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Abstract

A navigation function is a scalar valued function on a robot configuration space which en-
codes the task of moving to a desired destination without hitting any obstacles. Our program
of research concerns the construction of navigation functions on a family of configuration spaces
whose “geometric expressiveness” is rich enough for navigation amidst real world obstacles. A
sphere world is a compact connected subset of ™ whose boundary is the finite union of disjoint
(n — 1)-spheres. In previous work we have constructed navigation functions for every sphere
world. In this paper we embark upon the task of extending the construction of navigation func-
tions to “star worlds”. A star world is a compact connected subset of £™ obtained by removing
from a compact star shaped set a finite number of smaller disjoint open star shaped sets. This pa-
per introduces a family of transformations from any star world into a suitable sphere world model,
and demonstrates that these transformations are actually analytic diffeomorphisms, Since the
defining properties of navigation functions are invariant under diffeomorphism, this construe-
tion, in composition with the previously developed navigation function on the corresponding
model sphere world, immediately induces a navigation function on the star world.

1 Introduction

We seek a solution to the following problem in robotics. A kinematic chain, actuated by idealized
bounded torque motors, is allowed to move in a cluttered workspace. Contained within the joint
space — an analytic manifold with boundary which forms the configuration space of the
kinematic chain — is the free space, F — the set of all configurations which do not involve
intersection with any of the “obstacles” cluttering the workspace. Given any “destination point”
in the interior of F to which it is desired to move the robot, find a control law which maps the
robot state —— position and velocity - into torque inputs at each joint, such that the resulting
closed loop robotic system trajectories move to the destination from any initial configuration
without hitting the obstacles,

The purely geometric problem of constructing a path between two points in a space ob-
structed by sets with arbitrary polynomial boundary (given perfect information) has already
been completely solved by Schwartz and Sharir{19]. Moreover, a near optimally efficient solu-
tion has recently been offered by Canny|[3] for this class of problems as well. The motivation for
the present direction of inquiry (beyond its apparent academic interest) is the desire to incor-
porate explicitly aspects of the contrel problem — the construction of feedback compensators
for a well characterized class of dynamical systems in the presence of well characterized con-
straints — in the planning phase of robot navigation problems. That is, the geometrical “find
path” problem is generalized to the search for a family of paths in F (the one-parameter group
of a gradient flow) that provide a feedback law for the physical robot: the navigation task is
reformulated as a dynamical “find control law” problem.

This formulation may seem to be at odds with the largely unspoken understanding that now
prevails in the field of robotics to the effect that methods of task planning ought to be distinct
from methods of control. The former belong to the realm of geometry and logic whereas the
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latter inhabit the the earthier domain of engineering analysis; geometry is usually associated
with off-line computation whereas everyone knows that control must be accomplished in real-
time; the one is a “high level” activity whereas the other is at a “low level”. Nevertheless, the
determination to combine planning and control techniques is not unknown within the robotics
literature. The idea of using “potential functions” for the specification of robot tasks with a
view of the control problems in mind was pioneered by Khatib{8] in the context of obstacle
avoidance. Fundamental work of Hogan{7] in the context of force control further advanced the
interest in this approach. A similar methodology has been developed independently by Arimoto
in Japan[1], and by Soviet investigators as well{17]. We appeal to this small but growing body
of existing literature — which includes both experimental as well as theoretical results — for
the justification of our problem statement, and proceed with the discussion of its solution.

The negative gradient vector field of a scalar valued function which is transverse (exterior
directed) on the boundary of the free space, and which has a single attractor at the destination
point gives rise to a flow which moves almost all initial conditions toward that desired point.
Thus, a suitably chosen scalar valued “cost” function solves the geometric problem of finding
paths to the destination in free space from almost every initial condition (convergence from every
initial condition is precluded in general, by the topology of F[12]}). Mozreover, interpreting the
cost function as an artificial potential energy, it can be shown that a gradient vector field on F
“lifts naturally” to a Lagrangian vector field on the phase space of F, T'F, describing the robot’s
Newtonian dynamics when subjected to a suitable feedback compensating control law[9]. Under
certain additional regularity conditions, the Lagrangian system “inherits” the limit properties
of the gradient system, and an explicitly specified portion of T'F, including F x {0} — all zero
velocity states, is positive invariant with respect to the lifted flow{10}. Thus, a further constrained
cost function solves the robot navigation and the attendant control problems simultaneously.

In a recent paper[12], we propose a formal specification and provide a motivating discussion
for a subclass of scalar valued functions on F— the class of navigation functions — which
achieves the stated two-fold goal (again, up to the limits that the topology of F allows). Given
a connected and compact n—dimensional analytic manifold with boundary, M, considered as a
“model space”, we show that if one constructs a navigation function on M, then this construction
induces a navigation function on any manifold in its analytic diffeomorphism class. This suggests
the consideration of a distinguished space — the “sphere world® — a compact connected subset
of E™ obtained by removing from a closed n-disc a finite number of smaller disjoint open n-discs,
representing “obstacles”. The same paper concludes with the explicit construction of a family
of navigation functions for any sphere world.

In this paper we embark upon the task of extending the construction on sphere worlds,
considered as “model spaces”, to other members of their analytic diffeomorphism class. The
problem of constructing a navigation function on such a space, F, reduces to the construction
of an analytic diffeomorphism from F onto the corresponding sphere world, M. We report in
this paper on such a construction for a specific subclass — the star worlds — each of whose
members is a compact connected subset of E” obtained by removing from a compact star shaped
sef a finite number of smaller disjoint open star shaped sets. This transformation of a star world
onto the corresponding sphere world, induces navigation functions on a much larger class than
the original sphere worlds. For example, any convex set is star shaped (although a star shaped
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set can be, in general, non-convex). This advances our program of research toward the goal of
developing “geometric expressiveness” rich enough for navigation amidst real world obstacles.

A paper presently in preparation concerns the application of these results to obstacles in £
comprised of finite unions of star shaped sets. We suspect that this class forms a dense subset
of the entire homeomorphism equivalence class of the sphere worlds. However, we currently
do not know how “far away” the latter class of topological sphere worlds lies from the most
general realistic problem — the class of configuration spaces mentioned above which arise when
a general kinematic chain operates in a cluttered environment,.

The paper is organized as follows, This introductory section continues with a formal state-
ment of the problem at hand, and a specification of the assumptions concerning the available
information. In the next section, we define the class of star worlds, and present an explicit
two-parameter family of analytic functions defined on an arbitrary star world. In Section 3 we
prove Theorem 1 : for any star world, two lower bounds on the parameters are specified in
terms of the boundary locations, guaranteeing that each member of this family whose parame-
ter values comply with these bounds is an analytic diffeomorphism onto a suitably constructed
sphere world, Finally, in the concluding section we discuss the computational complexity of this
procedure,  Appendix A contains a brief exposition of the technical terms used, details of
some proofs are given in Appendix B , and in Appendix C , we present some preliminary ideas
concerning the representation of “star shapes”.

1.1 Problem Statement

We will start by defining the workspace and the obstacles.

Definition 1 Let 8; j € {0,...M}, be real valued analytic functions on E™, for which zero is
a regular value.

The robot workspace, W, is a connecled and compact n-dimensional submanifold of E™
satisfying

[e]

WcC {ge E™: Bolq) >0} and W C {q € E": fo(q) = 0}.
An obstacle, O, is the interior of a connected and compact n-dimensional submanifold of E™
such that O; C)?V, and

W-0;C{ge E":3;(¢) >0} and 80;C {g€ E":5;(¢) =0} je{l,...M},
satisfying,
0;(0;=0 1<i<j<M, (1)

The free space is

A M
FEw-]o;.

i=1
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1t will prove convenient to refer to the complement of W in E™ as the zero’th obstacle. Note that
in the definition above, the boundary of the j'* obstacle, 80;, being a collection of connected
components of a regular (n — 1)-surface in E", is an (n — 1)-dimensional analytic manifeld,
according to the Implicit Function Theorem.

Definition 2 In the special case in which the robot workspace and each obstacle removed from
it is an n—disc in I®,
W={ge E": p}— llg — gl > 0},
e —
Bo
and
Oj={geE":|lg-gl’-pi<0} j=1... M,
LS .
B;
the resulting free space,
M
M 2 wW— U 0;,
i=1

is an n—dimensional sphere world with M obstacles.

Given a pair (F, M), as of connected and compact n—-dimensional analytic manifolds with
M + 1 boundary components, both considered as subsets of E™, where M is an n-—dimensional
sphere world with M obstacles and F is a general n-dimensional free space with M obstacles,
let M and F denote some open neighborhoods about M and F, respectively, in E*. We seek a
transformation A from F C E™ into M C E™ satisfying,

1. h|F is an analytic diffeomorphism from F onto M;

(4]
2. in each space there is a distinguished interior point — the destination point — g7 €F and

[+
pg €M, such that h(gq) = pa.

The motivation for this problem is most simply provided by reference fo the following definition
and fact which obtains from application of the chain rule, for example, as discussed in [12].
Given a map ¢ : M - [0,1], using the terminology of M. Morse{16], we say that ¢ is polar
if it has a unique minimum on M. Using the terminology of M. Hirsch[6], we say that ¢ is
admissible if it attains its maximal value (uniformly) exactly on all the boundary components

— in our case, dM = ¢~1(1) and M= »~1[0,1).

Definition 3 ({12],Definition 1) Let M C E™ be a compact connecled n-dimensional analytic
manifold with boundary. A map ¢ : M — [0,1], is a navigation function if it is
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1. Analytic on M;

[«]
2. Polar on M, with minimum at pg € M;
2. Morse on M;
4. Admissible on M.

It is shown in{10, 11] that control laws resulting from navigation functions define closed loop
robotic systems whose trajectories approach the destination without intersecting obstacles, start-
ing in an open dense set of initial states. In general, this is the “strongest” convergence behavior
that the topology of the underlying free space allows, as we have shown in {12]. Moreover, we
have shown as well that smooth navigation functions exist on any smooth manifold with bound-
ary — hence it makes sense to attempt analytic constructions in specific cases. In particular,
we have shown how to do so on any sphere,

Proposition 1.1 ([12],Proposition 2.8) Let ¢: M — [0,1] be a navigation function on M,
and let h : F — M be analytic. If h is an analytic diffeomorphism, then

LY
Pp=1wpoh,

is a navigation function on F,

Thus, since we already know how to construct navigation functions on any sphere world, if a
suitable sphere world model, M, and an analytic diffeomorphism, h, can be found, we obtain a
navigation function on F as well.

1,2 The Available Information

We assume perfect information. That is, for a given star world { Definition 5 below), F, all the
“obstacle functions”,

B; je {0,...M),

as well as the obstacle center points, ¢; 7 € {0,...M}, are known.

Moreover, for each obstacle, we assume the knowledge of an upper bound, F;, on the image
of the obstacle function, 3;, and an upper bound, E4, on the distance from the destination
point, 44, which guarantees that

ﬁ;][O:Ei]nﬁ}d[U;Ej] =@ and 7;1[0:Ed]ﬂﬁ;1[0!Ej] =0 i,j€ {0,...M} i#j.

That is, the ¢ F;-thickened * boundary components still do not intersect, nor do they overlap
the destination. Further, we will unhesitatingly make use of upper and lower bounds attained by
various continuous functions on various compact sets without ever computing them explicitly.
Finally, we define the notion of a “strictly star shaped obstacle” ( Definition 5 ), and require
the knowledge of a lower bound on the defining inequality (for example, ¥;(¢) in Lemma 3.3 ,
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eq. (30)) for each obstacle. In general, the extraction of these geometrical features from the
knowledge of the obstacle functions, #; j € {0,...M}, may prove to be computationally
intensive. However, in Appendix C we present a family of star shaped obstacle functions —
homogeneous polynomials — for which explicit formulas for the various bounds are given.

The model sphere world, M, is explicitly constructed from this data. That is, we determine
(p;,p;), the center and radius of the j** sphere, according to the center and minimum “radius”
(the minimal distance from g; to the j** obstacle boundary) of the 4t star shaped obstacle.
This in turn determines the model space “obstacle functions”,

ﬁj jE {0)“'M}a

as well as the navigation function on M, @, as constructed in our previous paper{12]. The
transformation is then constructed in terms of the given star world and the derived model
sphere world geometrical parameters,

In both spaces we explicitly assume that each obstacle contributes a distinct boundary com-
ponent — the obstacles do not intersect each other. This assumption implies in turn that the
resulting spaces are connected. Also, we require that the destination point be specified as an
interior point. Once the location of the boundary components is given, the verification of the
latter assumption is straightforward.

In the robotics setting, the connectedness of the free space is not a realistic assumption.
Certainly, the robot initial configuration in joint space determines a specific connected com-
ponent of its free space, yet this might not include the destinafion point. At the present, we
exclude this possibility: our only test of connectedness is the application of the construction to
the initial configuration. If the resulting trajectory does not arrive at the destination point, we
may conclude with probability one that the destination is not in the same component as the
initial configuration.




2 Construction of the Transformation

In this section we define the star worlds, and present an explicit two-parameter family of analytic
functions, each of whose members is a candidate diffeomorphism of a star world onto a particular
model sphere world.

2.1 Star Worlds and Their Models

Definition 4 A set § C E™ with non-empty interior is star shaped (at zq) if there ezists a
point g € S such that for all x € S, the line segment joining o and x is contained in S.

If, in addition, 88 is a regularly embedded analytic manifold , then § is a regular star shaped
set.

Any star shaped set is path-connected, and it can be shown{2] that any open star shaped set is
homeomorphic to the open unit n-disc. According to the definition of an obstacle { Definition 1 ),
if ¢ € 80;, the j** obstacle boundary, then V8;(¢) j € {1,...M} is directed outward with
respect to O, and if ¢ € 80, then —VBy(q) is directed outward with respect to the robot
workspace W = 0.

Definition 5 A4n obstacle, O; ( Definition 1), is strictly star shaped if there is @ point ¢; € O;
such that for all ¢ € 80; the outward directed gradient, V3;(q), satisfies

VB; - (¢ —¢;) > 0. (2)

If the robot workspace, W, and all the obstacles removed from il, are such strictly star shaped
obstacles, then the resulting free space, F, is called a star world,

The connection between the classes of strictly star shaped obstacles and regular star shaped sets
is drawn in the following Lemma.

Lemma 2.1 If O; is a strictly star shaped obstacle, then O; is a regular star shaped set (at
g¢;). Moreover, for each ¢ € 0Q;, the line segment joining ¢; and q intersects 00; only at q.

The proof is given in Appendix B . According to this Lemma, the collection of strictly star
shaped obstacles constitutes “almost all” the bounded star shaped sets whose boundary is a
regular surface.

In the class of star worlds, a distinguished member is the sphere world, each of whose bound-
ary components is a scaled and translated version of the unit sphere, §7~1.

2.2 The Transformation

In this section we present a two-parameter family, each of whose members is a map induced by
a specified pair (F, M)ar .
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Denote the omitted product, H?iﬂl!-#j B, by B

Definition 8 The analytic switches, o; 7 € {0,...M}, are the real valued functions defined
on F by

, 8 _* paf;i _ _ pab;

where A is a fized positive real number,

Assuming that the obstacles closures are disjoint ( equation (1) ), the 7t* “switch”, o;, attains
g b

a uniform value of 1 on the j** obstacle boundary, vanishes on any other obstacle boundary,
and maps the interior of the free space to the open interval (0,1). In the deformation scheme,
sufficiently close to the j** obstacle boundary, these “switches” provide a means by which the
deformation problem is reduced to the simpler problem of mapping the boundary of one star
shaped obstacle onto one sphere.

Definition T The star set deforming factors, v; j€ {0,...M}, are the real valued functions
defined on F by

RSN CET () a a , (1= Bo(e)"
i) = ey € e MYy end (@) = pommp s )

where k is a fized positive real number.

Fach v; scales the ray starting at the center point of the j** obstacle, g;, through its unique
intersection with the boundary point ¢ € 80, in such a way that g is mapped to the corre-
sponding point on the j%* sphere, @;. The overall effect is that 80); is deformed “along the
rays” originating at the center point of @; onto the corresponding sphere in model space.

Let F denote some open set in E® containing F, the free space.

Definition 8 The star world transformation, hy ., is a member of the 2-parameter family of
CW) maps from F C E™ into E*, defined by

M
by k(2 = Z aile) [vi(e) (¢ — @)t p; 1+ oaln) [ (g — 9a) + pa ], (5)

where o is the jth analytic switch, oy is defined by
M
Fa
og=1- Z o (6)
rd

and v; is the j** star set deforming factor.
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The “destination switch”, o4, assures that by &(qd) = py, that is, the star world destination point
is contained in the inverse image of the sphere world destination point, a necessary condition for
our method to work, since the cost function on the sphere world has a2 unique minimum at py.

Remark: This definition assumes no relation whatsoever between the location and di-
ameter of the model space and workspace obstacles: it is only the number of boundary
components in each space that counts. Nevertheless, in the proof we impose two additional
constraints on the model space, M. The first assumes that the center of an obstacle in
model space is identical to the corresponding center in workspace, the second ensures that
the deforming factors, »; j € {0,...M}, are bounded. We do not know whether these
conditions are actually necessary for the desired result.

Definition 9 Given any star world, F, the corresponding sphere world, M, salisfies the place-
ment condition #f

p; = ¢ j€ {0,...M}, and p; = gq. M

Intuitively, if py = g4, away from the obstacles the transformation “looks like” the identity map,

hy (9) = 0a(g)id(q) = g,
provided that the parameter A is sufficiently large, as will be made precise later,

Let S;(e) denote an “e-neighborhood” — a thickened neighborhood in F about the j*
boundary component, 80; — defined by

Si()2{geF:0<Pi(q)<e} je€ {0,...M}, (8)

where ¢ is a positive constant.

Definition 10 Given any star world, F, the corresponding sphere world, M, satisfies the con-
tainment condition if

vi(g) <1 forallge Si(e) j€ {1,...M}, (9

and
w(g) 2 1 for all g € So(e),

where € > 0 is small enough to guarantee that

Sie) cFlJoo; je {o,...M}.

Remark: Evaluating h) ,, at a boundary point, ¢ € 80;, yields,

h (@) = vi(a)a - ¢) + pj-
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If the placement condition is satisfied, then the containment condition implies that
123, (0) — @oll 2 llg — qoll and oy (@) — gill < llg—asll je{t,...M}.

Geometrically this means that if the jt* sphere, 80);, is considered as being isometrically
embedded in the star world, then it is contained in the jt* obstacle. The zero’th sphere
satisfies the opposite containment relation.

Finally, given a star world, F, we derive a model sphere world, M, which will serve as the image |
space of F under hy .. |

Definition 11 Given an n-dimensional star world, F, a suitable sphere world, M, is an n-
dimensional sphere world ( Definition 2 ) such that M

1. has the same number of boundary components as F;

2. salisfies the placement condition;

3. satisfies the containment condition.
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3 Proof of Correctness

In the sequel, unless otherwise stated, the spaces A" and Y denote n-dimensional compact
connected analytic manifolds with M + 1 boundary components, which are also subsets of I,
Denote the j** boundary component of A’ and Y by 8;X' and ;) respectively: each boundary
component is a compact (n — 1)-dimensional connected manifold with no boundary. Also,
h € C@[Y, Y] means that X and Y have open neighborhoods in E™, ¥ and ) respectively, such
that h € CO{X, ).

3.1 h), is an Analytic Diffeomorphism if Its Jacobian is Non-Singular

We first characterize an analytic diffeomorphism, k, in terms of its Jacobian and its behavior
on the boundary components, then we show that the construction of the previous section, Ay .,

k]
satisfies these conditions provided it has a non-singular Jacobian on its domain,

Proposition 3.1 A map, h € CW[X, E7, is an analytic diffeomorphism onte Y if and only if

1. h has a non-singular Jacobian on X’;
2. h “preserves” boundaries — that is, h(3;X)C &Y j € {0,...M};

3. the boundary componenis of X' and Y are pairwise homeomorphic — ;X = 8;Y j €
{0,...M}.

Proof: Assume that conditions 1 — 3 hold. We first show that for each 7, 2] 3; X is a
bijection onto 8;). The first assumption above implies that there is an open neighborhood
in BE™ about X, X, on which h is analytic and has a non-singular Jacobian. Consequently,
according to the Inverse Function Theorem[21], & is locally an analytic diffeomorphism. In
particular, using the second assumption, k| 8;X is locally an analytic diffeomorphism into
d;Y with their respective subspace topologies. According to {13, exercise 5.2.3], a local
homeomorphism from a compact manifold into a connected one is surjective. Since ;X is
compact, kb maps ;X onto 8;Y. It can be shown[13, exercise 5.2.4] that the pair (3;X, k)
is a covering space of 8; Y. In [20, Corollary 3.3] it is shown that if the covering space is
homeomorphic to the space being covered, then the nember of sheets in the covering is
one. Thus it follows from the third assumption that h is injective on 8; X', and we conclude
that A maps d; X' homeomorphically onto ;).

We now show that A(X)@Y = @. Suppose to the contrary, that there exists a point
o
g €A such that plgh(q) € dY. Since h maps dX onto @)Y, it must be that

#h-1(p) > 2,

where #A~1(p) denotes the number of points in the inverse image h~1(p) (it can be shown
that whenever X' is compact, #h~*(p)is finite). It further follows from the Inverse Function
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Theorem that h is an open map on ¥ (open sets in X' are mapped to open sets in A(X)),

0 o~
therefore h{X') is open in A(X). Moreover, h(X') — the image of a compact space under
a continuous map —— is compact, therefore closed, and it follows that for any point p; €

Oh(X), k= (pa)N :{’—_* . Since we have already shown that £ is injective on X, we have
#h(p2) = 1.

Now, h(X) — the image of a connected set under a continuous map — is connected.
According to the first assumption, A(X") consists of regular points of h, and it can be
shown[15, pp 8-9] that this implies that for all p € A(X), #h~1(p) is constant. But this

contradicts h=1(py) # A~ (p2) above. Thus h(i’) nNay = 0.

This in turn implies that
0 O [+]
RMXYCY or MX)YCE*-),

otherwise, since h(i’ ) is connected, a path in h(({’ ) passing through 9 could be found.
We will show that only the first alternative is possible: to do so, it is more convenient to
first show that A(Y) C Y. The boundary of X, 8X — a compact surface in E™ which
has M -+ 1 components — decomposes E” into M <+ 2 disjoint connected components{5].

Consider two cases. If X' and ) have only one boundary component and h(X') C En— i’,

[+ o
then it must be that & maps X' onto E*— Y, otherwise A(X’} is not open. But E*~ Y
is unbounded, therefore not compact — an impossibility, since k is continuous. If A’ and

[+

Y have more than one boundary component and h{(X) C E"— ), then since h maps J;/
into 8;Y, it must be that A(X’) is not connected, which is also impossible. Thus A{X) C ).

(4] 0 0 a
We can now conclude that A(X') CY, for A(X') is open in A(X") and h(:{’) noy =2a.
In Lemma A.1 we show that if h satisfies the first assumption above, and “preserves”
interior and boundary,

o] [«]

R(BX)C8Y and R(X) C)Y,
then A is a local homeomorphism from X’ into Y with their respective subspace topologies
(of X in ¥ and of Y in ?gh(i’ )). Using{13] again, in consequence of X' being compact, h
maps X onto Y, and, using{l5] again, in consequence of Y being a connected set of regular

values of h, h is injective on A1, Thus h maps A’ homeomorphically onto Y. Since h is
locally an analytic diffeomorphism, we have proved the ‘if direction’.

Conversely, if & is an analytic diffeomorphism then it has a non-singular Jacobian — so
condition 1 obtains. In particular, it is a local homeomorphism. Using local homology
groups, one can show{14] that

RX)CY and A(OX)C 9.

Therefore h maps 8X onto Y. If h maps two boundary components of A’ onto the same
boundary component of , then h is not injective. Thus the second condition obtains. Last,

1{X,h) is a covering space of V, and it can be shown that if )’ is simply connected, as in our case for n > 2,

then the number of sheets is one,
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h| 8; X — the restriction of a continuous map to a subset of its domain — is continuous in
the subspace topology, and it can be shown[20] that &| 8;X, being a continuous bijection
on a compact space, is a homeomorphism, which yields the third condition above.

0

The following corollary, whose proof essentially relates the conditions of Proposition 3.1 to the
structure of this section, constitutes the central contribution of the paper.

Theorem 1 For any star world, F, possessing a valid arrangement (equation (1)) , there exist
two positive real numbers K, A , and a suitable model sphere world ( Definition 11 }, M, such
that if k > K and A > A, then

hyy:F =M,

is an analytic diffeomorphism.

Proof: We must show that h A I8 an analytic bijection with analytic inverse. Cleaxly,
if F has a valid arrangement then h Ak constructed from quotients of analytic functions
none of whose denominators vanishes on some open neighborhood about F— is analytic.

In Section 3.2 below it is shown that for any star world, 7, with a valid arrangement,
there exist two positive real numbers K and A and a suitable model sphere world, M,
such that for all K > K and A > A the Jacobian of h) ,. : F — M is non-singular on F

(as a consequence it is non-singular on some open neighborhood in E™ about F, F).

Wenow show that Ay . maps the jt* boundary component of F, 8;F, into the j¢* boundary
component of M, 0; M. If q € 8;F then, for a valid arrangement of the star world,

Bi{g)=0 and B{¢)>0 ke {0,...M}k#j.

Substituting in the definition of ki yields,
I | 05F = e - g) + 15,
’ lle - gl

which implies that (§; 0k ax)(), the § th sphere function ( Definition 2 ), vanishes as well.
Thas,
hA’R(aj}?) cCoM je {0,...M}. (10)

Finally, in our construction each boundary component of F is the boundary of an open
star shaped set. It can be shown that any open star shaped set in E" is homeomorphic
to the n-disc{2]. Since in the corresponding sphere world each boundary component is an
(n — 1)-sphere,

HF =M je {0,...M}.

Therefore, according to Proposition 3.1, hy ,. is an analytic diffeomorphism from F onto

M.
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3.2 The Jacobian of A) , is Non—Singular

In the sequel, subscripts denoting the dependence of the analytic function k) . on the parameters

A and & will be omitted. It is further understood that any derivative of a,(q, A) or vi(q, k) is
with respect to the position vector ¢, the parameters A and & being held constant.

We distinguish in the star world the set “away from the obstacles”,

A .
Al = {qe F:8i(¢)>¢ je {0,...M}}.
and denote its complement in F by
A M
A() = F = A(e) = | 85(e),
i=0
where S;{¢) is the “thickened” j** boundary component, defined in equation (8) as

Si()={reF:0<p<a de {0,...M),

where ¢ is a positive constant, small enough to guarantee that

Si(e) cF|Joo; je {0,...M}. (1)

In consequence of the assumption that the obstacle closures are non-intersecting, such an ¢
exists.

We are now ready to prove the non-singularity of the Jacobian on the set “away” from the
obstacles, A(e).

In the Appendix we prove in Lemma B.3 and Lemma B.4 that for any ¢ > 0 and any
§ > 0, 0; and ||o;|] can be made to be smaller than § on the set “away” from the j** obstacle
boundary, F — §;(¢), by choosing

A€, 8) > Npj(e,8) and  Ae,8) > Nyij{e, 8),

respectively, where Ng;(e,8), Nyj(¢, 8) are fixed positive real numbers. As a consequence, it is
possible to guarantee that the Jacobian of Ay . is non-singular on A(€), a statement which is
made precise as follows.

Lemma 3.2 For any ¢ > 0 and any & > 0 there ezists a positive real number Agle, k) such that
if A > Ag then Dh is non—singular on A(e).

Proof: Under the placement condition ( Definition 9 }, the Jacobian of h) ,. is shown
in Lemma B.1 tobe

M

Dh(g) = {owil + (g = a;) Vi + (v — 1)(g — 4;)Vo;" } + oul.
j=0
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Let # be any unit vector based at ¢ € A(¢), that is, & € T A(e). Evaluating the Jacobian
along & yields,

w(0§, Vo 1K)

M AM A
(DR = (0w +aa)e + | {oila — )W, + (v — 1)(a = ;) Vo3 T} | &,

j=0 j=0

where w(0;, Voj; ) is a shorthand notation for w(o;, Voj; k) j € {0,...M}. We will use
the positive magnitude of o4 to dominate w. First, note that the latter may be bounded
above in magnitude by

1
llw(o;, Vosi &)l < 5.

For, choosing

A > max No;(e,8), Nii(e, 8)},
N {0,...M}{ 0j(€,6), N1j(e,6)}

it follows from Lemma B.3 and Lemma B.4 that ¢; and ||Vo;|| are bounded by & > 0,
hence,

lw(o;, Voz; )| < 2Xollg — all (ol Vwsl + Iy — 1| Ves1))
< 8§ Mo lla — Vel + vy - 1.

A sufficient condition on & for the desired inequality is thus

I A
maxz {50 llg - gll(1925(a )l + Ivi(g, ) — 1D}

§< 8o(k). (12)

[N

Note that v; is analytic on the compact set F, and in consequence both v; and ||[Viy]| are
bounded, thus, there is no problem with the definition of 8.

On the other hand, note that oy may be bounded below in magnitude by %, for, again
according to Lemma B.3 and Lemma B.4 , by choosing A sufficiently large, we may
impose on the switches the condition

1 1

STT 3 for all ¢ € A(e), je {0,...M}; (13)

o; <

which implies that

M 1
o4=1- Zaj > 5
=0
Finally, choosing
, 1 1
60(“’) = mm{é’o(”)y“ﬁ 1+ M}’
the desired Ag is
Ao(e,k) S max  {Noj(e, bolk)), Nij(e, 6o(x))}, (14)
ie {0,... M}

and the result follows.
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We now turn our attention to the set A%(¢).

Dh{q) maps T, F into Tyq)h(F), both of which are n~dimensional vector spaces, and there-
fore isomorphic to £™, Since the domain and image of A — the star world, F, and its model
sphere world, AM— are both n—dimensional submanifolds of E", we are free to identify points
in the two spaces, for example, as we have done in the placement condition ( Definition 9 ). For
the same reason, we will not distinguish points in the tangent space from points in the original
base spaces.

In consequence of equation (2) , for sufficiently small €, both tangent spaces admit the direct
sum decomposition,

Ty F  Th(F) =< g~ g > & < VBi(g) >t forall ¢ € Si(e), (15)
where <> denotes the “span of”, and {-}* denotes the “orthogonal complement of”.
Thus, any unit vector £ € T, can be uniquely written as
& =& + g,
where 2 €< ¢ — ¢; > and 25 €< V8; >,

Now, rearrange the terms in the equation for Dh(q) (equation (23)) , so as to reflect the
negligible effect of all the neighboring obstacles on the Jacobian near the i** obstacle houndary:

Dh(g) = {(ow)I +0i(g — )W™ + (v — 1)(a— @)V } + (1 - o)1
M
+ 2 {O’j(l’j — DI +a5l(g - 4) V"] + (v - Dilg - qgi)VUjT]}- (16)

J=0,j#i

-

X;(O'_;:{?O'j;ﬁ)
where Xi{(c;, Vo;; k) is a shorthand notation for X;(o;, Vo) j€ {0,...M}, j # 4.
The image of a unit vector, & € T, F, is
[DR(IE = (owi)d + oi( Wi - 8)(a — @) + (vi — 1)(Voi - £)(g — @) + (1 - 00)8 + Xad.  (17)

The magnitude of the vector X;& € Tyg)h({F) is bounded by || Xi(o;, Vay; £)||, which can be
made arbitrarily small, as we show in Lemma B.5 .

For any choice of a test direction & € T7,5;(¢}, one of the following two relations holds,

cither ll2]] >2, or 1] <2
llz|l [l2]]
The following Lemma constructs formulas which designate, as a function of the geometrical
data, a region for the parameters ¢, A and k, which is later shown f{o guarantee a non—singular
Jacobian of i ) g O S;.
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Lemma 3.3 For any star world, F, if M is a suitable sphere world ( Definition 11 ), then there
exist ¢;, Ki(€) and Nyi(e, k), positive real numbers, such that for all € < ¢; and for all ¢ € §i{e),
whenever & € TySi(€), |E]| = 1, satisfies

[l

i %2
flael] = 7

we have,

(i) if k> K(€) then

wnvﬁo'(q_%) > 0

14 n B0 S0 e G M) and -1 e 2 0;
— M0

1+ 6

(ii} that
(i = 1)(Voi - &) (¢ — @) 21) 2 O

(iif) if A > Noi(e, k), then
il < 3 (=0 TB)” (o + (1= 09) el

and whenever

|21 [ <2,
l[2 i

(iv) if A > Nai(e, k), then

Xl < 2 (=) - 9B)) (ans + (1 = o2)) sl

where § denotes the unit magnitude vector v/|[v]|.

The proof is given in Appendix B.2 .

Lemma 3.3 assumes the existence of a suitable model sphere world, M, which, in particular,
must satisfy the containment condition ( Definition 10 ). The following Lemma specifies an upper
bound for the radius of the i** sphere {(a lower bound for the 0" sphere) in M, guaranteeing
that the containment condition is satisfied.

Lemma 3.4 For any €>0 and k>0, there exist positive real numbers Ri(e,x) i € {0,...M},
such that for all p; < R;,

vi{e,k) €1 g€ Sife), i€ {1,...M},

and for all pa > Ry,
vo(q,6) > 1 g € Sole).
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Proof: According to its definition in equation (4) ,
(1 + Bi(a)"
vilgyR) = pim——— <1
S rET.
if
lla — aill

{8 T
P T BLa)R
which is implied by the condition

min .0, {llg - @i} A :
pi < P S RiR) i€ {1 M), (18)

since 0 < #; < ¢ and

min {llp—all} <llg— @l forallge F.
pea(d;

In the case of 1y, using a similar arguement, the condition

max, 50, {ll¢ — wll} A

pO — (1 _ E)K' = RD(ES E)i
is sufficient to guarantee that vo > 1.
W]
Remark: The last two Lemmas are interrelated. Lemma 3.3 assumes a suitable model

sphere world, which, in particular, must satisfy equation {18) , specified in terms of the
parameters ¢ and . Nevertheless, there is no problem, since in the proof of Lemma 3.3 , ¢
and & are chosen according to equation (31) and equation (34) , both independent of the
sphere world radii. Once these two parameter values are fixed, we can use Lemma 3.4 to
pick a suitable sphere world, and then proceed to choose any other parameter values, for
example, Noi{,8) ¢ € {0,...M}, which depend on the geometrical parameters of both
spaces,

Repeating equation (17) , the Jacobian of & MK evaluated along the test direction ,
[Dh()}# = (oiwi)d + oi( Vi - 8)(g — @i} + {4 — 1)(Voi - 8)(q — @) + (1 — 04)2 + X
The vector X;& € Tj(y)h(F) can be uniguely written as
Xi& =y + v2
where ] €<gq — ¢;> and yb €< VB; >L. Substituting @1 + 22 for £, and y| + ¢4 for X;& yields,

1

Dh(@)le = Tlowider +o:(Vor - 2)(a— a0) + (v - D(Vor £)a— @)+ (1 ou)es 1 44}
+{(oivi + 1 - 0i)ar + 15},

2
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where ) €<q — ¢; > and y2 €< V3;>1.

We now show that for all ¢ € §;(e) and for all & € T,5;(¢) at least one of the vectors ¥y, ¥a
is non-zero. Since y; and g, are linearily independent by assumption, this implies that Dh is
non-singular on §;(¢).

Corollary 3.5 There ezist ¢;, K;(€) and Nyi(€, k), positive real numbers, such that for all e < ¢;
and for all q € Si(¢), if £ > Ki(€) and X > Nyi(e, k), then whenever & € T,Si(¢) satisfies

feall ~
we have y1 # 0, and whenever

Il

[laff =7
we have yo # 0.
Proof: Using equation (24) for Vi,

Vi & = V(21 + 22)

s Vi - T ., q—4q; . _ Vi T .
B “{l—fli” ( (g=a) 21t 5 1+5; ViB; 3:1) m(q i) - 2,
since 29 1 Vf;. Expanding Vy; + & in the expression for yi,

(0 (9

h= {%(WW)‘”I ~ owi((g-a:) - m?)(q:h&z')} +ow (—1 + K%ﬂ;‘h)) “
+ (i = 1)(Voi - 2)(g— ) + {é(ﬂsw)wl + (o) + ¥

(i) N

(19)

(i)
where we used the identities
(=) e)lg— @) =21 and (VBi-@)(a— @) = (Vi (¢ — &))er,
since by assumption &; €<q — ¢; >.
We now use Lemma 3.3 to show that y; - @3 > 0, whenever HZ—;H > 2.

The first term, labeled (0), is dominated by 1(ow;)ey if

i
§0svill$1[l > owvil|zef],

which is satisfied by the choice of the ratio ||z1|[/|l«2||, and hence has a positive inner-
product with z;.

The terms (¢) and (77) have a non-negative inner-product with 2y according to assertions
({) and (i) in Lemma 3.3 .
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A sufficient condition for @1 to dominate in the term (#4%), that is, to counteract the effect
of the neighboring obstacles, is

1
lotl < (Gows + (L= o)) Bl

but according to Lemma B.6 ,

2

((q—:&i) - ;)

ol < 51X,

therefore, a sufficient condition is
Ll = e\t (]
1 < 3 (a=a) - 9B) " (5o + (1= o) lleall

which is assertion (#¢) in Lemma 3.3 .

‘Turning our attention to the case in which [jz1]|/|lz2]] £ 2, we would like to show that y,
which was defined to be,

’
y2 = (o + 1 - 0i)za + 1,
is non—zero, By an argument similar to one given in the previous paragraph, a sufficient
condition is

Xl <4 (4= 0) - 9B) (ows — o + Dl

which is the last assertion in Lemma 3.3 .

Remark: We show in Appendix C that if the i*» star shaped obstacle function, 8;,
is homogeneous, then the parameter x can be fixed such that the i** star set deforming
factor, »;, is constant along the rays originating at ¢;. As a consequence, the term (7) in
equation (19) vanishes identically.

Since we have considered the entirety of F, the above results are summarized in the following
Proposition.

Proposition 3.6 Assuming a valid arrangement of F, there exist three positive real numbers
e, K(e) and A, r) such that if € < €*, k > K(€), and A > A€, &), then there ezists a suitable
M ( Definition 11 ), such that the Jacobian of hy ,. : F — M is non-singular on F.

Proof: First consider the set “near” the obstacles, A°(¢). Let € be chosen according to

Fa
e<e* = min €;
- je {0,...M}{ b




3.2 The Jacobian of hy ,. is Non-Singular 21

where each ¢; is defined in equation (34) as a function of the geometrical parameters of
F. Next, let the parameter & be chosen according to

&> K(e) 2 N {max M}{Kj(e*)},

where K;(e) j € {0,...M} are defined in equation (31) . Now, choose a sphere world,
M, whose sphere center points satisfy the placement condition ( Definition 10 ),

pi=¢ i€ {0,...M} and pg=qq,
and whose radii satisfy the condition,
po 2 Rﬁ(fa lﬂ") and p; < Rl'(fﬁ "‘") i€ {1" . -‘Mr}:

where R;(e,k) i € {0,...M} are defined in equation (18) . In consequence of Lemma 3.4
M satisfies the containment condition ( Definition 10 ) and is a suitable model sphere world
for F.

Let A be chosen according to

A > Ax(e, k() & g CEOM

where Np; j € {0,...M} are defined in equation (38) . Under this choice of the
parameters A and &, Corollary 3.5 applies, and Dh is non-singular on .4°(e).

Now consider the set “away” from the obstacles, A(e). According to Lemma 3.2 | for
any € > 0 and any &£ > 0, Dh is non-singular on this set, as long as A > Ag(e, ), where
Ag(€, k) is given in equation (14) .

Finally, let

Ae,5()) £ max{Ao(e, k(€)), Ai(e, £(€))},

and the result follows.
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4 Counting the Floating Point Operations

The computation involved has two parts. First, when presented with the data (specified in
Section 1.2 ), describing a star world with a valid arrangement, F, we construct a navigation
function on F, ¢ = @ o hy ., by choosing a suitable sphere world, M, constructing ¢— the
navigation function on M, and choosing the parameters in h Ak The computational complexity
of this part is analysed in Section 4.1 . Second, the controller has to compute Vip,

Vo = V(@ o hy ) = [Dhy [ V@) ), (20)

and we analyze the computational complexity of this term in Section 4.2 ,

4.1 The Computation of the Parameters in ) .

The count of the floating point operations will be given in terms of M — the number of obstacles,
and n — the dimension of the embedding Euclidean space. In this paper we defined the obstacle
functions as the class of real valued analytic functions describing strictly star shaped obstacles
{definition 5) . In order to speak meaningfuly about the number of floating point operations, we
restrict the obstacle functions to the class of positive definite homogeneous polynomials of degree
k € IN. In Appendix C we show that each member of this class — which is essentially all the
polynomials which satisly the properties of a norm except, possibly, the triangular inequality —
describes a strictly star shaped obstacle. It is important to note that this class serves only as
an example. Although such functions generate a great variety of star shapes, we currently do
not know whether this class is rich enough to represent “almost all” the star shaped obstacles.

Under this restriction, it turns out that in order to compute the parameters in h) . for a
star world, F, the following data suffices,

1. for each obstacle, (J;, its center point, ¢;, the obstacle function, 3;, and its (homogeneous)
degree k;;

2. for each obstacle, O;, a radius, loosely denoted by

min {ll¢ - gill} 7€ {0,...M},
qeaO_;

such that the sphere with this radius, when centered at g;, is contained in O; {contains

Oy for the zero** obstacle);

0
3. a destination point, g €F;

4. the upper bounds on the obstacle functions, {¥;}47, and on the distance to ¢, Eq, which
were specified in Section 1.2 .

In Appendix C we provide practical formulas that render all the relevant terms in the computa-
tion of the parameters of 1 .. in terms of this data. The steps in constructing b ,. from the data
were summarized in P1oposlt10n 3.6 , and are repeated here, together with the computational
effort they require, a detailed a,nalysls can be found in [18].
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1. compute ¢* from the data — according to equation (35) , this step takes less than 10M
operations;

2. find K(e*), a lower bound on the parameter & in hy ,.—- using Lemma C.5 , this can be
done in M operations;

3. choose a suitable sphere world for ¢* and K(¢*) —- according to equation (18) , this can
be done in less than 5M operations; and then compute the sphere world parameter, k —
a computation that we showed in {11] to take no more than 103/%n operations;

4. find A(€*, I{(€*)), a lower bound on the parameter A in h) ,—- according to equation (27)
and (equation {38)) , this step involves less than 10{M + M?) operations,

Summing up, the total number of floating point operations required is bounded by
5M%n 4 156M2, (21)

where M + 1 the number of obstacles,

Remark: The dimension of the space, n, appears only in the computation of the sphere
world parameter, k. This is a consequence of the assumption we have made about the
allowable obstacle functions — homogeneous polynomials, which enabled us to give explicit
scalar bounds on all the required terms.

4.2 The Computation of Vi

Using equation (20) , the computation of Vp(q) involves the following steps,

1. compute pgh)\'n(q);
2. compute Vi(p);

3. compute Dhy .(g);

4, multiply the matrix Dhy .(¢)7 by the vector V3(p).

Denote the number of floating point operations required to compute the i** obstacle function,
B;, and its gradient, V3;, by #(5;) and #(Vp;). The number of operations required will be given
in terms of #(5;), #(VB:), M and n.

From its definition (definition 8}, the computation of ) ,. involves the summation of M +1
terms, each of the form,
oi(q) vi(a) - (9 — @) + pi)-

According to their definition (equation (3)) , the computation of the analytic switches, {o;}3f,
involves the product of {8;}3" and y,. Therefore it takes less than 5/ + M #(8;) operations
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to compute the analytic switches. Next, according to its definition (equation (4)) , the com-
putation of the ith star deforming factor, v, involves, roughly, the quotient of 8; with {jg — ¢
Therefore it takes less than 5Mn additional operations to compute {v;}5!. We conclude that it
takes no more than 10Mn + Z?io ##(f3;) operations to compute hy .(q).

In the second step — computing Vip(p) — we refer the reader to [11], in which we showed
that it takes no more than 10{A? -+ Mn) operations to compute Vi(p).

Using equation (23) for Dhy ,., the computation in the third step involves the summation
of M + 1 terms, each of the form

oivid +oig — @)Vt + (v; — 1)(q — @) Voi" . (22)

Rewriting Vi; from equation (24) ,

oy v [ Ma—allg, o~
VV,(Q, )= “q_q',” ( 1+ 6 \Y25 (q Qa)) ’

Since v; and ||g — ;]| were already computed, it takes #(V0;) + 10n additional operations to
compute Vi;. Rewriting Vo; (equation (25)) ,

(BiV(748:) = 1aB:VB:)
(S ji7aB5 V85 + BV — 1aBiVBs)

A
Vo, = ——2——
7 (7dﬁi§)\ﬁi)2

T (BB

Since B; and Vg, were already computed, it takes 10Mn additional operations to compute Vo,
Thus, the computation of (22) takes no more than 512 additional operations, and we conclude
that the compution of DA ,.(¢) is bounded by 16(M n? + E}Eo #(Vp;)) additional operations.

Summing up (the fourth step takes 5n? operations), we conclude that it takes no more than

M
10 {M?12 + M+ (#(8) + #(Vﬁj))}

=0

operations to compute Vip(g).

Remark: If we instantiate the obstacle functions within the class of polynomials of
degree k or less, then, in general, each such polynomial consists of k homogeneous

polynomials, each of whom can have no more than " -Hl: -1 ) terms, therefore,

ntk—1 n+k—2
(1) i s-nin(*557)

Thus, if we relate k to the “geometric complexity”, and n to the number of degrees of
freedom of the underlying kinematic chain, then, assuming that k > =, the computation
involved is proportional to k®, i.e. exponential in the number of degrees of freedom and
polynomial in the geometric complexity.




4.2 The Computation of Vi 25

Acknowledgement

We would like to thank Prof, M. Hirsch who originally suggested the utility of diffeomor-
phisms in this context, and Prof, W. Massey for his kind unstinting tutorial efforts on our
behalf,




26 B COMPUTATIONAL DETAILS

A Some Basic Topological Facts

Basic to this discussion is the topological notion of a locally homeomorphic function, therefore
it is best to state its definition.

Definition 12 ([13]) A continuous map between two topological spaces, h : X — Y, is a local
homeomorphism if each point & € X' has an open neighborhood U such that (i) is open in Y
and h maps Y homeomarphically onto h(U),

Let X,Y denote n—dimensional manifolds without boundary, and let ¥ ¢ X, Y C I be n-
dimensional compact submanifolds with M + 1 boundary components. Suppose that h €
CENA, V), if the Jacobian of h is non-singular on X, then the Inverse Function Theorem
guarantees that h is locally a smooth diffeomorphism: in particular, h is a local homeomor-
phism.

Lemma A.l1 Ifh: X — Y is a local homeomorphism, such that

R@X)C0Y and h(X)CY,

then h|X' : X — Y is a local homeomorphism in the subspace topology.
A proof can be found in [18].

Remark: Using local homology groups, one can show{14] that if h: A’ — ) is a local
homeomorphism between n—dimensional manifolds with boundary, then

RX)CY and h(OX)C V.

B Computational Details

B.1 Some General Computations

First, we give a proof of Lemma 2.1 .

Lemma 2.1 If O; is a strictly star shaped obstacle ( Definition 5 ), then O; is a regular
star shaped set (at ¢;). Moreover, for each q € 8Qj, the line segment joining ¢; and q intersects
d0; only at q.

Proof: We have to show that for each ¢ € O;, the line segment joining ¢; and ¢ is
contained in Q;. Let r:[0,1] —» E™ be a continuous parametrization of this line segment,
defined by,

") £ g5+ Mo — g).
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Suppose to the contrary, that there exists Ay € (0,1) such that ¢’ é?‘(/\l) £0;. We loose
no generality by assuming that

Ay =inf{A > 0:r(A)£O;},

which implies that ¢’ € 30;, and (8; o r)(A1) = 0. According to equation (2) in the
definition of a strictly star shaped obstacle,

Vﬂj(l]’) (d' - ) >0,

and it follows by continuity argument that there exists ¢ > 0 such that
d
-amxﬂj or}(AM—gA+e)>0.

Now suppose that r does not cross 30; into (0;)° at Ay, that is, there exists A* € (A1, Ar-¢)
such that

(Bjor)(A*) < 0.
According to the Mean Value Theorem,

(850 1Y) = (B 0m)0) = (A" = M) (B0 1) (s) > 0,

for some s € (Ag, A*), which implies that (8; o r)(A*) > 0, a contradiction. Therefore,
(B507r)(A, AL+ €) > 0, and it follows that

1‘()\1,)\1 4 E) C (Fi)c.

We now show that » cannot cross 80; again. Suppose to the contrary, that there exists

Ag > Ay such that q”ér()\g) € 00y, that is, (8; o r)(A2) = 0. We loose no generality by
assuming that

Ao = inf{A > Ay 1 7(X) € D05}

It follows that o
(A1, A2) C (O5)°,

which in turn implies that
(Bjor)((Xa — €, X)) > 0,
for some € > 0. By assumption,
VBie") - (¢" - ¢;) > 0,
and it follows by an argument similar to the one given above that

(Bj 0o r)(2) > (Bi o 7)(A2 = 3€) > 0,

a contradiction. Therefore, the line segment joining ¢; and ¢ cannot cross d0; if ¢ € O;,
and crosses 0(; only at ¢ if ¢ € §0;.
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The following technical Lemma computes the Jacobian of &) ,.,

Lemma B.1 Assuming the placement condition ( Definition 9 ), the Jacobian of the star world
deformation, hy .., is

M
Dh(q) = 3" {owil + o3(a - 4) V5" + (v; — 1)a — ;) Vo5 }+ oal. (23)
i=0
Proof: Using equation (5) , the Jacobian of oy . is

M
Dh =" {ajl + o(a - 4;)V;T + (v5(a — &5) + p3) Vo;” } +oal + (g — aa) + pa) Voo
i=a

As o4 was defined to be oy = 1 — zjhin o;, substituting Vo4 obtains,
M )
Dh=3"{o;0 + o;(a - 45)V" +[(v3(a — ) + p3) = ((a ~ 92) + Pa)] Voi* } + 0al,
i=0
assuming the placement condition, that is, p; = ¢; 7 € {0,...M} and pg = ¢y, obtains

M
Dh = E {UJ'VJ'I'}‘ oi(g— Qj)VVjT + (v — 1)(¢g — qj)ngT} 4 aql.

j=0

Denote a unit magnitude vector, v say, by 9. The following Lemma gives a formula for the
gradient of the star set deforming factors.

Lemma B.2 The gradient of the siar set deforming factor ( Definition 8 ), is

(orye Vi [ Ma—aillge =
Vui(q, k) = N7 — 4l ( 1+ 6; VB; — (¢ ‘1.1))5 (24)

forje {1,...M}, and

Vol ) = 22 (—re“q — Doll g, (q’—“éo)) ,

¢ — ol 1 - fo
when § =0,
Proof: The jt* analytic switch was defined in Definition 7 to be
14 B:g))* . 1 — Balg))}*
vi{g, k) = pj——-( Bia)) i€ {1,...M} and w(g,k)= pom———( bol9)) ,

lle — ¢l lg — qoll
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thus,

W = i (M- ol + 018 - A )
_ 8% (lle—gill s 1 — g
- it (il - g g e- )

= i (L - ).

The case where § = 0 yields a similar result.

0

We now show that if the parameter A is large enough, the j* switch, o;, and its normed
gradient, || Vo,||, can be made arbitrarily small on F — S;(¢).

Lemma B.3 Foranye>0and§ >0 and j € {0,...M}, there ezists a positive real number
Noj(e, 8) such that if A > Ny; then

oi(q,\) <8 forallqe F — Sie).

Proof:
paB; paf
g; = = < ,
T paBi - AB; T AB;

for the term on the right to be less then §, A must satisfy,

1 pafi;
A> o=
255,

Since f; > ¢ in F — 8(¢), a sufficient condition on A is

1L

>
A"”“&

n}i-x{ﬂdﬁj} 2 Noi(c,8).

0

Lemma B.4 Foranye¢ >0 and § > 0 and j € {0,...M} there ezisls a positive real number
Nij{e,8) such that if A > Ny; then

IVai(g, M <6 forallqe F — Si(e).

Proof:
A

Vo = i 1 95,7 (8;paB;) — paf; VB;) (25)

which implies that

A

Vol < Gl T35 (BillVCpaB)ll + paBill VB »
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and since Zp%’@ <1,

190l <~ Bl + ;s ]
< Tﬁ;.nwpdﬁ,-)n + 42595,

The assumption that 8; > ¢ in F — S(¢) yields as a sufficient condition,

32 5 (2 maxlIVeaAI} + 5 max(pa VB0 ) 2 Maste,).

B.2 The Set “Near” the i'* Qbstacle
The results of this Section are concerned with S;(€) — the set “near” the i** obstacle boundary.

Lemma B.b For any ¢ > 0, any & > 0, and any § > O there exists a positive real number
Ni(e, &, 8) such that if A > Ny then

HXi(o;, Vo 8)|| <6 forallge Si(c), where je {0,...M} and j#i.

Proof: The norm of X;(o;, Vo;; k) can be bounded as follows,
M
1 Xi(os, Vol < 32 {oilv; = 1+ lla = Vsl + 1 — e — g5l Vosl}
F=0,54i

since 0 < g; < 1. According to Lemma B.3 and Lemma B.4 , for any € > 0 and any
6 > 0, o; and ||o;]| can be made to be smaller than § on F — §;(¢), by choosing

AMe, 8) > Noje,8) and  Ae,8) > Nyj(e, 6),
respectively, where Nyj(¢, 6), N1j(¢, 6) are fixed positive real numbers. Now, assuming that

A> max Noj(e, 81), N1j{e,61)},
s {0,...M},#.‘{ j(€, 1), Nj(e, 81

where §, is yet to be fixed as a function of the required § and the parameter &, it follows
that

M
1 Xi(os, Vol S 81 D7 {lv; — 1+ llg — 6l Vvl + v — 1Hlle - 4},
J=0,5#8

and a sufficient condition to guarantee that |[X;(o;, Vo;; k)| < § is

)

81(k, 8) = .
1) = e T Tl = 11+ e = Vel + T — 1Tl — &)

(26)
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Therefore, choose

Nai(e,s,8) S max  {Noj(e,1(x,8)), Nij(e, 81(x, 6))},

jE {0,...M |J#8

and the result follows.
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(27)

Given two subspaces, §; and 89, such that E® = §; © S, any vector 2 € E® can be uniquely

written as
2 = 2y + 2o such that 2, € & and z; € &3,

In general, it is not true that |Ja]| > |la;l] 7 = 1,2; nevertheless, a bound on ||z;]] j = 1,2 in
terms of ||z]| and the “angle” between the #; and x5 can be specified. Denote by &; the unit

magnitude vector a;/|l=;H.
Lemma B.6 Let E™ =8, ® 83, If 2 = a1 + 9, 2; € 53, then

2
Gl € ———<llel® J=1,2
”'EJ“ . (&f} . ‘,1?2)2”3:” J 132

If, in addition,
dimS, =1 and dimS;=n-1 n>2,

then
.12 TV I .
Hlasl® < (31 - ,6)2”3'“ 1=1L2
where b € S%.
Proof:
=l = ller + o2l = [loall® + Nawall® + 20| il (61 - o)
1 (l?1 . (!fz H:Ll“
= (i ; . .
(e[ flz2l]) ¥y & 1 lla]]
(=)

The smallest eigenvalue of the matrix (%) is
Amin = 1= |91 - @2] > {1 - (1 - 42)7),

thus,
lell? > ApinClleall® + fle2ll®) 2 310 - (#1-22)eil® 5 =12

and the result follows.

(28)

Turning our attention fo the second assertion, we use the fact that in the special case
dimS; = 1, &; attains its smallest “angle” with any vector &3 € &3 when &5 is in the
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orthogonal projection of §¢ onto 8y, Specifically, if & € 87, we first show that for any
@y € Sy,
(By+82)° + (81 9)* < L. (29)

Let {#2,23,...8,} be an orthonormal basis for $3. &; can be written as
n
$1=) (&1 &:)di + (31 - 0)D.
=2
Taking the inner product of both sides with &; yields
n
1= 3 (81 8:)% 4 (81 9)* 2 (81 - 82)° + (81 - D)%,
1=2

Substituting for 1 — (&7 - #2)% in equation (28) according to equation (29) yields the
second assertion.

The following Lemma is used to derive a sufficient condition for the non-singularity of Dh
on 8;(¢). Recall (equation (15)) that for sufficiently small e,

T, F =< q-g¢>® < Yi(g)>* forall qeSi(e),

and as a consequence, any unit vector & € T,.F can be uniquely written as

& =21+ 29,
where 21 €< ¢ — ¢; > and 2 €< VB >t.

Lemma 3.9 For any star world, F, if M is a suitable sphere world ( Definition 11 ), then
there exist ¢;, K{(¢) and Na;(e, &), positive real numbers, such that for all € < ¢; and for all
g € Si{c), whenever & € T;S;(e), l|&]| = 1, satisfies

lle]l
> 2,
llz2]l

we have,
(i) if & > K;i(e) then

V6 (g — g ' \v/; T .
_H"ﬁ%TfB?Q'ZO‘E {1,...M} and ml—nﬂ"l—%ﬂﬂzo;

(i1) that
(vi —1)(Vo;- 2) (g~ @) #1) 2 0;
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(iii) if A > Nai(e, &), then

1 < 3 (=) ) (3o + (1= 00 el

and whenever

(iv) if A > Nyi(e, k), then

10l < 3 (= a0) - ) (o + (1= a2)) el

where © denotes the unit magnitude vector v/}|v]|.

Proof: In the proof we consider only ¢ € {1,... M}, for which by hypothesis 1; < 1; the

proof for i = 0, corresponding to the 0 obstacle, for which vy > 1, follows similar lines
and will be mentioned along the way.

Clearly,
VB;i - (4 — &)
1 M)
T +8
holds true if for all ¢ € Si(e),
1+ 6

K2 =,
T VB (g @)
By hypothesis 8; < ¢ on §;{¢), moreover,

7i(e) & smin (98- (a = ), (30)

is a positive non-increasing function of € on a suitably small interval [0, ¢;], according to
the assumption of a star shaped obstacle (equation (2)) . Thus, when € < ¢;, a sufficient

condition for & will be,

Ltea pio), (31)

w2 7i(e)

where ¢ is yet to be fixed.

In the special case ¢ = 0, we define
A .
7ole} = min {-Vfo- (¢ - g)},
So(€)

whicl is also a positive non—increasing function of € on a suitably small interval [0, ), and
a sufficient condition for x will be,

K> lueg
Yo(€)

I(U(E).
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The second assertion can be satisfied by “shrinking” S;(¢) about the i* obstacle boundary
— i.e. by making € small enough, in correspondence with our assumption that ¢ must be
less than some ¢;. Repeating equation (25) ,

A

Voi = (pafi + AB;)?

(8:M(paBi) —~ paBiVBi)
thus,

(i — 1)(Voi - 2) (g —qi) 1) = ﬁéﬁ%{ﬂﬂ(ﬂdﬁ;) & (¢~ ¢) - 1)

— pafiVBi - w1 (g — @) - #1)}. (32)
{

In consequence of the assumption Vf; - (¢ — ¢;) > 0, the term (1) is positive, since

(Wi 2 )((g— a) - 21) = VBT [orof] (g - @)
= (Vi (¢—a))(q - qs)T[wle](qTq,-)
= VB - (¢ — @)l}=1])* > 0.

According to the containment condition (equation (9)), v; < 1, therefore it is sufficient
that

Bill Vpafi)llla — gillllerll < paBilled* V8 - (a - @), (33)
which, is implied by )
ellVpaBillllle — all < paBillzallri(e),

which, in turn, follows from
_ - 2
el|V{paBillllle — @il < Pdﬁi"f:‘(f)%>

since JJa1]f> 4 [Jz2]l* = 1 and the assumption ||z1]| > 2|z} implies that [lz|} > 723 We
now require a number ¢; such that ¢ € (0,¢;) implies

pabi 2 1

< — min = = — Iin

Ti E) \/_ Si(e) { IV(papilllla - q.‘H} VB Sia | oM, . %@1 + Y2d|llq - g
P i A
which yields, as a sufficient condition,
€ 2 1

e< E; and —— < =5 ; 34

70 R v e 7 R

3=0,5 R, d

since, by assumption, for all ¢ € 8;(e),

v >Fq and G;>L; j#0
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In consequence of the assumption that Vg; - (¢~ ¢;) > 0 for all g € JO; (equation (11)),

as ¢ gets smaller,
7:(e) = mln {Vﬁ, {¢ -}

is non-decreasing (Si(e1) C Si{ez) whenever €1 < €), and is positive for ¢ sufficiently
small. It follows that €/v,;(¢) is decreasing as ¢ gets smaller. Therefore, while the practical
computation of € may prove to be non-trivial % , there is no problem with the formula
itself. A sufficient condition for (34) is

2 7i(€) A
e<{Ee< n {llg—all} ; = e (35)
‘fz ,J-,V,ﬁw“ IIS(.)

In the special case ¢ = 0, in consequence of the assumption Vg (g — qo) < 0, the term (})
in equation (32) is negative. According to the containment condition (equation (9)) , |
v > 1, and equation (33) becomes |

BollV(papo)lllla — wollllzrl] < ~paboller]* o - (¢ — o),

which implies that equation (34) holds for ¢ = 0 as well.

In the third assertion,

il < 3 (a0 )" (5o + (L= a0) el

Q)
according to the containment condition (equation (9)), the expression (*) can be bounded
from below by,

%O‘s!’.‘ +(l-0)= Ui(éva' -+12> (%Vi —D+1= %Vi, (36)
since, by definition, 0 < g; < 1. Thus, a sufficient condition will be
[]Xi” < ....1.__ ((q’_‘ét) . {75;—))2;/;(9') for all ¢ € S;(E), (37)
2v5

since |lz1]] > % According to its definition ( Definition 7 ) , #; can be bounded from
below on §;(¢) as follows,

RNET0) b
Vi = pj ”q _ 9‘3’“ - 1na,x5'.(€){“q— ‘Ij”}'

Therefore, the bound in equation (37) is implied by

2
1 . ——— —— é ]
X< 575 (qé‘é’.-‘%e){(q”“") | V"'}) wr o)~ o 59)

2In the special case where each star shaped obstacle is represented by one of the functions suggested in
Appendix C , the condition V3, - {g — ¢:) > 0 is antomatically satisfied for any ¢ > 0 and ¢ € F.
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According to Lemma B.5 , there exists a positive real number Npi(e, &, 6;) such that if
XA > Ny; then the inequality above holds.

In the special case ¢ = 0, equation {36} becomes

1 i 1
g _ >1-=-= p- g
59040 +(1—0p)2>1 590 2 5

since vg > 1 and 0 < a9 < 1. Therefore, a sufficient condition will be

16l < 572 min {((a= ) TB0)) ) 6o (39)

In the last assertion,

Xl <1 ((q:_é;) . @))zgﬁm + Sl - 0’:’)))“932“3
(=9

according to the containment condition (equation (9)) and the fact that 0 < ¢; < 1, the
expression {x*) can be bounded from below by

oy —o; + 12 1. (40)

Since by assumption |jzs]| > L It follows that a sufficient condition is
N

Xl < 2\/_ ((q qi)- Vﬁ,)) y; for all g € Si(e),

which is identical to the condition given in equation (37) above.

In the special case i = 0, in which »y > 1, equation (40) becomes

1
U@VO—UQ+121>“2",

which yields a condition identical to the one given in equation (39) above.

C Representing Star Shaped Obstacles

In this section we discuss the utility of representing star shaped obstacles using homogeneous
functions. In this paper we are concerned with strictly star shaped obstacles ( Definition 5 ),
characterized by the requirement

VB (¢—q) >0 forall g€ d0; C B0} . (41)

Although, using continuity arguments, it is guaranteed that this condition holds on some open
neighborhood of 80;, the boundary of the i** obstacle, the computation of its extent may be
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hard. However, for the suggested representation, we show that this condition is automatically
satisfied, and as a consequence it does not add any computational burden, Furthermore, we will
show that for a certain subfamily of homogeneous function, which include any analytic norm,
the knowledge of the function degree and the radius of an n-disc contained in the corresponding
obstacle {containing, for the zero** obstacle), is sufficient to compute all the derived parameters,
thus eliminating the need to resort to numerical computation.

All the omitted proofs in the sequel can be found in [18}.

Definition 13 Let ¥ € CO[E® IR], and let o be a fized real number. The funciion v is homo-
geneous of degree o (at ¢ = 0) if

7(Ag) = X99(q) for every ¢ £ 0 and A > 0.

Any homogeneous function of degree ¢ which belongs to the class C on E® — {0} has the
following property {4, exercise 3.3.8],

Viy(q) ¢ =ay(q) forall g #0, (42)
and conversely.
Thus, if we let the it obstacle function to be
Bl =rg)-6 §>0,
such that v is a homogeneous function of degree ¢ > 0, and is analytic on E™ — {0}, then
VBi- (g - q) = ofi(q) >0 forall g € B;'(=8,00) DW=~ 0;,
that is, equation (41) is satisfied everywhere outside the it" obstacle, O;.

The following Lemmas will be used in the Proposition below to designate a subfamily of
homogeneous functions each of whose members represents a strictly star shaped obstacle. We
assume in the sequel that ¥ € CO{E™, R] and that v is not identically zero.

Lemma C.1 Let v be homogeneous of degree o > 0 (at ¢ = 0), For all § £ 0,

v 1(8)({0} = .

Thus equation (42) applies at any point in the level set y~1(8), as long as § # 0, a fact that
we use to show that y~1(§) is a compact regular surface.

Let D be a neighborhood about the origin in E*. A function v : D — IR is definite (at ¢ = 0)
if
¥(g) #0 forall g #0.

Lemma C.2 Let+ be a homogeneous function of degree o > 0 (at ¢ = 0). If ¥71(0) = {0} then
v is definite {(at ¢ = 0).
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The following Lemma is essentially a generalization of the equivalence of norms on E™ to ho-
mogeneous functions.

Lemma C.3 Let vy be homogeneous of degree o > 0 (at ¢ = 0), and analytic on E™ — {0}. For
all § # 0 such that v='(8) # B, the level set y~1(8) is a compact regular {n — 1)-surface if and

only if
7~1(0) = {0}.

We are now ready to show that a definite homogeneous function describes a strictly star shaped
obstacle. In the sequel, v € CO{E", R} and is analytic on E™ — {0}.

Proposition C.4 Lei v be homogeneous of degree o > 0, and v~1(0) = {0}. If the i* obstacle
function, §3;, is defined to be

b

B:(q) A | v(q)— & if v is positive definite
A= 8- ¥{¢q) otherwise

for some & > 0, then B; describes a strictly star shaped obstacle (definition 5} , centered at the

origin.

Example: Let P be a positive definite symmetric matrix, the polynomial in two vari-
ables, v : E? — IR, defined by,

1(z,) 2 (4" Pg) o ( ZZ ) ,

is positive definite and homogeneous of positive degree, therefore for all § > 0, v~ (00, §)
is strictly star shaped.

Assuming that the i* obstacle is represented by a homogeneous function of positive degree,
the following Lemmas provide formulas to compute all its corresponding parameters in hy ..

We start by showing that in this case the i** star set deforming factor, v;, has an especially
simple structure,

Lemma C.5 If the itk obstacle function is

ﬁ:':')"'la

where v ts a positive definite (at ¢ = q;) homogeneous function of degree ¢ > 0, and the parameter
K in the it star set deforming factor (definition 7}, vi(q, k), is chosen as

1
K=,
o

then v; is constant along the rays originating at g;.
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