ( i ) ] / V is A-solvable. Suppose that U is another subgroup of 
i£l 

0 ^ ( i ) such that K = 0 7 [ ^ i ] / U is A-solvable. Define a map n: H -> K by 

7r(.T -f H) = .T + U. For all i,^ G I and all I-morphisms A: i -» j , we have 

7r[(Dĵ *(A)] = 7ropi. Hence, {7r<pi | i G I} is a compatible family of maps in c67
y\. 

There exists a unique map V;: ^(H) ~> K with 'inpi = i/?Oi for all i G I. Since H 

is the colimit of /? in *e/b and iripi = (ipo)(pi for each i G I, we obtain 7r = V'C-

Therefore, V/I3 = kerO C ker7r = U/B. Conversely, suppose that there exists a 

smallest subgroup V of 0 &(i) with the required properties. Denote the canonical 
-€/ 

projection of H onto G = [ 0 &(i)]/V by 7r. If we set O; = Tnpi, then it is routine to 
iei 

check that G together with the maps {O; | i G I} is the colimit of & in ^ 1 . (see [3]) 

• 

Theorem 2.3. The following conditions arc equivalent for a self-small abclian 

group A: 

a) .//A is the torsion-free class of some torsion-theory of right E(A)-modules. 

b) i) A is faithfully flat as an E(A)-module. 

ii) ^A is & cocomplete category 

iii) CC?A is a complete category with lim /? = T^H^lim /?) for all functors 
< — <€A <— s/b 

& from a small category into *£&> 

P r o o f , a) => b): Since . //A is closed with respect to submodules, A is faithfully 

flat by [G], To show the last two conditions in b), we consider a family {G; | i G I} of 

A-solvable groups, and first establish that TAHA( Yl Gi) 1S t u G ^y.-pioduct of this 

family Since H/\(GV) G . / / A , and .//A is closed with respect to products, we obtain 

that TAHA(UGi) i s -4-solvable. Define maps Xj : TAHA{UGi) "> GJ hY Xj = 
/ / 

OC!TAHA(^I) where TTJ : II/G, -> Gj denotes the projection onto the j th-coordinate. 

41G 



If D e %A and {a,: D —> Gi \ i G /} is a family of ^4-morphisms, then the maps 

HA(c*i) induce a unique map a: HA(B) -> HA(\[Gi) with H^(7r,)a = HA(ai). We 
/ 

set a = TA(CX)0Q\ and obtain Aza = 8GTA(HA(^i)o()0^1 = a, . 

It remains to show the uniqueness of a. Suppose that the map (3: D -> 

TAHA(liiGi) satisfies \{/3 = a, for all i £ I. Then HA(\i)HA(P) = HA(at). 

Observe that, for an abelian group II and a right I£(A)-module M, we have 

HA(0u)ipHA{H) = khiA(ii) and 0TA{M)TA(^M) = ^\TA{M)- Therefore 

HA(\i)HA((3) = HA(0Gi)HATAHA(wi)HA(l3) 

= (pH
l
A{Gi)HATAHA(TTi)HA(f3) = HA(7Ti)ipJI

l
A{niG.)HA(P); 

and we obtain a = ^fjj1 fU G^HA(/3) because of the uniqueness of a. Thus, a = 

T^IUIUG^AHA^OI1 = OrAHA{niGl)TAHA(ll)0-D
l = 0 since the diagram 

TAHA(P) 

TAHA(D) > TAHATAHA^JG^ 

B —?-> TAHA^JGI) 

commutes. 

Since @H/\(G,) C Y\ HA(Gi) and the last module is an element of J6A by 
iei iei 

what has been shown, we obtain that J/A contains 0 HA(d) because of a). Thus 
iei 

0 d = TA ( 0 HA(Gi)) is A-solvable. Therefore, tfA is closed with respect to direct 
iei iei 
sums. To establish that VA has cokcrnels, we consider a map ip: G —> L where L is A-

solvable, and show that there is a smallest subgroup V of L such that ip(G) C V and 

L/V is A-solvable. Consider the family J/ = {U C H | <p(G) C U and L/U e VA}\ 

and observe that K = TAHA (Yl L/U) is A-solvable by what has been shown so far. 
J{ 

The projection maps L -» L/U induce a map A: L —» Iv", whose kernel is a subgroup 

of L with the desired properties. 

Finally, consider a functor &: I -> tfA, and set let Gz- = c^(i) and P = 

TAHA( Y\Gi). If 5: i(J) —> j(f5) is an I-morphism, then define as: P —> Gj{s) 

to be the map ^(S)\i{s) — \j{s) where the A's are defined as in the first paragraph 

of this proof. Since VA has kernels and products, the limit of & in tfA exists by 

[IS], and is the kernel of the map o = TA(e)0pl: P -> TAHA(YlGj(S)) where s: 
s 

HA(P) —> HA(T\Gj(s)) 1S induced by the maps HA(&S) by the universal property of 
s 

a product of right F(A)-modules. 
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In tlie category of abelian groups, the limit of ^ is the kernel of tlie map T: 

11 Gi ->» n Gj(S) which is induced by the mappings TS = ^(^)^i(&) ~^j(6)- We obtain 

HA(a6) = [HA(^(S))HA(7ri{s)) - HA(^J(S))]^H\(PY This shows HA(OS)IPHA(P) = 

HA(TS) = HA(TTS)HA(T) which in turn yields e = HA(T)p~\,py Since Op is an 

isomorphism and A is flat, 

kerO ¥ TA{kers) S T ^ r ^ / M P ) ) = T ^ k e r H ^ T ) ) ~ TAHA(kcvr). 

This shows tha t par t iii) of condition b) holds. 

b) => a): The class .//A is closed with respect to submodulcs by [C]. If {Mi \ i £ I} 

is a family of modules in J/A, then we can find A-solvable groups {G[ \ i G I} with 

Mi = HA(G{). We obtain TA(\\MX) =- TAHA(\\Gi) which is A-solvable by b). 
/ / 

Another application of [G] yields \\Mi G ^//A. The fact that .//A is closed with 
/ 

respect to extensions is an immediate consequence of the 3-Leimna. • 

3 . A-SOLVAB1L1TY AND THE MlTTAG-LOEFLER-OONDITION 

The results of the last section raise the question which conditions have to be 

satisfied by a torsion-free abelian group A to ensure that SA ( Y\ Gi) is A-solvable for 
/ 

all families of A-solvable groups {Gi}i^j. Following [15], wc say that a left H-module 

A satisfies the Mittag-Loeflcr-condition (ML) with respect to a class .// of 'right R-

modules if A is the direct limit of a filtration {Fi,/v?: Ft —» Fj \ i,j G I with i ^ j} 

of finitely presented modules satisfying 

(*) For every i G I, there is j G I with j ^ i such that ker(Vv/©/I/) C ker(Vv/G//--) 

for all M G Jt. 

In [15], the following result was proved: 

L e m m a 3 . 1 . The following conditions arc equivalent for a left R-module A and 

a family of right R-modules .//: 

a) A satisfies ML with respect to y//. 

b) Condition (*) holds for any filtration of finitely presented left R-modules whose 

direct limit is A. 

c) If {Ui | i G I} is a family of elements of V/, then the natural map oA : 

[Y\Ui] GR A -» l\[Ui ®R A] is one-to-one. 
i i 

Using this result, we obtain: 
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T h e o r e m 3 .2 . The following conditions are equivalent for a self-small abelian 

group A which is faithfully Hat as an E(A)-inodule: 

a) A satisHes ML with respect to J(A. 

b) i) .((A is the torsion-free class of some torsion-theory on ^((E(A)-

ii) If {U{ | i G I} is a family of A-balanced, A-gcnerated subgroups of an 

A-solvablc group G, then f] U{ is A-gencrated. 

iei 
c) C6A is a cocomplcte category; and lim (? — SA (lim (?) for all functors (? 

<—(€A +—s/b 

from a small category into Y(\. 
(1) ^ A d l Gi) is A-solvablc for all families {Gi \ i G I} of A-solvablc groups, 

i 

P r o o f. a) => d): By Lemma 3.1, the natural map aA : TA(U M{) -> U TA(M{) 
I i 

is one-to-one for all families {Mf | i G 1} C J(A. If A: U Mi -> H,i ( n 7 A ( M , : ) ) 
/ / 

denotes the natural isomorphism, then HA(aA)<f\ijMi — A yields that HA(aA) is 

onto. Since it also is a monomorphism, the map y?ri/Afi is an isomorphism too. The 

same holds for the first vertical map and the map forming the top-row of the following 

commutative diagram: 

TAliA(aA / _ \ 1AUA{(TA / \ 

TAHATA(X[Mi) > TAHA(X\TA{Mi)) 

0 

т 

o n
I
T

A
(M

i
) 

A(ЦMІ)  —--+  UЫЩ 

Thus,  0ri
I
T

A
{Mj)  is

  a n
  monomorphism,  and S

A
(UT

A
(Mi))  is  A-solvable. 
/ 

d)  =t> c):  Since  S
A
(l\Gi)  is  A-solvable  for  all  families  {Gi  |  i  G 7}  of  A-solvablc 

/ 
groups,  wc obtain S/i(lim  <?) is A-solvable  for all functors  ,?  from  a small  category 

<—s/b 

into  rf/\.  T h e arguments  in  the proof  of  implication b)  =-l>  a)  of  Theorem 2.3 can be 

used  to  show  that  y(
A
  is  the torsion-free  class  of  some  torsion-theory.  Theorem 2.3 

yields  that
  (

((
A
  is  cocomplete, and  lim  (?  =  T

A
H

A
(\im  (?)  =  S

A
(lim  (?)  by 

<  <ff
A
  <  s/b  <  sVb 

what  has been  shown. 

c)  => b):  In  view  of  Theorem  2.3,  it  remains  to  verify  condition  ii):  Since  U; 

is  an  A-balanccd,  ^-generated  subgroup  of  G,  the  group  G/U{  is  A-solvable,  and 

S
A
  (Yi  G/Ui)  is  A-solvable  by  c)  since  products  are  inverse  limits.  The projection 

/ 
maps  G  -»  G/U

7
:  induce  an  ^ - h o m o m o r p h i s m G  -> S

A
(UG/Ui)  whose  kernel  is 

/ 
f]Ui.  Since  A  is  faithfully  flat,  the latter  group  is  A-generated. 
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b) => a): Let {Gi \ i £ 1} be a family of _4-solvable groups. We write P = []G7; 

and observe tha t TAHA(P) is an A-solvable abelian group by Tlieorem 2.3. In order 

to show tha t SA(P) is A-solvable, we consider the A-balanced exact sequence 0 —> 

kcrOp -> TAHA(P) °A SA(P) -> 0. Since TAHA(P) is A-solvable, the same liolds 

for SA(P) once we have shown that kcrOp is A-generated in view of Lemma 2.Li. 

Let 7r7;: P -> G{ be tlie projection onto tlie ith-coordinate. Suppose x G kerflp. 

Since 0G,TAHA(7Ti) — 7r;#p, we obtain x G ker T ^ H ^ ^ ; ) for all i G I since Gi is A-

solvable. On the other hand, if x £ kcxTAHA(7Ti) for all i £ I, then TiiOp(x) = 

0, which is only possible if 9P(x) = 0. Thus, kerc9P = f] kcrTAHA(7Ti). But 

ker TAHA(iii) is a direct suinmand of the A-solvable group TAHA(P). By b), kerrVV 

is A-generated. 

Let A: P -> f IF / .H / i (G;) be the isomorphism which is coordinatewise induced by 

the maps 0Gi. We identify the right F(A)-modules HA(Y[(Gi) a n c^ Y\HA(Gi) and 

observe tha t XOp = aA. Since Op is a monomorphism, the same holds for crA. By 

Lemma 3T , A satisfies ML with respect to V/A. • 

In the case tha t A has finite rank or is a generalized rank 1 group, the last result 

can be improved. In order to do this, the following technical result is needed: 

L e m m a 3 . 3 . Let A be a self-small torsion-free abelian group which is faithfully 

flat as an E(A)-module. Then, 0 w Q G Y/A iff A is a homogeneous, completely 

decomposable group of finite rank. 

P r o o f . Suppose 0 ^ Q G c6\\. If A has infinite rank, then there is a subgroup 

B of A with A/B =" Q, and the sequence 0 -> 0 ^ B 4 0 ^ A A 0 ^ Q -> 0, 

which is induced coordinatewise, is A-balanced since A is faithfully flat. There 

is an epimorphism 5: A -> 0 ^ Q, which factors through /i, say 5 = fte. Since 

A is self-small, e(A) C 0 ; 1 A for some n < CJ, which results in a contradiction. 

Hence, A has finite rank. If U is a pure rank 1 subgroup of A, then A/U is an 

A-generated subgroup of the A-solvable group 0 W Q. Since A is flat, wc obtain 

that U is yi-solvable. The inclusions U C A induce an epimorphism e: G — ®{U | 

U is a pure rank 1 subgroup of A} -> A. Since SA(G) = G and A is faithfully flat, 

the map e splits; and A is completely decomposable. 

Write A — A7/11 ® . . . 0 /Fs
7ls where the A^s are pairwise non-isomorphic rank 1 

groups. Let U be a pure rank 1 subgroup of the A-projective group A{ (b. . .©-4<s which 

is generated by an element ( O i , . . . , as) with a* / 0 for all /. Then, type U ^ type A{ 

for i = 1 , . . . , s. Since [Ai 0 .. . e -4S]/U C 0 w Q is A-gcnerated, we obtain that U 

is .A-generated too. Then, Hom(A i , U) ^ 0 for some i, and U = Aj. Without loss of 
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generality, we may assume i = 1. This shows that A is an epimorphic image of ® z At 

for some index-set I. As before, this epimorphism splits; and A is homogeneous. 

The converse is obvious. • 

Proposition 3.4. Let A be a torsion-free abelian group such that E(A)n satisfies 

the DCC for I-pure submodulcs U with E(A)n/U G J/A. Then, S^il /G^) is A-

solvable for all families of torsion-free A-solvable groups {Gi \i £ I}. 

P r o o f . For a finite subset J of I, let ixj: Yl^i -> © j f t be a canonical 

projection with kernel fj Gi. We consider a map y?: Am -> Yl ^ - f° r s o m e m < ^ . 
/\J / 

and assume ker<D ^ ker7rj(y? for all finite subsets J of I. Suppose that we have 
n 

selected indices { i i , . . . , z n } C I. If Un = Q kern^y?, then ker</> 7̂  Un; and there 
i=i 

is a n + i G Un \ kcry?. Choose an index 2^+1 G J with 7riTl+1</?(an-|-i) 7- 0. We obtain 
that Un+i is a proper subset of Un. 

n 

Since Aln/Un C 0 Gi. and the G^'s are torsion-free, we have that Un is a pure, A-
• I - 1 

generated, A-balanced subgroup of Am. Therefore, {HA(Un) \ n < UJ) is an infinite 

strictly descending chain of /-pure submodules of H^(An-) with HA(An)/HA(Un) G 

J/A for all n < UJ. However, such a chain cannot exist. 

Therefore, we can find a finite subset J of J such that inup is isomorphic to a 

subgroup of 0 Gj. This shows that hxnp is A-solvable and the same holds for G. 
jeJ 

• 
The last result in particular shows that C&A is closed with respect to direct sums 

of torsion-free groups if A is as in Proposition 3.4. 

Corollary 3.5. Let A be a torsion-free, self-small abelian group which is faith-

fully flat as an E(A)-module, but not homogeneous completely decomposable of 

finite rank. The following conditions are equivalent if E(A)/pE(A) is Artinian for 

all primes p of 1, and E(A)n has the DCC for 1-pure right submodules U with 

E(A)n/U e.Z/A: 

a) A satisfies ML with respect to J/A; and ^A does not contain Jp for any prime 

p of 2. 

b) VA is cocomplete, and does not contain Jp for any prime p of I. 

c) J/A is the torsion-free class of some torsion-theory on J/E{A)1
 and Jp is not 

A-solvable for any prime p of I. 

d) Ifp is a prime of 1 with rp(E(A)) < 00, then rp(E(A)) < [rp(A)]2. 

P r o o f , a) => c) is an immediate consequence of Theorem 3.2; while c) =(> b) 

follows from Theorem 2.3. 
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b) =-> d): Condition d) can be verified as in [3], once we have shown tliat the 

elements of VA are torsion-free. If G is an A-solvable group such that G[p] =fi 0 for 

some prime p, then I/pi is A-solvable by Lemma 2.1; and A ^ pA. To show that 

%?
A contains all bounded p-groups, it is necessary to verify that A has finite p-rank. 

Since cocomplete categories have cokernels, we obtain that multiplication by p on 

A has a ^-cokernel which is of the form A/V where V is the smallest subgroup of 

A containing pA such that A/V is A-solvable. We choose a Z/pZ-basis {e; \ i e 1} of 

A/pA. For every finite subset J of J, we can find a subgroup Uj of A containing pA 

such that A/pA = (ej \ j G J) 0 Uj/pA. Since A/Uj = 0 y I/pI is A-solvable, we 

have V C Uj. For x G A \pA, there is a finite subset J0 of I, with x G (ej | j G Jo). 

Hence, x (£ UJo and f| Uj = pA. Therefore, A/pA ^ 0 ; I/pI is A-
{JC/ | | J |<oo} 

solvable. Consider the exact sequence 0 —> U —> A -> Z/pZ —> 0 which induces 
0 -> 0/ ^ "^ 0/ A -^ 0 / 2 / W -> 0 coordinatewise. Let 5: A -> 0 7 Z/pZ be an 

epimorphism. Since the last sequence is A-balanced, there is a map V; £ HA(07 A) 

with /T0 = (5. The fact that A is self-small yields ip(A) C 0 7 A for some finite subset 

J of I. Consequently, (5(A) C 0 j I/pI\ and I has to be finite. Since A has finite ;>-

rank, every family of cyclic p-groups is A-small. As in [3], C£A is closed with respect 

to direct sums of A-small families, and, therefore, contains all bounded p-groups. 

Consider the map (p\ Au -> A^ which is defined by fi((a,n)n<UJ) = (pnan)n<u- As 

in [3], (p induces an endomorphism ip of the group G = SA(AUJ) which has G/<p(G) 

as its T^4-cokernel. Observe that G is A-solvable by Proposition 3.4. Moreover, 

HA(G/ip(G)) = EI [E(A)/pnE(A)] as a right F(A)-module. 
n<u> 

Let U be the submodule of HA(G/(p(G)) which corresponds to \imE(A)/pnE(A). 

As in [11, Proposition 39.4 and Example 12.2], the additive group of U is torsion-free, 

reduced, algebraically compact, andp-local. Since U C HA(G/(p(G)) G *//A, the map 

ipu is an isomorphism by [G]. Thus, TA(U) is a torsion-free, A-solvable group. If it 

were not cotorsion-free, then it would have a direct summand isomorphic to Q or Jp 

either of which is not possible by the hypotheses. Thus, TA(U) is cotorsion-free, and 

the same holds for U = HATA(U) which results in a contradiction. This shows that 

the elements of C&A are torsion-free. 

d) =-> a): Assume that Jp is A-solvable. By [13], the exact sequence 0 —> Jv -^ 

Jp —> I / pi —> 0 is A-balanced. This shows that I/pi is A-solvable which is not 

possible since A solvable groups have to be torsion-free by d) as in [3]. By Proposition 

3.4, SA(U]Gi) is A-solvable for all groups G{ G <£A. Now apply Theorem 3.2. • 

If we assume in addition that E(A) is right Noetherian and QE(A) is right Ar-

tinian, then the restrictions with respect to Jp in the last result can be removed. We 
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write 

T(A) = {p | rp(A) < oo and rp(E(A)) = [rp(A)\
2
}. 

Coro l lary 3 .6 . Let A be a self-small torsion-free abelian group which is faithfully 

flat as an E(A)-module. The following conditions are equivalent if E(A)/pE(A) is 

Artinian and QE(A) is Artinian: 

a) A satisfies ML with respect to ~//A • 

b) (6\ contains SA(G) for all reduced algebraic compact groups G with G = pG 

for all primes p G F(A). 

P r o o f . a) => b): Let p G V(A). As in [3], we obtain that ffA contains all 

bounded /^-groups. The proof of the last corollary can be adopted to show that r(?A 

also contains Jp since C£A is cocomplete by Theorem 2.3. Every reduced algebraically 

compact group G is a direct summand of a group which is a product of cocyclic groups 

and copies of p-adic integers. Write G © H = UjGi = C where each G7 is either 

a cyclic O-group or a group of g-aclic integers for some prime q of Z. Consider a 

decomposition C = D © E where D consists of all those components of C associated 

with primes in V(A), while E consists of the remaining components. Let S: C -> E 

be a projection whose kernel is D. Since E is reduced, and G = pG for all primes 

not in V(A), we have G C ker<$ = D. Thus, we may assume that the primes q in the 

definition of Gi are taken from T(A). Since each of the G{ is A-solvable, we obtain 

tha t SA(C) is A-solvable by Theorem 3.2. This shows tha t SA(G) is A-solvable. 

b) =t> a): By Theorem 3.2, it is enough to show tha t SA(UjGi) is A-solvable for 

all A-solvablc groups G{. To show this, we consider a map p: Am -> 11/Gi for some 

m < UJ. For a subset J of 7, let TTJ : Yl Gi -> f ] Gi ^ e a projection on I I jG , whose 
/ j 

kernel is 11/ \ jGi. 

Suppose tha t there is no finite subset J of J with the following property: 

7Ti(ker7Tjp) is torsion for all i G I \ J. Assume tha t we have chosen a finite 

subset Ju of I and write Un = ker7rjri<p. There is in+\ G I \ Jn such tha t ^ill+1p(Un) 

is not torsion. Choose an element x G Un such that 7Tiii+1p(x) has infinite order. We 

set Jn+\ = Jn U {in+i}. Then, x G Un \ Un+\ has infinite order. 
71 

Moreover, since Am/Un C 0 d i and the latter group is yl-solvable, we obtain 
i=i 

tha t Un is an A-generated subgroup of Am. Let Wn be the Z-purification of HA(Un) 

in HA(Am). Then, TA(Wn) is the Z-purification of TAHA(Un) in TAHA(Am). In 

particular, the Z-purification Vn of Un is an ^-generated subgroup of Am. Since 

Un/Un+i is not torsion, we obtain tha t Vn/Vn+i 7- 0. Hence, {QHA(Vn) \ n < UJ} 

is a strictly descending chain of submodules of QE(A)m of infinite length. Since 

QE(A) is Artinian, this is not possible. 
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Hence, we can find a finite subset J of I with the required property. Write II = 

0 Gi, which is A-solvable and Iv = n / \ j7r lv(-4m) . Then, <p(Am) C H e SA(K). 

It is enough to show that SA(K) is A-solvable. Let X{ = nnp(Am) for i e I \ J. 

Since Xi C d is ^-generated, we have that Xi is A-solvable. We choose an A-

generated subgroup B{ of Am with Am/B{ = X{. Since A is faithfully flat, B{ is an 

A-balanced subgroup of Am. If HA(X{) were not torsion, then the same would be 

true for TAHA(X{) by the faithfulness of A, which is not possible. Since HA(X{) is an 

epimorphic image of E(A)m, it is finitely generated, and hence bounded. Thus the 

same holds for Xi. Therefore, X{ is contained in an algebraically compact group Y[ 

which is bounded by the same integer s a s l j . Since Xi is A-solvable, s is a product 

of primes from T(A). Thus, Y = Hj\jY{ is an algebraically compact group, which is 

divisible for all primes not in V(A), containing K. By b), SA(Y) is A-solvable; and 

the same holds for SA(K). Consequently, <p(Am) is A-solvable. • 

E x a m p l e 3.1. The conditions on A in the hypothesis of Corollary 3.5 are 

satisfied in each of the following cases: 

a) A is faithfully flat as an F(A)-module; and E(A) has finite rank. 

b) A is a generalized rank 1 group which is not homogeneous completely decom-

posable. 

P r o o f , a) is obvious. 

1)) Since E(A) satisfies the restricted minimum condition, it is enough to show that 

E(A)n has the DCC for pure submodules U such that E(A)n/U G JlA. If {Un \ n < 

ou} is an infinite descending chain of such submodules, then there is m < u such that 

Vm = Um+i/Um is singular. Otherwise, E(A)n would have infinite Goldie-dimension, 

which is not possible. Since Um is pure in E(A)n, and E(A) is right Noetherian, 

we obtain that Vm is a finitely generated, singular torsion-free F'(A)-module. The 

fact that E(A) has the restricted minimum condition yields that Vm is Artinian, 

which is only possible if its additive group is divisible. Then, TA(Vm) is a divisible, 

torsion-free A-solvable group. In particular, Q is A-solvable. We may assume that 

A has infinite rank. This yields the inequalities \HA(Q)\ = 2^1 > |A | ^ \E(A)\. 

On the other hand there exists an exact sequence A -» Q —> 0 which is AL-balanced. 

Thus, HA(Q) is an epimorphic image of E(A), which is not possible by the previous 

inequalities. • 

Even in the case that C&A is cocomplete, the limit of a functor & need not be 

isomorphic to its colimit in .o/b. 

Proposit ion 3.7. Let A be a torsion-free abelian group which has a semi-prime, 

two-sided Noetherian endomorphism ring of Krull dimension at most 1. If %A is 
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cocomplete and does not contain Jv for any prime p, then there exists a functor ^ 

from a small category into C&A whose colimit in C£A is not isomorphic to its colimit 

in ct/b. 

P r o o f . Observe that A satisfies the hypotheses of Corollary 3.5. Let I be the 

set of positive integers, and set &(i) = A. If i divides j , then set Mor/(i, jf) = {A}, 

and define &(\) to be multiplication by j/i. Obviously, the colimit of & in szfb 

is the injective hull of A. Suppose that G = [0«^(ra)]/E7 e KA- By Corollary 3.5, 

G is a torsion-free divisible group. If G ^ 0, then A is a homogeneous completely 

decomposable group. In this case the group Jv is _4-solvable which is not possible. 

Thus, the colimit of & is 0 in C£A- • 

We conclude this section with an example of groups satisfying the Mittag-Loefler 

condition: 

E x a m p l e 3.2. Let A be a cotorsion-free abelian group which is constructed 

by [10, Theorem 3.3]. Then, A satisfies ML with respect to ^//A-

P r o o f . The group A in [DG, Theorem 3.3] is constructed in such a way that 

A is the direct limit of a family of finitely generated free submodules U such that 

A/U is flat. Let P be a finitely presented module, and a: P —>• A be a map. Then, 

a(P) C U for some finitely generated, free submodule U of A such that A/U is flat. 

Let r be a viewed as a map from P to U, and t: U -> A be the inclusion map. 

Then, tr = a yields ker 1 M ® r C ker 1 M ® a for all right F(A)-modules M. Since 

A/U is flat, the map 1 M <3 L: M ®E{A) U -> TA(M) is a monomorphism. Thus, 

ker 1 M ® & — ker 1 M 0 \ir\ C ker \M ®r. By [15], A satisfies ML with respect to the 

class of all 2^(A)-modules. • 

In contrast to the last result, torsion-free groups of finite rank which are con-

structed by Corner's Theorem need not satisfy ML with respect to MA'-

E x a m p l e 3.3. Let A be a torsion-free abelian group of rank 2 whose endo-

morphisni ring is Tv. Then, A does not satisfy ML with respect to *///A-

P r o o f . By [3], the category ^ is not preabelian, and hence not cocomplete. 

By what has been shown, A cannot satisfy ML with respect to MA- C-
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4 . A N EXISTENCE THEOREM FOR A-SOLVABLE GROUPS 

Consider a functor ^: I —> ^ 4 where / is a small category While the results 

of the last sections discuss when ^ has a colimit in % , this section addresses the 

question under when the colimit of & in the category of abelian groups is its colimit 

in %'A- We want to remind the reader of the notational conventions for colimits which 

we have introduced following Lemma 2.1. 

Theorem 4 .1 . Let A be a torsion-free abelian group which is faithfully Hat as an 

E(A)-module, and ^ a functor from a small category I into VA such that {^(i) | 

i G / } is A-sinall. The following conditions are equivalent: 

a) G = lim & is A-solvable. 
—>s/b 

b) HA(G) together with the family {HA(^i) \ i G 1} induced by the compatible 

maps ifi'. &(i) -> Gi is the colimit of the functor HA& in the category of right 

E(A)-modules. 

P r o o f , a) =j> b): Let M be the colimit of the functor HA^ in the category 

of right £(A)-modules where {ipi \ i € 1} denotes the compatible family of maps 

which is obtained as in [18]. As in Section 2, M admits an exact sequence 0 -> B* A 

0 HA^(I) -> M —> 0. We may assume that t is an inclusion map and the submodule 
iei 

B* of 0 HA^(I) is generated by the images of the maps ex = /J-t(x)HA^(X) - LIS(X) 

iei 
where A: s(X) —> t(X) is an /-map, and u.j is the embedding into the j th-coordinate. 

On the other hand, since A is faithfully flat as an K(A)-module, and the 

groups G and 0 <^(i) are A-solvable, the induced sequence 0 —> HA(B) -± 
iei 

HA ( 0 <^(i)) -> HA(G) -> 0 is exact. Moreover, the natural map 6: 0 HA^(i) -> 
iei iei 

HA{ 0 ^"(0) 1S a n isomorphism since {^(i) \ i G /} is A-small. If we have shown 
iei 

S(B*) = HA(B), then 5 induces an isomorphism 5: M —> HA(G) with S^i = HA(^PI) 

for all i G I. This proves b). 

Observe S^i(a) = HA(^)(O^) — ha for all a G HA(<^(i))> For every <p G 

HA^(S(X)) and a G A, we, hence, obtain 

[6sx(<p)](a) = [6t{x)HA&(\)(<p)](a) - 6s{X)<p(a) = [6t{x)&(\) - 6s{X)](<p(a)) G D. 

which shows 5(B*) C HA(B). TO establish the converse of this inclusion, we observe 

that the group B is A-solvable by Lemma 2.L We define a map 6: TA(5(B*)) -> B 

by 0(a 0 a) = a(a). The group B is generated by elements of the form [St(x)^W ~ 

$t(\)](x) where x G ̂ (s(X)). We choose Oi,..., an G A and Di,..., On G Hy\^(s(A)) 

426 



with x = ^2 Qi(Qi) a n d observe that 

n n 

[SI(X)^(X) - SaW](x) = ] > > £ * (.?.)(<».)] = 9(Y,[Sex(Qi)]®ai) E im0. 
1 = 1 1 = 1 

This sliows that c? is onto. If e: 5(B*) -> HA(B) is the inclusion-map, then 

QBTA(E) = 6 yields that TA(e) is an epimorphism. Since the sequence TA(5(B*)) -f 

TAHA(B) -> TA(HA(B)/S(B*)) -> 0 is exact, we obtain TA(HA(B)/6(B*)) = 0 

which yields HA(B) = 5(B*) since A is faithfully flat as an E(A)-module. 

b) => a): We consider the exact sequence 0 -> B A 0 ^ ( i ) -> G -> 0. Since 

{^ (i) \ i £ 1} is A-small, the center-term in the sequence is A-solvable, and the same 

holds for B as an A-generated subgroup of an A-solvable group. By Lemma 2.1, it 

is enough to show that the sequence is A-balanced. 

Let ip G HA(G). Since HA(G) = UmHA&, we have HA(G) = (im HA(<pi) \ i G I). 
n n 

We choose iu . ..,inel and ipj G HA&(ij) with tp = £ [H^C^ )](V;j) = E V̂f> V-'j• 
3=1 3 = 1 

n n 7i 

For all a G A, we obtain <p(a) = J2 Vij'^jfa) — zC V^(a) + B — zC /^A?(a)- Hence, 
j = i j=i j = i 

?i 

(D = HA(p)( ^2 il>j)i ai-d the sequence is A-balanced. • 
.7 = 1 

Iii particular, the last result applies in the following situation: 

Corollary 4 .2. Let A be an abelian group which is faithfully flat as an E(A)-

modulc, and K a cardinal with \A\ < CJ'(K). An abelian group G of cardinality K is 

A-solvable if it is the union of an strictly ascending chain {Gv \ v < K}, of A-solvable 

subgroups. 

P r o o f . Let iv: Gv -> G and L%: Gv -> GfL for v ^ \i be the inclusion maps. 

Since G is the colimit in sz/b of the Gv's, it is A-solvable by Theorem 4.1 once we have 

shown that HA(G) is the colimit of the system {HA(GV), HA(iu
t) | v ^ Li < K}. To 

simplify our notation we set Uv = im HA(iv) C HA(G). The corresponding inclusions 

are denoted by ev and e^. For all v < fi < K, we have HA(i^L)HA(i^) = e^HA(iv) 

and HA(iv) = svHA(iv). 

The family {Uv \ v < K} is an ascending chain of submodules of HA(G). If 

9 G HA(G), then (p(A) C G^ for some z/ since |cp(A)| ^ \A\ < C}(K). Therefore, the 

IV s form an ascending chain whose union is HA(G). If M is a right IZ'(A)-modtile 

for which we can find maps av: HA(GV) -> M with afLHA(i£) = av, then we have 

O-^IJ/i^)]-1^ = av[HA(iv)]~l since HA(iv) is an isomorphism between HA(GV) 
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and Uu. There is a unique map j3\ HA(G) ->> M with f3su — au[HA(iu)]~1 • Tims, 

au — /3EUHA(I-V) = (3HA(I>V)- To show the uniqueness of/3, assume ~/HA(IU) = ou for 

all v < K. We have jsu — GU[HA(LV)]~~1 = [3eu. Since (3 is unique with this property, 

we obtain tha t HA(G) is the colimit of the system under consideration. D 

Coro l lary 4 . 3 . Let A he a self-small abelian group which is faithfully Hat as an 

E(A)-module. The following conditions are equivalent for an abelian group G: 

a) G is not A-solvable. 

b) If G is the union of a strictly ascending chain {Gu \ v < K} of A-solvalAc 

sul)groups, then K0 ^ CJ(K) ^ \A\. 

We are now able to prove the existence theorem for A-solvable groups: 

T h e o r e m 4 .4 . (ZFC -f- VK>) Let A be a self-small cotorsion-frec abelian group 

which is faithfully Hat as an E(A)-module, S a cotorsion-free ring containing E(A) 

such that 5 o p G .//\ as an E(A)-inodule and K a regular cardinal number with 

K > sup{ |A | , \S\}. There exist 2K pairwise non-isomorphic cotorsion-free A-solvable 

groups G of cardinality K such that Hom(G. A) = 0 and E(G) = CS{E(A)), the 

centralizer of E(A) in S. 

P r o o f . Let R be the opposite ring of 5 . By [10, Theorem 3.2], there exist 

2K pairwise non-isomorphic cotorsion-free left It-modules M of cardinality K such 

that It = Ej(A). Moreover, M can be chosen in such a way that it has a K-

filtration {Mu | v < K} of free submodules (which is the way that M has been 

constructed in [10].) To show that G = TA(M) is A-solvable, we set Gu = TA(MU). 

Since 5 o p G . / / A , we obtain that Gu is A-solvable. The family {Gu | v < K} is a 

smooth ascending chain whose union is G. We observe \GU\ ^ Nol-4, |Mi/| < « and 

GU+\IGU = TA(MU+\/MU) is non-zero since A is faithful. Thus, G has cardinality 

K, and is A-solvable. 

By the Adjoint-Functor-Theorem, the map 

^ G : EJ(G) -> KomE{A){M,HATA(M)), 

which is defined by [['0C7(cp)]('//O](a) — (r>(111 © a) = [WA/(m)]( a)> is an isomorphism. 

Since A is faithfully flat as an F(A)-module, M G ~//(A) by [6]. Hence, there is 

an induced isomorphism O: HomE{A)(M, HATA(M)) -> EE{A)(M) which is defined 

by a (a) = ^ / c v . The composition of these two isomorphism satisfies aye (a) = 

ipllapM for all (D G EZ(G). Hence, Ej(G) = EE{A)(ME{A)) = ER(RM) = G5(I?) 

as rings. 

Assume H o m ( G , A ) ^ 0. We write Gu =" Q)KTA{R) and observe K„ ^ 

| © K i / H o m ( G , A ) | ^ i H o n ^ G ^ ^ I ^ | £ ( G ) | < *. On the other hand, \TA(R)\ < K 
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yields sup{,s.v | v < K\ — K. The resulting contradiction shows Hom(G,A) = 0. 

Finally, since A is faithfully flat and G = TA(M), [6] guarantees that non-isomorphic 

choices for M yield non-isomorphic groups G. • 

The condition that 5 o p £ .//A is, for instance, satisfied if S is contained in a free 

F(A)-module, e.g. S C _E(.A)[.z] or S C Matn(£ ,(A)) for some n < a;, or 5 is an 

F(A)-order in the case that QE(A) is semi-simple Artinian. In the latter case, we 

ol)tain additional insights in the structure of A-solvable abelian groups: 

Corollary 4.5. Let A be a torsion-free abelian group which is faithfully Hat as 

an E(A)-module and has a semi-simple Artinian quasi-cndomorphism ring. The 

following conditions arc equivalent for a torsion-free abelian group G with ro(A)) < 

cf(\G\): 

a) G is A-solvable. 

b) G is the union of a smooth, strictly ascending chain of pure A-solvable sub-

groups. 

P r o o f , a) => b): Choose an essential submodule M of HA(G) which is the 

direct sum of cyclic subinodules, say M = 0 Uv. We set Ma = 0 (7„ and denote 

its Z-purification in HA(G) by Na. Since G is A-solvable, HA(G) £ J//A- Moreover, 

.//A is closed with respect to subinodules by [6]. Thus, setting Gv — TA(NV) yields 

a smooth ascending chain of subgroups of G such that G/Gv = TA(HA(G)/NV) is a 

torsion-free abelian group. 

b) =!> a): Let A' C A be a subset with \X\ = r0(A) and A/ (X) torsion. If 

ip £ HA(G). then there is v < K with <p(X) C Gv. Since Gv is pure in G, we obtain 

p(A) C Gu, and HA(G) is the union of the modules HA(GV). AS in the proof of 

Corollary 4.2, G is A-solvable. • 
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