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Introduction 

There is a great interest in the investigation of compactly supported 

wavelets. This interest is due to the computational capabilities of such wavelets 

and the wide range of their applications. Forerunners in the development of 

compactly supported wavelets are Daubechies [1, 2], Cohen, and Feauveau [3]. 

Spline and B-spline wavelets were also introduced in [4, 5]. The compactly 

supported orthonormal B-spline wavelets have been found to be a powerful tool 

in many scientific and practical applications, including mathematical 

approximations, the finite element method, image processing, and compression 

and computer-aided geometric design. Thanks to some of their exceptional 

properties and mathematical simplicity, they are also applied and give very good 

results in various areas of applied sciences in comparison to other known 

wavelets. 

The last decade demonstrates an augmentation of interest of B-spline 

wavelets. The scientific group of Lakestani presents several works on solving 

integral and integro-differential equations using linear B-spline [6], quadratic  

B-spline [7] and cubic B-spline scaling functions [8]. This wavelet family also 

found and application in image compression, and the standard of the image 

compression – JPEG2000 – is based on the B-spline wavelet transform and  

B-spline factorisation [9]. In problems of the signal processing, B-spline 

wavelets were used for the development digital filters [10], which show 

excellent results. Analysing the above-cited works, one can notice a tendency 

towards the reduction of errors when increasing the order of the B-spline 

wavelet. In [11] the author presented the possibility of the application B-spline 

wavelets for  diagnostic signal processing. The effectiveness of these wavelets 

in comparison to other chosen wavelets and the above-mentioned tendency was 

presented. Therefore, it is necessary to investigate the effectiveness of higher- 

-order B-spline wavelets to improve results, which can be applied in various 

scientific and technical problems. 

There are many methods and techniques for fault detection in problems of 

technical diagnostics. A large group of these methods are based on signal 

processing using several transforms (e.g. DFT, STFT) and other techniques  

(e.g. cepstrum analysis, signal demodulation, etc.), but not all of these 

techniques can be used for problems of fault detection in the early damage phase 

[12]. The classic modal analysis may be used only for damage detection, but 

conclusions about presence of the fault can be made based on the shift of 

frequency spectrum only, which is a very poor feature in the light of the damage 

identification problem. Signal processing based on Wavelet Transform (WT) 

makes it possible to analyse modal shapes in the space domain. Such an analysis 

is very sensitive to the singularities in the modal shapes, which makes possible 

the accurate location of a fault, even when the fault is very minimal. It is 

possible due to the wavelet decomposition algorithm, while one cannot obtain 
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such information using modal analysis. WT found an application in fault 

detection in mechanical systems like gearboxes, rolling bearings, rotors, etc., but 

it can also be applied to structural health monitoring [13, 14]. In [12], the 

authors show that wavelet analysis makes it possible to detect the type of 

damage using Continuous WT based on scalogram evaluation. For lightly 

damaged structures, the authors proposed a method based on Discrete WT, 

which allows the use of decomposition analysis. In the above-cited work, 

Daubechies (db8) and Morlet wavelets were used for the approximation. 

The problem of fault detection and localisation in beams has been studied 

in several works. Many of them have been based on simulation results or 

theoretical models, e.g. [15]. However, fault detection and localisation in 

experimental research is a more difficult problem, because of the limitation of 

the number of measuring points and the presence of noise. The authors of [16] 

presented both the model-based and the experiment-based approach and 

confirmed the difficulty of fault detection and localisation in real tasks. The 

authors used the ‘symlet4’ wavelet for the analysis. 

Based on the obtained results in [11] of the comparison of DSD parameters 

of different wavelets, the author decided to construct higher-order (quartic, 

quintic and sextic) B-spline wavelets and scaling functions and their 

decomposition relations. Due to this, using Discrete B-spline WT for fault 

detection and localisation in composite beams is possible. Pre-notched 

composite specimens were excited by a random noise signal and displacement 

was measured using a laser scanning vibrometer. For the signal processing, 

Discrete B-spline WT was used and fault detection and localisation was 

evaluated based on the analysis of detailed coefficients by means of the 

decomposition of the signal. The efficiency of the approximation using B-spline 

wavelets was compared with other families of orthogonal wavelets. The 

obtained results indicate the effectiveness of high-order B-spline in fault 

detection and localisation. Several examples are presented. 

Construction of B-spline wavelets 

 General order B-spline wavelets 

The B-spline wavelet can be defined recursively by the convolution [17]: 
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The construction of the scaling function of m-th order B-spline wavelet is 

based on the two-scale relation: 
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where { }kp  is the two-scale sequence and can be expressed as a combination: 
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The two-scale relation for m-th order B-spline wavelets is given by: 
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The decomposition relation for m-th order B-spline wavelet is given by: 
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where decomposition sequences { }ka  and { }kb  are as follows: 
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In (8) and (9) the coefficients sequence { }
mkc ,  is presented by m-th order 

Fundamental Cardinal Spline (FCS) function [18]: 
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To obtain the coefficient sequences, the authors of [17] used an analytical 

relation for B-spline wavelets with order m < 3. For higher values of m, 

obtaining the analytical solutions became very difficult, and for values of m 

greater than 5, it is impossible in the light of Abel-Ruffini theorem. Therefore, 

the analytical formula was omitted here. Another way of obtaining the 

coefficient sequences is to form the bi-infinite system of equations [18] as 

follows: 
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The explicit form of (11) for m = 2 can be written as (cf. [17]): 
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The coefficients sequence {ck,m} is infinite for ≥m 3, so that (10) does not 

vanish identically outside any compact set. However, these coefficients decay to 

zero exponentially fast as ,k ∞→  which implies decaying to zero of (10) as 

.x ±∞→  

Quartic B-spline wavelet (m = 5) 

Quartic B-spline φ5(x) scaling function is given by the next recurrence 

relation: 
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where the support changes in the range [0,m] with step 1 referring to the 

property of B-spline scaling functions. Two-scale sequences { }5p  and { }5q  are 

presented in (14) and (15). Based on them, two-scale relations for φ5(x) and 

ψ5(x) can be constructed using (3) and (5), respectively. 

 

 

 
 

Fig. 1. Scaling and basic functions of quartic B-spline wavelet 

Rys. 1. Funkcja skalująca i bazowa falki B-splajnowej rzędu 5 

 

 

Decomposition sequences were calculated using (8), (9) and (12). For 

quartic B-spline wavelet some of them are presented in Tab. 1. 
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Table 1.  Quartic B-spline decomposition sequences 

Tabela 1. Współczynniki dekompozycji dla falki B-splajnowej rzędu 5 
 

k  2−ka  2−kb  

0 0.27944 0.26081 

1 -0.03765 -0.1238 

2 -0.48157 -0.44529 

3 -0.05206 0.08078 

4 0.87419 0.73019 

5 -0.20474 

6 -1.15096 

7 0.54171 

8 1.59650 

M  

M  

M  

Quintic B-spline wavelet (m = 6) 

Let us go to the next example φ6(x) given by 
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and shown in Fig. 2. Two-scale sequences { }6p  and { }6q  are given by (17) and 

(18), respectively. Because of the symmetry of { }6q , only the half sequence was 

presented. 
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Decomposition sequences for quintic B-spline are given in Tab. 2. 

 

     
 

Fig. 2. Scaling and basic functions of quintic B-spline wavelet 

Rys. 2. Funkcja skalująca i bazowa falki B-splajnowej rzędu 6 

 

 
Table 2.  Quintic B-spline decomposition sequences 

Tabela 2. Współczynniki dekompozycji dla falki B-splajnowej rzędu 6 
 

k  2−ka  2−kb  

0 0.29214 -0.24695 

1 0.29398 -0.35522 

2 -0.41198 0.46725 

3 -0.55802 0.48370 

4 0.48972 -0.77160 

5 1.24143 -0.65901 

6 1.22365 

7 0.82492 

8 -1.91952 

9 -0.69623 

10 2.84275 

M  

M  

M  
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Sextic B-spline wavelet 

The last presented wavelet scaling function φ7(x) is given by the following: 
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and two-scale sequences are given by (20) and (21). Because of the anti-

symmetry of { }7q , only the half sequence was presented. Graphical 

interpretation of φ7(x) and ψ7(x) is presented in Fig. 3. Decomposition sequences 

are tabulated in Tab. 3. 

 

    
 

Fig. 3. Scaling and basic functions of sextic B-spline wavelet 

Rys. 3. Funkcja skalująca i bazowa falki B-splajnowej rzędu 7 
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Table 3.  Sextic B-spline decomposition sequences 

Tabela 3. Współczynniki dekompozycji dla falki B-splajnowej rzędu 7 
 

k  2−ka  2−kb  

0 0.05808 -0.09463 

1 0.57369 0.73914 

2 -0.00377 -0.02005 

3 -0.85444 -1.08620 

4 -0.23318 0.16139 

5 1.22519 1.54667 

6 -0.37510 

7 -2.14425 

8 0.77637 

9 2.82425 

10 -1.62267 

11 -3.18547 

M  

M  

M  

 

Notice that, in Tables 1 through 3, decomposition sequences were limited 

to unique values. In the case of { }ka , there is symmetry of the sequence; 

therefore, only half of it is presented. In the case of { }kb , the sequence is 

symmetrical for even m and anti-symmetrical for odd m. 

Comparative analysis of approximation effectiveness of some (semi)-orthogonal 

wavelet families 

The evaluation of the approximation effectiveness can be executed using 

the degree of scalogram density (DSD) parameter. In technical diagnostics, DSD 

was used by A. Timofiejczuk [19]. DSD is a statistical scalar parameter, which 
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is based on the normalisation of the set of wavelet coefficients from the 

scalogram, their filtering for some non-zero threshold and determination using 

the following dependence: 

 

L

N
DSD −= 1         (22) 

 

where N denotes the number of wavelet coefficients greater than threshold value 

and L is the number of all wavelet coefficients. 

 

In this section, we will compare DSD for various wavelet families for three 

types of signals, which most frequently occur in diagnostic signal processing: the 

harmonic one, the harmonic with variable frequency (chirp), and the triangular 

pulse. One may consider only orthogonal or semi-orthogonal (e.g. B-spline) 

wavelets, because Discrete WT is possible only using such wavelets. 

Wavelets and their decomposition relations from Section 2 were 

implemented into MATLAB®. Then, the DSD test was performed with 

a threshold value of 0.01, a scale parameter of 1–256 and time of 2 s with 

sampling rate 0.0001 s. The obtained results are presented in Figs. 4 through 6 

for investigated types of signals. Note, that first-order Daubechies and B-spline 

wavelets are identical to the Haar wavelet. 
 

 
 

Fig. 4. DSD parameter for the harmonic component 

Rys. 4. Stopień zagęszczenia skalogramu dla składowej harmonicznej 

 

As it can be observed, the B-spline wavelet gives the best DSD parameter 

for each considered type of signal. In cases of harmonic components, DSD 

reveals asymptotic convergence to unity with the increase in the order of the 

wavelet. For harmonic components, the growth of DSD is stabilised after the 

fifth order; therefore, the construction of B-spline wavelets with an order higher 

than seventh is not profitable. Analysing DSD values in Fig. 6, one can conclude 
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that DSD has a decreasing tendency with the increase in the order of the 

wavelet. However, values of DSD are very good for all considered orders of B-

spline wavelets and the changes of DSD are minor, i.e. B-spline wavelets can be 

used in diagnostic signal processing for pulse components as well. 
 

 
 

Fig. 5. DSD parameter for the harmonic component with variable frequency 

Rys. 5. Stopień zagęszczenia skalogramu dla składowej harmonicznej ze zmienną częstotliwością 

 

 

 
 

Fig. 6. DSD parameter for the pulse component 

Rys. 6. Stopień zagęszczenia skalogramu dla składowej impulsowej 

Fault detection in composite beams 

Specimens preparation and experimental setup 

The specimens were manufactured from 24-layered glass fiber-reinforced 

epoxy laminate in the form of unidirectional impregnated fibers. The 

configuration of the specimens was selected in order to achieve transversal 
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isotropic properties. The structural formula and material properties of the 

specimens can be found in [20]. The dimensions of the specimens were defined 

as follows: length L = 250 mm, width W = 25 mm and thickness H = 5.28 mm. 

Three specimens (one sound and two pre-notched) were considered. Notches, 

whose depth h is 1 mm, were located at the distance l of 0.28L and 0.6L, 

respectively. Fig. 7 shows the scheme of the investigated specimens. 
 

 
 

Fig. 7. Dimensions of the specimens 

Rys. 7. Wymiary próbek 

 

The specimens were clamped on one side at length of 0.08L. For the 

excitation, the random noise signal was generated and amplified by a power 

amplifier and exerted to the beam through the TIRA TV-51120 modal shaker. 

For measurements, Laser Doppler Vibrometers (LDV) were used, which 

provided highly precise values. The scanning LDV (Polytec PSV-400) was used 

for sensing the response signal of the beam, and a second LDV (Polytec PDV-

100) was used for achieving the reference signal. Measurements were provided 

in the bandwidth of 1 to 3200 Hz with a sample frequency of 8192 Hz. On the 

effective measurement length Leff of 215 mm (from 0.1L to 0.96L), a line with 

44 measurement points was defined. The interval between points was 5 mm. 

The experimental setup is presented in Fig. 8. 

 

 
 

Fig. 8. Experimental setup 

Rys. 8. Stanowisko badawcze 
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Then, the testing of above-mentioned specimens was carried out. 

Frequency response functions obtained during the modal analysis were stored 

and, based on them, the natural frequencies and modal shapes were determined. 

The displacement data for selected modal shapes of resonant vibrations were 

acquired and exported to MATLAB®. 

Analysis and experimental results 

In obtained frequency spectra of the first four natural modes of vibration 

were selected and considered in the analysis. Then, the discrete wavelet 

transform with high-order B-spline wavelets was performed. Preliminary 

analysis indicates that symmetric B-spline wavelets give better results in the 

decomposition process; therefore, the quintic B-spline wavelet was used in the 

next analysis. After decomposition, detail coefficients of signals for each case 

were investigated. Additionally, the soft threshold filtering was conducted for 

de-noising detail coefficients. Exemplary detail coefficients before and after  

de-noising are shown in Fig. 9. After these operations, zero-value detail 

coefficients for healthy specimen were obtained. Therefore, the graphical 

presentation of detail coefficients was omitted for this specimen. The 

approximation and detail coefficients of pre-notched specimens are depicted in 

Fig. 10. The first column contains approximations (Y-axis – approximation 

coefficient). The second column contains detail coefficients for the specimen 

with the notch at 0.6L (Y-axis – details coefficient). The third column contains 

detail coefficients for the specimen with the notch at 0.28L (Y-axis – details 

coefficient). For all, the X-axis is the distance, L [mm]. 

 

 
 

Fig. 9. De-noising of the detail for the specimen with the notch at 0.6L for the 1st mode shape 

Rys. 9. Odszumienie współczynników detalu dla próbki z pęknięciem w 0,6L dla pierwszej postaci 

własnej 

 

As seen in Fig. 9, the de-noising operation allows one to remove the 

measurement noise and to present changes in the detail coefficients. However, 

because of the high-order of the applied wavelet and the consequently larger 

number of vanishing moments of this wavelet, fault localisation became more 
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difficult and detail coefficients could not  be used to visualise the exact location 

of the fault (see Figs. 10e–g and Figs. 10k–l). On the other hand, the small 

number of vanishing moments of the wavelet could influence the accuracy 

of the decomposition process. By analysing details from the decomposition by 

means of the geometry of the wavelet, one can notice that the fault localisation 

can be provided by the evaluation of the highest value of the de-noised detail 

coefficients. 
 

 

 
 

Fig. 10. Decomposition of measured signals for four mode shapes of beams 

Rys. 10. Dekompozycja sygnałów pomiarowych dla czterech postaci własnych belek 

Discussion 

In the present work, high-order B-spline wavelets were proposed. The 

analytical formulation of quartic, quintic, and sextic B-spline wavelets and their 

decomposition relations were presented. The comparative analysis of wavelets, 

which could be used for Discrete WT, indicates the highest effectiveness  

of B-spline wavelets, especially for higher orders. The construction of wavelets 

with an order higher than 7 is not well grounded. The analytical formulation of 

these wavelets and their decomposition relations could be difficult, but the 

practical application of them will also be limited because of the increasing the 

number of vanishing moments and the effective support. 
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One of presented wavelets, the quintic B-spline wavelet, was applied for 

fault detection and localisation in composite beams. The selection of the 

appropriate wavelet to such analysis is crucial. However, in analysis, one can 

noticed the effectiveness of the above-mentioned wavelet. As previously shown, 

fault localisation using a decomposition procedure with B-spline wavelets is 

possible after detail coefficient de-noising and gives precise results. 

The accuracy of the damage localisation is directly dependent on the number 

of measurement points. With a higher number of measurement points, 

the displacements of a given modal shape can be determined more accurately. 

An application of high-order B-spline wavelets is not only limited to 

the problem presented above. They can also be used for numerical solving 

of differential equations, where the wavelet scaling function is a differential 

operator. Moreover, they could find an application in structural health 

monitoring of complex problems, pattern recognition problems, signal 

processing in biomedical applications, etc. 

In further works, the use of the presented wavelets for detection and 

localisation of faults in multi-damaged structures will be investigated. An 

additional task will be the evaluation of structural life assessment based on 

detail coefficients. 
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Konstrukcja falek b-splinowych wyższych rzędów i ich zależności dekompozycji  

dla detekcji i lokalizacji uszkodzeń w belkach kompozytowych 

S t e s z c z e n i e  

B-splajnowe funkcje skalujące i falki znajdują szerokie zastosowanie w wielu zagadnieniach 

naukowych i praktycznych dzięki ich wyjątkowym właściwościom. Pokazują one znacznie lepsze 

wyniki w porównaniu z innymi falkami i są z powodzeniem stosowane w matematycznych 

aproksymacjach, przetwarzaniu sygnałów, kompresji obrazów itd. Ale tylko pierwsze cztery falki 

z tej rodziny zostały sformułowane matematycznie. W niniejszej pracy autor sformułował falki  

B-splajnowe wyższych rzędów i ich zależności dekompozycji w postaci jawnej. Pozwalają one na 

zwiększenie dokładności przy detekcji i lokalizacji uszkodzeń w belkach kompozytowych 

z zastosowaniem dyskretnej transformacji falkowej z dekompozycją. 

 

 
   


