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The Construction of Preconditioners
for Elliptic Problems by Substructuring, III*

By James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz

Abstract. In earlier parts of this series of papers, we constructed preconditioners for
the discrete systems of equations arising from the numerical approximation of elliptic
boundary value problems. The resulting algorithms are well suited for implementation
on computers with parallel architecture. In this paper, we will develop a technique which
utilizes these earlier methods to derive even more efficient preconditioners. The itera-
tive algorithms using these new preconditioners converge to the solution of the discrete
equations with a rate that is independent of the number of unknowns. These precon-
ditioners involve an incomplete Chebyshev iteration for boundary interface conditions
which results in a negligible increase in the amount of computational work. Theoretical
estimates and the results of numerical experiments are given which demonstrate the
effectiveness of the methods.

1. Introduction. The aim of this series of papers is to propose and analyze
methods for efficiently solving the equations resulting from finite element discretiza-
tions of second-order elliptic boundary value problems on general domains in R2
and R3. In particular, we shall be concerned with constructing easily invertible and
"effective" preconditioners for the resulting system of discrete equations which can
be used in a preconditioned iterative algorithm to define a rapid solution method.
The methods developed are well suited to parallel computing architectures.

In Parts I and II (references [4] and [5]), we described and analyzed methods
for constructing preconditioners for elliptic boundary value problems on polygonal
domains in R2 and R3. The proposed methods were based on decomposing the
domain into subdomains of size d and involved the solution of related problems on
the subdomains and lower-order coupling systems on the subdomain boundaries.
The condition number for the preconditioned system was shown to be on the order
of (1 + \n(d/h))2 for the method of [4] and d/h for the method of [5]. Here h is the
mesh size. In this paper, we describe a technique which can utilize such methods
to develop more efficient preconditioners. The condition numbers for the resulting
preconditioned systems will be made independent of d and h with only a slight
increase in computational effort.

Received May 7, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 65N30; Secondary 65F10.
"This manuscript has been authored under contract number DE-AC02-76CH00016 with the

U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-
free license to publish or reproduce the published form of this contribution, or allow others to
do so, for U.S. Government purposes. This work was also supported in part under the National
Science Foundation Grant No. DMS84-05352 and under the Air Force Office of Scientific Research,
Contract No. ISSA86-0026 and by the U.S. Army Research Office through the Mathematical
Science Institute, Cornell University.

©1988 American Mathematical Society
0025-5718/88 $1.00 + $.25 per page

415

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let fi be a bounded domain in R2 with a piecewise smooth boundary dfi. As a
model problem for a second-order uniformly elliptic equation, we shall consider the
Dirichlet problem

Lu = f   in fi,
(1.1) ti = 0    on <9fi,

where

ij=i    v    j/

with al3 symmetric and uniformly positive definite, bounded and piecewise smooth
on fi. The generalized Dirichlet form is given by

(1.2) A(v,<j>)=¿2j;,¿-g^dx,
»ií=l

which is defined for all v and <p in the Sobolev space H1 (fi) (the space of distribu-
tions with square-integrable first derivatives). The L2(fi) inner product is denoted

(v,4>) =      v(p dx.
Jn

The subspace Hq (fi) is the completion of the smooth functions with support in fi
with respect to the norm in H1(Q). The weak formulation of the problem defined
by (1.1) is: Find u E H¿(ü) such that

(1.3) A(u,<j)) = (f,4>)    forall0€ÍY¿(fi).
This leads immediately to the standard Galerkin approximation. Let S£(fi) be a
finite-dimensional subspace of //¿(fi). The Galerkin approximation is defined as
the solution of the following problem: Find U E S®(Q) such that

(1.4) A(U, $) = (/,$)    forall<ï>eS£(fi).

The underlying method which we will consider is a preconditioned iterative
method. As explained in Part I, the task of defining a preconditioner for the
matrix problem corresponding to (1.4) is the same as that of defining another pos-
itive definite form B(-, ■) on 5°(fi) x S°(fi). The importance of making a "good"
choice for B is well known. The form B will define a good preconditioner provided
it has two basic properties. First, the problem of finding the function W E S°(fi)
satisfying

(1.5) B{W,*) = G{$)    for all $ E S£(fi),

for a given linear functional G, should be more economical to solve on a given
computer architecture than (1.4). Secondly, B should be spectrally close to A in
the sense that there are positive numbers ßo and ßi satisfying

(1.6) ß0B(V,V) < A(V,V) < ßiB(V,V)    for all V E S£(fi),

where the ratio /?i//?n is not too large. These two properties will guarantee, firstly,
that the work per iterative step in applying the preconditioned method will be
small, and, secondly, that the number of steps to reduce the error to a given size
will also be small, so that an efficient algorithm will result.
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In Section 2 the form B is defined and the essential step in the iterative algorithm
of solving (1.5) is described. This form is defined in terms of a polynomial Pm which
is related to the classical Chebyshev polynomials. The relevant properties are given
in Section 3. Section 4 discusses various computational aspects of the method in a
more general setting. Finally, in Section 5, the results of numerical experiments are
given. These computations show that the theoretical estimates are fully realized in
practice.

For other works dealing with the numerical solution of boundary value problems
via substructuring we refer the reader to [1], [2], [3], [6], [7], [8], [9]. We emphasize
that a novel feature of our methods [4], [5] is that more than two subdomains can
meet at an interior point of the original domain. For example, our methods apply
to a checkerboard subdivision of a square. Using the technique of this paper, the
condition number for the resulting system is shown to be bounded independently
of the number of such points.

2. The Construction of B(-, •) and the Preconditioning Algorithm. As
mentioned in the introduction, the preconditioner which we will construct involves
the solution of smaller related problems on subdomains and subdomain bound-
aries. As in Part I, for the sake of simplicity of exposition, we shall proceed with
the discussion only for the special case of polygonal domains and piecewise linear
approximations.

More precisely, we shall begin with the following assumptions with regard to fi.
These assumptions are the same as those given in Section 2 of Part I, and hence
the results given in Section 3 of Part I apply.

A.l:  fi is a polygonal domain.
A.2: For each h, 0 < h < 1 a parameter, fi has been given a quasi-uniform

triangulation fih. By this we mean that there exists a positive constant ci
independent of h such that each triangle Th E fih contains a ball of radius
cih and is contained in a ball of radius h.

A.3: For each triangulation fi'1, fi may be written in terms of nr disjoint regions,
fifc, with fi = U fifc, which are either quadrilaterals or triangles whose sides
coincide with the mesh lines of the original triangulation and which are
quasi-uniform of size d > h with constants as above which are independent
of d and h. If fifc is a quadrilateral, we require additionally that the lengths
of each side be bounded from below by cid and that any interior angle a
satisfy 0 < Co < a < Ci < it. The collection of regions fifc will frequently
be referred to as the subdomains (see Figure 2.1).

For each h, let S/,(fi) be the space of continuous piecewise linear functions defined
relative to the triangulation fi'1 and 5^(fi) be the subspace of Sh(ü) consisting of
those functions which vanish on dfi. <S°(fifc) will denote the subspace of S°(fi) of
functions whose supports are contained in fifc (in particular, they vanish on dfifc and
outside fifc). In addition, let Sh(fifc) be the set of functions which are restrictions
of those in S£(fi) to fifc. Sh(dUk) will denote the restrictions of ¿»/¡(fifc) to dfifc.
Let T = \JdQj and Sh(T) be the restriction of functions in S^(fi) to T. In what
follows, c and C (with or without subscript) will denote generic positive constants
which are independent of h, d and the regions fifc.
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FIGURE 2.1
A typical domain with subdomains.

For simplicity of presentation, we shall restrict our development to the case in
which each dfifc has a uniformly (with respect to arc length) spaced grid.   This
restriction will be removed in Section 4. We define

r a     ¿i
Ak(u,v)- Y]  /    aij — —dx,

~íiJ^    2àxxdx3

and hence
nr

(2.1) A(u,v) = J2ai(u,v).
t=i

To define B, we first decompose functions in S°(fi) as follows:   Write W =
Wp + WH where WP E S£(fii) © • • • © S°(fi„r) and satisfies, for k = 1,... , nT,

(2.2) Ak(Wp,$)=Ak(W,$)    forall$€S£(fifc).

Notice that Wp is determined on fifc by the values of W on fifc and that

(2.3) Ak{WH,$)=0   forall$€S£(fifc).

Thus on each fifc, W is decomposed into a function Wp which vanishes on dfi/t and
a function Wh E Sh(tïk) which satisfies the above homogeneous equations and has
the same values as W on dfifc. We shall refer to such a function Wh as "discrete
A-harmonic ".

We note that the above decomposition is orthogonal in the inner product defined
by A and hence

A(W, W) = A(WP, Wp) + A(WH, Wh).
We shall define B(-, ■) by replacing the A(W¡j, Wh) term in the above equation. To
do this, we first note that by Lemma 3.2 of Part I [4],

(2-4) o\WH\\/2ßnu < Ak(WH,WH) < C\WH\2i/2,dnk
for discrete A-harmonic functions Wh with zero mean value on fifc.   The norm
I ' 11/2,90* is the weighted norm on Hl/2(dük) given by (see [10], [11])

1/2

Mi/2,aru = ([      Í     {W{X^-W{y))2 ds(x) ds(y)+d-1(w,w)dQk)      -
\Jdnk Jdnk        \x - y\ /
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Here, (•, -)ank denotes the L2 inner product on dfifc (the corresponding norm will
be denoted by | • |o,anJ- In turn, we shall replace the norm | • 11/2,an* by a more
computationally convenient norm.

To this purpose, we define the operator / on Sh(dQk) by

(2.5) (/y,$>ant = (V',$')ant    for all $ E Sh(dük),

where the primes denote differentiation with respect to arc length along each side of
dfifc. Now I is a linear operator on Sh(dQk) approximating the boundary operator
-■§¿7, and it can be shown that there are constants c and C, independent of ci and
h, such that

(2-6) c\V\2/2td(ik < (l1/2V, V)dQk + d-'(V, V)dnk < C\V\2/2^k

for all V E Sh(dQk). The following Poincaré inequality holds for all W with zero
mean value on dfifc,

d-l\W\ldUk<cd(lW,W)dnk.
It then follows by expansion in terms of eigenvectors of / that

\W - W\21/2<mk < c(ll'2(W -W),W- W)dQk = c(ll'2W,W)duk,

where W is the mean value of W on dfifc.   Consequently, we may replace (2.4) by

(2.7) c^^WhWh)^ < Ak(WH,WH) < C(l^2WH,WH)ank,

which holds for all discrete A-harmonic functions Wh- Summing the above
inequality gives

(2.8) c{QWH,WH)r < A(Wh,Wh) < C{QWH,WH)r,

where
{QWh:Wh)t = ^ak(ll,2wH,WH)ank-

k

The constants ak are scaling factors. One reasonable choice is to take ak —
(Xk ■+ A§)/2 where Xx and A§ are respectively the largest and smallest eigen-
value of the 2x2 matrix {an(xo)} at some point xo E fifc. By (2.8), the form
(QWh,Wh)t is uniformly equivalent to A(Wh,Wh). Consequently, the form B
defined by

(2.9) B(W,W) = A(Wp,Wp) + (QWh,Wh)t

is uniformly equivalent to A on 5°(fi) x S^(fi). The difficulty with using B as our
preconditioner is that the corresponding algorithm for solving (1.5) requires the
solution of problems of the form: Find V E Sh(T) such that

(2.10) (QV, 4>)T = F(<j>)    for all <p E Sh(T).

It is not easy to solve (2.10); consequently, the choice of B = B will not lead to a
good preconditioner.

Finally, we shall define our preconditioner for A by replacing Q in (2.9) by an
operator Q which is easier to invert. In fact, we define Q from its inverse. Set

(2.11) Q-1=Pm(Q~lQ)Q-\
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where Q is some other positive definite symmetric operator on Sh(T) and Pm is a
polynomial of degree m. For our present discussion, we can think of Q as arbitrary.
Some interesting examples, from a computational point of view, will result from
the preconditioners constructed in Parts I and II. The possible choices for Q will
be considered in more detail in later sections.

The polynomial in (2.11) is defined (complete details are given in Section 3) so
that Q~l is positive definite and Q is uniformly equivalent to Q on Sh(T), i.e.,

(2.12) co(QV,V)r < (QV,V)r < ci(QV,V)r   for all V E Sh(T).
Hence, we define our preconditioner B by

(2.13) B(W, W) = A(Wp, Wp) + (QWH, Wh)t-
An immediate consequence of (2.12) and (2.8) is that B is uniformly equivalent to
A; more precisely, we have the following:

THEOREM. Let B be given by (2.13), where Q, defined by (2.11), satisfies (2.12)
with Co and ci independent of d and h. Then there exist positive constants c and C
independent of d and h such that

cB(W, W) < A(W, W) < CB(W, W)    for all W E S£(fi).
We shall describe a three-step algorithm to compute the solution W = Wp + Wh

of (1.5) (see [4] and [5]). The function Wp extended by zero outside of fifc is a
function in S°(fifc) which satisfies

(2.14) Ak(Wp,$) = G($)    for all $e 5^(fifc).

Thus, for step one, the function Wp on fifc can be obtained by solving the corre-
sponding Dirichlet problem (2.14). Note that the problems on different subdomains
are independent of each other and hence can be solved in parallel.

Now with Wp known, we are left with the problem of finding Wh, the second
step in the algorithm. It is not difficult to see that the boundary values of Wh
satisfy the equation

(2.15) {QWH,9)r = G(9)-A(WP,9)    for all 9 E Sh(T),
where 9 is any extension of 9 in S°(fi). Let us discuss the solution of (2.15) in more
detail.

To solve (2.15), we must apply the polynomial in (2.11). Let Vh satisfy QVh =
QWH, i.e.,

(2.16) (QVh,9)t = G(9)-A(Wp,9)    for all 9 E Sh(T).
By the definition of Q, Wh on T is given by
(2.17) WH = Pm(Q-lQ)VH-

In addition, we must evaluate Q_1Q, i.e., given c e Sh(T) we must find rj =
Q~lQc solving

(2.18) (Qv,0)r = (Qç,9)r    for all 9 E Sh(T).
Accordingly, the computation of Wh on T only requires evaluation of the form
(Qfr)r and the inversion of the {Q-,-)r form. The evaluation of the right-hand
side of (2.18) is discussed in Section 4.
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Once the boundary values of Wh are known, the third step of the algorithm only
requires the computation of the discrete harmonic extension to the interior of the
subdomains. As described in [4], [5], this problem can be reduced to the solution
of independent Dirichlet problems on the subdomains.

Remark 2.1. As will be seen in the following section, the degree of the polynomial
Pm depends upon the relative condition number of the forms Q and Q. Indeed, if
Q and Q satisfy inequalities of the form

(2.19) *o(Qv,v)r<(Qv,v)r<Xi(Qv,v)r   for all v E Sh(T),

then it suffices to choose m proportional to y/Xi/Xo-
Remark 2.2. Other examples of Q have been constructed in our earlier papers.

If Q is chosen to be the identity, then (2.19) holds with Ai/An < c(dh)~1. Choosing
Q corresponding to the boundary form constructed in [5], i.e.,

(2.20) (QWh,Wh)t = Q(WH, Wh),
where Q is defined by (2.14) of [5], the results of [5] imply that (2.19) holds with
Ai/Ao < cd/h. Finally, choosing Q corresponding to the boundary form constructed
in [4], i.e.,

(2.21) (QWh,Wh)t = B(Wh,Wh),
where B is defined by (2.3) of [4], the results of [4] show that (2.19) holds with
Ai/Ao <c(l + \n(d/h)2).

3. The Construction of the Polynomial Pm. In this section we shall con-
struct and analyze the polynomial Pm which appears in (2.11). The ideas involved
here are not new, but we will restate the relevant results and constructions for
completeness.

We first observe that (2.12) is equivalent to

(3.1) c(Q-lV,V)T < «T1^ V)r < CiQ-^Vjr   for all V E Sh(T).

Now the operator Q~1Q is selfadjoint in the inner product given by

[u,v] = {Qu,v)r,

and the change of variable X = Q_1V gives that (3.1) is equivalent to

(3.2) c[X,X] < [Pm(Q-lQ)Q-lQX,X] < C[X,X)   for all X E Sh(T).
A straightforward spectral argument gives that (3.2) holds (with C = 1 + e and
c = I — e) whenever the polynomial Pm satisfies

(3.3) \l-xPm(x)\<e   foralli6[A0,Ai],

where e is any positive constant less than one not depending on d or h, and Ao and
Ai are the constants appearing in (2.19).

We shall define Pm in terms of the Chebyshev polynomials. The Chebyshev
polynomial Tj (y) of degree j is given by

Tj(y) = cos(j arccos(y)).

Define Pm by

(3-4) 1_xpm(x) = pi±iM£ll,
Tm+i(y(0))
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where y is the linear function which takes the interval (Ao, Ai) into ( —1,1), i.e.,

, , _       2 _ Ai + Aq
Ai — Ao       Ai — Ao

Since |Tm+i(2/)| < 1 for y E [—1,1], we have that

1 in- l\m+1

where 7 = Ai/Ao- The second inequality in (3.5) follows from the identity

Tj(y) = \[(y + V?~^îy + (y- y/y^l)3]
and elementary manipulations.

To satisfy (3.3), we must choose m large enough so that

Consequently, it suffices to choose m in proportion to ^7 as 7 becomes large. Note
however, that for any m, there is an e(m, Ai,Ao) < 1 satisfying (3.3). This implies
that Q will always be positive. The following proposition follows immediately.

PROPOSITION 3.1. Let 0 < e < 1 be given. There exists a positive constant Ci
independent of d and h such that if Pm is given by (3.4) and

(i)   ifQ corresponds to the identity operator on Sh(T) andm > Ci(l+(dh)~1^2),
or

(ii)   ifQ is given by (2.20) and m > Ci(l + (d/h)1'2), or
(iii)  ifQ is given by (2.21) and m > Ci(l + \n(d/h)),

then (3.3) holds. Furthermore, (2.12) holds with cq = 1 — e and ci = 1 + e.

Remark 3.1. To use the preconditioner defined by B with a given Q, one needs to
know bounds Ao and Ai of (2.19). Excellent bounds can be obtained in practice by,
for example, applying the power method for eigenvalue estimation. This involves
the repeated evaluation of Q Q, which is an essential ingredient in the polynomial
evaluation (2.11). The cost of this calculation is minor compared to the overall cost
of the algorithm, and no additional coding is necessary.

Remark 3.2. The most straightforward algorithm involves choosing Q to be the
identity. For smooth problems, A1/A0 is not too large (see Example 5 of Section 5),
in which case the degree of Pm grows like (d/i)-1/2. However, this algorithm requires
an excessive number of terms in examples with large jumps in the coefficients across
subregion interfaces. In contrast, if we use (2.21) or (2.20) to define Q, then the
constant Ci appearing in Proposition 3.1 is independent of the jumps in coefficients
as long as the jumps occur at the subdomain boundaries (see Examples 2 and 4 of
Section 5).

Remark 3.3. The coefficients of the polynomial Pm can easily be calculated by us-
ing well-known identities involving Chebyshev polynomials. However, when A1/A0
is large, the computation of Pm(Q Q) directly, using the coefficients of Pm, is
somewhat unstable. We suggest the use of the following two-term recurrence rela-
tion for Rra = Pm(Q~lQ)V:

(i) Define p = ^=^- and a = t-tt-;y 1 r A1+A0 A1+A0 '
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(ii) set wo = 2 and Rç, = aV;
(iii) set wi = (1 - W0PV4)-1 and fii = j£fc\y - ^Q~lQV\,
(iv) for m > 1, set ujm = (1 - <jm_ip2/4)_1 and

Rm = Um(Rm-l ~ OlQ~lQRm-l) + (*0JmV - (wm - l)-Rm-2-

4. Computational Aspects and Generalizations. In this section we shall
consider various computational aspects of the method as well as some extensions
and generalizations. We first describe the computation of the right-hand side of
(2.18) in the special case where the mesh points on dflk are uniformly spaced.
We next give a way of extending the techniques of Section 2 to variable coefficient
problems on certain irregular mesh domains.

Assume first that the nodes on 8Q3 are equally spaced with respect to arc length.
As discussed in Section 2, given a function c E Sh(T), we must be able to compute
the data

(Q^-)r
appearing in (2.18).  By the definition of Q, it obviously suffices to compute the
data

(4.1) (/1/2?,)ani

for each subdomain Q3. We consider first the operator I from which I1/2 is defined.
Let r be the number of nodes on dU3 and {$p, p = 1,... , r) denote the nodal basis
for Sh(dUj), where the nodes are listed in, for example, clockwise order. Given the
nodal values

fwi\
W = ;

\wrJ
of a function W E Sh(dQj), the nodal values

ivi\

\vrJ
of the function V = IW satisfy

Mv — Nw,
where

(4.2) Npq = {l<ï>p,$q)dnk    and   Mpq = ($p,$,)ant.

In this case of equally spaced nodes, the matrices N and M are simultaneously
diagonalizable. The eigenvectors are

/ exp(^) \

(4-3) *r

exp( 2jrt2j^

for p — 1,

Vexp( 2-^Z)J
Here i is the square root of minus one. The corresponding eigenvalues are given by

4 + .-f-?=))J\M _
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and

j?-(>->«.(»=))/*.
It obviously follows that the eigenvalues for the matrix

(4.4) Lpq = (lll2%,$q)dÇlk

are given by

(4.5) XLp =   /(2-2cos(2^))(4 + 2cos(2f^

Thus one can compute (4.1) by first expanding the nodal values in the basis of
eigenvectors (4.3), multiplying by the eigenvalues (4.5) and then computing the
nodal values of the resulting expansion. Note that the transformation from nodal
values to coordinates in the eigenvector basis (and vice versa) can be computed in
0(r In r) operations by use of the fast Fourier transform.

Remark 4.1. From the above discussion we see that the amount of work required
to evaluate (Qç, -)7 is 0(\n(d/h)/dh). For reasonable domain subdivision strategies,
the work involved in evaluating Q_1 is also 0(\n(d/h)/dh). Thus, the amount of
work required for evaluating Q_1 is 0(mln(d/h)/dh). This quantity is usually
bounded by Ch~2 (see Proposition 3.1).

We next consider the extension of the techniques of Section 2 to the case where
the nodes on dUk are not uniformly spaced (with respect to arc length). Assume
that there are r nodes on dUk. Let .ßfc be a rectangular mesh with a boundary
which has an equally spaced mesh of r nodes. There exists a piecewise linear map
Tfc : dfifc i-> dRk which takes the mesh of dUk onto that of dRk. We then define

(4.6) (¡l'2V,V)dnk = (ll/2V,V)dRk    for all V E Sh(dflk),

where V — VoTk. The form Q is defined by

(4.7) (QV,V)r = J2^(ï1/2V,V)ank.
k

All of the constructions of Section 2 now go through. Indeed, we decompose W =
Wp + WH and define B by (2.13), (2.11) using Q given by (4.7). The algorithm for
computing the solution of (1.5) is completely analogous to that described in Section
2. By (4.6), the evaluation of (Z1/2?, -)anfc may be implemented exactly as described
in the first part of this section, i.e., we use the procedure given immediately after

(4-5).
Finally, we note that in order to get a preconditioner for A, we can apply our

techniques to any other comparable form A. The form A is chosen for computational
convenience. For example, A can be chosen so that it can be 'fast solved' even when
A corresponds to a variable coefficient operator on a nonuniform mesh as described
in Section 4 of [4],

5. Numerical Experiments. In this section we shall present some results of
numerical experiments which illustrate the convergence properties of the precondi-
tioning methods of this paper. We use (2.13) as a preconditioner in conjunction with
the conjugate gradient method.  To help illustrate the differences in performance
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between the preconditioners of [4], [5] and that of this paper, we will consider the
same basic set of examples as those given in Parts I and II. We shall report many
of the same parameters as given in Parts I and II. We shall for example, compute
the condition number K of the preconditioned system**. In some examples, we
shall also report n, the number of iterations required to reduce the matrix norm
(Ax ■ x)1/2 of the error En = U — Un by a specific factor. Here U is a randomly
generated solution of the matrix equations normalized so that -1 < U < 1 and
Un is the approximation to U obtained using n steps of the iterative algorithm.
In addition, we shall include spectral bounds K^ for the boundary operator Q Q
and the degree m of the polynomial Pm.

The examples were chosen to illustrate the effectiveness of the algorithm on
problems with both smooth and discontinuous coefficients on domains with different
geometries. In all of these examples, subspaces 5°(fi) of piecewise linear functions
defined on a quasi-uniform mesh of size h were used and the algorithm was applied to
solve the finite element equations approximating the solution of an elliptic problem
of the form (1.1). The procedure discussed in Section 4 of Part I for choosing
the coefficients of the preconditioning form and solving the related subproblems
was used throughout this section. In all examples, estimates for the largest and
smallest eigenvalue of Q~lQ were computed by the power method. These estimates
were used for Ao and Ai in (2.19). The degree m of the polynomial Pm was usually
taken to be the greatest integer less than or equal to 1 + y/Kl where Kb = yAi/Ao.

Figure 5.1
Subdivision of the square.

Example 1. For our first example we take L = -A, the Laplace operator (i.e.,
an = 022 = 1 and ai2 = a2i = 0), fi the unit square and a regular rectangular
mesh of size h. Note that, although in this very simple case the resulting equations
may be solved rapidly on a serial machine by a variety of 'fast' methods, the algo-
rithms of Part I and II would be particularly appealing for a machine with parallel
architecture. We will also use this example as a benchmark for the more compli-
cated examples to follow. We subdivide the domain fi into sixteen subregions as
indicated in Figure 5.1.

Table 5.1 illustrates the iterative reduction rates for Example 1 when h = 1/32.
The largest and smallest eigenvalues for Q~XQ were .36 and 1.3, respectively, and m
was taken to be equal to 2. The table lists the total reduction and average reduction

"The condition number K is defined to be ßxjßa where ßo and ß\ are defined to be, respec-
tively, the maximum and minimum constants satisfying (1.6).
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rate as a function of the number of iterations in the matrix norm (Ax-x)1/2 and the
maximum norm. These reductions are normalized so that the initial error is unity.
We see, for example, that a reduction of .0001 in the A-norm (resp. maximum
norm) requires only 7 (resp. 9) iterations.

TABLE 5.1
Iterative convergence for Example 1.

Iteration A-error
A-error
Average

Reduction Max-error
Max-error
Average

Reduction
1
2
3
4
5
6
7
8
9
10
11

1.7 x
2.9 x
1.5 x
3.5 x
8.0 x
2.9 x
8.9 x
3.9 x
7.9 x
1.7 x
5.6 x

10-1
lO"2
io-2
10~3
10"4
10"4
IO"5
10~5
10"6
10~6
IO"7

.17

.17

.24

.24

.24

.26

.26

.28

.27

.27

.27

7.8 x
3.2 x
1.5 x
2.7 x
7.7 x
2.7 x
1.3 x
4.9 x
6.1 x
1.6 x
7.0 x

io-1
10"1
IO" !
10"2
IO"3
IO"3
10~3
10"4
IO-5
IO-5
10"6

.78

.57

.54

.40

.38

.37

.39

.39

.34

.33

.34

To more fully illustrate the convergence behavior of the method on this prob-
lem, we consider Table 5.2, which gives the condition number and theoretical reduc-
tion*** for Example 1 as a function of the mesh size h. We note that the theoretical
reduction gives a pessimistic bound on the worst case convergence in the A-norm.
For example, the actual reduction rate given in Table 5.1 for 11 iterations was .27,
which is considerably better than the theoretical rate of .32 given in Table 5.2 for
h = 1/32.

TABLE 5.2
Convergence for Example 1.

1/8
1/16
1/32
1/64
1/128

Kb

1.8
2.6
3.6
5.0
6.2

m K
2.3
3.0
3.7
3.2
3.5

.21

.27

.32

.28

.30

6
7
7
6
6

In the next table, we consider the effect that the degree of the polynomial Pm
has on the rate of convergence of the preconditioned algorithm. Table 5.3 gives the
number of iterations n required to reduce the A-norm error by .0001 and the ob-
served average reduction (in the A-norm) per iteration as a function of m. Clearly,
as m tends to infinity, the operator Q tends to Q. Table 5.3 suggests that the
methods converge rapidly, even for small values of m, and shows that very little

***It is well known (cf. [12]) that the error for preconditioned conjugate gradient iter-
ation satisfies (AEn ■ En) < 4p2n(AEo ■ Eo), where the reduction factor p is given by p =
(y/K-l)/(y/K + l).
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Figure 5.2
77ie coefficients for Example 2.

improvement (in the convergence rate of the preconditioned algorithm) results from
a more accurate approximation of Q^1. The results given in the table correspond
to h = 1/32; similar results were obtained for other values of h.

TABLE 5.3
Convergence of the preconditioned algorithm

as a function of m for Example 1.

m K

7.5
3.7
2.8
2.9
2.8

Observed
Reduction

.33

.27

.21

.21

.21

9
7
6
6
6

Example 2. In this example, fi is the unit square and the subdomains were taken
as in Example 1 (see Figure 5.1). The operator L is taken to have coefficients which
have discontinuities across the subdomain boundaries. More specifically, we take
an = a22 = P and ai2 = a2i — 0, where p is the randomly chosen piecewise
constant function on the subdomains as indicated in Figure 5.2. Table 5.4 gives the
results for the condition number of the preconditioned system and the theoretical
reduction factors for this example as a function of h.

TABLE 5.4
Convergence results for Example 2.

1/8
1/16
1/32
1/64
1/128

Kb

1.9
2.7
3.9
5.0
6.4

m K

2.3
3.1
3.8
3.4
3.8

.21

.27

.32

.29

.32

Note that the results differ only slightly from those given for the Laplacian
in Table 5.2.   We remark that similar results were obtained in tests with other
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randomly chosen coefficients. This indicates that the iterative method of this paper
will be extremely effective on interface problems, even when the coefficients change
drastically across interfaces, as long as the subdomain boundaries align with the
interface boundaries.

Figure 5.3
The irregular geometry of Example 3.

Example 3. In this example, we consider an interface problem where the interface
separates two domains with irregular geometries. The domain fi is again the unit
square subdivided into sixteen subdomains as illustrated in Figure 5.3. The space
S°(fi) is taken to be the piecewise linear functions defined on the irregular mesh
roughly exemplified by the lighter lines. Again the coefficients of L are piecewise
constant functions defined by on = 022 = p and 012 = a2i = 0, where p is given
by Figure 5.4.

Figure 5.4
The coefficients of Example 3.

Results for this problem are given in Table 5.5. A comparison with Table 5.2 in-
dicates that the irregular geometry of this example increased the condition number
only by at most a factor of three. This results in less than a factor of two increase
in the number of iterations required for a given accuracy. Here again, m was equal
to two or three.
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TABLE  5.5
Convergence results for Example 3.

Kb K Observed
Reduction

1/8
1/16
1/32
1/64

1.8
2.6
3.6
4.9

4.9
7.6
9.9
8.9

.38

.47

.52

.50

.29

.40

.45

.42

9
11
12
11

Figure 5.5
The mesh and subdomain structure for Example 4.

Example 4. In this example, we illustrate the present algorithm applied to the
solution of a problem on a polygonal domain with nonconvex corners. The mesh
and subdomain structure were chosen as illustrated in Figure 5.5. Note the mild
refinement near the nonconvex corners of the domain. For the operator L we use
the Laplacian as in Example 1. The results for this case are given in Table 5.6.

TABLE 5.6
Convergence results for Example 4.

Number of
Unknowns

405
1705
6993

Kb

2.8
3.8
5.2

K

4.4
5.8
5.3

.35

.41

.40

Observed
Reduction

.35

.40

.37

9
10
10

Example 5. As a final example, we illustrate the algorithm described in Remark
3.2, i.e., we consider the case where Q = I. We consider the problem and domain
decomposition of Example 2. Table 5.7 gives the condition number Kb of Q, n,
K, and the observed reduction in the A-norm as a function of h. In this case, we
increased m as suggested by Proposition 3.1 (i).
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TABLE  5.7
Convergence results for Example 5.

h Kb m K Observed
Reduction

1/8
1/16
1/32
1/64

11.5
25
52
105

4
5
8
11

2.4
3.2
3.3
4.3

.21

.25

.31

.31
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