Czechoslovak Mathematical Journal

Ulrich F. Albrecht
The construction of A-solvable Abelian groups

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 3, 413-430
Persistent URL: http://dml.cz/dmlcz/128480

Terms of use:

© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE CONSTRUCTION OF A-SOLVABLE ABELIAN GROUPS

Ulrici Albrecht, Auburn

(Received May 25, 1992)

1. Introduction

One of the many ways to investigate universal properties of a torsion-free abelian group A is to consider A as a left module over its endomorphism ring $E(A)$. This approach was initiated by Arnold and Lady in [8] for torsion-free abelian groups of finite rank, and extended to larger classes of groups by Arnold and Murley in [9]. Scveral others, including the author of this note, continued the discussion initiated in [8] and [9] to obtain further insight in the way in which an abelian group A and its endomorphism ring $E(A)$ are related, see for instance [11], [12], [16], [7], and [17]. One of the main difficulties encountered in this approach to the structure problem of abelian groups is the generality of the arising classes of groups. As desirable as this generality may be, it severely limits the tools available in the discussion. The perhaps most useful of these is the adjoint pair of functors ($\left.\operatorname{Hom}(A,-),-\otimes_{E(A)} A\right)$ between the category of abelian groups and the category of right $E(A)$-modules. The way these functors are used in the discussion of abclian groups is by considering full subcategories of the category of abelian groups on which the functors induce category equivalences. The largest of these classes is \mathscr{C}_{A}, the class of A-solvable abelian groups. It is equivalent under these functors to a class of right $E(A)$-modules. which is denoted by \mathscr{H}_{A}.

Arnold and Murley showed that \mathscr{C}_{A} contains the class of A-projective abelian groups if A is self-small, i.e. the functor $\operatorname{Hom}(A,-)$ preserves direct sums of copies of A. In addition, they investigated under which conditions locally A-projective groups are A-solvable. While it is possible to obtain a satisfactory insight in the categorical properties of the class \mathscr{C}_{A} [3], it proved difficult to construct examples of A-solvable groups which are not subgroups of A^{I} for some index-set I, unless A is completely decomposable. In the case that $A \subseteq \mathbb{Q}$, Warfield showed that every torsion-free group G of finite rank with $I T(G) \geqslant$ type A is A-solvable [19]. A first
step in the direction of general cxistence theorem for A-solvable groups was taken in [5], where we constructed A-solvable groups which are not subgroups of products of A in the case that $E(A)$ is a hereditary ring whose quasi-endomorphism ring $\mathbb{Q} E(A)$ is semi-simple Artinian.

It is one of the goals of this paper to prove such an existence theorem for more general classes of A-solvable groups than those constructed in [5]. In particular, we do not impose any immediate restrictions on A as in [5] except for the standard requirement that A is self-small and faithfully flat as an $E(A)$-module.

Theorem 1.1. $(Z F C+V=L)$ Let A be a torsion-free abelian group which is solfsmall and faithfully flat as an $E(A)$-module. There exists a proper class of pairwise non-isomorphic A-solvable groups G with $\operatorname{Hom}(G, A)=0$ whose endomorphism ring is the center of $E(A)$.

The groups in this theorem are constructed as colimits of a directed system of A-projective groups in the catcgory of A-solvable groups. The categorical results which are needed in this construction are consequences of a more general discussion in Sections 2 and 3 which investigates when limits and colimits exist in the category of A-solvalble groups. By [18], this question is equivalent to whether or not \mathscr{C}_{A} is a preabelian category with direct sums and products. The question whether \mathscr{C}_{A} is preabelian has been addressed in [3] in the case that A is an indecomposable generalized rank 1 group. Although this paper uses several results of [3] in a more general setting, no new proofs are given unless the originally used arguments do not carry over. Theorem 2.3 shows that limits and colimits exist in the category of A-solvable groups provided $\mathscr{\Lambda}_{A}$ is the torsion-free class of a torsion-theory of right $E(A)$-modules.

While Proposition 2.2 shows that the colimit of a functor \mathscr{F} between a small category and \mathscr{C}_{A}, if it exists in \mathscr{C}_{A}, is the largest A-solvable epimorphic image of the colimit of \mathscr{F} in the category of abelian groups, Theorem 2.3 does not give a similar description for limits in \mathscr{C}_{A}. In Section 3 , we investigate when the \mathscr{C}_{A}-limit of a functor \mathscr{F} is isomorphic to the largest A-solvable subgroup of its limit in the category of abelian groups. Theorem 3.2 gives a complete answer to this question and relates our results to work by Gruson and Raynaud in [15] concerning tensorproducts and Cartesian products.

Consider abelian groups A and G. Composition of maps induces a right $E(A)$ -module-structure on $H_{A}(G)=\operatorname{Hom}(A, G)$. Since A is a left $E(A)$-module, $T_{A}(M)=$ $M \otimes_{E(A)} A$ defines a functor from the category of right $E(A)$-modules, $\mathscr{M}_{E(A)}$, to the category of abelian groups, $\mathscr{A} b$, which is a right adjoint to H_{A}. The natural transformations associated with the adjoint pair $\left(H_{A}, T_{A}\right)$ are denoted by θ and φ respectively. The functors H_{A} and T_{A} restrict to a category equivalence between \mathscr{C}_{A} and the category \mathscr{U}_{A} of right $E(A)$-modules M for which φ_{M} is an isomorphism.

Lemma 2.1. [2, Lemma 2.1 and Theorem 2.2] Let A be a self-small abelian group which is flat as an $E(A)$-module.
i) An exact sequence $0 \rightarrow B \xrightarrow{\alpha} C \xrightarrow{\beta} G \rightarrow 0$ of abelian groups, in which C is A-solvable, induces an exact sequence $0 \rightarrow T_{A} H_{A}(B) \xrightarrow{\theta_{D}} B \xrightarrow{\delta} T_{A}(M) \xrightarrow{0} G \rightarrow 0$ in which $M=\operatorname{im} H_{A}(\beta)$ and $\theta: T_{A}(M) \rightarrow G$ is the evaluation map.
ii) \mathscr{C}_{A} is A-closed; i.e. it is closed with respect to subgroups and finite dircct sums, and kernels of homomorphisms between A-solvable groups are A-solvable.

Consider a functor \mathscr{F} from a small category I into \mathscr{C}_{A}. The colimit of \mathscr{F} in the categories \mathscr{C}_{A} and $\mathscr{A} b$ is defined as in [18], from which the following notation is taken:

Let $\mu_{j}: \mathscr{F}(j) \rightarrow \bigoplus_{i \in I} \mathscr{F}(i)$ be the embedding into the $j^{\text {th }}$-coordinate. For an I morphism $\lambda: i \rightarrow j$ define $\delta_{\lambda}=\mu_{j} \mathscr{F}(\lambda)-\mu_{i}$. In the category of abelian groups, $\lim _{\rightarrow N^{\prime} b} \mathscr{F} \cong\left[\bigoplus_{i \in I} \mathscr{F}(i)\right] / B$ where $B=\left\langle\operatorname{im} \delta_{\lambda} \mid \lambda \in \operatorname{Mor}(I)\right\rangle$. The associated compatible family of maps $\varphi_{i}: \mathscr{F}(i) \rightarrow \lim _{\rightarrow \neq \prime} \mathscr{F}$ is given by $\varphi_{i}(x)=\delta_{i}(x)+B$ for all $x \in \mathscr{F}_{i}$.

If we try to compute the colimit of the same functor \mathscr{F} in \mathscr{C}_{A} as the cokernel of the embedding $B \rightarrow \bigoplus_{I} \mathscr{F}_{i}$, we encounter the problem that this map not always is in \mathscr{C}_{A} since \mathscr{C}_{A} need not be closed under arbitrary direct sums even if $A \subseteq \mathbb{Q}$ [3]. While this prohibits a direct application of the cokernel construction of [3], it can be modified to prove the following result. Because of the similarity of the proofs, we only present those parts where modifications of [3] are necessary and refer to [3] otherwise.

Proposition 2.2. Let A be a self-small abelian group which is flat as an $E(A)-$ module. A functor \mathscr{F} from a small category I into \mathscr{C}_{A} has a colimit in \mathscr{C}_{A} if and only if there is a smallest subgroup V of $\bigoplus_{i \in I} \mathscr{F}(i)$ such that $B \subseteq V$ and $\left[\bigoplus_{i \in I} \mathscr{F}(i)\right] / V \in \mathscr{C}_{A}$.

Proof. Assume that the A-solvable group G together with a compatible family of maps $\sigma_{i} \in \operatorname{Hom}(\mathscr{F}(i), G)$ is the colimit of \mathscr{F} in \mathscr{C}_{A}. To simplify our notation, we
write H for the colimit of \mathscr{F} in $\mathscr{A} b$. There is a homomorphism $\sigma: H \rightarrow G$ with $\sigma_{i}=$ $\sigma \varphi_{i}$ for all $i \in I$. Since H is A-generated, the group $\sigma(H)$ is A-solvable by Lemma 2.1. To show that $\sigma(H)$ together with the maps σ_{i} is the colimit of \mathscr{F} in \mathscr{C}_{A}, we consider an A-solvable group K_{i} and a compatible family of maps $\lambda_{i} \in \operatorname{Hom}\left(\mathscr{F}_{i}, K^{\prime}\right)$. There exists a unique map $\lambda: G \rightarrow K$ with $\lambda_{i}=\lambda \sigma_{i}$ for all $i \in I$. We can, in addition, find a unique map $\varrho: H \rightarrow K$ with $\lambda_{i}=\varrho \varphi_{i}$ for all $i \in I$. We denote the restriction of λ to $\sigma(H)$ by ε, and observe $\varepsilon \sigma_{i}=\lambda \sigma_{i}=\lambda_{i}$. If $\delta \in \operatorname{Hom}(\sigma(H), K)$ also satisfies $\delta \sigma_{i}=\lambda_{i}$ for each i, then $(\delta \sigma) \varphi_{i}=\delta \sigma_{i}=\lambda_{i}=\lambda \sigma_{i}=(\lambda \sigma) \varphi_{i}$ yields $\delta \sigma=\varrho=\lambda \sigma$. For every $x \in \sigma(H)$, we choose $h \in H$ with $x=\sigma(h)$. Then, $\delta(x)=\delta \sigma(h)=\lambda \sigma(h)=\varepsilon(x)$. This shows that $\sigma(H)$ indeed is the colimit of \mathscr{F} in \mathscr{C}_{A}.

Let V be the subgroup of $\bigoplus_{i \in I} \mathscr{F}(i)$ which contains B and satisfies ker $\sigma=V / B$. Obviously, $\left[\bigoplus_{i \in I} \mathscr{F}(i)\right] / V$ is A-solvable. Suppose that U is another subgroup of $\bigoplus_{i \in I} \mathscr{F}(i)$ such that $K=\bigoplus_{I}\left[\mathscr{F}_{i}\right] / U$ is A-solvable. Define a map $\pi: H \rightarrow K$ by $\pi(x+B)=x+U$. For all $i, j \in I$ and all I-morphisms $\lambda: i \rightarrow j$, we have $\pi\left[\varphi_{j} \mathscr{F}(\lambda)\right]=\pi \varphi_{i}$. Hence, $\left\{\pi \varphi_{i} \mid i \in I\right\}$ is a compatible family of maps in \mathscr{C}_{A}. There exists a unique map $\psi: \sigma(H) \rightarrow K$ with $\pi \varphi_{i}=\psi \sigma_{i}$ for all $i \in I$. Since H is the colimit of \mathscr{F} in $\mathscr{A} b$ and $\pi \varphi_{i}=(\psi \sigma) \varphi_{i}$ for each $i \in I$, we obtain $\pi=\psi^{\prime} \sigma$. Therefore, $V / B=\operatorname{ker} \sigma \subseteq \operatorname{ker} \pi=U / B$. Conversely, suppose that there exists a smallest subgroup V of $\bigoplus_{i \in I} \mathscr{F}(i)$ with the required properties. Denote the canonical projection of H onto $G=\left[\bigoplus_{i \in I} \mathscr{F}(i)\right] / V$ by π. If we set $\sigma_{i}=\pi \varphi_{i}$, then it is routine to check that G together with the maps $\left\{\sigma_{i} \mid i \in I\right\}$ is the colimit of \mathscr{F} in \mathscr{C}_{A}. (see [3])

Theorem 2.3. The following conditions are equivalent for a self-small abclian group A :
a) \mathscr{A}_{A} is the torsion-free class of some torsion-thcory of right $E(A)$-modules.
b) i) A is faithfully flat as an $E(A)$-module.
ii) \mathscr{C}_{A} is a cocomplete category.
iii) \mathscr{C}_{A} is a complete category with $\lim _{\leftarrow \mathscr{C}_{A}} \mathscr{F} \cong T_{A} H_{A}\left(\lim _{\leftarrow, \mathscr{\prime})} \mathscr{F}\right)$ for all functors \mathscr{F} from a small category into \mathscr{C}_{A}.

Proof. a) $\Rightarrow b$): Since. \mathscr{I}_{A} is closed with respect to submodules, A is faithfully flat by [6]. To show the last two conditions in b), we consider a fanily $\left\{G_{i} \mid i \in I\right\}$ of A-solvable groups, and first establish that $T_{A} H_{A}\left(\prod_{i \in I} G_{i}\right)$ is the \mathscr{C}_{A}-product of this family. Since $H_{A}\left(G_{i}\right) \in \mathscr{U}_{A}$, and $\cdot \mathscr{H}_{A}$ is closed with respect to products, we obtain that $T_{A} H_{A}\left(\prod_{I} G_{i}\right)$ is A-solvable. Define map)s $\lambda_{j}: T_{A} H_{A}\left(\prod_{I} G_{i}\right) \rightarrow G_{j}$ by $\lambda_{j}=$ $\theta_{G_{i}} T_{A} H_{A}\left(\pi_{i}\right)$ where $\pi_{j}: \Pi_{l} G_{i} \rightarrow G_{j}$ denotes the projection onto the $j^{\text {theroordinate. }}$

If $B \in \mathscr{C}_{A}^{\prime}$ and $\left\{\alpha_{i}: B \rightarrow G_{i} \mid i \in I\right\}$ is a family of \mathscr{C}_{A}-morphisms, then the maps $H_{A}\left(\alpha_{i}\right)$ induce a unique map $\tilde{\alpha}: H_{A}(B) \rightarrow H_{A}\left(\prod_{I} G_{i}\right)$ with $H_{A}\left(\pi_{i}\right) \tilde{\alpha}=H_{A}\left(\alpha_{i}\right)$. We $\operatorname{set} \alpha=T_{A}(\tilde{\alpha}) \theta_{B}^{-1}$, and obtain $\lambda_{i} \alpha=\theta_{G_{i}} T_{A}\left(H_{A}\left(\pi_{i}\right) \tilde{\alpha}\right) \theta_{B}^{-1}=\alpha_{i}$.

It remains to show the uniqueness of α. Suppose that the map $\beta: B \rightarrow$ $T_{A} H_{A}\left(\Pi_{l} G_{i}\right)$ satisfies $\lambda_{i} \beta=\alpha_{i}$ for all $i \in I$. Then $H_{A}\left(\lambda_{i}\right) H_{A}(\beta)=H_{A}\left(\alpha_{i}\right)$. Observe that, for an abelian group H and a right $E(A)$-module M, we have $H_{A}\left(\theta_{I I}\right) \varphi_{H_{A}(I)}=\mathrm{id}_{I I_{A}(I I)}$ and $\theta_{T_{A}(M)} T_{A}\left(\varphi_{M}\right)=\mathrm{id}_{T_{A}(M)}$. Therefore

$$
\begin{aligned}
H_{A}\left(\lambda_{i}\right) H_{A}(\beta) & =H_{A}\left(\theta_{G_{i}}\right) H_{A} T_{A} H_{A}\left(\pi_{i}\right) H_{A}(\beta) \\
& =\varphi_{H_{A}\left(G_{i}\right)}^{-1} H_{A} T_{A} H_{A}\left(\pi_{i}\right) H_{A}(\beta)=H_{A}\left(\pi_{i}\right) \varphi_{H_{A}\left(\Pi_{I} G_{i}\right)}^{-1} H_{A}(\beta)
\end{aligned}
$$

and we obtain $\tilde{\alpha}=\varphi_{M_{A}\left(\Pi_{I} G_{i}\right)}^{-1} H_{A}(\beta)$ because of the uniqueness of $\tilde{\alpha}$. Thus, $\alpha=$ $T_{A}\left(\varphi_{H_{A}\left(H_{I} G_{i}\right)}^{-1}\right) T_{A} H_{A}(\beta) \theta_{B}^{-1}=\theta_{T_{A} H_{A}\left(\Pi_{I} G_{i}\right)} T_{A} H_{A}(\beta) \theta_{B}^{-1}=\beta$ since the diagram

$$
\begin{aligned}
& T_{A} H_{A}(B) \xrightarrow{T_{A} \mu_{A}(\beta)} T_{A} H_{A} T_{A} H_{A}\left(\Pi_{I} G_{i}\right) \\
& \text { if } \theta_{B} \quad i \mid \theta_{T_{A} H_{A}\left(\Pi_{I} G_{i}\right)} \\
& B \quad \xrightarrow{\beta} \quad T_{A} H_{A}\left(\Pi_{I} G_{i}\right)
\end{aligned}
$$

rommutes.
Since $\bigoplus_{i \in I} H_{A}\left(G_{i}\right) \subseteq \prod_{i \in I} H_{A}\left(G_{i}\right)$ and the last module is an element of \mathscr{I}_{A} by what has been shown, we obtain that \mathscr{H}_{A} contains $\bigoplus_{i \in I} H_{A}\left(G_{i}\right)$ because of a). Thus $\underset{i \in I}{\bigoplus} G_{i} \cong T_{A}\left(\bigoplus_{i \in I} H_{A}\left(G_{i}\right)\right)$ is A-solvable. Therefore, \mathscr{C}_{A} is closed with respect to direct sums. To establish that \mathscr{C}_{A} has cokernels, we consider a map $\varphi: G \rightarrow L$ where L is A solvable, and show that there is a smallest subgroup V of L such that $\varphi(G) \subseteq V$ and L / V is A-solvable. Consider the family $\mathscr{A}=\left\{U \subseteq H \mid \varphi(G) \subseteq U\right.$ and $\left.L / U \in \mathscr{C}_{A}\right\}$; and observe that $K=T_{A} H_{A}\left(\prod_{\mathscr{\prime}} L / U\right)$ is A-solvable by what has been shown so far. The projection maps $L \rightarrow L / U$ induce a map $\lambda: L \rightarrow K$, whose kernel is a subgroup of L with the desired properties.

Finally, consider a functor $\mathscr{F}: I \rightarrow \mathscr{C}_{A}$, and set let $G_{i}=\mathscr{F}(i)$ and $P=$ $T_{A} H_{A}\left(\prod_{I} G_{i}\right)$. If $\delta: i(\delta) \rightarrow j(\delta)$ is an I-morphism, then define $\sigma_{\delta}: P \rightarrow G_{j(\delta)}$ to be the map $\mathscr{F}(\delta) \lambda_{i(\delta)}-\lambda_{j(\delta)}$ where the λ 's are defined as in the first paragraph of this proof. Since \mathscr{C}_{A} has kernels and products, the limit of \mathscr{F} in \mathscr{C}_{A} exists by [18], and is the kernel of the map $\sigma=T_{A}(\varepsilon) \theta_{P}^{-1}: P \rightarrow T_{A} H_{A}\left(\prod_{\delta} G_{j(\delta)}\right)$ where ε : $H_{A}(P) \rightarrow H_{A}\left(\prod_{\delta} G_{j(\delta)}\right)$ is induced by the maps $H_{A}\left(\sigma_{\delta}\right)$ by the universal property of a prorluct of right $E(A)$-modules.

In the category of abclian groups, the limit of $\hat{\mathscr{F}}$ is the kernel of the map T : $\prod_{I} G_{i} \rightarrow \prod_{\delta} G_{j(i)}$ which is induced by the mappings $\tau_{\delta}=\mathscr{F}(\delta) \pi_{i(\delta)}-\pi_{j(\delta)}$. We obtain $H_{A}\left(\sigma_{\delta}\right)=\left[H_{A}(\overparen{\mathscr{F}}(\delta)) H_{A}\left(\pi_{i(\delta)}\right)-H_{A}\left(\pi_{j(\delta)}\right)\right] \varphi_{H_{A}(P)}^{-1}$. This shows $H_{A}\left(\sigma_{\delta}\right) \varphi_{H_{A}(P)}=$ $H_{A}\left(\tau_{\delta}\right)=H_{A}\left(\pi_{\delta}\right) H_{A}(\tau)$ which in turn yields $\varepsilon=H_{A}(\tau) \varphi_{I I_{A}(P)}^{-1}$. Since θ_{P} is an isomorphism and A is flat,

$$
\operatorname{ker} \sigma \cong T_{A}(\operatorname{ker} \varepsilon) \cong T_{A}\left(\operatorname{ker} \varepsilon \varphi_{H_{A}(P)}\right) \cong T_{A}\left(\operatorname{ker} H_{A}(\tau)\right) \cong T_{A} H_{A}(\operatorname{ker} \tau)
$$

This shows that part iii) of condition b) holds.
b) \Rightarrow a): The class \mathscr{U}_{A} is closed with respect to submodules by [0]. If $\left\{M_{i} \mid i \in I\right\}$ is a family of modules in.$/ / A$, then we can find A-solvable groups $\left\{G_{i} \mid i \in I\right\}$ with $M_{i} \cong H_{A}\left(G_{i}\right)$. We obtain $T_{A}\left(\prod_{I} M_{i}\right) \cong T_{A} H_{A}\left(\prod_{I} G_{i}\right)$ which is A-solvable by b) . Another application of $[G]$ yields $\prod_{I} M_{i} \in \mathscr{Z}_{A}$. The fact that \mathbb{I}_{A} is closed with respect to extensions is an immediate consequence of the 3 -Lemma.

3. A-solvability and the Mittag-Loefler-condition

The results of the last section raise the question which conditions have to be satisfied by a torsion-free abelian group A to ensure that $S_{A}\left(\prod_{l} G_{i}\right)$ is A-solvable for all families of A-solvable groups $\left\{G_{i}\right\}_{i \in I}$. Following [15], we say that a left R-module A satisfies the Mittag-Loefler-condition (ML) with respect to a class. It of right R modules if A is the direct limit of a filtration $\left\{F_{i}, \mu_{i}^{j}: F_{i} \rightarrow F_{j} \mid i, j \in I\right.$ with $\left.i \leqslant j\right\}$ of finitely presented modules satisfying
(*) For every $i \in I$, there is $j \in I$ with $j \geqslant i$ such that $\operatorname{ker}\left(1_{M} Q \mu_{i}\right) \subseteq \operatorname{ker}\left(1_{M} \odot \mu_{i}^{j}\right)$ for all $M \in \mathscr{A}$.

In [15], the following result was proved:

Lemma 3.1. The following conditions are equivalent for a left R-module A and a family of right R-modules . 11 :
a) A satisfies $M L$ with respect to \mathscr{M}.
b) Condition (*) holds for any filtration of finitely presented left R-modules whose direct limit is A.
c) If $\left\{U_{i} \mid i \in I\right\}$ is a family of elements of ./I, then the natural map σ_{A} : $\left[\prod_{I} U_{i}\right] \odot_{R} A \rightarrow \prod_{I}\left[U_{i} \otimes_{R} A\right]$ is onc-to-onc.

Using this result, we obtain:

Theorem 3.2. The following conditions are equivalent for a self-small abclian group A which is faithfully flat as an $E(A)$-module:
a) A satisfies $M L$ with respect to $\cdot \mathscr{H}_{A}$.
b) i) $\|_{A}$ is the torsion-free class of some torsion-theory on $\mathscr{I}_{E(A)}$.
ii) If $\left\{U_{i} \mid i \in I\right\}$ is a family of A-balanced, A-generated subgroups of an A-solvable group G, then $\bigcap_{i \in I} U_{i}$ is A-generated.
c) \mathscr{C}_{A} is a cocomplete category; and $\lim _{\leftarrow \mathscr{C}_{A}} \mathscr{F}=S_{A}\left(\lim _{\leftarrow} \mathscr{V ^ { \prime } b} \underset{\mathcal{F}}{ }\right)$ for all functors \mathscr{F} from a small category into \mathscr{C}_{A}.
d) $S_{A}\left(\prod_{I} G_{i}\right)$ is A-solvable for all families $\left\{G_{i} \mid i \in I\right\}$ of A-solvalle groups.

Proof. a) $\Rightarrow \mathrm{d}):$ By Lemma 3.1, the natural map $\sigma_{A}: T_{A}\left(\prod_{I} M_{i}\right) \rightarrow \prod_{I} T_{A}\left(M_{i}\right)$ is one-to-one for all families $\left\{M_{i} \mid i \in I\right\} \subseteq \mathscr{A}_{A}$. If $\lambda: \prod_{I} M_{i} \rightarrow H_{A}\left(\prod_{I} T_{A}\left(M_{i}\right)\right)$ denotes the natural isomorphism, then $H_{A}\left(\sigma_{A}\right) \varphi_{\mathrm{II}_{I} M_{i}}=\lambda$ yields that $H_{A}\left(\sigma_{A}\right)$ is onto. Since it also is a monomorphism, the map $\varphi_{1_{I} M_{i}}$ is an isomorphism too. The same holds for the first vertical map and the map forming the top-row of the following commutative diagram:

$$
\begin{array}{ccc}
T_{A} H_{A} T_{A}\left(\prod_{I} M_{i}\right) \xrightarrow{T_{A} H_{A}\left(\sigma_{A}\right)} & T_{A} I_{A}\left(\prod_{I} T_{A}\left(M_{i}\right)\right) \\
0 \longrightarrow & \left.{ }^{\theta_{T_{A}\left(\Pi_{I} M_{i}\right)} \downarrow} \begin{array}{l}
\Pi_{\Pi_{I} T_{A}\left(M_{i}\right)} \downarrow \\
\\
T_{A}\left(\prod_{I} M_{i}\right) \\
\end{array}\right)
\end{array}
$$

Thus, $\theta_{\Pi_{I} T_{A}\left(M_{i}\right)}$ is an monomorphism, and $S_{A}\left(\prod_{I} T_{A}\left(M_{i}\right)\right)$ is A-solvable.
d) $\Rightarrow c$): Since $S_{A}\left(\prod_{I} G_{i}\right)$ is A-solvable for all families $\left\{G_{i} \mid i \in I\right\}$ of A-solvable groups, we obtain $S_{A}\left(\lim _{\leftarrow} \mathscr{F}\right)$ is A-solvable for all functors \mathscr{F} from a small category into \mathscr{C}_{A}. The arguments in the proof of implication b$) \Rightarrow \mathrm{a}$) of Theorem 2.3 can be used to show that \mathscr{A}_{A} is the torsion-free class of some torsion-theory. Theorem 2.3 yiclds that \mathscr{C}_{A} is cocomplete, and $\lim _{\leftarrow \rightarrow \mathscr{C}_{A}} \mathscr{F} \cong T_{A} H_{A}\left(\lim _{\leftarrow \rightarrow \vee b} \mathscr{F}\right) \cong S_{A}\left(\lim _{\leftarrow \rightarrow \mathcal{V} b} \mathscr{F}\right)$ by what has been shown.
c) $\Rightarrow \mathrm{b}$): In view of Theorem 2.3 , it remains to verify condition ii): Since U_{i} is an A-balanced, A-generated subgroup of G, the group G / U_{i} is A-solvable, and $S_{A}\left(\prod_{I} G / U_{i}\right)$ is A-solvable by c) since products are inverse limits. The projection maps $G \rightarrow G / U_{i}$ induce an \mathscr{C}_{A}-homomorphism $G \rightarrow S_{A}\left(\prod_{I} G / U_{i}\right)$ whose kernel is $\bigcap_{I} U_{i}$. Since A is faithfully flat, the latter group is A-generated.
b) \Rightarrow a): Let $\left\{G_{i} \mid i \in I\right\}$ be a family of A-solvable groups. We write $P=\prod_{I} G_{i}$ and observe that $T_{A} H_{A}(P)$ is an A-solvable abelian group by Theorem 2.3. In order to show that $S_{A}(P)$ is A-solvable, we consider the A-balanced exact sequence $0 \rightarrow$ ker $\theta_{P} \rightarrow T_{A} H_{A}(P) \xrightarrow{\theta_{r}} S_{A}(P) \rightarrow 0$. Since $T_{A} H_{A}(P)$ is A-solvable, the same holds for $S_{A}(P)$ once we have shown that ker θ_{P} is A-generated in view of Lemma 2.1.i.

Let $\pi_{i}: P \rightarrow G_{i}$ be the projection onto the $i^{\text {th }}$-coordinate. Suppose $x \in \operatorname{ker} \theta_{P}$. Since $\theta_{G_{i}} T_{A} H_{A}\left(\pi_{i}\right)=\pi_{i} \theta_{P}$, we obtain $x \in \operatorname{licr} T_{A} H_{A}\left(\pi_{i}\right)$ for all $i \in I$ since G_{i} is A solvalble. On the other hand, if $x \in \operatorname{ker} T_{A} H_{A}\left(\pi_{i}\right)$ for all $i \in I$, then $\pi_{i} \theta_{p}(x)=$ 0 , which is only possible if $\theta_{P}(x)=0$. Thus, $\operatorname{ker} \theta_{P}=\bigcap_{I} \operatorname{ker} T_{A} H_{A}\left(\pi_{i}\right)$. But, ker $T_{A} H_{A}\left(\pi_{i}\right)$ is a (lirect summand of the A-solvable group $T_{A} H_{A}(P)$. By b), ker θ_{P}, is A-generated.

Let $\lambda: P \rightarrow \prod_{I} T_{A} H_{A}\left(G_{i}\right)$ be the isomorphism which is coordinatewise induced by the maps $\theta_{G_{i}}$. We identify the right $E(A)$-modules $H_{A}\left(\prod_{I}\left(G_{i}\right)\right.$ and $\prod_{I} H_{A}\left(G_{i}\right)$ and observe that $\lambda \theta_{P}=\sigma_{A}$. Since θ_{P} is a monomorphism, the same holds for σ_{A}. By Lemma 3.1, A satisfies ML with respect to \mathscr{U}_{A}.

In the case that. A has finite rank or is a generalized rank 1 group, the last result can be improved. In order to do this, the following technical result is needed:

Lemma 3.3. Let A be a self-small torsion-free abelian group which is faithfully flat as an $E(A)$-module. Then, $\bigoplus_{\omega} \mathbb{Q} \in \mathscr{C}_{A}^{\prime}$ iff A is a homogencous, completely decomposable group of finite rank.

Proof. Suppose $\bigoplus_{\omega} \mathbb{Q} \in \mathscr{C}_{A}$. If A has infinite rank, then there is a subgroup B of A with $A / B \cong \mathbb{Q}$, and the sequence $0 \rightarrow \bigoplus_{\omega} B \xrightarrow{a} \bigoplus_{\omega} A \xrightarrow{\beta} \bigoplus_{\omega} \mathbb{Q} \rightarrow 0$, which is induced coordinatewise, is A-balanced since A is faithfully flat. There is an epimorphism $\delta: A \rightarrow \bigoplus_{\omega} \mathbb{Q}$, which factors through β, say $\delta=\beta \varepsilon$. Since A is self-small, $\varepsilon(A) \subseteq \bigoplus_{n} A$ for some $n<\omega$, which results in a contradiction. Hence, A has finite rank. If U is a pure rank 1 subgroup of A, then A / U is an A-generated subgroup of the A-solvable group $\bigoplus_{\omega} \mathbb{Q}$. Since A is flat, we obtain that U is A-solvable. The inchusions $U \subseteq A$ induce an epimorphism $\varepsilon: G=\Theta\{U \mid$ U is a pure rank 1 subgroup of $A\} \rightarrow A$. Since $S_{A}(G)=G$ and A is faithfully flat, the map ε splits; and A is completely decomposable.

Write $A=A_{1}^{m_{1}} \oplus \ldots$ (1) $A_{s}^{m_{*}+}$ where the A_{i} 's are pairwise non-isomorphic rank 1 groups. Let U be a pure rank 1 subgroup of the A-projective group $A_{1} \oplus \ldots \notin A_{s}$ which is generated by an element $\left(a_{1}, \ldots, a_{s}\right)$ with $a_{i} \neq 0$ for all i. Then, type $U \leqslant t y p e A_{i}$ for $i=1, \ldots, s$. Since $\left[A_{1} \oplus \ldots \oplus A_{s}\right] / U \subseteq \bigoplus_{\omega} \mathbb{Q}$ is A-generated, we obtain that U is A-generated too. Then, $\operatorname{Hom}\left(A_{i}, U\right) \neq 0$ for some i, and $U \cong A_{i}$. Without loss of
generality, we may assume $i=1$. This shows that A is an epimorphic image of $\bigoplus_{I} A_{1}$ for some inclex-set I. As before, this epimorphism splits; and A is homogeneous.

The converse is obvious.
Proposition 3.4. Let A be a torsion-free abelian group such that $E(A)^{n}$ satisfies the $D C C$ for \mathbb{Z}-pure submodules U with $E(A)^{n} / U \in \mathscr{M}_{A}$. Then, $S_{A}\left(\Pi_{I} G_{i}\right)$ is A solvable for all families of torsion-free A-solvable groups $\left\{G_{i} \mid i \in I\right\}$.

Proof. For a finite subset J of I, let $\pi_{J}: \prod_{I} G_{i} \rightarrow \bigoplus_{J} G_{i}$ be a canonical projection with kernel $\prod_{I \backslash J} G_{i}$. We consider a map $\varphi: A^{m} \rightarrow \prod_{I} G_{i}$ for some $m<\omega$, and assume $\operatorname{ker} \varphi \neq \operatorname{ker} \pi_{J} \varphi$ for all finite subsets J of I. Suppose that we have selected indices $\left\{i_{1}, \ldots, i_{n}\right\} \subseteq I$. If $U_{n}=\bigcap_{j=1}^{n} \operatorname{ker} \pi_{i_{j}} \varphi$, then $\operatorname{ker} \varphi \neq U_{n}$; and there is $a_{n+1} \in U_{n} \backslash \operatorname{ker} \varphi$. Choose an index $i_{n+1} \in I$ with $\pi_{i_{n+1}} \varphi\left(a_{n+1}\right) \neq 0$. We obtain that U_{n+1} is a proper subset of U_{n}.

Since $A^{m} / U_{n} \subseteq \bigoplus_{j=1}^{n} G_{i_{j}}$ and the G_{i} 's are torsion-frec, we have that U_{n} is a pure, A generated, A-balanced subgroup of A^{m}. Therefore, $\left\{H_{A}\left(U_{n}\right) \mid n<\omega\right\}$ is an infinite strictly descending chain of \mathbb{Z}-pure submodules of $H_{A}\left(A^{n}\right)$ with $H_{A}\left(A^{n}\right) / H_{A}\left(U_{n}\right) \in$.$\|_{A}$ for all $n<\omega$. However, such a chain cannot exist.

Therefore, we can find a finite subset J of $I \operatorname{such}$ that $\operatorname{im} \varphi$ is isomorphic to a subgroup of $\bigoplus_{j \in J} G_{j}$. This shows that $\operatorname{im} \varphi$ is A-solvable and the same holds for G.

The last result in particular shows that \mathscr{C}_{A} is closed with respect to direct sums of torsion-free groups if A is as in Proposition 3.4.

Corollary 3.5. Let A be a torsion-free, self-small abelian group which is faithfully flat as an $E(A)$-module, but not homogeneous complctely decomposablc of finite rank. The following conditions are equivalent if $E(A) / p E(A)$ is Artinian for all primes p of \mathbb{Z}, and $E(A)^{n}$ has the $D C C$ for \mathbb{Z}-pure right submodules U with $E(A)^{n} / U \in \cdot \|_{A}$:
a) A satisfies $M L$ with respect to \mathscr{M}_{A}; and \mathscr{C}_{A} does not contain J_{p} for any prime p of \mathbb{Z}.
b) \mathscr{C}_{A} is cocomplete, and does not contain J_{p} for any prime p of \mathbb{Z}.
c) \mathscr{H}_{A} is the torsion-free class of some torsion-theory on $\mathscr{A}_{E(A)}$; and J_{p} is not A-solvable for any prime p of \mathbb{Z}.
(l) If p is a prime of \mathbb{Z} with $r_{p}(E(A))<\infty$, then $r_{p}(E(A))<\left[r_{p}(A)\right]^{2}$.

Proof. a) $\Rightarrow c$) is an immediate consequence of Theorem 3.2 ; while c) $\Rightarrow \mathrm{b}$) follows from Theorem 2.3.
b) $\Rightarrow d$): Condition d) can be verified as in [3], once we have shown that the clements of \mathscr{C}_{A} are torsion-free. If G is an A-solvable group such that $G[p] \neq 0$ for some prime p, then $\mathbb{Z} / p \mathbb{Z}$ is A-solvable by Lemma 2.1 ; and $A \neq p A$. To show that \mathscr{C}_{A} contains all bounded p-groups, it is necessary to verify that A has finite p-rank.

Since cocomplete categories have cokernels, we obtain that multiplication by p on A has a \mathscr{C}_{A}-cokernel which is of the form A / V where V is the smallest subgroup of A containing $p A$ such that A / V is A-solvable. We choose a $\mathbb{Z} / p \mathbb{Z}$-basis $\left\{c_{i} \mid i \in I\right\}$ of $A / p A$. For every finite subset J of I, we can find a subgroup U_{J} of A containing $p A$ such that $A / p A=\left\langle e_{j} \mid j \in J\right\rangle \oplus U_{J} / p A$. Since $A / U_{J} \cong \bigoplus_{J} \mathbb{Z} / p \mathbb{Z}$ is A-solvable, we have $V \subseteq U_{J}$. For $x \in A \backslash p A$, there is a finite subset J_{0} of I, with $x \in\left\langle e_{j} \mid j \in J_{0}\right\rangle$. Hence, $x \notin U_{J_{\theta}}$ and $\bigcap_{\{J \subseteq I \| J \mid<\infty\}} U_{J}=p A$. Therefore, $A / p A \cong \bigoplus_{I} \mathbb{Z} / p \mathbb{Z}$ is $A-$ solvable. Consider the exact sequence $0 \rightarrow U \rightarrow A \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0$ which induces $0 \rightarrow \bigoplus_{I} U \xrightarrow{\alpha} \bigoplus_{I} A \xrightarrow{\beta} \bigoplus_{I} \mathbb{Z} / p \mathbb{Z} \rightarrow 0$ coordinatewise. Let $\delta: A \rightarrow \bigoplus_{I} \mathbb{Z} / p \mathbb{Z}$ be an epimorphism. Since the last sequence is A-balanced, there is a map $\psi \in H_{A}\left(\oplus_{I} .4\right)$ with $\beta \psi=\delta$. The fact that A is self-small yields $\psi(A) \subseteq \bigoplus_{J} A$ for some finite subset J of I. Consequently, $\delta(A) \subseteq \bigoplus_{J} \mathbb{Z} / p \mathbb{Z}$; and I has to be finite. Since A has finite p rank, every family of cyclic p-groups is A-small. As in [3], \mathscr{C}_{A} is closed with respect to direct sums of A-small families, and, therefore, contains all bounded p-groups. Consider the map $\hat{\varphi}: A^{\omega} \rightarrow A^{\omega}$ which is defined by $\hat{\varphi}\left(\left(a_{n}\right)_{n<\omega}\right)=\left(p^{n} a_{n}\right)_{n<\omega}$. As in [3], $\hat{\varphi}$ induces an endomorphism φ of the group $G=S_{A}\left(A^{\omega}\right)$ which has $G / \varphi(G)$ as its \mathscr{C}_{A}-cokernel. Observe that G is A-solvable by Proposition 3.4. Moreover, $H_{A}(G / \varphi(G)) \cong \prod_{n<\omega}\left[E(A) / p^{n} E(A)\right]$ as a right $E(A)$-module.

Let U be the submodule of $H_{A}(G / \varphi(G))$ which corresponds to $\lim _{\leftarrow} E(A) / p^{n} E(A)$. As in [11, Proposition 39.4 and Example 12.2], the additive group of \overleftarrow{U} is torsion-free, reduced, algebraically compact, and p-local. Since $U \subseteq H_{A}(G / \varphi(G)) \in . / / A$, the map φ_{U} is an isomorphism by [6]. Thus, $T_{A}(U)$ is a torsion-free, A-solvable group. If it were not cotorsion-free, then it would have a direct summand isomorphic to \mathbb{Q} or J_{p}, either of which is not possible by the hypotheses. Thus, $T_{A}(U)$ is cotorsion-free, and the same holds for $U \cong H_{A} T_{A}(U)$ which results in a contradiction. This shows that the elements of \mathscr{C}_{A} are torsion-free.
d) \Rightarrow a): Assume that J_{p} is A-solvable. By [13], the exact sequence $0 \rightarrow J_{p} \xrightarrow{p}$ $J_{p} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0$ is A-balanced. This shows that $\mathbb{Z} / p \mathbb{Z}$ is A-solvable which is not possible since A solvable groups have to be torsion-free by d) as in [3]. By Proposition 3.4, $S_{A}\left(\Pi_{l} G_{i}\right)$ is A-solvable for all groups $G_{i} \in \mathscr{C}_{A}$. Now apply Theorem 3.2.

If we assume in addition that $E(A)$ is right Noetherian and $\mathbb{Q} E(A)$ is right Artimian, then the restrictions with respect to J_{p} in the last result can be removed. We
write

$$
\Gamma(A)=\left\{p \mid r_{p}(A)<\infty \text { and } r_{p}(E(A))=\left[r_{p}(A)\right]^{2}\right\}
$$

Corollary 3.6. Let A be a self-small torsion-free abelian group which is faithfully flat as an $E(A)$-module. The following conditions are equivalent if $E(A) / p E(A)$ is Artinian and $\mathbb{Q} E(A)$ is Artinian:
a) A satisfies $M L$ with respect to \mathscr{M}_{A}.
b) \mathscr{C}_{A} contains $S_{A}(G)$ for all reduced algebraic compact groups G with $G=p G$ for all primes $p \in \Gamma(A)$.

Proof. a) \Rightarrow b): Let $p \in \Gamma(A)$. As in [3], we obtain that \mathscr{C}_{A} contains all bounded p-groups. The proof of the last corollary can be adopted to show that \mathscr{C}_{A} also contains J_{p} since \mathscr{C}_{A} is cocomplete by Theorem 2.3 . Every reduced algebraically compact group G is a direct summand of a group which is a product of cocyclic groups and copies of p-adic integers. Write $G \oplus H=\Pi_{I} G_{i}=C$ where each G_{i} is either a cyclic q-group or a group of q-adic integers for some prime q of \mathbb{Z}. Consider a decomposition $C=D \oplus E$ where D consists of all those components of C associated with primes in $\Gamma(A)$, while E consists of the remaining components. Let $\delta: C \rightarrow E$ be a projection whose kernel is D. Since E is reduced, and $G=p G$ for all primes nut in $\Gamma(A)$, we have $G \subseteq \operatorname{ker} \delta=D$. Thus, we may assume that the primes q in the definition of G_{i} are taken from $\Gamma(A)$. Since each of the G_{i} is A-solvable, we obtain that $S_{A}(C)$ is A-solvable by Theorem 3.2. This shows that $S_{A}(G)$ is A-solvable.
b) \Rightarrow a): By Theorem 3.2 , it is enough to show that $S_{A}\left(\Pi_{I} G_{i}\right)$ is A-solvable for all A-solvable groups G_{i}. To show this, we consider a map $\varphi: A^{m} \rightarrow \Pi_{l} G_{i}$ for some $m<\omega$. For a subset J of I, let $\pi_{J}: \prod_{I} G_{i} \rightarrow \prod_{J} G_{i}$ be a projection on $\Pi_{J} G_{i}$ whose kennel is $\Pi_{I \backslash J} G_{i}$.

Suppose that there is no finite subset J of I with the following property: $\pi_{i}\left(\operatorname{ker} \pi_{J \varphi}\right)$ is torsion for all $i \in I \backslash J$. Assume that we have chosen a finite subset J_{n} of I and write $U_{n}=\operatorname{ker} \pi_{J_{n}} \varphi$. There is $i_{n+1} \in I \backslash J_{n}$ such that $\pi_{i_{n+1}} \varphi\left(U_{n}\right)$ is not torsion. Choose an element $x \in U_{n}$ such that $\pi_{i_{n+1}} \varphi(x)$ has infinite order. We set $J_{n+1}=J_{n} \cup\left\{i_{n+1}\right\}$. Then, $x \in U_{n} \backslash U_{n+1}$ has infinite order.

Moreover, since $A^{m} / U_{n} \subseteq \bigoplus_{j=1}^{n} G_{i_{j}}$ and the latter group is A-solvable, we obtain that U_{n} is an A-generated subgroup of A^{m}. Let W_{n} be the \mathbb{Z}-purification of $H_{A}\left(U_{n}\right)$ in $H_{A}\left(A^{n}\right)$. Then, $T_{A}\left(W_{n}\right)$ is the \mathbb{Z}-purification of $T_{A} H_{A}\left(U_{n}\right)$ in $T_{A} H_{A}\left(A^{n}\right)$. In particular, the \mathbb{Z}-purification V_{n} of U_{n} is an A-generated subgroup of A^{m}. Since U_{n} / U_{n+1} is not torsion, we obtain that $V_{n} / V_{n+1} \neq 0$. Hence, $\left\{\mathbb{Q} H_{A}\left(V_{n}\right) \mid n<\omega\right\}$ is a strictly descending chain of submodules of $\mathbb{Q} E(A)^{m}$ of infinite length. Since $\mathbb{Q} E(A)$ is Artinian, this is not possible.

Hence, we can find a finite subset J of I with the required property. Write $H=$ $\bigoplus_{i \in J} G_{i}$, which is A-solvable and $K=\Pi_{I \backslash J} \pi_{i} \varphi\left(A^{m}\right)$. Then, $\varphi\left(A^{m}\right) \subseteq H \oplus S_{A}\left(K^{\prime}\right)$. It is enough to show that $S_{A}(K)$ is A-solvable. Let $X_{i}=\pi_{i} \varphi\left(A^{m 2}\right)$ for $i \in I \backslash J$. Since $X_{i} \subseteq G_{i}$ is A-generated, we have that X_{i} is A-solvable. We choose an A generated subgroup B_{i} of A^{m} with $A^{m} / B_{i} \cong X_{i}$. Since A is faithfully flat, B_{i} is an A-balanced subgroup of A^{m}. If $H_{A}\left(X_{i}\right)$ were not torsion, then the same would be truc for $T_{A} H_{A}\left(X_{i}\right)$ by the faithfulness of A, which is not possible. Since $H_{A}\left(X_{i}\right)$ is an epimorphic image of $E(A)^{m}$, it is finitely generated, and hence bounded. Thus the same holds for X_{i}. Therefore, X_{i} is contained in an algebraically compact group I_{i} which is bounded by the same integer s as X_{i}. Since X_{i} is A-solvable, s is a product of primes from $\Gamma(A)$. Thus, $Y=\Pi_{I \backslash J} Y_{i}$ is an algebraically compact group, which is divisible for all primes not in $\Gamma(A)$, containing K. By b), $S_{A}(Y)$ is A-solvable; and the same holds for $S_{A}(K)$. Consequently, $\varphi\left(A^{m}\right)$ is A-solvable.

Example 3.1. The conditions on A in the hypothesis of Corollary 3.5 are satisfied in each of the following cases:
a) A is faithfully flat as an $E(A)$-module; and $E(A)$ has finite rank.
b) A is a generalized rank 1 group which is not homogeneous completely decomposable.

Proof. a) is obvious.
b) Since $E(A)$ satisfies the restricted minimum condition, it is enough to show that $E(A)^{n}$ has the DCC for pure submodules U such that $E(A)^{n} / U \in \mathscr{M}_{A}$. If $\left\{U_{n} \mid n<\right.$ $\omega\}$ is an infinite descending chain of such submodules, then there is $m<\omega$ such that $V_{m}=U_{m+1} / U_{m}$ is singular. Otherwise, $E(A)^{n}$ would have infinite Goldie-dimension, which is not possible. Since U_{m} is pure in $E(A)^{n}$, and $E(A)$ is right Noctherian. we obtain that V_{m} is a finitely generated, singular torsion-free $E(A)$-module. The fact that $E(A)$ has the restricted minimum condition yields that V_{m} is Artinian, which is only possible if its additive group is divisible. Then, $T_{A}\left(V_{m}\right)$ is a divisible. torsion-free A-solvable group. In particular, \mathbb{Q} is A-solvable. We may assume that A has infinite rank. This yields the inequalities $\left|H_{A}(\mathbb{Q})\right|=2^{|A|}>|A| \geqslant|E(A)|$. On the other hand there exists an exact sequence $A \rightarrow \mathbb{Q} \rightarrow 0$ which is A-balanced. Thus, $H_{A}(\mathbb{Q})$ is an epimorphic image of $E(A)$, which is not possible by the previous inequalities.

Even in the case that \mathscr{C}_{A} is cocomplete, the limit of a functor \mathscr{F} need not be isomorphic to its colimit in $\mathcal{A} b$.

Proposition 3.7. Let A be a torsion-free abelian group which has a semi-prime, two-sided Noctherian endomorphism ring of Krull dimension at most 1 . If \mathscr{C}_{A} is
cocomplete and does not contain J_{p} for any prime p, then there exists a functor \mathscr{F} from a small category into \mathscr{C}_{A} whose colimit in \mathscr{C}_{A} is not isomorphic to its colimit, in $\mathfrak{a} b$.

Proof. Observe that A satisfies the hypotheses of Corollary 3.5. Let I be the set of positive integers, and set $\mathscr{F}(i)=A$. If i divides j, then set $\operatorname{Mor}_{I}(i, j)=\{\lambda\}$, and define $\mathscr{F}(\lambda)$ to be multiplication by j / i. Obviously, the colimit of \mathscr{F} in $\mathscr{A} b$ is the injective hull of A. Suppose that $G=[\oplus \mathscr{F}(n)] / U \in \mathscr{C}_{A}$. By Corollary 3.5, G is a torsion-free divisible group. If $G \neq 0$, then A is a homogeneous completely decomposable group. In this case the group J_{p} is A-solvable which is not possible. Thus, the colimit of \mathscr{F} is 0 in \mathscr{C}_{A}.

We conclude this section with an example of groups satisfying the Mittag-Loefler condition:

Example 3.2. Let A be a cotorsion-free abelian group which is constructed by [10, Theorem 3.3]. Then, A satisfies ML with respect to \mathscr{A}_{A}.

Proof. The group A in [DG, Theorem 3.3] is constructed in such a way that A is the direct limit of a family of finitely generated free submodules U such that A / U is flat. Let P be a finitely presented module, and $\sigma: P \rightarrow A$ be a map. Then, $\sigma(P) \subseteq U$ for some finitely generated, free submodule U of A such that A / U is flat. Let τ be σ viewed as a map from P to U, and $\iota: U \rightarrow A$ be the inclusion map. Then, $\iota \tau=\sigma$ yields ker $1_{M} \otimes \tau \subseteq \operatorname{ker} 1_{M} \otimes \sigma$ for all right $E(A)$-modules M. Since A / U is flat, the map $1_{M} \otimes \iota: M \otimes_{E(A)} U \rightarrow T_{A}(M)$ is a monomorphism. Thus, ker $1_{M} \otimes \sigma=\operatorname{ker} 1_{M} \otimes[\iota \tau] \subseteq \operatorname{ker} 1_{M} \otimes \tau$. By [15], A satisfies ML with respect to the class of all $E(A)$-modules.

In contrast to the last result, torsion-free groups of finite rank which are constructed by Corner's Theorem need not satisfy ML with respect to \mathscr{H}_{A} :

Example 3.3. Let A be a torsion-free abelian group of rank 2 whose cndomorphism ring is \mathbb{Z}_{p}. Then, A does not satisfy ML with respect to \mathscr{A}_{A}.

Proof. By [3], the category \mathscr{C}_{A} is not preabelian, and hence not cocomplete. By what has been shown, A cannot satisfy ML with respect to \mathscr{M}_{A}.

4. An existence theorem for A-solvable groups

Consider a functor $\mathscr{F}: I \rightarrow \mathscr{C}_{A}$ where I is a small category. While the results of the last sections discuss when \mathscr{F} has a colimit in \mathscr{C}_{A}, this section addresses the question under when the colimit of \mathscr{F} in the category of abelian groups is its colimit in \mathscr{C}_{A}. We want to remind the reader of the notational conventions for colimits which we have introduced following Lemma 2.1.

Theorem 4.1. Let A be a torsion-free abelian group which is faithfully flat as an $E(A)$-module, and \mathscr{F} a functor from a small category I into \mathscr{C}_{A} such that $\{\mathscr{F}(i) \mid$ $i \in I\}$ is A-small. The following conditions are equivalent:
a) $G=\lim _{\longrightarrow \rightarrow b,} \mathscr{F}$ is A-solvable.
b) $H_{A}(G)$ together with the family $\left\{H_{A}\left(\varphi_{i}\right) \mid i \in I\right\}$ induced by the compatible maps $\varphi_{i}: \widehat{F}(i) \rightarrow G_{i}$ is the colimit of the functor $H_{A} \mathscr{F}$ in the category of right $E(A)$-modules.

Proof. a) $\Rightarrow \mathrm{b})$: Let M be the colimit of the functor $H_{A} \mathscr{F}$ in the category of right $E(A)$-modules where $\left\{\psi_{i} \mid i \in I\right\}$ denotes the compatible family of maps which is obtained as in [18]. As in Section 2, M admits an exact sequence $0 \rightarrow B^{*} \xrightarrow{i}$ $\bigoplus_{i \in I} H_{A} \mathscr{F}(i) \rightarrow M \rightarrow 0$. We may assume that ι is an inclusion map and the submodule ${ }^{i \in 1}{ }^{*}$ B^{*} of $\bigoplus_{i \in I} H_{\Lambda} \mathscr{F}(i)$ is generated by the images of the maps $\varepsilon_{\lambda}=\mu_{t(\lambda)} H_{A} \mathscr{F}(\lambda)-\mu_{s(\lambda)}$ where $\lambda: s(\lambda) \rightarrow t(\lambda)$ is an I-map, and μ_{j} is the embedding into the $j^{\text {th }}$-coordinate.

On the other hand, since A is faithfully flat as an $E(A)$-module, and the groups G and $\bigoplus_{i \in I} \mathscr{F}(i)$ are A-solvable, the induced sequence $0 \rightarrow H_{A}(B) \xrightarrow{H_{A}(\alpha)}$ $H_{A}\left(\bigoplus_{i \in I} \mathscr{F}(i)\right) \rightarrow H_{A}(G) \rightarrow 0$ is exact. Moreover, the natural map $\delta: \bigoplus_{i \in I} H_{A} \mathscr{F}(i) \rightarrow$ $H_{A}\left(\bigoplus_{i \in I} \mathscr{F}(i)\right)$ is an isomorphism since $\{\mathscr{F}(i) \mid i \in I\}$ is A-small. If we have shown $\delta\left(B^{*}\right)=H_{A}(B)$, then δ induces an isomorphism $\tilde{\delta}: M \rightarrow H_{A}(G)$ with $\tilde{\delta} \psi_{i}=H_{A}\left(\varphi_{i}\right)$ for all $i \in I$. This proves b$)$.

Observe $\delta \mu_{i}(\alpha)=H_{A}\left(\delta_{i}\right)(\alpha)=\delta_{i} \alpha$ for all $\alpha \in H_{A}(\mathscr{F}(i))$. For every $\varphi \in$ $H_{A} \mathscr{F}(s(\lambda))$ and $a \in A$, we, hence, obtain

$$
\left[\delta \varepsilon_{\lambda}(\varphi)\right](a)=\left[\delta_{t(\lambda)} H_{A} \mathscr{F}(\lambda)(\varphi)\right](a)-\delta_{s(\lambda)} \varphi(a)=\left[\delta_{t(\lambda)} \mathscr{F}(\lambda)-\delta_{s(\lambda)}\right](\varphi(a)) \in B
$$

which shows $\delta\left(B^{*}\right) \subseteq H_{A}(B)$. To establish the converse of this inclusion, we observe that the group B is A-solvable by Lemma 2.1. We define a map $\theta: T_{A}\left(\delta\left(B^{*}\right)\right) \rightarrow B$ by $\theta(\alpha \otimes a)=\alpha(a)$. The group B is generated by elements of the form $\left[\delta_{t(\lambda)} \mathscr{F}(\lambda)-\right.$ $\left.\delta_{t(\lambda)}\right](x)$ where $x \in \mathscr{F}(s(\lambda))$. We choose $a_{1}, \ldots, a_{n} \in A$ and $\varrho_{1}, \ldots, \varrho_{n} \in H_{A} \mathscr{F}(s(\lambda))$
with $x=\sum_{i=1}^{n} \varrho_{i}\left(a_{i}\right)$ and observe that

$$
\left[\delta_{t(\lambda)} \mathscr{F}(\lambda)-\delta_{s(\lambda)}\right](x)=\sum_{i=1}^{n}\left[\delta \varepsilon_{\lambda}\left(\varrho_{i}\right)\left(a_{i}\right)\right]=\theta\left(\sum_{i=1}^{n}\left[\delta \varepsilon_{\lambda}\left(\varrho_{i}\right)\right] \otimes a_{i}\right) \in \operatorname{im} \theta
$$

This shows that θ is onto. If $\varepsilon: \delta\left(B^{*}\right) \rightarrow H_{A}(B)$ is the inclusion-map, then $\theta_{B} T_{A}(\varepsilon)=\theta$ yields that $T_{A}(\varepsilon)$ is an epimorphism. Since the sequence $T_{A}\left(\delta\left(B^{*}\right)\right) \xrightarrow{T_{A}(\varepsilon)}$ $T_{A} H_{A}(B) \rightarrow T_{A}\left(H_{A}(B) / \delta\left(B^{*}\right)\right) \rightarrow 0$ is exact, we obtain $T_{A}\left(H_{A}(B) / \delta\left(B^{*}\right)\right)=0$ which yields $H_{A}(B)=\delta\left(B^{*}\right)$ since A is faithfully flat as an $E(A)$-module.
b) \Rightarrow a): We consider the exact sequence $0 \rightarrow B \xrightarrow{\alpha} \bigoplus_{i \in I} \mathscr{F}(i) \xrightarrow{\beta} G \rightarrow 0$. Since $\{\mathscr{F}(i) \mid i \in I\}$ is A-small, the center-term in the sequence is A-solvable, and the same holds for B as an A-generated subgroup of an A-solvable group. By Lemma 2.1, it is cnough to show that the sequence is A-balanced.

Let $\varphi \in H_{A}(G)$. Since $H_{A}(G)=\underset{\longrightarrow}{\lim } H_{A} \mathscr{F}$, we have $H_{A}(G)=\left\langle\operatorname{im} H_{A}\left(\varphi_{i}\right) \mid i \in I\right\rangle$. We choose $i_{1}, \ldots, i_{n} \in I$ and $\psi_{j} \in H_{A} \mathscr{F}\left(i_{j}\right)$ with $\varphi=\sum_{j=1}^{n}\left[H_{A}\left(\varphi_{i_{j}}\right)\right]\left(\psi_{j}\right)=\sum_{j=1}^{n} \varphi_{i_{j}} \psi_{j}$. For all $a \in A$, we obtain $\varphi(a)=\sum_{j=1}^{n} \varphi_{i_{j}} \psi_{j}(a)=\sum_{j=1}^{n} \psi_{j}(a)+B=\sum_{j=1}^{n} \beta \psi_{j}(a)$. Hence, $\varphi=H_{A}(\beta)\left(\sum_{j=1}^{n} \psi_{j}\right)$, and the sequence is A-balanced.

In particular, the last result applies in the following situation:

Corollary 4.2. Let A be an abelian group which is faithfully flat as an $E(A)-$ module, and κ a cardinal with $|A|<c f(\kappa)$. An abelian group G of cardinality κ is A-solvable if it is the union of an strictly ascending chain $\left\{G_{\nu} \mid \nu<\kappa\right\}$, of A-solvable subgroups.

Proof. Let $\iota_{\nu}: G_{\nu} \rightarrow G$ and $\iota_{\nu}^{\mu}: G_{\nu} \rightarrow G_{\mu}$ for $\nu \leqslant \mu$ be the inclusion maps. Since G is the colimit in $\mathscr{A} b$ of the G_{ν} 's, it is A-solvable by Theorem 4.1 once we have shown that $H_{A}(G)$ is the colimit of the system $\left\{H_{A}\left(G_{\nu}\right), H_{A}\left(\iota_{\nu}^{\mu}\right) \mid \nu \leqslant \mu<\kappa\right\}$. To simplify our notation we set $U_{\nu}=\operatorname{im} H_{A}\left(\iota_{\nu}\right) \subseteq H_{A}(G)$. The corresponding inclusions are denoted by ε_{ν} and ε_{ν}^{μ}. For all $\nu<\mu<\kappa$, we have $H_{A}\left(\iota_{\mu}\right) H_{A}\left(l_{\nu}^{\mu}\right)=\varepsilon_{\nu}^{\mu} H_{A}\left(\iota_{\nu}\right)$ and $H_{A}\left(\iota_{\nu}\right)=\varepsilon_{\nu} H_{A}\left(\iota_{\nu}\right)$.

The family $\left\{U_{\nu} \mid v<\kappa\right\}$ is an ascending chain of submodules of $H_{A}(G)$. If $\varphi \in H_{A}(G)$, then $\varphi(A) \subseteq G_{\nu}$ for some ν since $|\varphi(A)| \leqslant|A|<c f(\kappa)$. Therefore, the U_{ν} 's form an ascending chain whose union is $H_{A}(G)$. If M is a right $E(A)$-module for which we can find maps $\sigma_{\nu}: H_{A}\left(G_{\nu}\right) \rightarrow M$ with $\sigma_{\mu} H_{A}\left(\iota_{\nu}^{\mu}\right)=\sigma_{\nu}$, then we have $\sigma_{\mu}\left[H_{A}\left(\iota_{\mu}\right)\right]^{-1} \varepsilon_{\nu}^{\mu}=\sigma_{\nu}\left[H_{A}\left(\iota_{\nu}\right)\right]^{-1}$ since $H_{A}\left(\iota_{\nu}\right)$ is an isomorphism between $H_{A}\left(G_{\nu}\right)$
and U_{ν}. There is a unique map $\beta: H_{A}(G) \rightarrow M$ with $\beta \varepsilon_{\nu}=\sigma_{\nu}\left[H_{A}\left(\iota_{\nu}\right)\right]^{-1}$. Thus, $\sigma_{\nu}=\beta \varepsilon_{\nu} H_{A}\left(l_{\nu}\right)=\beta H_{A}\left(l_{\nu}\right)$. To show the uniqueness of β, assume $\gamma H_{A}\left(t_{\nu}\right)=\sigma_{\nu}$ for all $\nu<\kappa$. We have $\gamma \varepsilon_{\nu}=\sigma_{\nu}\left[H_{A}\left(\iota_{\nu}\right)\right]^{-1}=\beta \varepsilon_{\nu}$. Since β is unique with this property, we obtain that, $H_{A}(G)$ is the colimit of the system under consideration.

Corollary 4.3. Let A be a self-small abelian group which is faithfully flat as an $E(A)$-modulc. The following conditions are equivalent for an abelian group G :
a) G is not A-solvable.
b) If G is the mion of a strictly ascending chain $\left\{G_{\nu} \mid \nu<\kappa\right\}$ of A-solvable sulgroups, then $\aleph_{0} \leqslant c f(\kappa) \leqslant|A|$.

We are now able to prove the existence theorem for A-solvable groups:
Theorem 4.4. $\left(Z F C+\Gamma_{n}\right)$ Let A be a self-small cotorsion-frec abelian gronp which is faithfully flat as an $E(A)$-module, S a cotorsion-frce ring containing $E(A)$ such that $S^{\mathrm{Op}} \in \mathbb{I}_{A}$ as an $E(A)$-module and κ a regular cardinal number with $\kappa>\sup \{|A|,|S|\}$. There cxist 2^{κ} pairwise non-isomorphic cotorsion-free A-solvable groups G of cardinality r such that $\operatorname{Hom}(G, A)=0$ and $E(G) \cong C_{S}(E(A))$, the centralizer of $E(A)$ in S.

Proof. Let R be the opposite ring of S. By [10, Theorem 3.2], there exist 2^{κ} pairwise non-isomorphic cotorsion-free left R-modules M of cardinality i such that $R=E_{\mathbb{Z}}(A)$. Moreover, M can be chosen in such a way that it has a r filtration $\left\{M_{\nu} \mid \nu<\kappa\right\}$ of free submodules (which is the way that M has been constructed in [10].) To show that $G=T_{A}(M)$ is A-solvable, we set $G_{\nu}=T_{A}\left(M_{\nu}\right)$. Since $S^{\mathrm{op}} \in \mathscr{H}_{A}$, we obtain that G_{ν} is A-solvable. The family $\left\{G_{\nu} \mid \nu<\kappa\right.$ is is a smooth asconding chain whose union is G. We observe $\left|G_{\nu}\right| \leqslant \aleph_{0}|A|\left|M_{\nu}\right|<\kappa$ and $G_{\nu+1} / G_{\nu} \cong T_{A}\left(M_{\nu+1} / M_{\nu}\right)$ is non-zero since A is faithful. Thus, G has cardinality r, and is A-solvable.

By the Adjoint-Functor-Theorem, the map

$$
\psi_{G}: E_{\mathbb{Z}}(G) \rightarrow \operatorname{Hom}_{E(A)}\left(M, H_{A} T_{A}(M)\right)
$$

which is defined by $\left[\left[\psi_{G}(\varphi)\right](m)\right](a)=\varphi(m \bigcirc a)=\left[\varphi \varphi_{M}(m)\right](a)$, is an isomorphism. Since A is faithfully flat as an $E(A)$-module, $M \in . / /(A)$ by [6]. Hence, there is an induced isomorphism $\sigma: \operatorname{Hom}_{E(A)}\left(M, H_{A} T_{A}(M)\right) \rightarrow E_{E(A)}(M)$ which is defined by $\sigma(\alpha)=\varphi_{M}^{-1} \alpha$. The composition of these two isomorphism satisfies $\sigma \psi_{G}(\alpha)=$ $\varphi_{M}^{-1} \alpha \varphi_{M}$ for all $\varphi \in E_{\mathbb{Z}}(G)$. Hence, $E_{\mathbb{Z}}(G) \cong E_{E(A)}\left(M_{E(A)}\right)=E_{R}(R M)=C_{S}(R)$ as rings.

Assume $\operatorname{Hom}\left(G_{r}, A\right) \neq 0$. We write $G_{\nu} \cong \bigoplus_{\kappa_{\nu},} T_{A}(R)$ and observe $\kappa_{\nu} \leqslant$ $\left|\bigoplus_{\kappa}, \operatorname{Hom}(G, A)\right| \leqslant\left|\operatorname{Hom}\left(G, G_{\nu}\right)\right| \leqslant|E(G)|<\kappa$. On the other hand, $\left|T_{A}(R)\right|<r ;$
yields $\sup \left\{\kappa_{\nu} \mid \nu<\kappa\right\}=\kappa$. The resulting contradiction shows $\operatorname{Hom}(G, A)=0$. Finally, since A is faithfully flat and $G=T_{A}(M),[6]$ guarantees that non-isomorphic choices for M yield non-isomorphic groups G.

The condition that $S^{\circ p} \in \mathscr{M}_{A}$ is, for instance, satisfied if S is contained in a free $E(A)$-module, e.g. $S \subseteq E(A)[x]$ or $S \subseteq \operatorname{Mat}_{n}(E(A))$ for some $n<\omega$, or S is an $E(A)$-order in the case that $\mathbb{Q} E(A)$ is semi-simple Artinian. In the latter case, we obtain additional insights in the structure of A-solvable abelian groups:

Corollary 4.5. Let A be a torsion-free abelian group which is faithfully fat as an $E(A)$-module and has a semi-simple Artinian quasi-cndomorphism ring. The following conditions are equivalent for a torsion-free abelian group G with ro $(A))<$ $c f(|G|):$
a) C_{t} is A-solvable.
b) G is the umion of a smooth, strictly ascending chain of pure A-solvable subgroups.

Proof. a) \Rightarrow b): Choose an essential submodule M of $H_{A}(G)$ which is the direct sum of cyclic submodules, say $M=\bigoplus_{\nu<\kappa} U_{\nu}$. We set $M_{\alpha}=\bigoplus_{\nu \leqslant \alpha} U_{\nu}$, and denote its \mathbb{Z}-purification in $H_{A}(G)$ by N_{α}. Since G is A-solvable, $H_{A}(G) \in \mathscr{A}_{A}$. Moreover, .$/_{A}$ is closed with respect to submodules by [6]. Thus, setting $G_{\nu}=T_{A}\left(N_{\nu}\right)$ yields a smooth ascending chain of subgroups of G such that $G / G_{\nu} \cong T_{A}\left(H_{A}(G) / N_{\nu}\right)$ is a torsion-frec abelian group.
b) \Rightarrow a): Let $X \subseteq A$ be a subset with $|X|=r_{0}(A)$ and $A /\langle X\rangle$ torsion. If $\varphi \in H_{A}(G)$, then there is $\nu<\kappa$ with $\varphi(X) \subseteq G_{\nu}$. Since G_{ν} is pure in G, we obtain $\varphi(A) \subseteq G_{\nu}$, and $H_{A}(G)$ is the union of the modules $H_{A}\left(G_{\nu}\right)$. As in the proof of Corollary 4.2, G is A-solvable.

References

[1] Albrecht. U.: Faithful abclian groups of infinite rank. Proc. Aneer. Math. Soc. 103 (1) (1988), 21-26.
[2] Albrecht, U.: Endomorphism rings of faithfully flat abelian groups. Results in Mathematics 17 (1990), 179-201.
[3] Albrecht, U.: Abelian groups A such that the category of A-solvable groups is preabelian. Contemporary Mathematics 87 (1989), 117-131.
[4] Albrecht, U :: Endomorphism rings and a generalization of torsion-freeness and purity. Communications in Algebra 17 (5) (1989), 1101-1135.
[5] Albrecht, U.: Extension functors on the category of A-solvable abelian groups. Czech. Math. J. 41 (116) (1991), (685-694.
[G] Albrecht, U.: Endomorphism rings and Fuchs' Problem 47. To appear in the Warfield Memorial Volume.
[7] Albrecht, U., and Hausen, J.: Modules with the quasi-summand intersection property. Bull. Austral. Math. Soc. 44 (1991), 189-201.
[8] Arnold, D., and Lady, L.: Endomorphism rings and direct sums of torsion-free abelian groups. Trans. Amer. Math. Soc. 211 (1975), 225-237.
[9] Arnold, D., and Murley, E.: Abelian groups, A, such that $\operatorname{Hom}(A,-)$ preserves direct sums of copies of A. Pac. J. of Math. 56 (1975), 7-20.
[10] Dugas, M.. and Göbel, R.: Every cotorsion-free ring is an endomorphism ring. Proc. London Math. Soc. 45 (1982), 319-336.
[11] Faticoni, T.: Semi-local localization of rings and subdirect decomposition of modules. J. of P'ure and Appl. Alg. 46 (1987), 137-163.
[12] Faticoni, T., and Goeters, P.: Examples of torsion-free abelian gronps flat as mudules over their endomorphism rings. Comm. in Algebra 19 (1991), 1-27.
[13] Faticoni, T., and Goeters, P.: On torsion-free Ext. Comm. in Algebra 16 (9) (1988), 1853-1876.
[14] Fuchs, L.: Infinite Abelian Groups Vol. I/II. Academic Press, New York, London, 1970/73.
[15] Gruson, L., and Raynaud, M.: Criteres de platitude et de projectivite. Inv. Math. 13 (1971), 1-89.
[1G] Hausen, J.: Modules with the summand intersection property. Comm. in Algebra 17 (1989), 135-148.
[17] Reid, J.: A note on torsion-free abelian groups of finite rank. Proc. Amer. Math. Soc. 13 (1962), 222-225.
[18] Stenström, B.: Rings of Quotients. Springer Verlag, Berlin, New York, Heidelberg, 1975.
[19] Warfield, R.: Homomorphisms and duality for torsion-free groups. Math. Z. 107 (1968), 189-200.

Author's address: Department of Mathematics, Auburn University, Auburn, AL 36849, U.S.A.

