THE CONSTRUCTION OF ORTHOGONAL LATIN SQUARES!
By Henry B. Mann?
Columbia University

A Latin square is an arrangement of m variables 2, , &2, - - - , Z» into m rows
and m columns such that no row and no column contains any of the variables
twice. Two Latin squares are called orthogonal if when one is superimposed
upon the other every ordered pair of variables occurs once in the resulting

square.
The rows of a Latin square are permutations of the row 1,22, -+ , Tm . Let
P; be the permutation which transforms x;, 2z, « -+ , = into the 7th row of the

Latin square. Then P;P7' leaves no variable unchanged for ¢ > j. For other-
wise one column would contain a variable twice. On the other hand each set of

m permutations Py, Py, - - - , Pn such that P;P;" leaves no variable unchanged
generates a Latin square. We may therefore identify every Latin square with
a set of m permutations (Py, P, - -+, P,) such that P;P;" leaves no variable
unchanged.

Now let (P1,P:,---,P,), (Q,Q2, --,Qn) be a pair of orthogonal
Latin squares. We shall show that (PT'Q., P7'Qx, -+ -, P;'Q.) is a Latin
square. P7'Q; is the transformation which transforms the sth row of
(P1, Py, -+, Py) into the sth row of (@1, Q:, -+, Qm). Since every pair of
variables occurs exactly once if the second square is imposed upon the first,
the square (P1'Q:, P7'Q., - -+ , P»'Qn) contains for every ¢ and k a permuta-
tion which transforms z; into z; . But then it can not contain two permuta-
tions which transform z; into z; . This argument can be reversed and it follows
that (P1, P2, -+, Pn) and (@1, @z, ---, @») are orthogonal if and only if
(PT'Q1, P3'Q., - - -, P7'Qu) is a Latin square.

Denote now by an m sided square S any set of m permutations
(81,82, -+, Sn) and by the product S8 of two squares S and S’ the square
(8181, 8281, -+, SwSw). Then we can state: Two Latin squares Ly and Le
are orthogonal if and only if there exists a Latin square Ly such that
(1) LiLy = L.

Now let Ly, Ly, ---, L, be a set of »r mutually orthogonal Latin squares.
Then we must have L;Ly = L where Ly is a Latin square if 7 = k. Hence we
have the theorem

TueoreM 1: The Latin squares Ly, Ly, - - - , L, are orthogonal if and only
if there exist r(r — 1) Latin squares Lyt # k) such that L;Ly, = Ly .

CoroLLaRY: If L', L¥ and L™ are Latin squares then L’ is orthogonal to L*.

For instance if L and L* are Latin squares then L is orthogonal to L.

1 Presented to the Mathematical Society October 31st, 1942. After I submitted this
paper for publication Dr. Edward Fleisher sent me his thesis on Eulerian squares which
he submitted in 1934 and in which he proved Theorem 3 in a different manner.

2 Research under a grant in aid of the Carnegie Corporation of New York.
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If A = (4,,4.,---,A,) and P is any permutation then we put PA =
(PA,,PA,;,---,PA,) and AP = (AP, AP, --- ,A.P). If A is a Latin
square then also AP and PA are Latin squares. If A is orthogonal to B then
AP is orthogonal to BQ for any permutations P and Q. For if AC = B then
AP(P7'CQ) = BQ, since the associative law holds for the operations indicated.
This means that A and B remain orthogonal if we permute the variables in
both squares in any arbitrary way.

Hence if 4 is orthogonal to B also AAT' is orthogonal to BBi*. We can
therefore, while preserving orthogonality, always transform the pair A and B
so that A = B: = 1 where 1 denotes the identity. We shall then say that
the pair A, B is written in the reduced form.

DEeFINITION 1: If A s orthogonal to B, and if in the reduced form the permuta-
tions of A are the same as those of B in a different order, and if these permutations
form a group G, then the pair A and B is said to be based on the group G.

A pair of orthogonal Latin squares is called a Graeco-Latin square. The
Graeco-Latin squares constructed by Bose [1] Stevens [2] and Fisher and Yates
[3] are all based on groups. There exist Graeco-Latin squares, however, which
are not based on a group.

If the orthogonal pair A, B is based on a group G and if AC = B then also C
contains only permutations of G, and since C is a Latin square it must contain
all the permutations of G. Calling C; the image of A; we obtain a biunique
mapping S of @ into itself. Let A7 = C; then B; = A;A? and S has therefore
the property that every element of G is of the form XX* where X is in G.

DEerFINITION 2: A biunique mapping S of a group G into tself will be called
a complete mapping if every element of G can be represented in the form XX S where
X is an element of G and X° the image of X under the mapping S.

If an abstract group G of order m admits a complete mapping S then we can
immediately construct an m sided Graeco-Latin square based on G. To do this

we represent G as a regular permutation group. Let Py, Py, ---, P, be the
permutations of this representation. Then A = (P, P, -+, Py), C =
(P§,P5,.--,P)and B = (P\Pi, P:P;, --- , P,Py) are Latin squares and
hence A is orthogonal to B and APt and B(P:P;)”" form a reduced pair.

If Ly, Ly, -+, L, are orthogonal Latin squares and L;Ly = L, then we
form the product
(2) LlLl2L23 e Lr—lr .

From LiL;k = Lk y Lkij = L]’ we find L;L;kLk,' = Lj and hence L,'kij = L{,‘ .
L. is therefore orthogonal to L;;. The product (2) has the property that for
any s < r the product of s successive factors is a Latin square. On the other
hand if a product of » Latin squares L, Ly, - - - , Lr—1, has this property then
the Latin squares Ly , L, - - - , L, where L; = LyLyLes - - - L;_1; are orthogonal.

DerFINITION 3: A set of r orthogonal Latin squares will be called based on a
group G if every pair in the set is based on G.

If Ly, Ly, -+, L, are based on a group G then G must admit 7 mappings
81 =1,8, -+, 8, into itself such that every element of G can be written in
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the form XS tSi+1+- 4544 for every sand hwith1 < 2 < rand0 < b £ 7 — 3,
where A1 = 4545 and A® is the image of A under the mapping S.
DerINITION 4: The mappings S1 = 1, Sa, ---, S, of a group G into itself
will be called r~fold complete if every element of G is of the form X5 +Si+i+ - +Si+a
Joreveryiand hwithl < i Lrand0 L h < r— 1.
Now let G be an abstract group of order m admitting an r-fold complete set
of mappings S =1, 8;, ---, S,. Put

81 +8g+...+8; +82+...+8; Sy +82+...+8;
L;=(1” .’ngz ;,“’Pmlz .)

’

where 1, P;, ---, P, is a regular representation of G. Then L,, Ly, ---, L-
is a set of 7 orthogonal Latin squares based on G. Put 4; = 1%+%% 5 then
L,ATY, - -+, L. A7 are written in the reduced form. Hence we have

THEOREM 2: A set of r orthogonal Latin squares based on a group G exists if
and only if G admits an r-fold complete set of mappings.

If Gis of order m = 4n + 2 = 2m’ then @ has a self-conjugate subgroup
H of order m’. Suppose G admits a complete mapping S. We have

G = H + HA.

XX® C H if either X and X° or neither of them are in H. Further XX° C HA
if either X or X* but not both of them are in H.
Let a be the number of elements X < H such that X° C H,

b  the number of elements X C H such that X° C HA,

¢ the number of elements X < HA such that X° C H,
thena + b =m/,a + ¢ = m’. Of the products XX?° exactly b + c are in HA.
Hence b + ¢ = m’, @ = b and therefore m’ = 2a, which is impossible since m’
is odd. We have therefore:

THEOREM 3: No 4n + 2 — sided Graeco-Latin square based on a group can
exist.

If a group G admits r automorphisms Ty = 1, Tz, - -+, T, such that X™* =
X" for ¢ % j and X 1 then the mappings S; = 1, 8; = X "'X" for ¢ =
2,3, .-+, rare r-fold complete; for if

Xs;+s.-+1+...+ss+h = Yss+S.'+1+-..+Si+h

we have for 7z = 1
XTi+h = YT:'+h
and forz > 1
X—'T-'~1X7':'+h = Y—T."—IYTH-I:
and therefore
(Yx-l)Ts-l = (YX—I)T.‘-H.

and hence Y = X in both cases since by hypothesis X™* = X"/ for ¢ # j and
X = 1, X%t HSi+h therefore takes m different values and reproduces every
element of G.

If we represent G as a regular.permutation group then the squares L; =
(1) P27 "'7Pm)yL2 = (17 Pg'zy e ’P:lz)) st 7L7' = (1) P;'; e )P"'I;') are
orthogonal Latin squares by Theorems 1 and 2. There exist however complete
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mappings which are not derivable from automorphisms. For instance every
group of odd order admits the complete mapping A° = 4 but A” = A® is not
an automorphism if the group is not abelian.

Most of the sets of orthogonal Latin squares that have been constructed
so far are based on abelian groups of type (p, p, - -+, p) and the mappings of
the squares of the sets into each other are automorphisms of this group. R. C.
Bose [1] and W. L. Stevens [2] for instance use the cyclic group of automorphisms
of the additive group of a G. F. (p") induced through multiplication by the
elements of the Galois field that are different from 0. In this way they assure
that different automorphisms will map the same element into different elements.
They give a convenient method for finding a base element of the group of auto-
morphisms. In this way they reduce considerably the labor involved in the
construction of p” — 1 orthogonal Latin squares of side p”. The 9 x 9 squares
in the statistical tables by Fisher and Yates [3] are also based on the abelian
group of type (3,3) but another set of automorphisms is used.

If m = pi'ps® - -- pi* (p; prime p; % 4= for ¢ k) and if r = min pi* — 1
then a set of r orthogonal Latin squares can always be constructed from the
abelian group of type (p1 - - p1, P2 D2, **,Pn, ***, Da) and its auto-
morphisms. This can be done by finding 7 automorphisms T, T8°, -+, TP
for each of the subgroups of order p{* such that 75" 7"~ leaves no element un-
changed except 1. If we apply the automorphisms T3, T8 oo T simul-
taneously, for j = 1, 2, - -+, r, we obtain r automorphisms of the desired type.

Once the automorphisms are known the construction of the set of orthogonal
Latin squares can easily be carried out. To do this we have to write down the
multiplication table of the group and obtain the orthogonal squares by inter-
changing the rows in accord with the automorphisms.

DEerINITION 5: A set of orthogonal Latin squares derived from a group and its
automorphisms will be called constructed by the automorphism method.

We now prove:

THEOREM 4: Let ¢, be the number of classes of elements of order g of a group G.
Let s = min ¢, ; then not more than s orthogonal Latin squares can be constructed
from G by the automorphism method.

Proor: Let T be an automorphism which leaves no element unchanged
except 1. If A is of order g then A” is also of order g. If A” = PT'AP then
there exists an element Q such that P = Q'Q” because, as we have shown, every
element can be represented in the form X'X”. But then

(QAQ™" = CPP'APPT'Q = QAQ™.

Hence A = 1. T can therefore 10t transform any element except 1 into an
element of the same class. Hence not more than s = min ¢, automorphisms,
Ty, -+, T, can exist such that T7'T'; leave no element except 1 fixed and this
proves our theorem.

COROLLARY: If m = pi'ps® -« - pa*(pi prime p; = pi for j #= k) then not more
than r = min p;* — 1 orthogonal m-sided Latin squares can be constructed from
any group with the automorphism method.
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Proor: The Sylow group of order p;* contains a representative of every class
of elements of order p; hence min ¢, € min p;* — 1.

Below are given two examples of Graeco-Latin squares obtained from com-
plete mappings which are not obtained from automorphisms. Neither could
have been obtained by combining Graeco-Latin squares constructed by the
method of Bose [1] and Stevens [2].

The first example is based on the abelian group of type (2,2,3). If the basis
elements are defined by P* = R* = Q* = 1 the complete mapping used is given by

L,
Ly
L,

(1, P, R, PR, Q, PQ, RQ, PRQ, ¢', PQ’, RQ’, PRQ’)
(1, RQ, PRQ’, PQ’, Q, RY", PR, P, @', R, PRQ, PQ)
(1, PRQ, PQ’, RQ’, ¢, PR, PQ, RQ, Q, PRQ", P, R).

The second square is based on the regular representation of the A4 the alter-
nating group in 4 variables. The generating relations are P* = R* = @* = 1,
QP = RQ, QR = PRQ. The complete mapping is given by

L, = (1, P, R, PR, Q, PQ, RQ, PRQ, @, PQ*, RQ’, PRQ’)
L. = (1, R, PR, P, Q, PQ, RQ, PRQ, @', PQ*, RQ’, PRQ")
L. = (1, PR, P, R, @, PRQ’, PQ", RQ’, Q, RQ, PRQ, PQ).
EXAMPLE 1
1,1 22 33 44 55 66 7,7 88 99 10,10 11,11 12,12
2,8 1,7 46 35 6,12 511 810 7,9 10,4 9,3 12,2 11,1
3,10 4,9 1,12 211 7,2 81 54 63 11,6 12,5 9,8 10,7
411 3,12 29 1,10 83 7,4 61 52 12,7 11,8 10,5 96
59 6,00 7,11 812 9,1 10,2 11,3 12,4 1,5 2,6 3,7 4,8
6,4 53 82 7,1 108 9,7 126 11,5 2,12 1,11 4,10 3,9
7,6 85 58 6,7 11,10 12,9 9,12 10,11 3,2 4,1 14 23
8,7 7,8 6,5 56 12,11 11,12 10,9 9,10 4,3 3,4 2,1 1,2
9,5 10,6 11,7 12,8 1,9 210 3,11 4,12 51 6,2 7,3 84
10,12 9,11 12,10 11,9 2,4 1,3 42 31 6,8 57 86 17,5
11,2 12,1 9,4 103 3,6 45 1,8 27 7,10 89 512 6,11
12,3 11,4 10,1 92 47 38 25 16 811 7,12 6,9 5,10
EXAMPLE 2
1,1 2,2 33 44 55 66 7,7 88 99 10,10 11,11 12,12
2,4 1,3 42 31 68 57 86 7,5 10,12 9,11 12,10 11,9
3,2 41 14 23 76 85 58 6,7 11,10 12,9 9,12 10,11
43 34 21 1,2 87 17,8 6,5 56 12,11 11,12 10,9 9,10
59 7,12 810 6,11 9,1 11,4 12,2 10,3 1,5 38 46 27
6,12 89 7,11 510 104 12,1 11,3 9,2 28 45 37 1,6
7,10 5,11 6,9 812 11,2 93 10,1 124 3,6 1,7 2,5 48
8,11 6,10 512 7,9 12,3 10,2 9,4 11,1 47 26 1,8 3,5
9,5 12,7 10,8 11,6 1,9 4,11 2,12 3,10 51 83 64 7,2
10,7 11,5 9,6 12,8 2,11 39 1,10 4,12 6,3 7,1 52 84
11,8 10,6 12,5 9,7 3,12 2,10 49 1,11 7,4 62 81 53
12,6 9,8 11,7 10,5 4,10 1,12 3,11 29 82 54 7,3 6,1

?
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