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THE CONSTRUCTION OF UTILITY FUNCTTONS FROM EXPENDITURE DATA¥*

S. N. Afriat

In consldering the behavior of the consumer, a market ls assumed which offers

some n goods for purchase at certain prices in whatever quantities.

A purchase
requires an expenditure of money

e =xu, §n+¢o- +ﬁn§n=P'x

which is determined as the scalar product of the wvector
X = gl \

n f

wr & ¢

ef quantities, which shows the composliticn of the purchase, and the vector

-

Pﬂ

ﬂo»qpﬂ

of prices which prevail,

The classical assumption g.botrb the consumer is that any purchase is

such as to give a maximum of wtility for the money spent.

The consumer is supposed to attach a number @(x) to any purchase according
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the Construction of Index Numbers,” conducted at the Econometric Research Program,
Princeton University, and at Rice University end the Cowles Foundation st Yale
University, with the support of the National Science Foundation.



to its composition x , which is the messure of the utility, to the effect
that a purchase with composition x made at prices P, and therefore requiring

an expenditure e = p'x , is such as to gatisfy the maximm utility condition

o(x) = max ICP(y)Ipf'ar <e},

An equivalent statement of this condition is

®(x) = max {gp(y)|u'y <1}

where u = pfe is the vector of prices divided by expenditure, that is with expendi-
ture taken as the unit of money, end is to be called the balance vector, corresponding
to those prices and that expenditure, The fundamental propérty required for a utility
function @(x) is that, given a balance wu , any composition x which is
determined by condition of maximm utility setisfies u'x =1 s 80 that

u'y < 1= 9(y) < o(x)
and

o(y) > o(x)—uly >1

Such an essumption cannot represent deliberations on the part of the consumer,
The reel consumer 1s generally unaware of an attachment to any such function P,
indeed may deny, by intention and by manifest behavior, any such an attac;hmn‘t;
Then if ¢ is to have a definite existence, it would have to be in the store of
a.na;.yl:ieal constructions of those who entertain the assumption, and based on data
of observation: In the earliest formused by Gmmsen,:L J’evons,‘2 !v‘ie:ngt:-r,3 and

Walra.s,h' it was assumed that the utility of a composition of goods was a sum of



utilities for the separate goods:
9(x) = @, (x,) + oo + 9 (x ) .
Then Edgeworth 2 congldered a general function

o(x) = cp(xl, coes xn) .

He also considered the indifference surfaces, the level surfaces, ¢ = constant, of the
utility function. 3But the now familiar approached, which has divorcement from numerical
utility, and deals only with indifference surfaces, thus prefigured by Edgeworth,

and also by Antonelli6 and Fi‘sher, T was established by Pareto,8 Before Pareto,

the utility enslysis involved in demand theory dealt with utility and utility
differences as measurable quantities.g By showling numerical utility to be

inesgential, Pareto brought relief to the discomfert of authors who had to

assume a measurable utility, the measurability of which was held in universal

doubt.C Nevertheless it can still be held that the classical utility is the
gnalytically convenient conecept; and also it 1s thé,' more complete concept, in that

it is essential to explain, even if apparently not all, then at least some phenomens

of behavior., For there is an apparent absurdity in denying a measursble utility to
goods, and not also to money, since, in a fundamentel respect, the velue of money
arises from what can be got with i%. While the concept of a wtility measure for

goods has been digplaced from discussions, and hae been replaced by the preference
relation; it has at the ssme time become entirely acceptable and even customary to
attach measurable wtility to money, in the sense of Bemmzlli,ll and von Neumann and

Morgenstern, 12 beyond the preference for more money rather than less; which is all



that can otherwlse be assumed, However, here the concern is with the utility
function only as a measure of preference for declding the better and the worge
between collections of goods. But; never in the extended history of the
hypothesis has even such a function been shown, The revealed preferences principle

13 hich has been elsborated by Houthakker,™' gives basis for a condition

of Samuelson,
for the rejection of the hypothesis, It is a condition which corresponds to
choice giving an absolute maximum of wtility, and is therefore, in regard to the
general hypothesis, too strong. The prineiple has stlll been wanted by which the
hypothesis may be both accepted or rejected, on the basis of any observed acts

of choice of the consumer, which must necessarily be finite in nmumber; and, in the

case of acceptance, general method is wanted for the sctual construction of a

utility function which will realize the hypothesis for the data.

This problem is golng 10 be considered here Tor price-quantity data whiéh
can in principle be directly observed, and mugt therefore be finite, The general
problem, which arises when this finitenese restriction is removed, can be approached
in one way on the basisg of the results which are going to be obtained, But also
there ig another way of approach for it, which is independent of the present
approach for the finite problem and which, Incldentally, leads to another solution
for the finite problem. These discussions will be taken up in a subsequent paper.
The general problem appears more general then that which comes within the
investigations of Samuelson, Houthakker, Uzawa and others ,15 which involves a demand
system and tTherefore quantities for every price situation; that is, a complete
system of data. For the data could be assumed infinite, but not necessarily
complete. Also, even with completeness, the usual assumpbtion of a single valued

demand system can be dropped. Or, if a single valued function is assumed, the



Lipgschltz-type condition assumed by Uzawa} 6anc1 therefore also the differentiability
assumed by other writers; can be dropped. Also, the cycliceal condition assumed
by Houthakker has the same scope as the cyclical consistency condition which is
to be considered here, if the system is single valued, but otherwise it is too
restrictive. 1In the familisr investigations, the assurptions have been such as
to yield just one functionally independent utility function, In the finite
problem, and even in the infinite problem with completeness assumed, there is no

.such essential unigueness.

While the results for finite data do not immediately glve resulis for
complete data, such as a demand system, also the investigations on demand systems,
such as have been conducted. by Samuelson; Houthekker, Uzawa and others, or condl-
tiong for the existence of a utilit.y funection, have no scope for the finite
pfoblem now t© be congidered, They depend on a contimious, if not a differentisble
gtructure, which can have no meaning here, in the discrete, finite case; and they
leave the problem of establishing criteria by which any finite expenditure data can
be considered to be in accordance with some complete demand system which satisfies

the appropriste conditioms,

Iet it be supposed that the consumer has been observed on some k
occasions of purchase, and the expenditure date cobtalned for each occasion r
(r =1, «eoy k) provide the palr of vectors (xr, pr) 5 which give the composition

- of purchase; and the prevail:lhg prices, Hence the expenditure ie e, = pI" X,

and the balance vector is u, = pr/ e and, by -definition, ' _ﬁ; X, = 1.

@
T H

Let E = (xrl ur) define the expenditure figure for cccasion r , and

E= {Erlr w1, .0, ). fthe expenditure configuration constructed from the data,




Only through this configuration does the utility hypothesis have bearing on the data.
The uwtility hypothesis applied to the configuration E asserts that there
exists a utility function @ such that

q)(xr) = max {tp(x)|uz“ x <1} (r =1, couy n)

in which case the function ¢ "can be sald to exhiblt the ubtility hypothesis for E
or to be a uitility function for E . The data E can be said to have the

property of utility consistency if the utility hypothesis can be exhibited

for it by some function, in other words if it has & utility function.

How there 18 the problem of deciding for any given expenditure configuration
E , vhether or not it has the property of utility comsistency, and if it has,
of constructing & uwtility function for it. This is the problem which is going

to be considered,

If utility consistency holds for E , scme utility function ¢ exists

for 1%, and then

ulxg < 1=20(x.) >o(x)

[ q ¥
w! x < l /\cp(xr) = cp(xs) =puwlx =1
forall r, s= l, soo g k. Hence, for all Ty By ssoy 4 = l, soe g k
] 1 1 .
ur xs Slf\us xtSl/\ooooA uq xr Sl

=>o(x )} 20(x.) >.000 > qa(x’q) >olx,)

:'-_-'—ﬁ",Q)(Xr) B ¢(XS) 3,0.900 = (P(xq)



Hence

L 1 t
u x <1 /\us xt<1A..,f\uqxr<l

‘—bu;?x &u'x_b=.,..==uax = 1

This condition will define the property of cyclical consistency for E . It has
been shown to be an obvious necessary conditlon for utllity consistency, and it is
going to be proved also sufficient. In order to do this, some other consistency

conditions will be introduced for F ;, and finally they will all be proved

eguivalent, Define Drs = u; x, - 1, which may be called the cross-coefficient,

from Ex to Es . 'The cross-coefficients altogether define the cross-structure

D for the expenditure configuration E .
The cyclical conslstency condltion now has the statement

Do S0 Dy SO, eeey DY SO D =Dy =.., mD =0

fOI"all I', S, t’ .g.,,qul’ ooogkﬂ
Since a multiple cycle is just a conjunction of simple cycles, and since Drr =0,

there is no restriction in assuming T, 8, ty cesy @ = 1, ceus k 8ll distinet.

Let a new consistency condition now be defined for E ; sagain through its
cross-structure D, by the existence of mumbers ), (r=21, «oo k) , to be called

mltipliers for E satisfying the system of inequalities

+ >
A, >0, A D+ 2 A D 0,

s Dgt ¥ oo q qr —
:E’___Q_I;a.ll s S,‘b,...gqﬂl,a“,k.
The conslstency of this system of inequalities,in other words the existence of

miltipliers for E ,will define the condition of mltiplier consistency for E .




Again, the same condition 1s obtalned if r, s, t, vooy; G = 1, +esy kK are taken to

be distinet,

It is obvicus that multiplier consistency impliles cyclical consistency.

For
= <

}’r >04p Drs_<_0—>lr Drs—-o ’
and

A.rDrSf_Ozg. ASD“EOA so s A A.qur_SO
with

h‘r Drs +:\.s Dst + a0 +1q qugo
implies

errs”lstt”'" “l’_ Pir =95

which, with A, >0, implies

Drsﬁnstza:oo qurgoo

Therefore mutiplier consistency implies cyelical consistency. Algo the converse is

true, as will be showm.

Now let still another condition be defined for E through its cross-
structure, by the existence of numbers Moy P (r =1y co., k) , to be called

miltipliers and levels, satisfying the system of inequslities.

A 205 M. D29 - @, (r, s, =1, ..., k). The consistency of this system of

of inequalities will define the condition of level consigtency for E .

It 1s obvious that lewvel consistency implies Jltiplier consistency,, and

moreover that anymmulbtipliers which realize the level consigtency condition also



reglizes the multiplier consistency condition. For, from

b Doy 29 - 9,

Tollows

M Dog F A D teee F R Dy 20, ~ @t @~ Pyt e Q-0 =0

It wlll be shown that, conversely, multiplier consistency implies level consistency,
and moreover; that any set of multiplies which realized the multiplier consistency
condition can be jolned with a set of levels {0 reslize the level conslstency

condition.
The following theorem is going to be proved.

Theorem: The three conditions of cyclical muitipiier and level consistency
on the cross-structure of an expenditure configuration. are all equivalent,
and are implied by the eondition of utility consistency for the configura- '
tion.

It has been seen that utility congistency for the configuration E implies
cyclical consistency for its cross-gtructure D . Also it has been seen that level
consistency implies muitiplier consistency and that mltiplies consistency implies
cyclical consistency, for D . Henee it remsins to be shown that e¢yelical consistency
Jmplies multipller consistency, and. that mi:ltiplier conslistency :hx;plies level
consistency,and then the theorem will have been proved.

Introduce the relation W defined by
rWs = Drs <0,

e
it being reflexive, since D _, = O, end:then R=W , the transitive closure of W,



w 10 -

this being transitive and such that W R ; Trom the form of its definition, and
reflexive, since W is reflexive. Then P = ROR' , the antisymmetric part of R,
is antisymmetric, from the form of the definition,and transitive, since R 1is
trapsitive. Hence it is an order. In case it is not an total order, there

alvays exist an total order which is a refinement of it, that is RCT where T

is an idesl order, and T(C Tt y since T is antisymmetric. Without loss in

generallty, it can be supposed that the occasions are so ordered that r Ts T r <s .

Now cyclical consistency is eguivalent to the econdition

< _." »—--.‘-- >
Dog SO ACg SO Aaeeh Dy <0=5D >0

which can be stated

R C M
where M 1is the relation defined by

rMs = Drs?-o

which is such that
rMss=D_ _>0&rWs

so that

WM

H

Now cyclical consistency gives RCM'; and the definition of R - gives WCR
so that R'C W' M!'., Hence RUTR'CM', But RO R'CTCT' so that

TCR'UR . Hence TCM' , or equivalently

r<s=p Dsr_:?o



Now assume, &8 an Inductive hypothesis, that, at an (m—l)th stage, miltipliers

M. >0(1 < r <m) have been found such that

lr DI‘S + LS DS'b T see F },q- qu_>_0 (lfr, seop G <m)

Then, for the mth stage to be attained, it is required to find & multiplier )\.m >0

such that

) oo+ + a0 -
ApDpg ¥ A Dy eee A Dy AP 20 (L ST, cos; aS<m - 1)

But D >0 If r<m. Hence let

A D _+xa D, + et D [
T Trs s gt m !
pm=..min{ 5 qLélSr, eeey @ <m; D _>0}

Then any Xm 2> max {o, ].lm] is as requlred. Hence the mth stage is attainasble
from the (mal)th « The second stege can obviously be attalned, since, with amy

A,l>0,there only has to be taken a L2->O such that x1D12+x2D2120,

which 1s possible since Dl2 <0 and D21 < 0 1is imposeible, by the hypothesis
of cyclical consistency. It follows by induction that the - kth stage 1s attainable,
that 1s,multipliers can be found which realize the multiplier comsistency condition.

The proof that cyclical consistency implies multiplier consistency 1s now complete.

To prove that multiplier consistency implies unit consistency, assume a set

of miltipliers )u,r and let By = A‘r Drs « 'Then

+°'
B T Bt '+aqr20’
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for all distinet =x, 5, t, seey, 9 « It is now going to be proved that there exist

numbers cpr such that

(a): & >0 -9 (rfs),

whence the level consistency cendition will have been shown.

Tet
Crtm..ps © Ors T oyt oeeet Bos 2
and let |
Arg = ‘e,m,mf.?., D ®rim ... ps
Then
ars —>Ars .
Also,

Ars+Asr20 and Ars+Ast2Art'

Consider the system

(&): A _>e -9 (r4s).

e =
Any solution @, of (o) is a solution of (a) , since a_ >A .

s — I8

Also, any solution @, of (a) is a selution of (A) , For

Srg TP = Ppr By 2Py s eees B 2P = Qg3

whence, by addition,
Y Psf¢r‘@£“¢m+--- +q’p‘ Ps

=Q. "9
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and therefore
Ars 2P -9 -

It follows that the consistency of (a), which has to be ghown, is

equivalent to that of (A), which will be shown now.

The procof depends on an extension property of solution of the gub-
systems of (4). Thus, assume & solution ?.. (r <m) has been found for the

subsyesten

(A, m-1): ArSZ‘Pr"CPS (r¥s3r, 8<m.

It will be shown that it can be extended by an element P to a solubion of
(A, m) .

Thus, there is to be found a number P such that

Amzq)r‘(pm: ams_?q’m"qs (I‘, s<m),

that is,

Ams +Q)s z_qamgcpr -Am.

So the condition that such & tpm can be found is
A +0 >@ -4
mg * Pg =P " fpm

where

% Apmsmi;;{q)r Arm}’ m q)q_-"min{m (Pq]

But If p=gq , this is equivalent to

A _+A >0,
mg  om =



-1k -

which is verified by hypothesis; and if » & @ , it 1s equivalent to
A _+A > -
o fng 2% " %

which 1s verified, since, by hypothesis,

A +A >A A >0 =9 .,
pn mg =" pq’? pq--q’p‘pq

Since the system (A, 2) trivially has a solution, it follows by

induction that the system (A) = (A, k) has & solution, and is thus consistent.

THEOREM: If E = (B r =1, ..., n} is eny expendifure configuration, with
¢ -1, and if

Pumasansieae——

3 t
figures E = (xrl ur) (u;. x_ = 1) end cross-coefficlents D _ = u; x,

. l‘r 2 (Pr are any rmlbipliers and levels, being such that

rs 2% " @

r
and if g =u A, , and g (x) =@, +gl (x-x), then
¢(x) = min {@ (x)|r =1, ..., n}

ig a function which realizes the utility hypothesis for E .

= 1! -
Since grzur l'r and, Drs ur xrs 1,

from

Ap >0, 7"::'Drsz(ps"cp:'c'

follows

. i )
&r >0, &r (xs Xr) chs P
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and thus

¢, tel(x, -x) 209 =0 +e} (x, ~x)
Therefore
o(x,) =min lo_ + gl(x, - x)|r =1, ..., n)

= q)s
Also if o(x) >@, , then

(Pr-!—gr(x‘xr) >¢B (rﬂl, *eey n)

80 that
L
9, ¥+ A (ulx~1) >9_,

and, since A >0, this implies wu!x >1. Hence uéx51='> q:(x)SQ)B.

Therefore, since cp(xs) =@, snd ul!x =1, it appears that

o(x ) = max {o(x)|u! x < 1)
Now
o (x) =@ +g! (x-x)
=@, + 2, (ulx-1)

80 that

q)le‘(x:B) = ‘pl‘ N LI‘ DIS 2 .q)ﬁ ? @s(xs) = QS
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Hence

o(x,) = min {p(x )|r =1, ..., 0}
Aiso, o(x) >o_ implies o(x) >@, , which, since A >0, is
equivelent to u! x >1. Therefore u! x <1 implies p(x) < ¢ s + Accordingly,

max [cp(x)lu; ¥ <1} = P

' A t
ulx <1 cp(x):q)s:%usxﬁl

The function ¢ therefore realizes the utility hypothesis for the configuration.

Since level consistency is the condition for the existence of the }“r » P ’

there follows:

COROLLARY: For an expenditure configuration to have the property of utility

consistency it is sufficient that its cross-structure name the property of

level consistency.

Bub, by the previous tﬁeorem‘, level consistency is necessary for ubility

congistency and is equivealent to cyclical consistency, whence

COROLLARY: The cyclical consistency condition is necessary and sufficient for

the utility comsistency of a finite expenditure configuration.
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Some remarks may now be made on the form of the function ¢(x) which
has been constructed. The functions cpr(x) are linear, and therefore concave
end they have gradients 8. >0, &0 they are increasing functions. Therefore,
¢(x) , since it is the minimmm of increasing concave functions, is an increasing
concave function. Its level surfaces {x|@(x) = ¢} are the convex polyhedral
surfaces which are the boundaries of the convex polyhedral regions {x|@(x) > ¢}

defined by the inequalities cpr(x) >¢ , or equivalently

? -9
u;xgl-i-

(I‘ o= l, vesy n)
by

The region @ = {x]o(x) = cps(vx)] ,, in which o@(x)} ecolncides with cpr(x) , is

& polyhedral region, which is the projection, in x-space, of the face in which
Qs(x) = @ cuts the boundaries of the region in (x, @)-space defined by these
inequalities, Since (p(xs) =Q, = tps(xs) s 88 has been seen, it appears that

[ . Als
xseﬂs 1so

»Qs = {xlq)g(x) EQB(XJ 3 T = l’ sev g n] »
Hence Qr is defined by the inequalities

'y . ! x -
@, + M, (urx l)_l_>€ps+)4.s (usx 1) {r=1, ..., n)

Thug for a point to belong to two of the cells, say =xe 'Qsﬂ 9, , it is required that

. t - t - ]
cps+z.s‘(usx 1) =qQ, N (utx 1)
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Hence, in a regular case, these cells ¢an only intersect on their boundaries.
The regions Qr thus constitute a dissection of the x-space into polyhedral
cells, In the relative interior of each cell @, the function o(x) 1is

differentisble, and has constent gradient g(x) = g, (x e nr) .

Now an index-number formula will be shown, which is made intelligible by
the construction of this utility function, Given any utility function o(x), the

cost of living index with r and s as base and current periods has the

determination
Py = min [ué x| o(x) > cpr} .

vwhere u! x = p! x/p; x, ,ond @ = q:(xr) . Hence, with determination
relative to the function @(x) which has been constructed,

| P, - 9
=min (u xjul x>1+ E—L; t=1, ..., K

M

g

8r
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It can be seen that the realization of the utility hypothesis by a
utility function ¢ which is concave and has gradient g = implies level

conelstency. For the concavity is equivalent to the condition
o(y) = olx) <glx)t (v - x) »

and Gossen's Law, that preference and pﬁce directions colnelde in eguillibrium,
gives g =ul;, where A =g'x since ulx =1 , Hence, with
cp(xr) =, g(xr) =u. A, s there follows

P =P = M Ur(xs - xr)

aend thus

By an easy enlargement, the present results can be made to encompass
the point of view of Pareto of preference ag a relation diverced from a

nunerieal messure.
An expenditure figure E_ = (xrl ur-) is considered as the choice

(xrl W Y}, of X, from among all compositions in the set W, = {x} w! x < 1} ;
r r

and the preferences immediate in this choice form the set

R = {(xr, x)|x e Wur] = (xr, Wur)

If these belong to & relation R, for sll r , then

U rCR
I‘El, *eny k
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- _;)
and 1f R dis transitive, that is ?C R where R 1s the transitive closure,

this is eguivelent to

R,C R,

where

—

R, =\ =&

I
rﬂ]-, aney n

cen define the preferences implicit in the configurstion E = {Erl r=l, ..., D} .
Any preference relatlon which can be an hypothesis for E , i1n that it is reflexlve
and transitive and conftains all the preferences in the choices shown by E , is

revealed to the extent of containing RE

Now let @ stand for the relation by which one compqsition is
gregter than snother, That is =x @ Y means every quaixbity in x is at
least the corresponding guantity in y , and not all are the same. In any
admisslble preference hypothesis R , it is to be assumed that the greaber

is exclusively preferred to the lesser so that
XRy=>~.% @ X

That is RC (D' , end, with R;CR , this gives
R O

It will now be seen for this condition, which can be called the

preference congistency condition, and is obv;i_.qusly implied by utility consisteney,
that it implies eyclical consistency, For it.implies that

X, qu%" Kq Q x.



which implies, what iz the same as c¢yclieal consistency, that

Drsgl A DstSlA‘“ f\})qr<l is impossible,

since
O By <1

Now if normel abtility conslsbency is defined as utility consigtency with

realization by a concave whbility function, end since, by virtue of the form of
the function which has besn shown constructible under level consistency, and by
the Implicstion of level conmsigtency from the existence of such a funetion,

the following impllicatioms are estabilshed, those on the cubside in the diagram
having been qulibe lmmedleba, and those en the inslde having been proved with
less immediacy.

whbiliby rraference
normsl
atility /\\\i consistency o cyele
\‘?\\'H‘__ -é—-—--—-—-—— /
R et
laval : mattiplier

It follows thersfore that all these six comdibtlons are equivalent, The sparseness
of the assumphion in the utility consistency condiiion can be noted, as slso the
‘gtrictness of the normsl whility comsisbency condition, which goes bheyond addition
of the familiar aszumpbicms, thabt a uwbility funcbion be conmblnuous, increasing,

and have concave levels, to the further agsumpbion that it be concave., Alsgo seen is
the equivelence of the two approaches, involving preference as a relation and utility
a8 a magnitude, 'The finiteness of the configuration E has been essential for
methods used, Nevertheless it is poesible to obbaln analogows results without

thig restriction, Though they will be without the strict constructivify, which

here has been followed throughout,



10,

120

15.

1k,

15.

16.
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