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	e setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and e
ciency. In
this paper, we employ the �re�y algorithm to train all parameters of the SVM simultaneously, including the penalty parameter,
smoothness parameter, and Lagrangian multiplier. 	e proposed method is called the �re�y-based SVM (�re�y-SVM). 	is tool
is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a
multiclass classi�cation, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classi�cations are
explored. In the experiments on binary classi�cation, ten of the benchmark data sets of the University of California, Irvine (UCI),
machine learning repository are used; additionally the �re�y-SVM is applied to themulticlass diagnosis of ultrasonic supraspinatus
images. 	e classi�cation performance of �re�y-SVM is also compared to the original LIBSVM method associated with the grid
search method and the particle swarm optimization based SVM (PSO-SVM). 	e experimental results advocate the use of �re�y-
SVM to classify pattern classi�cations for maximum accuracy.

1. Introduction

	e support vector machines (SVMs) have been widely
used in many applications, including the decision-making
application [1], forecasting malaria transmission [2], liver
�brosis diagnosis [3], and pattern classi�cation [4].	e SVM
achieves the tradeo
 between the minimum training set
error and the maximization of the margin based on the
Vapnik-Chervonenkis theory and structural risk minimiza-
tion principle. 	us it has the best generalization ability [5–
7]. Essentially, the SVM is a convex quadratic programming
method with which it is possible to �nd the global rather
than the local optima. However, the setting of the parameters
for the SVM classi�er plays a signi�cant role, which includes
the penalty parameter � and the smoothness parameter� of the radial-based function. 	e penalty parameter �
maintains the balance between the �tting error minimization
and model complexity. 	e smoothness parameter � of the
kernel function is used to determine the nonlinear mapping
from the input space to the high-dimensional feature space.

In general, the redundant features of the classi�er usually
signi�cantly slow down the learning process as well as make
the designed SVM classi�er over�tting the training data. In
general, an e
ective feature selection can tackle the cure-of-
dimension problem as well as decrease the computation time.
Practically, the grid search [8, 9] checks all possibilities of the
parameters,C and �, under exponentially growing sequences.
More precisely, the search for the two parameters is limited to

the intervals of the 1/215 ≤ � ≤ 215 and 1/25 ≤ � ≤ 25. In
practical application, the grid search is usually vulnerable to
the local optimum. In other words, if the initial parameters� and � are far from that global optimum, the resulting SVM
classi�er will not work e
ectively.

Recently, many bioinspired optimization algorithms such
as genetic algorithm [10] and particle swarm optimization
[11] have been applied to train the parameters of the SVM
classi�er together with a powerful features selection for
classi�cation. However, the Lagrangian multipliers �� are still
estimated by using a grid search similar to the LIBSVM [12].
However, those of the designed support vector machines
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present a challenge to be combined into a one-against-
all support vector machine classi�er, because each SVM
always holds a di
erent set of features in the multiclass
classi�cations. Another algorithm, the arti�cial bee colony
algorithm [13], was applied to only train the parameter of
Lagrangian multiplier �� without the parameters of � and �.

In this paper, the �re�y algorithm [14] is used to search
for the optimal parameters via the simulation of the social
behavior of �re�ies and their phenomenon of bioluminescent
communication.	e proposed algorithm is called the �re�y-
SVM, in which all parameters including the �, �, and the
Lagrangian multiplier �� are concurrently trained. In the
experiments, the proposed �re�y-SVM was evaluated by the
classi�cations for binary and multiclass problems.	is paper
is organized as follows. 	e proposed �re�y-SVM algorithm
is introduced in Section 2. In Section 3, we present our
experiments and demonstrate the results.	e conclusion and
�nal remarks are given in Section 4.

2. Materials and Methods

2.1. Support Vector Machines. 	e SVM has been one of
the more widely used data learning tools in recent years.
It is usually used to address a binary pattern classi�cation
problem. 	e binary SVM constructs a set of hyperplane in
an in�nite dimensional space, which can then be divided into
two kinds of representations, such as the linear and nonlinear
SVM.

First, we consider a binary classi�cation problem; the
training data set � = {(�1, �1), (�2, �2), (�3, �3), . . . , (��, ��)},�� ∈ {−1, 1}, �� ∈ 
�, where �� is the data point and
the corresponding �� is its designed label. 	e � denotes the
number of elements in the training data set.

	e linear SVM �nds the optimal separating margin by
solving the following optimization task:

Minimize {12 |
|2 + �
�∑
�=1
��} , �� ≥ 0 (1)

Subject to �� (w��� + b) ≥ 1 − ��, � = 1, 2, . . . , �, (2)

where � is a penalty value, �� are positive slack variables, w
is a normal vector, and b is a scalar quantity. 	e minimum
problem can be reduced by using the Lagrangian multiplier��, which can obtain its optimum according to the Karush-
Kuhn-Tucker condition. If �� > 0, then the corresponding
data �� is called the support vector (SV), and, therefore,
the linear discriminate function can be expressed with the
optimal hyperplane parameters w and b in the following
equation:

� (�) = sgn( �∑
�=1
������� � + b) . (3)

Equation (1) can be transformed into (4) by its unconstrained
dual form:

Maximize
{{{
�∑
�=1
�� − 12

�∑
�,�=1
������������}}} , (4)

� ≥ �� ≥ 0, � = 1, . . . , �, �∑
�=1
���� = 0. (5)

Equation (4) can now be solved using the
quadratic programming techniques and the stationary
Karush-Kuhn-Tucker condition. 	e resulting solution W

can be expressed as a linear combination of the training
vectors and the b can be expressed as the average of all
support vectors shown in

W = �∑
�=1
������,

b = 1�SV

�SV∑
�=1
( �� − ��) ,

(6)

where�SV is the number of support vectors.
	e linear SVM can be expanded into the nonlinear

cases by replacing �� with a mapping into the feature space"(��), in other words, the ��� � can be represented as the

form of "(��)�"(��) in the feature space. 	us the nonlinear
discriminate function can be expressed as follows:

� (�) = sgn( �∑
�=1
����#(��, �) + b) ; (7)

where #(��, �) = ⟨"(��), "(�)⟩ and #(��, �) is the kernel
function. 	e widely used kernel function is the radial
basis function (RBF), because of its accurate and reliable
performance [15], which is de�ned as

#(��, �) = exp (−� &&&&�� − �&&&&)2 . (8)

	e � is the predetermined smoothness parameter that
controls the width of the RBF kernel; thus, (4) is rewritten
as

Maximize
{{{
�∑
�=1
�� − 12

�∑
�,�=1
�������� exp (−� &&&&�� − �&&&&2)}}} ,

� ≥ �� ≥ 0, � = 1, . . . , �, �∑
�=1
���� = 0.

(9)

To evaluate the proposed �re�y-SVM, the classi�cation
results of 10 two-class data sets of theUCImachine repository
are compared to those for the LIBSVM algorithm [12] and
PSO-SVM [11] in this paper.

	e one-against-all (OAA) and one-against-one (OAO)
strategies are widely used for the multiclass classi�ers [7].
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	e OAA approach always compares each class with all the
others put together concurrently, and, thus, it always needs
the construct ' support vector machines for a '-class classi�-
cation problem [16].	eOAOapproach [17] constructsmany
binary classi�ers for all possible pairs of classes; therefore,
it needs the construct '(' − 1)/2 support vector machines
for a '-classi�cation problem. A max-wins voting scheme
determines its instance classi�cation. In our past studies
of the classi�cation of the ultrasonic supraspinatus images
[18], the OAA fuzzy SVM had the best capability in the
classi�cation of the ultrasonic images into di
erent disease
groups. 	erefore, in this paper, the binary �re�y-SVM is
implemented as the basic SVM to construct the OAA fuzzy
SVM for a further comparison to the original fuzzy SVMs in
the classi�cation of supraspinatus images.

2.2. Fire	y Algorithm. 	e �re�y algorithm is a new bioin-
spired computing approach for optimization in which the
search mechanism is simulated by the social behavior of
�re�ies and the phenomenon of bioluminescent communi-
cation. 	ere are two important issues regarding the �re�y
algorithm, namely, the variation of light intensity and the
formulation of attractiveness. Yang [14] simpli�es the attrac-
tiveness of a �re�y by determining its brightness which in
turn is associated with the encoded objective function. 	e
attractiveness is proportional to the brightness. Every mem-
ber �� of the �re�y swarm is characterized by its brightness*� which can be directly measured as a corresponding �tness
function.

Furthermore, there are three idealized rules: (1) regard-
less of their sex, any one �re�y will be attracted to other
�re�ies; (2) attractiveness is proportional to brightness, so
of any two �ashing �re�ies, the less bright one will move
toward the brighter one; (3) brightness of a �re�y is a
ected
or determined by the landscape of the given �tness function-(�); in other words, the brightness *(��) of a �re�y �� can be
de�ned as its -(��).

More precisely, the attractiveness between �re�ies �� and�� is de�ned as any monotonically decreasing function as
shown in (10), for their distance 4��:

4�,� = &&&&&�� − ��&&&&& = √ �∑
	=1
(��,	 − ��,	)2,

6 = 607−
��,� ,
(10)

where 60 is the sum of initial assigned brightness of these two
�re�ies. � is the light absorption coe
cient and ' is the index
of the dimension of the candidate solutions (i.e., �re�ies).

	emovement of a �re�y ��, which is attracted to another
more attractive �re�y ��, is determined by the following
equations:

��,	 = (1 − 6) ��,	 + 6��,	 + 8�,	,
8�,	 = (rand1 − 12) .

(11)

If there is no �re�y brighter than a particular �re�y, ��max , it
will move randomly according to the following equation:

��max ,	 = ��max,	 + 8�max ,	,
8�max ,	 = (rand2 − 12) ,

(12)

where rand1 and rand2 are random numbers obtained from
the uniform distribution <(0, 1).
2.3. Training the Nonlinear SVM Using the Fire	y Algorithm.
	e training of the nonlinear SVM is essentially a constrained
optimization problem. 	e constrained optimization usually
�rst decides the objective function (i.e., �tness function in
the �re�y algorithm) and the range of each parameter. 	e
designed �tness function of the �re�y-SVM is expressed in
the following equation:

MAX ? (��, �, �)
= �∑
�=1
�� − 12

�∑
�,�=1
�������� exp (−� &&&&�� − �&&&&2) . (13)

	e constraints of the solution string are

(1) 0 ≤ �� ≤ �, � = 1, . . . , �, and ∑��=1 ���� = 0,
(2) −15 ≤ log2� ≤ 15,
(3) −5 ≤ log2� ≤ 5.
From these discussions, it is clear that the �re�y algorithm

starts with a set of �re�y population (candidate solutions)
in the feature space. 	e string representation B� of each
�re�y (solution) �� is an important factor for the subsequent
steps of the algorithm; the solution string B� is simulated
as the multidimensional vector comprising optimization
parameters, including the penalty parameter, smoothness
parameter, and Lagrangian multipliers shown in Figure 1. It
is evident that each �re�y during the course of the search
modi�es its path according to its brightness. Furthermore, the
best �re�y performs the random walk to exchange it with a
brighter solution.	e�re�y populations ofm initial solutions
are generated with C + 2 dimensions denoted by D:

D = [B1, B2, B3, . . . , B�] ,
B� = (��1, ��2, ��3, . . . , ��
, log2��, log2��) , (14)

where 0 ≤ ��	 ≤ �, ∑�	=1 ��	�� = 0, −15 ≤ log2�� ≤ 15, and−5 ≤ log2�� ≤ 5. 	e ��	 is the multiplier of 'th training data

in the �th candidate solution; log2�� and log2�� are the penalty
parameter and smooth parameter of the SVM, respectively,
constructed by the solution string B�.

	e details of the proposed algorithm are thus described
as follows.

Step 1 (set up the parameters of proposed system). 	is step
assigns the parameters including the number of �re�ies (F),
the maximum iteration number (�), and the light absorption
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Plot of CCRs over iteration number of SPECTF heart data set
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Plot of CCRs over iteration number of Sonar data set
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Figure 1: 	e plots of correct classi�cation rate versus iteration numbers of SPECTF heart and Sonar data sets.

coe
cient (�). 	e solution string of F �re�ies is randomly
generated; it must satisfy the constraint of (13). Let G be
iteration number and initiated to 0. 	e initial brightness6�0 of each �re�y �� is assigned by its resulting �tness.

Step 2 (update all candidate solutions). 	e mechanism
for updating a candidate solution is stochastic; that is, the
solution B� randomly selects the corresponding solution from
this population D. If the �tness (B�) is less than �tness (B�),
the �re�y �� will move toward the �re�y ��; as a result, the
corresponding string B� ismodi�ed according to the following
equation:

B�,	 = (1 − 6) B�,	 + 6B�,	 + 
�	,
for all dimension ', (15)

where

(1) 4�,� = ‖B� − B�‖ = √∑
+2	=1 (B�,	 − B�,	)2,
where J�,	 is the 'th dimension of the solution stringB�,

(2) 6 = 6�7−
��,� ,
where 6� is the sum of the �tness values of the two
solutions of these two �re�ies, and � is the light
absorption coe
cient,

(3) 
 = (
�1, 
�2, . . . , 
�
+2) a random walk ranged with−1 < 
�	 < 1.
If the new solution does not satisfy the solution string

constraints, then the new solution will be discarded, or else
the original one will be replaced. All candidate solutions will
sequentially be updated according to the previous procedure,
and then the best one will be calculated for the later process.
	e best solution will be recorded by 8BestCu.

Step 3 (update the best solution). If the Lth �re�y is the8BestCu, then this �re�y will demonstrate a random walk to
get the new candidate solution but it still needs to satisfy the
solution constraints. If the new one has better �tness than
the original one, then the 8BestCu will be replaced by the new
candidate solution; otherwise the candidate solution will be
discarded:

B�,	 = B�,	 + 
�	 , ∀', (16)

where 
 = (
�1 , 
�2 , . . . , 
�
+2) a random walk ranged with−1 < 
�	 < 1.
Step 4 (iterative execution and resulted vector output). AddG by 1. If G reaches the maximum iteration number, then the
algorithm terminates and outputs the 8BestCu as the resulting
motion vector; otherwise go to Step 2.

3. Results and Discussion

3.1. Binary Classi
cation of the UIC Data Set. 	e designed
platform used to develop the �re�y-SVM training algorithm
was a personal computer with the Intel Pentium IV 3.0GHz
CPU, 2GB RAM, using the Window XP operating system
and the Visual C++ 6.0 together with an OPENCV library
environment. 	e used parameters are the size of initial
�re�ies assigned to be 20 and themaximum iteration number
to be 200. In order to obtain classi�cation results without
partiality, the ten binary class data sets extracted from the
UIC database [19] are applied to the experiments listed in
Table 1. In practice, the features with the di
erent numeric
ranges always dominate those of small numeric ranges; thus
each feature is linearly scaled into the range [−1, 1] for all data
samples.
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Table 1: 	e used data set extracted from the UCI machine learning data repository.

Data set collected from UCI the machine learning repository

Data set Number of instances Number of features

SPECTF heart 267 44

Breast Cancer Wisconsin (diagnosis) 569 32

Statlog (heart) 270 13

German credit data 1000 20

Sonar 208 60

Pima-Indians-diabetes 768 8

Australian credit approval 690 14

Live disorders 345 7

Ionosphere 351 34

Breast Cancer Wisconsin (original) 699 10

Table 2: 	e CCR of three di
erent algorithms without feature selection (mean ± SD).
Data set Fire�y-SVM PSO-SVM LIBSVM

SPECTF heart 84.27 ± 0.95 80.19 ± 2.44 80.19 ± 2.73
Breast Cancer Wisconsin (diagnosis) 98.44 ± 0.39 97.54 ± 0.90 97.54 ± 1.54
Statlog (heart) 86.75 ± 2.19 86.75 ± 2.0 85.25 ± 2.99
German credit data 77.60 ± 0.89 75.33 ± 2.61 76.34 ± 1.24
Sonar 93.46 ± 3.31 92.69 ± 4.18 89.23 ± 4.63
Pima-Indians-diabetes 77.87 ± 1.33 76.34 ± 2.59 72.25 ± 3.22
Australian credit approval 88.63 ± 1.40 84.34 ± 3.77 83.76 ± 3.36
Live disorders 75.36 ± 2.99 73.22 ± 3.28 69.86 ± 2.67
Ionosphere 96.87 ± 1.91 95.21 ± 2.84 94.35 ± 2.25
Breast Cancer Wisconsin (original) 97.60 ± 0.37 96.62 ± 0.96 95.52 ± 0.92

In all experiments on binary classi�cations, the �vefold
cross validation method is used. In practice, all data samples
are divided into �vesubsets with an equal number of samples
from each di
erent class. One of the�ve subsets is selected as
the test set, and the other 4 subsets are put together to form
a training set. More precisely, every sample appears in a test
set exactly once and appears in the training set four times. In
order to verify the e
ectiveness of the proposed �re�y-SVM,
the correct classi�cation ratio (CCR) is used for all the data
sets. 	e CCR is de�ned as follows:

CCR = number of correct decisions

Total number of data samples
× 100. (17)

	e Matthews correlation coe
cient (MCC) [20] is a
powerful measure of the quality of the binary classi�er; it
takes into account true and false positives and is generally
regarded as a balanced measure that can be used even if the
classes are of di
erent sizes. MCC is de�ned in the following
equation:

MCC

= TP × TN − FP × FN√(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN) .
(18)

In this equation, TP is the number of true positives, TN is the
number of true negatives, FP is the number of false positives,

and FN is the number of false negatives. MCC returns a
value between −1 and +1, and it is in essence a correlation
coe
cient between the observed and the predicted binary
classi�cation. 	erefore, a Matthews correlation coe
cient
of +1 indicates a perfect prediction, 0 indicates no better
than random prediction, and −1 presents total disagreement
between the prediction and the observation.

Table 2 shows the CCRs of 10 data sets of UCI data
repository using �re�y-SVM, the PSO-SVMwithout a feature
selection, and the original LIBSVMwith grid search method.
	e PSO-SVM trains the parameters of � and � and then
classi�es all samples of each data set into two di
erent classes,
using LIBSVM,while the LIBSVMuses the grid search to �nd
the appropriate parameters of � and �. As shown in Table 2,
the CCR of �re�y-SVM is superior to both PSO-SVM and
LIBSVM for all data sets. In particular, for data sets with
Australian credit approval and SPECTF heart, the proposed
�re�y-SVM performance exceeds a 4% correct classi�cation
rate when compared to the other two methods.

Table 3 shows the Matthews coe
cients of 10 data sets
using the three di
erent classi�ers. 	e results of Table 3
reveal that the �re�y-SVM is almost greater than the other
two methods, while the low MCCs for the data sets of
SPECTF heart, the Pima-Indians-diabetes, and the liver
disorder reveal that �re�y-SVM still has possible room for
improvement with further study.
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Table 3: 	e Matthews correlation coe
cient for Table 2.

Data set Fire�y-SVM PSO-SVM LIBSVM

SPECTF heart 0.5104 0.4453 0.4592

Breast Cancer Wisconsin (diagnosis) 0.9663 0.9475 0.9598

Statlog (heart) 0.9962 0.9242 0.9019

German credit data 0.4981 0.3977 0.4721

Sonar 0.8488 0.8358 0.7865

Pima-Indians-diabetes 0.5580 0.5258 0.4206

Australian credit approval 0.7707 0.6417 0.6734

Liver disorders 0.4967 0.4529 0.3869

Ionosphere 0.9374 0.9032 0.8863

Breast Cancer Wisconsin (original) 0.9462 0.9242 0.9019

Table 4: Classi�cation results of the �re�y-SVM and PSO-SVM with feature selection.

Data sets
Number of

original features

Fire�y-SVM PSO-SVM

CCR (mean ± SD) Number of features CCR (mean ± SD) Average number
of features

SPECTF heart 44 85.89 ± 1.43 18 82.34 ± 2.174 22.6

Breast Cancer Wisconsin (diagnosis) 32 98.44 ± 0.39 14 98.44 ± 0.90 13.4

Statlog (heart) 13 86.75 ± 2.19 8 87.51 ± 2.21 8.6

German credit data 20 79.34 ± 1.14 12 75.33 ± 2.23 14.3

Sonar 60 95.23 ± 3.41 20 91.31 ± 2.42 32.7

Pima-Indians-diabetes 8 78.83 ± 1.62 5 77.87 ± 1.49 5.4

Australian credit approval 14 89.43 ± 1.65 8 84.34 ± 4.77 8.6

Liver disorders 7 75.36 ± 2.29 4 74.76 ± 2.12 5.2

Ionosphere 34 97.98 ± 3.15 12 95.21 ± 2.14 17.6

Breast Cancer Wisconsin (original) 10 98.67 ± 0.53 6 98.67 ± 1.39 6.7

In order to ensure the convergences of �re�y-SVM and
PSO-SVM algorithms, the plots of CCRs versus the iteration
number of executions of SPECTF heart and the Sonar
data sets are shown in Figure 1. 	e resulting CCRs using
the corresponding parameters in intervals of 10 iterations
running the �re�y-SVM and PSO-SVM are recorded. From
the results of Figure 1, we �nd that the program converges
when it runs less than 200 iterations. 	e total training time
for �re�y-SVM is about 6.68 seconds, and the training time
for PSO-SVM is 5.36 seconds.

Furthermore, we attempt to discuss whether or not the
classi�er, together with the feature selection mechanism, can
improve the classi�cation by using the SVM classi�er. In
general, the irrelevant or redundant features usually lead to
over�tting and even to poor accuracy of the classi�cation.
In the �re�y-SVM algorithm we use the mutual information
as the search criterion to �nd the powerful features in each
data set. In practical applications, the features of all samples
of each data set are evaluated using a mutual information cri-
terion, and then the features with higher mutual information
are selected as input features for the �re�y-SVM algorithm.
	e detailed algorithms of the mutual information feature
selection can be referred to as [18, 21]. However, the PSO-
SVM of Table 4 integrates the feature selection mechanism,
which is used for searching the parameters of �and �, into
the objective function in the training stage using the PSO

searching algorithm [22]. Table 4 shows the CCR results of
the �re�y-SVM and the PSO-SVM classi�ers with the feature
selection mechanism. Table 4 shows that the CCRs of 10
data sets using the PSO-SVM and �re�y-SVM deliver better
results than the other results in Table 2.

3.2. Multiclass Classi
cation of the Ultrasonic Supraspina-
tus Images. In general, the injury of supraspinatus always
causes shoulder pain, especially rotator cu
 diseases. 	e
ultrasonography is the most frequently used image modality
to assess the damage from supraspinatus. According to
Neer’s diagnosis standards [23], the impingement syndrome
diseases of supraspinatus can be divided into three disease
groups, namely, tendon in�ammation, calci�c tendonitis, and
supraspinatus tear. Similar to the experiments in a past study
[21], the ultrasonic image database used was recorded from
2004 to 2008, and the ages of the patient ranged from 15
to 65 years. 	e 120 images in this database were captured
using an HDI Ultramark 5000 ultrasound system (ATL
Ultrasound, CA, USA) with the ATL linear array probe from
the National Cheng King University Hospital. 	ese images
are divided into four disease groups, that is, normal, tendon
in�ammation, calci�c tendonitis, and tear. In our past ref-
erenced studies [18], �ve multiclass support vector machine
algorithms were employed to classify these images.	ese �ve
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Table 5: Performance evaluation for each disease group.

Method used Sensitivity (%) Speci�city (%) False negative rate (%) Accuracy (%)

Method 1: �re�y-SVM based OAA-FSVM 2.5 92.50 ± 1.37
(1) Normal 93.10 90.00

(2) In�ammation tendon 93.10 96.42

(3) Calci�c tendon 96.67 93.10

(4) Supraspinatus tear 100.00 100.00

Method 2: original OAA-FSVM trained by LIBSVM 3.33 89.10 ± 2.49
(1) Normal 83.33 95.56

(2) In�ammation tendon 86.67 95.56

(3) Calci�c tendon 90.00 96.67

(4) Supraspinatus tear 100.00 100.00

Table 6: Performance indices for the �re�y-SVM based and
LIBSVM based OAA-FSVM.

Measures
Fire�y-SVM based

OAA-FSVM
LIBSVM based
OAA-FSVM

Accuracy (%) 92.5 89.1

Sensitivity (%) 96.6 90.0

Speci�city (%) 87.1 86.0

Youden’s index∗ (%) 83.7 76.0P-score 95.9 92.6
∗Youden’s index = Sensitivity + Speci�city – 1.

methods were original OAA SVM (OAA-SVM), OAA fuzzy
SVM (OAA-FSVM), OAA decision-tree based SVM (OAA-
DTB), one-against-one voting based SVM (OAO-VB), and
one-against-one directed acyclic group SVM (OAO-DAG).
	e experimental results of that previous work showed that
the CCR of the OAA-FSVM is the best method for the
classi�cation of supraspinatus images. 	e original OAA-
FSVM is composed of many binary support vector machines;
each support vector machine is trained by LIBSVM, together
with a grid search. Similar procedures for feature extraction
from supraspinatus, feature selection, and feature normaliza-
tion were described in [18]. Five powerful texture features,
sum average, sum variance, mean convergence, contrast, and
di
erence variance, were used as the features for classi�ca-
tion. Furthermore, many measure indices, such as sensitivity,
speci�city, and P-score, are discussed in [24].

In the current experiments, we replaced this LIBSVM
based support vector machine with �re�y-SVM for compar-
ison. Table 5 shows the performance indices of OAA-FSVM
with di
erent trained support vector machines based on the
5-fold cross validation. Referring to Table 5 we �nd that the
false negative using the �re�y-SVM is only 2.5%, which is
better than the one for LIBSVM. 	is means that the OAA-
FSVM using the �re�y-SVM as constructed basis has a lower
risk for the patient in diagnosis. At the same time, the 92.5%
accuracy of �re�y-SVM based OAA-FSVM is superior to the
original OAA-FSVM trained by LIBSVM. Table 6 shows the
performance indices for the use of �re�y-SVM based OAA-
FSVM trained by LIBSVM and the original OAA-FSVM

trained by LIBSVM. 	is table shows that the �re�y-SVM
based OAA-FSVM performs better.

4. Conclusion

In this paper, we explore the uses of the �re�y-SVM for
binary and multiclass classi�cation. Based on the results of
the current experiments on the binary classi�cation of 10 data
sets of the UCI database and the multiclass classi�cation of
ultrasonic supraspinatus images, the following conclusions
can be emphasized.

(1) 	e �re�y-SVM attempts to simultaneously train
three kinds of parameters: penalty parameter,
smoothness parameter, and Lagrangian multiplier.
Experimental results demonstrate that �re�y-SVM
is capable of dealing with the applications of pattern
classi�cation.

(2) 	e �re�y-SVM training algorithm has better perfor-
mance than the other twomethods in the experiments
of binary classi�cation, so it is promising to apply
�re�y-SVM to other practical problems.

(3) 	e �re�y-SVMmay converge with the most optimal
solution within a limited time when it associates
with the feature selection because of its complex-
ity. Additionally, the �re�y-SVM without a feature
selection easily and extensively integrates with the
multiclass OAA support vector machine, such as
the OAA-FSVMmethod. 	e experimental results of
the classi�cation of ultrasonic supraspinatus images
reveal that the use of the �re�y-SVM as the basic
machine to construct the multiclass support vector
machine can e
ectively improve the classi�cation per-
formances in themulticlass classi�cation of ultrasonic
supraspinatus images.
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