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THE CONSTRUCTION OF SOLVABLE POLYNOMIALS

HAROLD M. EDWARDS

Abstract. Although Leopold Kronecker’s 1853 paper “On equations that
are algebraically solvable” is famous for containing his enunciation of the
Kronecker-Weber theorem, its main theorem is an altogether different one,
a theorem that reduces the problem of constructing solvable polynomials of
prime degree µ to the problem of constructing cyclic polynomials of degree
µ − 1. Kronecker’s statement of the theorem is sketchy, and he gives no proof
at all. There seem to have been very few later treatments of the theorem, none
of them very clear and none more recent than 1924. A corrected version and
a full proof of the theorem are given. The main technique is a constructive
version of Galois theory close to Galois’s own.

1. Introduction

Leopold Kronecker’s 1853 communication [11] to the Berlin Academy—his first
publication1 except for a note [10] he wrote as a student—is famous because it
contains the assertion2 that every abelian extension of the rationals is cyclotomic,
the statement now known as the Kronecker-Weber theorem. The main theorem
of the paper, however, is altogether different and has been largely3 overlooked. It
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1For interesting material on the pre-history of Kronecker’s paper, see the letters from Kronecker

to Dirichlet published in [16].
2Many authors describe it as a “conjecture”, probably because no proof is given and because

it seems so improbable that Kronecker would have been able to prove it so early in the devel-
opment of Galois theory. However, Kronecker calls it a “result” of theorems that he has stated
in the paper and says it is true in full generality. Since he regarded the paper as a “preliminary
communication”—he calls it a “vorläufige Mitteilung” on the last line of page 8 in volume 4 of
his Werke—it is reasonable that he would leave out the proof. The mystery is that he never did
give a proof and seems not even to have reacted when Heinrich Weber published [17] his proof 33
years later. Kronecker’s admission that he had achieved a “full solution” of his main problem only
for µ �≡ 1 mod 8 implies that he was confident both of the Kronecker-Weber theorem and of The-
orem 2.1 below, except for the special case of the Kronecker-Weber theorem in which the degree
is 2k for k > 2, which he expected he would soon prove. Some material on the Kronecker-Weber

theorem may very well have been included among the many “wholly or partially completed” un-
published papers that Kurt Hensel, his scientific heir, mentions in the introduction to the first
volume of Kronecker’s Werke. However, Hensel never fulfilled his promise to publish these papers,
and they were lost in an accidental explosion in 1945 [3].

3I am aware of only the treatments by Weber [17], [18], Wiman [19], Netto [14], [15], and
Fricke [8], the most recent of which was published in 1924. Moreover, I find them all difficult to
understand, and none of them seems to me to cover the case in which, in the notation used below,
ν < µ − 1. (As I explain below, I also find Kronecker’s treatment incorrect in this case.)
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398 HAROLD M. EDWARDS

reduces the problem of constructing solvable polynomials of prime degree µ to the
problem of constructing cyclic polynomials of degree µ − 1.

A few decades earlier, Niels Henrik Abel had proved his famous result that some
quintic equations cannot be solved by radicals. As Kronecker points out in his
introduction, however, Abel carried his study of solutions by radicals much further
in [1], although he says this brief note—it is simply a long formula which August
Crelle excerpted from one of Abel’s letters and published in his Journal für Math-
ematik after Abel’s death—was “little studied and quite specialized”. Abel told
Crelle that the formula gives the solution of any quintic polynomial with rational
coefficients that can be solved by radicals, but he gave no justification of this claim,
let alone a proof. Kronecker states emphatically that he considers this direction
of research—finding solutions of polynomials that can be solved by radicals—to be
much more important and valuable than the research of Abel and Galois into find-
ing criteria that determine whether a given polynomial can be solved by radicals.
He points out, for example, that these criteria leave open the possibility that there
are no polynomials of higher degree that are solvable by radicals other than very
trivial examples.

Kronecker’s goal was to generalize Abel’s formula not only from degree 5 to
arbitrary prime degree but also from polynomials with rational coefficients to poly-
nomials with coefficients in any algebraic field. Thus, his goal was to give a formula
that represented the most general quantity involving radicals that was a root of a
polynomial of prime degree µ with coefficients in a given field. Or, in the terms of
modern field theory: Given a field, find an extension of it by a succession of adjunc-
tions of radicals that contains a root of an irreducible polynomial of degree µ with
coefficients in the given field, and prove that the construction is general enough
that every irreducible polynomial of degree µ with coefficients in that field has—
provided it can be solved by radicals—a root in a field constructed in the specified
way.

The four quantities a, a1, a2, a3 that appear in Abel’s formula in [1] are clearly
the roots of an equation of degree 4 with rational coefficients. In a similar way,
Kronecker’s generalization to degree µ makes use of µ− 1 auxiliary quantities that
are the roots of a polynomial of degree µ − 1, not of an arbitrary polynomial of
degree µ − 1 but of one that is cyclic in the sense that its Galois group consists
simply of the µ − 1 cyclic permutations of its roots. That is, Kronecker gives an
algorithm that accepts as input a cyclic polynomial of degree µ− 1 and constructs
an extension by radicals; he claims that the extension that is constructed contains
a root of an irreducible polynomial of degree µ and that any solvable irreducible
polynomial of degree µ has a root in a field obtained by the construction when a
suitable input is used. He gives, however, no proof at all.

Terse as Kronecker’s paper is, his method of constructing roots of solvable poly-
nomials of prime degree with coefficients in a given algebraic field, though unproved,
is rather clearly indicated except for the question of the possible reducibility of the
auxiliary cyclic polynomial of degree µ−1 used in the construction. In other words,
he leaves unanswered the question of whether the roots r1, r2, . . . , rµ−1 in cyclic
order are distinct or, instead, consist of just ν distinct roots r1, r2, . . . , rν for
some factor ν of µ − 1, after which they repeat ri+ν = ri. Kronecker’s algorithm
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constructs a root when ν = µ − 1, but the construction of the most general root4

of a solvable equation of degree µ requires that the case ν < µ − 1 be included.
Fortunately, the needed modification of the algorithm is not hard to find.

Kronecker’s construction is Theorem 2.1 below. The most important part of
the theorem is of course the statement that every solvable polynomial has a root
in a field that is constructed in this way. A formula for the most general root
of a polynomial of degree µ in a field obtained from the construction is given in
Section 8; it agrees with Kronecker’s formula when ν = µ − 1. Section 9 contains
some remarks about the relation of this theorem to Kronecker’s Jugendtraum.

2. The theorem

Kronecker’s point of departure is a formula of Abel that describes the roots of a
solvable polynomial of prime degree µ in terms of Lagrange resolvents. A Lagrange
resolvent of a polynomial g(x) of degree µ is an algebraic quantity5 of the form
αq1 +α2q2 + · · ·+αµ−1qµ−1 +qµ, where α �= 1 is a µth root of unity and q1, q2, . . . ,
qµ are the roots of g(x). The use of Lagrange resolvents gives a uniform approach
to the solution of equations of degree less than 5, but for larger degrees runs into
difficulties because there are too many Lagrange resolvents: there are µ! of them,
one for each ordering of the qi. However, Galois’s theorem characterizing solvable
polynomials of prime degree (see Section 4 below) singles out a preferred set of just
µ(µ − 1) Lagrange resolvents in the case of a solvable g(x) of prime degree.

The analysis of the µ(µ− 1) Lagrange resolvents in this case is further aided by
the fact that they have only µ − 1 distinct µth powers. These are the quantities
Kronecker calls R1, R2, . . . , Rµ−1. Galois had already observed (see his proof of
his Proposition VII) that they are the roots of a cyclic polynomial, which means
that when the Rj are put in a suitable order—if γ is a primitive root the6 order

Rj = (αqγj + α2q2γj + · · · + αµ−1q(µ−1)γj + qµ)µ

has this property—they are permuted cyclically by the Galois group.7 In particular,
the Rj can be expressed as radicals. If one could determine not just the Rj but
their specific µth roots sj = αqγj + α2q2γj + · · ·+ αµ−1q(µ−1)γj + qµ, the formula8

qµ = p0+s1+s2+···+sµ−1
µ , where p0 is the quantity q1 + q2 + · · · + qµ in K (any

symmetric function of the roots is in K), would enable one to express a root of
g(x) algebraically. More generally, p0 + s1 + s2 + · · · + sµ−1 would be the root of
an irreducible polynomial of degree µ for any p0 in K.

Kronecker’s stated objective was to find the most general set of algebraic quan-
tities s1, s2, . . . , sµ−1 for which p0 + s1 + s2 + · · · + sµ−1 is a root of a solvable

4The solution of the equation x5 = 2 by Kronecker’s method uses ν = 1 and the solution of the
equation x5 + 5x3 + 5x + 14 = 0 in Section 2 uses ν = 2. I am unable to reconcile this fact with
Kronecker’s statement that his formula III, which works only when ν = µ − 1, covers all solvable
polynomials. Similarly, it appears to me that Abel’s formula does not provide roots of these two
equations, which seems to belie his claim.

5Following Kronecker, I refer to elements of the base field and its algebraic extensions as
“quantities”.

6To say γ is a primitive root mod µ means that γi ≡ 1 mod µ if and only if i ≡ 0 mod (µ− 1).
7The Galois group may not act transitively on the Rj (for example, some Rj may be zero), so

Kronecker’s statement that
∏

(x − Rj) is “abelian” is erroneous, because he goes on to define an
abelian equation as one whose roots x1, x2, . . . , xn can be expressed iteratively in terms of any
one of them by a formula of the form xi+1 = θ(xi).

8This formula follows from the fact that
∑µ

k=1 αbk is µ when b ≡ 0 mod µ, 0 otherwise.
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irreducible polynomial of degree µ with coefficients in K whenever p0 is in K. Thus,
he sought to give a formula for the most general algebraic quantity that can be a
root of an irreducible solvable polynomial of prime degree µ. Otherwise stated, he
wanted not only to construct a field that would contain a root of a given polynomial
of this type, but also, within that field, he wanted to find all quantities that were
roots of such polynomials.

His enigmatic9 answer is his formula

Ri = F (ri)µ · rγ−1
i r

γ−2
i+1 r

γ−3
i+2 · · · ri+µ−2(2.1)

(formula III in his paper) in which γ−i is the smallest positive solution of γ−iγ
i ≡

1 mod µ and F (x) is a polynomial. I have found that to cover cases in which there
are fewer than µ − 1 distinct roots ri, this formula needs to be restated as

Ri = F (ri)µ · rδν−1

i+1 rδν−2

i+2 · · · ri+ν ,(2.2)

where ν is a factor of µ − 1, where the ri are the roots of an irreducible cyclic
polynomial of degree ν, in their cyclic order, and δ is an integer whose order mod
µ is ν. When ν = µ − 1, the two formulas are essentially the same.10

Theorem 2.1. Let µ be a prime number and, for some factor ν of µ − 1, let f(x)
be an irreducible cyclic polynomial of degree ν with coefficients in an algebraic11

field K. Let δ be an integer whose order mod µ is ν, chosen in such a way12 that
δν �≡ 1 mod µ2. Finally, let r1, r2, . . . , rν be the roots of f(x) in a splitting field,
listed in cyclic order. The polynomial defined by

G(x) =
ν∏

j=1

(xµ − rδν−1

j+1 rδν−2

j+2 · · · rj+ν)(2.3)

(where ri is defined for all positive integers i by the condition that ri = rj when
i ≡ j mod ν) has coefficients in K because its coefficients are polynomials in r1,
r2, . . . , rν with coefficients in K that are unchanged by cyclic permutations of
the ri. If G(x) is irreducible13 over K, then adjunction of one root w of G(x) to K
gives an extension of K of degree µν which contains a root of a solvable irreducible
polynomial of degree µ with coefficients in K.

Conversely, any solvable irreducible polynomial of degree µ with coefficients in
K has a root in a field that is constructed in this way.

Example 2.2. Let µ = 5, ν = 2, δ = 4, and let r1 and r2 be the roots 1 ±
√

2 of
f(x) = x2 − 2x − 1. Then G(x) = (x5 − r4

1r2)(x5 − r4
2r1); because r1r2 = −1 and

9My paper [5] shows that as early as 1985 I was trying to understand formula (2.1).
10When ν = µ − 1 and δ = γ in (2.2), the ratio of r

γ−1
i r

γ−2
i+1 r

γ−3
i+2 · · · ri+µ−2 to

rδν−1

i rδν−2

i+1 · · · ri+ν−1 is a product of powers of the ri in which all exponents are divisible by

µ, so it can be absorbed by the coefficient F (ri)
µ.

11As defined in [6], an algebraic field is an algebraic extension of finite degree of the field of
rational functions in a finite number of indeterminates with integer coefficients. In particular, an
algebraic number field is an algebraic field in which there are no indeterminates.

12To say that the order of δ mod µ is ν means that δi ≡ 1 mod µ if and only if i ≡ 0 mod ν.
If δ has order ν mod µ and δν ≡ 1 mod µ2, then (δ + µ)ν = δν + (ν − 1)δν−1µ + · · · �≡ 1 mod µ2,
so if δ does not have the required property δ + µ does.

13Kronecker does not impose this condition, but some such condition is necessary, as the case
µ = 3, r1 =

√
2, r2 = −

√
2 shows. In this case G(x) = (x3 − (

√
2)2(−

√
2))(x3 + (−

√
2)2(

√
2)) =

x6 − 8 = (x2 − 2)(x4 + 2x2 + 4). The degree of the splitting field of this G(x) is not divisible by
3, so it cannot contain a root of an irreducible cubic polynomial.
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r3
1 +r3

2 = 14, one easily finds G(x) = x10 +14x5−1. This polynomial is irreducible,
and the theorem implies that adjunction of a root w of it to the field of rational
numbers gives a field which contains quantities that are roots of irreducible quintics.
As will be seen below, there is an automorphism of order ν = 2 of this field, and
the roots of quintic polynomials are the quantities, other than constants, that are
unmoved by this automorphism. The automorphism carries w �→ − 1

w , so w − 1
w is

the root of a quintic. Paper-and-pencil computation in the field Q(w) can be used

to find that it is in fact a root of x5 + 5x3 + 5x + 14. Because w = 5

√
−(1 +

√
2)3,

this is a solution by radicals. The final statement of the theorem—the one that
really counts—is that any irreducible polynomial of prime degree µ that can be
solved by radicals has a root in a field of this form for a suitable choice of ν, δ, and
r1, r2, . . . , rν .

The proof of Theorem 2.1 will consist of an analysis, showing that a solvable
irreducible polynomial of degree µ has a root in a field constructed in this way
(Section 5), and a synthesis, showing that any field constructed in this way contains
quantities that are roots of irreducible polynomials of degree µ (Section 7). (Such a
polynomial is ipso facto solvable, because w can be expressed in terms of radicals.)
Section 8 fulfills Kronecker’s goal of finding all roots of irreducible polynomials of
degree µ in a field constructed by the method of Theorem 2.1.

3. Constructive Galois theory

The truly “fundamental theorem of algebra” has nothing to do with complex
numbers; it states simply that there is a valid way to compute with the roots of a
given polynomial with rational coefficients (see [6] and [7]). In other words, the truly
fundamental theorem is the construction of a splitting field of a given polynomial
with rational coefficients.

An (algebraic) extension of the rational field Q—the splitting field of a poly-
nomial with rational coefficients is a particular case of such an extension—is de-
scribed most concretely (see [6, p. 51]) by adjunction relations of the form
φ1(q1) = 0, φ2(q2, q1) = 0, φ3(q3, q2, q1) = 0, . . . , φn(qn, qn−1, . . . , q2, q1) = 0, in
which each polynomial φj(x, qj−1, qj−2, . . . , q1) is monic in x with coefficients in
Q(qj−1, qj−2, . . . , q1), the field obtained by using the preceding relations to adjoin
q1, q2, . . . , qj−1 to the rationals, and is irreducible over that field. If νj is the degree
of φj , the jth relation can be used to replace q

νj

j in any polynomial in q1, q2, . . . ,
qn with q

νj

j − φj(qj , qj−1, . . . , q1), which is an “equal” polynomial whose degree in
qj is less than νj by virtue of the assumption that φj(x, qj−1, qj−2, . . . , q1) is monic
and of degree νj in x. Repeated replacements of this sort can be used to show that
every polynomial in q1, q2, . . . , qn is “equal” to one in which the degree of qj is
less than νj for each j. (First reduce the degree in qn, then reduce the degree in
qn−1 without increasing the degree in qn, and so forth.) Such polynomials can be
added in the usual way, and multiplied by multiplying in the usual way and using
the adjunction relations to reduce the degrees. The assumption that the polyno-
mials φi are irreducible over their respective fields of coefficients guarantees that
computations according to these rules describe a field. It is an algebraic extension
of Q of degree ν1ν2 · · · νn, because that is the dimension of the vector space (over
Q) of polynomials in q1, q2, . . . , qn with coefficients in Q in which the degree in qj

is less than νj for each j.
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Such adjunction relations can be used to describe any algebraic extension (of
finite degree) of Q. (In fact, by the theorem of the primitive element, every exten-
sion of Q can be described by just one adjunction of this type.) The extension is
normal if the number of its automorphisms is equal to the degree of the exten-
sion. Every extension is a subextension of a normal extension; for example, one
can find a primitive element of the extension and adjoin all roots of the irreducible
polynomial of which it is a root.

This method of describing a normal extension field Q(q1, q2, . . . , qn) by adjunc-
tion relations is very close to Galois’s own conception of his theory. Adjunction of
each qj extends the field of “known” quantities. At the outset, only quantities in
Q are known. When q1 is adjoined, quantities in the field extension Q(q1) become
known (these are the quantities rationally expressible in terms of q1) and the Galois
group of the remaining field extension from Q(q1) to Q(q1, q2, . . . , qn) is reduced to
a subgroup of index ν1, namely, the subgroup of those permutations that leave q1

fixed. Similarly, at the jth step, the field of known quantities Q(q1, q2, . . . , qj−1) of
degree ν1ν2 · · · νj−1 over Q is extended to a field Q(q1, q2, . . . , qj) whose degree over
Q is νj times as great, and the Galois group (the group of automorphisms of the
field that leave the known quantities fixed) is reduced to a subgroup of index νj .
At the last step, the Galois group is reduced to the identity alone and all quantities
in the field are “known”.

An algebraic number field is an extension of Q that can be described in this
way. More generally, an algebraic field (see [6, p. 47]) is an extension of the
field of rational functions, in one or more indeterminates, that can be described in
a similar way by adjunction relations. (Galois allowed for such fields in the sense
that some of his “known” quantities could be indeterminates.) Theorem 2.1 applies,
as Kronecker intended, to arbitrary algebraic fields K.

4. The action of the Galois group on the Lagrange resolvents

Galois proved in [9, Proposition VII] that a polynomial g(x) of prime degree µ
with coefficients in an algebraic field K is solvable if and only if its roots q1, q2,
. . . , qµ can be listed in such a way that every permutation of them that is effected
by its Galois group has the form qi �→ qai+b for some integers a and b. (Here qi is
of course defined for all integer values of i by the condition that qi = qj whenever
i ≡ j mod µ. Because qi �→ qai+b is a permutation, a must be nonzero mod µ.)

The Lagrange resolvents of g(x) lie in a (normally) larger field than the splitting
field of g(x) over K, namely, the field Ω obtained by adjoining a µth root of unity
α �= 1 to that splitting field. Galois’s theorem shows that a solvable equation of
prime degree µ has µ(µ − 1) special Lagrange resolvents (they are quantities in
Ω), namely, sa,b =

∑µ
k=1 αkqak+b in which a = 1, 2, . . . , µ − 1 and b = 1, 2, . . . ,

µ. In what follows, only these µ(µ − 1) quantities (they need not be distinct) will
be called Lagrange resolvents of g(x). They are independent of the way in which
the roots q1, q2, . . . , qµ are listed, provided they are listed in such a way that the
permutations in the Galois group of g(x) all have the form qi �→ qai+b.

The polynomial
∏

(x−sa,b) is
∏µ−1

a=1(xµ−sµ
a,0) because xµ−sµ =

∏µ
j=1(x−αjs)

and sa,b =
∑µ

k=1 αkqak+b =
∑µ

l=1 αa−1(l−b)ql = α−a−1b
∑

l αa−1lql = α−a−1bsa,0

(where a−1 denotes an integer that is reciprocal to a mod µ). It is convenient to
reorder the factors of

∏
(xµ − sµ

a,0) by setting si = sγi,0 for some primitive root
γ mod µ, which also serves to define si for all i in such a way that si = sj whenever
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i ≡ j mod (µ − 1). Each Lagrange resolvent can be written in the form αjsi and
the polynomial

∏
(x − sa,b) takes the form

∏µ−1
i=1 (xµ − sµ

i ), or, in the notation of
Section 2, the form

∏µ−1
i=1 (xµ − Ri).

Proposition 4.1. Given an irreducible solvable polynomial g(x) of prime degree µ
with coefficients in an algebraic field K, let Ω be the field obtained by adjoining
a µth root of unity α �= 1 to the splitting field of g(x). The Galois group of Ω
over K has order µνλ, where ν and λ are divisors of µ − 1. It is generated by
automorphisms σ, τ , and η, of order µ, ν, and λ, respectively, that satisfy the
relations ησ = ση, ητ = τη, and τσ = σδτ , where δ is an integer whose order mod
µ is ν. Specifically, as permutations of the Lagrange resolvents, these generators
can be taken to be σ : αjsi �→ αj+γ−i

si, τ : αjsi �→ αjsi+κ and η : αjsi �→ αεjsi,
where γ is the primitive root mod µ used in the definition of the si, κ = (µ− 1)/ν,
and ε is a number whose order mod µ is λ. (With these definitions, δ ≡ γκ mod µ.)

Proof. The formula µqk = p0 +
∑µ−1

i=1 α−kγ−i

si, where p0 = q1 + q2 + · · · + qµ is
in K, shows that the splitting field of g(x) is contained in the field obtained by
adjoining α, s1, s2, . . . , sµ−1 to K. Since the qi are not in K, at least one si is
nonzero, so α = αsi/si is a quotient of Lagrange resolvents, which implies that all
of Ω lies in the field obtained by adjoining the Lagrange resolvents to K. In other
words, Ω is the splitting field of the polynomial

∏µ−1
i=1 (xµ −Ri) with coefficients in

K of which the Lagrange resolvents are the roots. In particular, the Galois group
of Ω over K can be described as a group of permutations of the Lagrange resolvents
αjsi.

Let G be the Galois group of Ω over K and let G0 be the subgroup containing
the automorphisms that leave α fixed. In other words, G0 is the subgroup to which
G is reduced by the adjunction of α.

The Galois group of g(x) over K contains an element of order µ because it is
a subgroup of the group of µ(µ − 1) permutations of the form qi �→ qai+b that
acts transitively on the qi. The elements of order µ necessarily act on the roots as
qi �→ qi+b, where b �≡ 0 mod µ, and each such permutation is a power of any other.
Therefore, the Galois group of g(x) over K contains an element of order µ that
carries qi �→ qi−1. Because Ω is a normal extension of the splitting field of g(x),
this automorphism of the splitting field of g(x) over K extends to an automorphism
of Ω over K. This extension, which is in G, must be in G0, because its action on
the µ − 1 powers of α other than 1 partitions them into orbits whose lengths must
divide µ, so the orbits must all be of length one.

In short, G0 contains an element of order µ that carries qi �→ qi−1, call it σ. It
carries αjsi = αj

∑µ
k=1 αkskγi to αj

∑µ
k=1 αkskγi−1 = αjsγi,−1 = αjαγ−i

sγi,0 =
αj+γ−i

si, which is the formula in the statement of the theorem. (It was shown
above that sa,b = α−a−1bsa,0.)

By elementary group theory, the group of permutations qi �→ qai+b has just one
subgroup of order µν for each factor ν of µ− 1, namely, the subgroup generated by
σ : qi �→ qi−1 and τ : qi �→ qγκi, where κ = (µ− 1)/ν. Therefore, G0 is generated by
σ and the automorphism τ of Ω that is determined by τ : α �→ α and τ : qi �→ qiγκ ,
where κ is determined in this way. Since the action of τ on the Lagrange resolvents is
αjsi �→ αj

∑
αkqkγiγκ = αjsi+κ, this proves that G0 is the group of automorphisms

of Ω over K generated by the automorphisms σ and τ described in the proposition.
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Lagrange resolvents αjsi and αlsk that are nonzero are equal only if they are
identical, which is to say only if j ≡ l mod µ and i ≡ k mod (µ− 1), as can be seen
in the following way. Application of σ to an equation αjsi = αlsk gives αγ−i

αjsi =
αγ−k

αlsk. Provided αjsi = αlsk is nonzero, the new equation can be divided by
the original equation to find αγ−i

= αγ−k

, which implies γ−i ≡ γ−k mod µ and
i ≡ k mod (µ − 1). Thus, si = sk and αj = αl, which implies j ≡ l mod µ, as was
to be shown.

An element of G carries α �→ αε and qi �→ qci+d for some integers ε, c, and d,
where c �≡ 0 mod µ. It then carries αjsi to

αεj

µ∑
k=1

αεkqckγi+d = αεj

µ∑
l=1

αlqε−1clγi+d = αεj

µ∑
l=1

αlqlγi+λ+d

when λ satisfies ε−1c ≡ γλ mod µ. This is αεjsγi+λ,d = αεjα−dγ−(i+λ)
si+λ. An

element of G that leaves si unchanged for one value of i for which si �= 0 then satisfies
α−dγ−(i+λ)

si+λ = si, so both d ≡ 0 mod µ and λ ≡ 0 mod (µ − 1), which implies
that the element leaves si fixed for every i. Therefore, by Galois’s fundamental
theorem, the adjunction of one nonzero si to K gives a field K(s) that includes all
of the Lagrange resolvents αjsi in which j = 0. (As was noted above, at least one
of s1, s2, . . . , sµ−1 must be nonzero because s1 + s2 + · · · + sµ is not in K.) Since
qµ = (p0 + s1 + s2 + · · · + sµ−1)/µ, K(s) also contains a root of g(x).

The Galois group of Ω over K(s) is the subgroup of G containing elements that
leave all of the si fixed. Such an element carries αjsi �→ αεjsi for some ε. As was
shown above, Ω is contained in the field obtained by adjoining α to K(s), so the
Galois group of Ω over K(s) is a subgroup of the Galois group of xµ − 1 over Q,
which is a cyclic group of order µ − 1. Therefore, it is cyclic of order λ for some
factor λ of µ − 1, which is to say that it is generated by a single automorphism η
of order λ that carries αjsi �→ αεjsi, and the proposition follows. �

Corollary 4.1. Adjunction of one nonzero Lagrange resolvent of g(x) to K gives
a field in which g(x) has a root.

Proof. This was shown directly in the course of the proof, but it also follows from
the proposition, because, provided si �= 0, the elements of the Galois group that
leave si unmoved are simply the powers of τ , which also leave the root qµ =
(p0 + s1 + s2 + · · · + sµ−1)/µ of g(x) unmoved. �

5. Construction of a root of a given

irreducible solvable polynomial of degree µ

As is shown in Section 4, adjunction of a nonzero Lagrange resolvent of g(x) to
K constructs a field in which g(x) has a root. Therefore, a field in which g(x) has
a root can be constructed by adjoining to K the µth root of one of the quantities
Ri = sµ

i , provided Ri �= 0. Kronecker’s mysterious formula (2.1) asserts that such
a field can be constructed by adjoining first a root ri of a suitably chosen cyclic
equation of degree µ − 1, and then a µth root of a specific quantity in the field
that is obtained in this way (namely, r

γ−1
i r

γ−2
i+1 r

γ−3
i+2 · · · ri+µ−2). Thus, (2.1) serves a

dual function: It specifies both a cyclic extension and a quantity in that extension
of which a µth root is to be adjoined. Formula (2.2) does the same in the general
case in which ν is a factor of µ − 1, not necessarily µ − 1 itself; it specifies a cyclic
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extension of degree ν and an element of that extension of which a µth root is to be
adjoined to obtain a field that contains a root of g(x).

In fact, when the quantities ri are defined by14

(5.1) ri =
sδ

iκ

s(i+1)κ
(i = 1, 2, . . . , ν),

where δ ≡ γ−κ mod µ, one finds that the ri are permuted cyclically by G (be-
cause η leaves the ri unchanged, τ carries ri to ri+1, and σ multiplies ri by
αδγ−iκ

/αγ−(i+1)κ

= 1, which is to say that σ leaves ri unchanged) and

rδν−1

i+1 rδν−2

i+2 · · · · · ri+ν =
sδν

(i+1)κ

sδν−1

(i+2)κ

·
sδν−1

(i+2)κ

sδν−2

(i+3)κ

· · ·
sδ
(i+ν)κ

s(i+1+ν)κ
= sδν−1

(i+1)κ

is a µth power because the exponent δν−1 on the right is divisible by µ. Specifically,
this quantity is the µth power of sm

(i+1)κ, where m is the integer (δν − 1)/µ. Thus,
the polynomial

(5.2) G(x) =
ν∏

i=1

(xµ − rδν−1

i+1 rδν−2

i+2 · · · ri+ν)

of degree µν with coefficients in K has µν nonzero roots αjsm
iκ in Ω.

If, as is stipulated in Theorem 2.1, δκ is not 1 mod µ2, these µν roots αjsm
iκ

of G(x) are distinct by virtue of the assumption that m is relatively prime to µ,
because application of σ to an equation αjsm

iκ = αlsm
kκ multiplies the left side by

αmγ−iκ

and the right by αmγ−kκ

, which implies, unless both sides are zero, that
mγ−iκ ≡ mγ−kκ mod µ, from which it follows that iκ ≡ kκ mod (µ − 1) and
therefore that siκ = skκ and αj = αl. Moreover, G acts transitively on the roots
of G(x) because it acts transitively on the Riκ (by the definition of κ) and it acts
transitively on the µth roots αjsiκ of any Riκ (because σ acts transitively on these
roots).

Therefore, the polynomial G(x) defined by (5.2) is irreducible over K. In partic-
ular, the quantities r1, r2, . . . , rν are distinct (otherwise, G(x) would have repeated
factors), so the cyclic polynomial of degree ν with coefficients in K of which the ri

are roots is also irreducible. Therefore, G(x) is determined by formula (2.3) when
f(x) is the polynomial of which the ri are the roots, provided the ri are ordered as
above and δ = γ−κ.

The elements of Ω that can be expressed rationally in terms of a root w = sm
iκ of

G(x) are, by Galois’s fundamental theorem, those that are unmoved by the elements
of the Galois group that leave w unmoved. These are simply the powers of η, which
are also the elements of G that leave the si unmoved. Thus, adjunction of w gives
the field K(s), which contains a root of g(x); since this field is constructed as in
Theorem 2.1, the analysis is complete.

14In this definition it is assumed that s0 �= 0, which implies that siκ �= 0 for all i. There is no
loss of generality in this assumption, because the Lagrange resolvents all have the form

∑
αkqk

for some cyclic order of the qi, so this order can be chosen to give any one of the µ(µ−1) Lagrange
resolvents the label s0.
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6. A classical lemma about µth roots

The synthesis—the proof that a field constructed by the method of Theorem 2.1
contains a root of an irreducible solvable polynomial of degree µ—will make use of:

Lemma 6.1. Let K be an algebraic field. When µ is prime, a polynomial of the
form xµ − c with coefficients in K is reducible over K only if it has a linear factor,
or, what is the same, only if c is a µth power in K.

This lemma is proved in a much later work [12] of Kronecker, but since it appears
at the very beginning of that work, and since the work is an exposition of the work
of Abel on algebraic equations, it is reasonable to suppose that the lemma was
familiar to Kronecker in 1853. Today it can be regarded as an exercise in Galois
theory (see [4, Exercise 6, p. 98 with an answer on p. 141] or [2, p. 85]).

7. Proof of the first statement of Theorem 2.1

Let G(x) be a polynomial of the form (2.3), where µ is prime, f(x) is an irre-
ducible cyclic polynomial with coefficients in an algebraic field K whose degree ν
divides µ−1, and δ is a number whose order mod µ is ν but for which δν �≡ 1 mod µ2.
It is to be shown that if G(x) is irreducible, then the field obtained by adjoining
one root w of G(x) contains a root of an irreducible polynomial of degree µ.

The natural way to adjoin one root of G(x) to K is by means of two adjunction
relations

f(r) = 0,

wµ − rδν−1

1 r2
δν−2

· · · rδ
ν−1rν = 0,

(7.1)

where, in the second relation, use is made of the assumption that f(x) is cyclic to
construct roots r1, r2, . . . , rν of f(x) in K(r) that are permuted cyclically by the
Galois group of f(x).

If rδν−1

1 rδν−2

2 · · · rδ
ν−1rν were a µth power in K(r), say rδν−1

1 rδν−2

2 · · · · rδ
ν−1rν = ζµ

for some ζ in K(r), then x − ζ would be a factor of the first factor of G(x) and
each of the ν conjugates of x− ζ under the Galois group of f(x) would be a factor
of one of the ν factors of G(x), so the product of these ν linear polynomials with
coefficients in K(r) would be a factor of G(x) of degree ν with coefficients in K,
contrary to the assumption that G(x) (a polynomial of degree νµ) is irreducible.

Therefore, the relations (7.1) are in fact adjunction relations by virtue of the
lemma of Section 6 and the assumption that G(x) is irreducible. Let K(r, w) denote
the field they define, and let the r in this field be identified with r1 in the second ad-
junction relation. The rules r �→ r2 and w �→ wδ/rm, where m = (δν − 1)/µ, define
an automorphism of K(r, w), call it τ , as can be seen in the following way. The au-
tomorphism of K(r) that carries ri �→ ri+1 carries the quantity rδν−1

1 rδν−2

2 · · · rδ
ν−1rν

in the second relation to rδν−1

2 rδν−2

3 · · · rδ
ν · r1, so what is to be shown is that wδ/rm

is a µth root of rδν−1

2 rδν−2

3 · · · rδ
ν · r1, which follows from direct computation:

(wδ

rm

)µ =
(rδν−1

1 rδν−2

2 · · · rν)δ

r(δν−1)
=

rδν

1 rδν−1

2 · · · rδ
ν

rδν

1 · r−1
1

= rδν−1

2 rδν−2

3 · · · rδ
ν · r1.

This automorphism, call it τ , has order ν as can be seen in the following way.
Since τ permutes the ri cyclically, its νth power is the identity on K(r), and no lower
power is the identity on K(r). What is to be shown, therefore, is that τν(w) = w,
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which is another direct computation: Let w1 be w and let wi be τ (wi−1) for i = 2,

3, . . . . Then w2 = wδ

rm
1

, w3 = wδ2

rmδ
1 rm

2
, w4 = wδ3

rmδ2
1 rmδ

2 rm
3

, . . . ,

wν+1 =
wδν

(rδν−1

1 rδν−2

2 · · · rν)m
=

wδν

wµm
= w1.

In particular, the polynomial G(x) with coefficients in K defined by (2.3) has ν
roots w1, w2, . . . , wν in K(r, w). The Galois group of G(x) is the group of auto-
morphisms of the splitting field of G(x). Such a splitting field is obtained by adding
another adjunction relation to (7.1), namely,

f(r) = 0,

wµ − rδν−1

1 rδν−2

2 · · · rδ
ν−1rν = 0,(7.2)

h(α, r, w) = 0,

where h(x, r, w) is one of the irreducible factors of xµ − 1 over K(r, w) other than
the factor x−1. (If K(r, w) already contains an α, then h(x, r, w) has degree 1 and
the fields defined by (7.1) and (7.2) coincide.)

The extension of K defined by (7.2), call it Ω, is a normal extension, as can be
seen in the following way. An automorphism of Ω over K must carry r to one of
the ν distinct roots ri of f(x) in K(r). If the image of r is ri, then the image of
w must be a µth root of rδν−1

i rδν−2

i+1 · · · rδ
i−2ri−1 in Ω, of which there are µ, namely,

those given by the formula αjwi for j = 1, 2, . . . , µ. Finally, if the image of r is ri

and the image of w is αlwi, then the image of α must be a root of h(x, ri, α
lwi), of

which there are exactly λ = deg h in Ω. (The Galois group of the extension Q(α) is
cyclic of order µ− 1; specifically, it is generated by the permutation α �→ αγ of the
roots of xµ − 1 other than 1. Adjunction of generators of K (including, possibly, a
finite number of indeterminates, which obviously do not affect the factorization of
xµ − 1) followed by adjunction of r and w reduces this Galois group, if it reduces it
at all, to the cyclic subgroup whose order is the degree of the irreducible factors of
xµ − 1 over K(r, w) other than x− 1. In particular, these factors all have the same
degree λ and they partition the powers of α other than 1 into orbits of length λ.)
Thus, there are at most νµλ automorphisms of Ω over K.

The µν roots αjwi (where j = 1, 2, . . . , µ and i = 1, 2, . . . , ν) of G(x) in Ω are
distinct, because a multiple root would imply that G(x) had a nontrivial divisor
in common with its derivative, which is impossible because G(x) is irreducible by
assumption. For each of these µν roots αjwi of G(x), there are λ automorphisms of
Ω over K that carry w to αjwi, namely, those that carry (r, w, α) to (ri, α

jwi, α
k),

where αk is one of the λ roots of h(x, ri, α
jwi). Therefore, the number of auto-

morphisms of Ω over K is equal to the degree µνλ of Ω over K, so Ω is a normal
extension of K.

Also, Ω is a solvable extension of K—it can be accomplished by the adjunction
of radicals—because the second adjunction is a radical, and the Galois groups of
the other two adjunctions are abelian.

Thus, it remains only to show that the subfield of Ω obtained by adjoining one
root w of G(x) to K contains a root of an irreducible polynomial of degree µ. Let
η be a generator of the subgroup of G that leaves all elements of K(w) = K(r, w)
fixed. Since η must have order λ and must permute the powers of α, it must have
the form αjwi �→ αjεwi, where ε is an integer whose order mod µ is λ. Since
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η commutes with τ (their composition, in either order, carries αjwi �→ αjεwi+1),
together with τ it generates a commutative subgroup G of order νλ, call it H.

Since H has index µ in the Galois group, it corresponds to a subfield of Ω whose
degree over K is µ. Such a subfield adjoins to K one root of an irreducible poly-
nomial of degree µ with coefficients in K. Since it is contained in K(w) (which
corresponds to the subgroup of H of order λ generated by η), K(w) must con-
tain a root of an irreducible polynomial of degree µ, which completes the proof of
Theorem 2.1. �

8. The form of the roots

Theorem 2.1 reduces the problem of constructing a splitting field of the most
general irreducible solvable polynomial of degree µ with coefficients in K to the
problem of constructing the most general irreducible cyclic polynomial with coef-
ficients in K whose degree divides µ − 1. But Kronecker’s goal was not just to
construct the most general splitting field, but also to find the most general root of
an irreducible polynomial of degree µ within that field.

Theorem 2.1 states that every solvable irreducible polynomial of prime degree µ
has a root in a field of the form K(w) obtained by adjoining one root w of an
irreducible polynomial of the form G(x) to K. The polynomial then has µ roots in
the splitting field Ω of G(x), namely, the quantities in the orbit under σ of the root
in K(w). The elements of the Galois group that leave this root unmoved form a
subgroup of index µ and there is only one such subgroup, namely, the subgroup H
generated by τ and η. Any quantity in K(w) is unmoved by η, so a root in K(w)
is necessarily unmoved by τ . Conversely, any quantity in K(w) that is unmoved by
τ is a root of an irreducible polynomial of degree µ, unless it is constant. In short,
the elements of K(w) that are roots of irreducible polynomials of degree µ are the
nonconstant elements that are unmoved by the automorphism τ of K(w).

Proposition 8.1. Let G(x) be an irreducible polynomial that is constructed as in
Theorem 2.1, and let the notation be as in Section 7. If κ is defined by the equation
κν = µ− 1 and if γ is a primitive root mod µ for which δ = γκ, then a quantity in
K(w) that is invariant under τ can be written in one and only one way in the form

c +
κ−1∑
i=0

ν∑
j=1

Fi(rj)w
γ−i

j ,(8.1)

where, for each i, Fi(x) is a polynomial with coefficients in K whose degree is less
than ν.

When ν = µ − 1, (8.1) is c + F (r1)w1 + F (r2)w2 + · · · + F (rµ−1)wµ−1, which is
essentially the formula given by Kronecker15 when he says that (2.1) describes the
most general quantities whose µth roots si have the property that c + s1 + s2 +
· · · + sµ−1 is a root of an irreducible equation of degree µ. A quantity of the form
(8.1) is a root of an irreducible polynomial of degree µ (solvable, of course) unless
it is constant, or, what is the same, unless the Fi(x) are all zero.

15I confess that I am unable to follow Heinrich Weber’s treatment of the theorem in [18, 1§193
and §194], but the fact that he does not seem to modify Kronecker’s formula in the case ν < µ−1
makes me doubt the validity of his formulation. Fricke’s revision [8] of it is somewhat clearer,
but he says, “Es muß dahin gestellt bleiben, ob einige der Zahlen R(φi) verschwinden.” I suspect
that the cases in which some of the numbers R(φi) vanish are those in which ν < µ − 1.
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Proof. Since τ carries Fi(rj)w−i
j �→ Fi(rj+1)w−i

j+1, a quantity in K(w) of the form
(8.1) is obviously unchanged by τ , so what is to be shown is that a quantity un-
changed by τ can be written in the form (8.1) in just one way.

Let q be in K(w), which is to say that q =
∑µν−1

l=0 alw
l, where the coefficients

al in K are determined by q, and let q be invariant under τ . Proposition 4.1 shows
that the Galois group of G(x) over K has order µνλ for some λ and is generated
by three explicit automorphisms σ, τ , and η of the splitting field Ω of G(x) over
K. Assume without loss of generality that σ(w) = α−1w (σ can be replaced by any
power of σ provided the exponent is not 0 mod µ), define qi to be σi(q) for all i,
and define si =

∑µ
k=1 αkqkγi .

The fact that
∑µ

k=1 αkl is µ when l ≡ 0 mod µ and zero otherwise implies that

si =
µ∑

k=1

αkσkγi(µν−1∑
l=0

alw
l
)

=
µ∑

k=1

µν−1∑
l=0

alα
k−lkγi

wl = µ
∑

lγi≡1 mod µ

alw
l,

where 0 ≤ l < µν. In other words, si is µ times the sum of alw
l over ν values of l,

namely, those between 0 and µν that are congruent to γ−i mod µ. In particular, si

is in K(w). Moreover, si/wγ−i

is a sum of terms µalw
l−γ−i

in which w occurs with
an exponent that is a multiple of µ. Therefore, si = Ci(r1)wγ−i

, where Ci(x) is a
polynomial of degree less than ν with coefficients in K. When τ is applied j − 1
times to this equation, one finds

si+(j−1)κ = Ci(rj)w
γ−i

j

when w is identified with w1.
When sµ−1 is written as s0 in q = 1

µ(p0 + s1 + s2 + · · · + sµ−1) one finds
q = 1

µ

(
p0 + (s0 + sκ + · · · + s(ν−1)κ) + · · · + (sκ−1 + s2κ−1 + · · · + sνκ−1)

)
=

p0
µ + 1

µ

∑ν
j=1 C0(rj)w

γ0

j + · · ·+ 1
µ

∑ν
j=1 Cκ−1(rj)w

γ−(κ−1)

j , which expresses q in the
form (8.1) when c = p0

µ = q1+q2+···+qµ−1
µ and Fi(x) = 1

µCi(x).

This representation is unique, because the formula si/wγ−i

= Ci(r1) = µFi(r1)
shows that q, which determines the si, determines the polynomials Fi(x). �

9. The Kronecker-Weber theorem and Kronecker’s Jugendtraum

Most number theorists know what Kronecker dreamt of proving in his youth—his
“liebsten Jugendtraum,” as he put it in a letter [13] to Richard Dedekind in 1880. He
told Dedekind he had hoped to show that the transformation equations of elliptic
functions with singular moduli could be used to construct the abelian extensions
of quadratic number fields in the same way that the equations of cyclotomy can be
used, according to the Kronecker-Weber theorem, to construct abelian extensions
of the rational numbers.

Note, by the way, that Kronecker wrote this in 1880, taking it as known that all
abelian extensions of the rationals are cyclotomic, six years before Weber published
his proof [17]. The certainty with which he asserts this “Kronecker-Weber theorem”
reinforces the clear statement of it as a “result” in his 1853 paper. Interestingly, the
only hint of a proof in the entire 1853 paper is his brief treatment of the Kronecker-
Weber theorem in the case of prime degree. He says his explanation will indicate
his method for the general case, but, for this reader at least, his explanation leaves
many questions unanswered. The crucial element is a wonderful formula from
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Kummer’s study of cyclotomy which is closely related to the question at hand, but
the exact way in which Kronecker intends to use it is not altogether clear even if
one understands his formula III (i.e., (2.1)) and its relation to Kummer’s formula.

At the end of the 1853 paper he mentions not only the Kronecker-Weber theo-
rem but also the even more ambitious Jugendtraum. He states outright that abelian
extensions of the Gaussian integers are related to the equations for the division of
the lemniscate in the same way that abelian extensions of the rationals are related
to the equations for the division of the circle and even says “one can” general-
ize the result to abelian extensions of fields composed of “bestimmte algebraische
Zahlenirrationalitäten,” which is less restrained than the phrase “Gleichungen mit
Quadratwurzeln rationaler Zahlen” that he used in the letter to Dedekind.

The unraveling of the exact meaning and validity of these intimations Kronecker
made about abelian extensions of number fields is at the core of Hilbert’s 12th prob-
lem, on which much work has been done. Perhaps the elucidation of Kronecker’s
formula III by Theorem 2.1 and Proposition 8.1 will make further progress on it
possible.
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