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THE CONSUMPTION-BASED CAPITAL ASSET PRICING MODEL 

BY DARRELL DUFFIE AND WILLIAM ZAME1 

The paper provides conditions on the primitives of a continuous-time economy under 
which there exist equilibria obeying the Consumption-Based Capital Asset Pricing Model 
(CCAPM). The paper also extends the equilibrium characterization of interest rates of Cox, 
Ingersoll, and Ross (1985) to multi-agent economies. We do not use a Markovian state 
assumption. 

KEYwoRDs: Finance, general equilibrium theory, asset pricing theory, continuous-time 
stochastic processes, CAPM. 

1. INTRODUCTION 

THIS WORK PROVIDES sufficient conditions on agents' primitives for the validity 
of the Consumption-Based Capital Asset Pricing Model (CCAPM) of Breeden 
(1979). As a necessary condition, Breeden showed that in a continuous-time 
equilibrium satisfying certain regularity conditions, one can characterize returns 
on securities as follows. The expected "instantaneous" rate of return on any 
security in excess of the riskless interest rate (the security's expected excess rate of 
return) is a multiple common to all securities of the "instantaneous covariance" 
of this excess return with aggregate consumption increments. This common 
multiple is the Arrow-Pratt measure of risk aversion of a representative agent. 
(Rubinstein (1976) published a discrete-time precursor of this result.) The exis- 
tence of equilibria satisfying Breeden's regularity conditions had been an open 
issue. We also show that the validity of the CCAPM does not depend on 
Breeden's assumption of Markov state information, and present a general asset 
pricing model extending the results of Cox, Ingersoll, and Ross (1985) as well as 
the discrete-time results of Rubinstein (1976) and Lucas (1978) to a multi-agent 
environment. 

Since the CCAPM was first proposed, much effort has been directed at finding 
sufficient conditions on the model primitives: the given assets, the agents' 
preferences, the agents' consumption endowments, and (in a production econ- 
omy) the feasible production sets. Conditions sufficient for the existence of 
continuous-time equilibria were shown in Duffie (1986), but the equilibria 
demonstrated were not shown to satisfy the additional regularity required for the 
CCAPM. In particular, Breeden assumed that all agents choose pointwise interior 
consumption rates, in order to characterize asset prices via the first order 
conditions of the Bellman equation. Interiority was also assumed by Huang 
(1987) in demonstrating a representative agent characterization of equilibrium, an 
approach exploited here. The use of dynamic programming and the Bellman 
equation, aside from the difficulty it imposes in verifying the existence of interior 

1 Financial support from the National Science Foundation is gratefully acknowledged. We thank 
Scott Richard, Kerry Back, Sandy Grossman, Ho-mou Wu, Don Brown, a co-editor, as well as two 
referees for comments. 

1279 



1280 DARRELL DUFFIE AND WILLIAM ZAME 

optima and sufficiently smooth value functions and feedback controls, tends to 
emphasize Markovian state information. As we show, the Markov assumption 
does not actually play a role in the CCAPM pricing relation. 

Our paper unfolds in the following way. Section 2 presents a static analogue of 
our approach, showing that the consumption-based and market-portfolio-based 
versions of the CAPM are of course the same. Section 3 lays out the model 
primitives and the definition of a continuous-time equilibrium. Section 4 states 
the regularity conditions on the primitives of an economy that are used to achieve 
the representative agent equilibrium pricing model described in Section 5. 

The method of proof is roughly as follows. First, we show the existence of an 
Arrow-Debreu equilibrium for the static infinite-dimensional economy induced 
by complete forward markets at time zero. Under our assumptions, in particular 
infinite marginal utility for consumption at zero, we are able to show that every 
agent's equilibrium consumption choice is pointwise interior. This marginal 
utility condition, however, prevents us from obtaining a uniform properness 
condition on preferences, the now standard assumption of Mas-Colell (1986) that 
has previously been applied in this setting and elsewhere extended. Instead, we 
show that uniform properness can be avoided in this setting.2 Second, following 
the method of Duffie and Huang (1985), we implement the Arrow-Debreu 
equilibrium as a stochastic continuous-trading equilibrium, using the continuous- 
time spanning properties of long-lived securities. Third, we use Huang's (1987) 
characterization of the equilibrium spot consumption price process as the marginal 
utility of a representative agent's utility for the aggregate endowment process. 

In Section 6, the representative-agent pricing formula is used to prove that the 
CCAPM applies to the stated equilibrium, and to extend the characterization of 
real equilibrium interest rates of Cox, Ingersoll, and Ross (1985) to multi-agent 
economies that are not necessarily Markovian. 

2. THERE'S ONLY ONE CAPM 

For comparison with our continuous-time results, consider a static pure 
exchange model, with agents defined by endowments e',..., em in the space L of 
random variables with finite variance on a given probability space, and by 
von Neumann-Morgenstern utility functions ul,..., ur on the real line. There are 
also securities in zero net supply with payoffs D = (Do,..., DN) in L, where Do 
is a nonzero constant, say Do-1. An equilibrium is a vector S = (So,..., SN) of 
security prices such that there exist portfolios 01, . . ., Om in R N+1 summing to 

2 As this paper was being written, we received a manuscript of Araujo and Monteiro (1986), who 
have independently obtained a similar abstract existence result. Araujo and Monteiro also obtain 
results for the special case of separable utility functions; these results are somewhat different from 
ours. More recently, Karatzas, Lakner, Lehoczky, and Shreve (1988) have produced an existence 
proof for the special case of separable utility functions, using a much different approach that has 
since been simplified by Dana and Pontier (1989). Karatzas, Lakner, Lehoczky, and Shreve (1988) 
also provide conditions for uniqueness of complete markets equilibria in our setting. 
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zero and solving, for respective i, the problem 

max E[ui(e'+O.D)] subjectto S = O. 
eRN+1 

If, for all i, ui is quadratic and e' E span(D0,..., DN), then the equilibrium 
allocation is fully Pareto efficient. (For simplicity, we take it that preferences are 
strictly monotone at the equilibrium allocation so as to neglect the usual satiation 
problem with quadratic utility.) Thus there are positive weights X1,..., Xm such 
that the von Neumann-Morgenstern function ux defined by 

m 

ux(c) = max EXiui(ci) 
cl + ** +cm C i=l 

defines equilibrium security prices by the representative agent pricing formula 

sn =E [u'(e)D n], O <- n <, N, 

where e = el + * e +e is aggregate consumption. It is easy to show that ux, is 
also quadratic, implying that Sn = E[(A + Be)Dn] for some numbers A and B, 
which leaves 

Sn = KIE(D') + K2cov(e, Dn) 

for some other coefficients K1 and K2. If, for any security n, the quantities So, 
var(e), and Sn are all nonzero, simple manipulation reduces this asset pricing 
model to the classical equation: 

E(fen)-r= Pen[E([ffe)-r], (CCAPM) 

where n = Dn/Sn is the return on asset n, r = 1/So is the riskless rate of 
return, Me= e/( e.- S) is the return on any portfolio3 te whose total dividend is 
0 e- D = e (aggregate consumption), and 3en = COV(Me, ?n)/var(te) iS the 
"beta" of asset n with respect to the portfolio 0 e paying aggregate consumption. 

This is the well known Capital Asset Pricing Model (CAPM), presently in a 
slightly unusual guise. In order to see the equivalence between this version of the 
CAPM and the traditional (Sharpe (1964)-Lintner (1965)) market-portfolio-based 
CAPM, we could equally well view the endowment e' of agent i as the payoff 
'y D of an endowed portfolio y' Ej iN?m of securities. In this case, the securities 
are held instead in positive total supply M = Yiy' > 0. The portfolio M is the 
market portfolio. Of course, since M- D = e, we could take ?ie to be M, so that 
the (above) CAPM is the original CAPM 

E(Mn) - r = I3Mn[E(qm) - r] (MCAPM) 

in which beta coefficients f3Mn = coV (M M,Mn)/var(feM) are measured with 
respect to the return 9 M = (M- D)/(M- S) on the market portfolio. 

3Although the aggregate portfolio of securities is by definition zero, the fact that each agent's 
endowment is in the span of the security dividends implies that e is also in their span, implying the 
existence of a suitable 9e. 
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As one moves from a single-period to a multi-period setting, the CAPM still 
applies under suitable conditions, provided one measures betas with respect to 
current aggregate consumption, rather than the market portfolio. Suppose, for 
example, that the model has multiple periods and, for simplicity, that there are 
complete security markets. We can let S' denote the market value of the nth 
security after its dividend Dn has been realized. The initial price SI of the 
security reflects the total payoff D' + Sn, and is therefore given by the pricing 
formula 

sn = E [u,(e)(Dn + Sn 

for a suitable vector A. The consumption-based CAPM still applies as stated 
(CCAPM), once the return on security n is redefined as the total return 
9?n = (Dn + S,)/Sn. The analogous equation (MCAPM), substituting R M every- 
where for Me, is not correct, however, unless by some coincidence gM and Me 
are perfectly correlated, which could be true for example, if endowment "shocks" 
are independently distributed. Barring extremely special assumptions such as 
this, it would be a strange quirk indeed if the market-portfolio-based CAPM 
applies to a multi-period model. 

The representative-agent method of proof of the CAPM sketched out above is 
extended to the continuous-time case in this paper. By adopting a continuous-time 
formulation, one can drop the quadratic utility assumption, as originally shown 
by Breeden (1979). The resulting "instantaneous" mean and covariance re-inter- 
pretation of the above CAPM is, for practical purposes however, no better than is 
the closeness of utility to quadratic for consumption over empirical time inter- 
vals. By "empirical" time intervals, we mean the time intervals over which data 
are taken and over which actual consumers do not adjust their rates of consump- 
tion expenditures. As Grossman and Laroque (1987) point out, transactions costs 
reduce the frequency of changes in consumption expenditures, in some cases 
severely, reducing the quality of the relationship: "marginal utility for actual 
consumption equals marginal indirect utility for total wealth," the principle 
element of the consumption-based CAPM. 

As Breeden, Gibbons, and Litzenberger (1986) point out, empirical results on 
the consumption-based CAPM are "mixed." The CAPM is nevertheless a good 
theoretical starting point. In fact, for additively separable utility, it's the "only 
game in town" as far as demonstrated equilibrium models of security returns. 
(For an example with the more general recursive utility formulation, see Epstein 
and Zin (1989).) The market-based multi-period CAPM does not generally hold, 
as shown by Merton (1973), and as pointed out again above. It is far from dead, 
however, as a practical model. Chamberlain (1988) recently directed new theoreti- 
cal attention toward an intertemporal market-based CAPM, based on an as- 
sumed equilibrium satisfying certain properties. The key property Chamberlain 
assumed, aside from mathematical regularity conditions, is that the marginal 
utility for aggregate consumption of the representative agent, an analogue to the 
random variable u'(e), is a (measurable) function of some one-dimensional 
Brownian motion. In the general setting of multi-dimensional Brownian motion, 
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one cannot claim that uk(e) depends only on a single Brownian motion, although 
that may happen in special cases. For example, if uncertainty is generated only 
by a one-dimensional Brownian motion, then the market-based CAPM is in 
principle correct, but tautologically so, since everv Ito process is "instanta- 
neously" perfectly correlated with every other Ito process in that case. That is, 
the "9-portfolio CAPM" is correct for any portfolio 0, with a one-dimensional 
Brownian source of uncertainty. 

3. THE CONTINUOUS-TIME ECONOMY 

We quickly lay out the model primitives and the definition of an equilibrium. 
Background information can be found, for example, in Duffle and Huang (1985) 
and Duffie (1986). 

We work with a finite time interval [0, T], a probability space (2, Y, P) on 
which is defined a standard Brownian motion B in RK, and the augmented 
filtration F = { F: t E [0, TJ} of sub-tribes (a-algebras) of Y naturally generated 
by B. Unless otherwise indicated, all probabilistic statements are made, suippress- 
ing "almost surely," relative to the filtered probability space (Q, J, F, P), our 
basic model for information and beliefs. At each date t in [0, T], there are 
markets for securities and a single consumption commodity. Our consumption 
space is the vector space L of square-integrable predictable stochastic processes.4 
Informally, if x E L is a consumption process, then at any time t, the consump- 
tion rate xt is based only on information available up to that time, and 
E(f 0Tx2 dt) < 00. 

Each of the m agents in this (pure exchange) economy is represented by a pair 
(U , e'), where Ui is a utility function on the (usual) positive cone L+ of 
consumption processes and e1 e L, is an endowment process, for i e {1,..., m 

The remaining primitives are financial securities in zero net supply paying 
dividends in units of account, just as in Arrow's (1953) original paper on general 
equilibrium with securities. We designate one of these securities as a numeraire 
and for simplicity take it to be a pure discount bond redeemable at the terminal 
date T for one unit of account. This is not a monetary model, but until we later 
convert prices to the consumption numeraire in order to characterize real security 
prices, it would be equivalent to treat the numeraire security as inside money. 
Since the total supply of each security is zero, in equilibrium, no agent is required 
to "carry away" any of the securities after trading is complete at the terminal 
date. 

The cumulative dividends of the numeraire security are described by the process 
DO defined by Dto =0, t < T, and DO = 1. The remaining securities, say N in 
number, are represented by cumulative dividend processes D1,..., DN, where, for 
each security n, Dn is an Ito process such that DT has finite variance. By Ito 

4 Formally, L = L2(S2 X [0, T], 9, v), where S9 is the predictable tribe on Q2 x [0, T] (that gener- 
ated by the left-continuous adapted processes) and v is the product of P and Lebesgue measure on 
[0,T] restricted to .9. 



1284 DARRELL DUFFIE AND WILLIAM ZAME 

process, we mean that D satisfies a stochastic differential representation 

dDt = MD(t) dt + aD(t) dBt, 

where A D is an N-dimensional predictable process and a is an N x K-dimensional 
predictable process. (There is no Markovian assumption; ,uD(t) and GD(t) may 
depend on the entire past history of the economy.) The entire economy is thus 
described by a collection 

(1) = ((2,Y,F, P),(Ui,ei), D), iE {1,..., m), 

where D = (D?,..., DN) is the (N + l)-dimensional cumulative dividend process. 
Agents take as given a spot consumption price process p e L and an (N + 1)- 

dimensional Ito security price5 process S = (S,..., SN). The gain process G = 

(S + D) is therefore an Ito process, and we can write dGt = ,t dt + ?a dB, for 
some yt and a. This allows one to define cumulative gains from trade for a 
predictable portfolio process 9 = (90,..., ON). A fixed portfolio 0E9 R+ N? 1, for 
example, generates from some time T until some time s > T the interim gain 
Jf's dGt = 9 - [(Ds - D) + (Ss - S7)], the obvious sum of dividend gain and capital 
gain. For regularity, we demand that a portfolio process 9 be square-integrable, 
meaning E( JoT9t aiAcT9 dt) < ox, and that the integral fOt * O t dt be well-defined, 
meaning JoT1It 9, Iy dt < oc almost surely. These regularity conditions regarding a 
portfolio process 9 imply that the gain-from-trade integral J9, dG, = E oJf Otn dGtn 

is well-defined, and further that J a, dG, is a martingale whenever G is a 
martingale. The vector space & of all portfolio processes includes strategies that 
vary a portfolio continually in time, a trading model inaugurated by Merton 
(1969). 

A budget-feasible plan for agent i is a pair (x, 9) E L+ x 9 such that, for any 
time t, 

(2) at*St= f'9sdGs + p(e -xs) ds, 

and such that OT =0. Relation (2) is merely the accounting restriction that 
current portfolio wealth must be generated only from trading gains and net 
consumption purchases. The terminal restriction 9T= 0 (no terminal debts) is the 
essential budget constraint. A budget feasible plan (x, 9) for agent i is optimal 
for agent i if there is no budget feasible plan (x', 9') such that U'(x') > U'(x). 
An equilibrium for an economy 9' is a collection ((S, p), (xi, 91),... , (xm,l M)) 
such that, given the security price process S and the consumption spot price 
process p, for each agent i the plan (x', Oi) is optimal, and markets clear: 
Eix'-e1= 0 and E9iO= O. Although Duffie (1986) shows conditions on an 
economy sufficient for the existence of such an equilibrium, those conditions are 
not sufficient for the asset pricing models of interest here. Appendix C discusses 
the issue of nominal versus real (consumption numeraire) primitive dividend 

S We take the convention of cum dividend security prices, so that ST, for example, is the market 
value at time T of any lump sum dividends paid at time T. 
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processes, showing that we can accommodate the latter by more complicated 
arguments. Just as in Arrow's (1953) paper, however, it is much easier to describe 
spanning assumptions for purely nominal securities. Duffie (1986) indicates how 
the assumption of Ito dividend processes can be relaxed. 

4. EQUILIBRIUM CONDITIONS 

We consider the following conditions on an economy. 

(A.1) For each agent i, Ul is represented by a smooth function u1: R +X [0, T] R 
in the form 

(3) UI(x) = E [jui(xt t) dt] 

where, for each t in [0, T], the function ui(, t): R + - o R is strictly concave, 
increasing, with the first derivative on (0, oc) denoted uic(, t) satisfying 
limk I IO uic(k, t) = + 0. 

By smooth, we mean that for any e > 0 sufficiently small, the restriction of u1 
to (?, e + e) X [0, T] is C', where e is the essential supremum of the aggregate 
consumption process (which might be + ox). A C? function is one with an 
extension to an open set having continuous derivatives of any order.6 This can be 
relaxed.7 A frequently used example satisfying (A.1) is the function u(k, t) = 
exp (- yt)ka for some y > 0 and a E (0,1). Lehoczky and Shreve (1986) have a 
closed form solution for this case, provided agents have the same utility function. 

(A.2) The aggregate endowment process e = Em 1e' is an Ito process, bounded 
away from zero, where the stochastic differential representation det = Mue(t) dt + 
ae(t) dBt is such that E(JOTae(t) * ae(t) dt) < ox. 

Again, there is no Markov assumption here; ye(t) and ae(t) can depend 
generally on the entire history of the economy up to time t. The assumption that 
e is bounded away from zero, however, is restrictive (see Araujo and Monteiro 
(1987)), and is used to ensure that spot prices for consumption are bounded, 
given the "infinite marginal utility at zero" assumption in (A.1). With this 
boundary condition on preferences, aggregate consumption might naturally be 
bounded away from zero in a production economy with suitable technological 
possibilities. We have limited ourselves to pure exchange economies for simplic- 
ity; in principle, our results should extend to production economies under natural 
regularity conditions. 

The following is a spanning assumption; because of this assumption, in 
equilibrium any conceivable consumption plan can be financed by some portfolio 

6We later use the fact that continuity of the derivatives and concavity of u&(, t) imply uniform 
convergence of the limit indicated in (A.1). 

7Working through our proofs shows that a C3 assumption on ui would more than suffice. 
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process at some initial cost, and any conceivable additional security is redundant. 

(A.3) The martingales M1,..., MN defined by 

(4) Mtn = E [ DTIt ] t E- [O, T]E 

form a martingale generator. 

Assumption (A.3) means that any martingale Y can be represented in the form 

N 

y,= Y? + ftOndM 
n=l? 

for predictable processes 91,..., ON stochastically integrable with respect to 
M1,..., MN. Since any martingale such as M = (M1,..., MN) has a stochastic 
differential representation of the form dMt = qgt dBt, where g is a N X K matrix- 
valued process, for (A.3) it is necessary and sufficient that the rank of g is K 
almost everywhere (implying that N > K). For a trivial example, let Dn = B , 
1 < n < K. The "log-normal" case Dtn = exp (Btn), 1 < n < N can also be shown to 
satisfy (A.3). 

Assumption (A.3) can in fact be weakened to an assumption that, under 
substitution of some probability measure Q uniformly equivalent8 to P, the 
martingales defined by (4) form a martingale generator under Q. (See Appendix 
C, or Duffie (1986) for further details.) 

5. A REPRESENTATIVE AGENT EQUILIBRIUM ASSET PRICING MODEL 

A representative agent for a given equilibrium ((S, p), (xi, 01),... (xmM)) 
for & is a single agent (Ux, e) having: (a) the same total endowment e of 9, (b) a 
utility function U; defined by 

(5) Ux(x) = sup FXiUi(x') subject to Fxi < x, 
(x. xm) L+ 

for some coefficient vector X E t +, and (c) the same equilibrium price processes 
(S, p) (in a no-trade equilibrium) for the single-agent economy &< = 

((,Q, _F, F, P), (Ux, e), D). 
Under preference assumption (A.1), we know that if Ux is defined by (5), then 

Ux(x) = E[f U(Xt, t) dtj 

where 

ux(k, t)= sup EXiui(ki,t) subjectto Eki<k. 
(k1,...,km)lRm i i 

8A probability measure Q is uniformly equivalent to P if the Radon-Nikodym derivative dQ/dP 
is bounded and bounded away from zero. 
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From this fact, it is easy to see that Ux also satisfies preference assumption (A.1), 
using the implicit function theorem to demonstrate smoothness. 

Huang (1987) demonstrated a representative agent in this sense for a given 
Markovian continuous-time equilibrium satisfying certain regularity conditions. 
Our first result establishes the existence of an equilibrium with the required 
regularity conditions, and the obvious analogue of the Lucas (1978) "stochastic 
Euler equation." Later, we extend the result to obtain a more general pricing 
model. We let ux,(-, t) denote the first derivative of u&(*, t). The following result 
provides for the existence of an equilibrium ((S, p), (xi, 91), ... ,(xm, tm)) for e 
and characterizes the real (consumption-numeraire) security price process St= 
St/pt in terms of the representative agent's marginal utility ux,(e ' t) for aggre- 
gate consumption and in terms of the real dividend process D, defined by 

A 

dDt = pt- 1 dDt. 

THEOREM 1: Under conditions (A.1)-(A.3) on the economy , there exists an 
ejuilibrium with a representative agent (Ux, e) such that, for any time t, the vector 
St of real security prices satisfies the representative agent pricing formula 

(6) St=U>c(et,)E [,uxc(es, s dDs Jt t tE- [0, T) 

Moreover, for any agent i with e1 # 0, the equilibrium consumption process xi is 
bounded away from zero. 

PROOF: Step A-The Arrow-Debreu Equilibrium: By Appendix Theorem A4, 
there exists an Arrow-Debreu equilibrium (xl,..., xm; ?T) for the complete mar- 
kets economy (Ui, ei), where the price functional 7r: L -0 R is represented by 
some peL + in the form 

T(x) =E[fT dt] x EL, 

with p bounded and xi bounded away from zero for any i with e' # 0. This is an 
extension of the work of Mas-Colell (1986), Yannelis and Zame (1986), and 
Zame (1988) to the case of preferences that are not uniformly proper. (See 
footnote 1 for related static equilibrium existence results.) Steps A and B of the 
proof use only Assumption (A.1) plus the assumption from (A.2) that e is 
bounded away from zero. 

Step B-Representative Agent Pricing: We recall the representative agent 
construction of Huang (1987). Briefly summarizing, by the saddle point theorem, 
there exist nonnegative constants X1,..., Am (with Xi= 0 if and only if e'= 0) 
such that the aggregate consumption process e solves the representative agent 
problem 

max E L f u(xt, t) dt] subject to 7T(x) < XT(e). 

Then, by the first order conditions at the solution e to this problem, there exists a 
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Lagrange multiplier y > 0 such that ux,(e,, t) = -yp almost everywhere. For the 
details, see Huang (1987). Without loss of generality, y = 1. 

Step C-Dynamic Trading Implementation: In roughly the sense of Duffie and 
Huang (1985), the static equilibrium ((x'), 7T) can be implemented by security 
trading strategies (01,..., Om) to form a stochastic equilibrium ((S, p), (x', 0')) 
with the nominal security pricing formula St = E[DT - D, JI. 

To outline the basic parts of this implementation procedure, pick any agent i 
and let Y be the martingale defined by 

Yt= E( PS(x -eDds J)- 

The gain process G = S + D is a martingale generator by the spanning assump- 
tion (A.3). By the definition of a martingale generator, there exist predictable 
processes T1 TK such that 

K 
Y=YO+ E |<psdGsk t[09 T]. 

k=l1? 

Let ?9 be the predictable process defined by 

:v = Y-I (xi -ei) ds-E tS 
O ~~~k=i 

An exercise shows that the trading strategy 0i = (qP, 19 T... K) forms a budget 
feasible plan (x', O1) for agent i. A simple proof by contradiction suffices to show 
that (x', 01) is moreover optimal for agent i. We can choose such a plan for each 
of the m agents. Now, suppose we replace the trading strategy 0Om so chosen for 
agent number m with the new trading strategy 0 m =- i l7jll. This implies 
clearing in the security markets. Consumption market clearing in the given 
equilibrium for the static economy (as well as the linearity of integration) then 
implies that (Om, cm) is budget feasible for agent m. Since (Om, cm) is optimal for 
m, it follows that (OM, cm) is also optimal for m. Thus we have shown the 
existence of an equilibrium in the stochastic economy. 

Step D-Renormalization of Prices: Using the definition of the consumption- 
numeraire prices and dividends, (S, D), given before the statement of the 
Theorem, and the fact that Pt = uxj(et, t), we recover the security pricing formula 
(6). Q.E.D. 

By taking any two times t and T >, t, we can substitute the expression for ST 

given by (6) into the corresponding equation for St to verify the analogue to 
Lucas' (1978) "stochastic Euler equation," 

A 1 rT] 
St = 

Uc E uxc(es s) dDs + uxj(e, T)ST J ] 
ux(t, t) LJ c] 

It is convenient (and useful for purposes of generality) to consider more 
general forms of security dividends. To begin, we consider a cumulative real 
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dividend process in the form of an Ito process Y having a final value YT with 
finite variance. By definition, Y solves a stochastic differential equation of the 
form 

dYt = ,uy(T) dt + or(t) dBt, 

where iyy and ay are (possibly path-dependent) processes. (We take iyy and ay 
to be predictable processes, real-valued and R K-valued, respectively.) 

Introducing the new security Y into the model changes nothing in equilibrium, 
given the spanning assumption (A.3), provided the new security is priced consis- 
tently with equation (6), that is, provided the current real price of the security is 

1 [T] 
Sty u(e E Iuxc(es s) dYs F ] 

uxc(et,t) LJct 

(Since the security is redundant, any other price process allows arbitrage.) 
Likewise, any additional security paying a terminal lump sum dividend 8 is also 
redundant, and at time t has the equilibrium real price E[uxc(eT, T)S iFt]/ 

uxc(et, t). (We only assume that 8 is YT-measurable and of finite variance.) By 
additivity, the equilibrium price process sy8 for a security promising the Ito 
dividend process Y as well as a terminal dividend 8 is therefore defined by 

1 rT1 
(7) StY8 = F(et [I[ uxc(es, S) dYS + uxC(eT, T)> JFt j t [0, T]. 

This is formalized by the following corollary to Theorem 1 for the augmented 
economy 9`6 defined by the original economy &= ((Q2, Y, F, P), (U', e1), D)) 
and the additional security paying the real dividend process Y as well as the 
terminal real dividend S. (The result extends to the augmentation of any number 
of additional securities.) 

COROLLARY: Further to the statement of Theorem 1, for any cumulative (Ito) 
dividend process Y of finite variance and any terminal lump sum dividend 8 of finite 
variance, the augmented economy 9`6 has an equilibrium with the same consump- 
tion allocation and the same representative agent in which the real price process S Y 

for the security (Y, 8) satisfies equation (7). 

Intermediate lump sum dividends paid at (possibly random stopping) times 
can also be priced in the obvious way, as shown in Duffie (1986). 

6. THE CCAPM 

We will now characterize the equilibrium excess rate of return on any security 
paying a cumulative (Ito) real dividend process Y plus some lump sum terminal 
dividend S. For notational convenience, we let V denote the equilibrium real 
price process S' of this security, as defined by (7). 
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Consider the process Z defined by Z, = Jo4p, dY, + p,V,. From (7), it is easy to 
check that Z is a martingale. Since V is an Ito process, we can always write 

dVt = ,uv(t) dt + av(t) dBt, 

for some predictable process ,i v and R K.valued predictable process a VI Also, by 
Ito's Lemma (as stated in Appendix B), 

dZt = [ptAy(t) +p,.v(t) + Vttp(t) + uxcc(et, t)Ue(t) - av(t)] dt 

+ aZ(t) dBt, 
for some process oz that we need not calculate. Since Z is a martingale, for 
almost every time t, 

Pt [ (t) + 1v(t)I + Vttp(t) + uxcc(et, t)Ue(t) 
- ov(t) = 0. 

Dividing through by pt = uXJ(et, t), which is everywhere nonzero, we have the 
basic rate of return relationship 

(8) A v (t ) + tt(t) - rtVt = a ; v(t) a(t ) 

where rt =-ip(t)/pt. For Vt' 0, we can define the total real rate of expected 
return on this security at time t as 

_ [AV(t) + AY(t)] 
V(t) 

the expected real rate of capital plus dividend gain divided by current market 
value. Letting aq(t) = av(t)/V(t), it is common to treat q,(t) -a (t) as the 
"instantaneous variance of return" of the security. (After completing the state- 
ment of the CCAPM, however, we make a critical remark concerning the 
generality of this definition.) We now have the more familiar CCAPM relation 

(9) St - rt= -ux(et' t) asq(t) ae(t), 
Uxc(et',t) 

taking the common interpretation of aq(t) * ae(T) as the instantaneous conditional 
covariance between increments of aggregate consumption process e and the total 
real return on the given security. The security in question is riskless (in real 
terms) if au(t) 0. Equation (9) then gives us a characterization of the riskless 
rate of return, rt = - Ap(t)/p,. Since Pt = uxc(et, t), the riskless rate of return or 
equivalently, the real equilibrium short term interest rate, is minus the expected 
rate of growth of marginal utility for consumption of the representative agent. In 
a more restrictive setting of a single agent and a Markovian state process, Cox, 
Ingersoll, and Ross (1985) have previously given this characterization of the 
riskless rate. 

More formally, we have the following version of the CCAPM. 

PROPOSITION 1 (CCAPM): There exist equilibria for economies satisfying As- 
sumptions (A.1)-(A.3). In equilibrium, at almost every time t, the riskless real rate 
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of return is r= - p (t)/p, (minus the expected rate of change of marginal utility 
for consumption of the representative agent), and the expected real rate of return t 
of any security satisfies (9), provided the market value of the security is not zero. 

To describe a* a as the "instantaneous variance of the return of the 
security" is quite misleading unless the security Y, defined by dYt = iuy(t) dt + 
ay(t) dBt, has ay(t) = 0. That is, if the security's dividends are "instantaneously 
riskless," as is said, then the nomenclature is appropriate. Otherwise, a actually 
corresponds to the "instantaneous variance" of capital returns only, and does not 
include the effects of the "local risk" of dividend returns. 

One can also give the usual "beta" interpretation of relation (9) as follows. 
Consider any security whose equilibrium real price process Ve has a diffusion IVe 

such that aVe(t)/Ve= ae(t) for all t. One can always design such a security by 
our spanning assumption (A.3). Since the excess expected real rate of return of 
this security, denoted Me, satisfies the CCAPM (9), we have 

(10) ~ er _ XCet t) (10) gt rt U=c(et ) (ye(t) * (Te(t). 

Combining (9) and (10), we have the traditional beta relationship 

(11) 9P-t=3(t)(qe-rt) 

where 

ae(t) * e(t)9 

assuming the denominator is nonzero. 
Relationship (11) is not equivalent to (9), since (11) is true even when (9) is 

adjusted by replacing the representative agent risk aversion measure 
- uxcc(et, t)/uXJ(et t) with any well-defined process. That is, relation (11) states 
merely that excess expected returns are proportional to consumption betas, while 
relation (9) also specifies the constant of proportionality. Breeden's original work 
suggests that (11) will in fact hold without spanning in an appropriately regular 
equilibrium, using a suitable definition of Me as the excess expected return of a 
particular portfolio with "returns most highly correlated with aggregate con- 
sumption increments." Existence of nontrivial continuous-time equilibria with 
incomplete markets is an open issue. Certainly, spanning is not an issue in a 
single-agent economy, and (11) can easily be shown to hold in Breeden's sense in 
a single-agent economy, Markov or not, following the calculations made here, 
since the equilibrium allocation in a single-agent economy is Pareto optimal. 
Aside from the single-agent case, or except by a strange coincidence, incomplete 
markets negates both Pareto optimality and a representative agent. 

7. CONCLUDING REMARKS 

We remark on several extensions of the theory in this paper. As pointed out by 
Breeden (1979), the CCAPM extends, with limitations, to the case of multiple 
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commodities. Back (1988) has giveii a partial extension to more general informa- 
tion structures than that generated by Brownian motion. Of course, our main 
result (Theorem 1) and the representative agent asset pricing model (6) apply to 
an arbitrary information filtration satisfying the usual conditions, provided the 
integral in equation (6) is well-defined. It is only when we derive the CCAPM 
itself that we turn to the "instantaneous covariance" characterization of asset 
returns, which depends on a Brownian information structure. Our abstract 
existence results in Appendix A also permit an extension of Theorem 1 to the 
case of multiple commodities and an additive state-dependent utility function ui: 
Q2 x [0, T] x R 1- R, subject to technical conditions. Of course, the CCAPM is 
not true with state-dependent utility. 

Finally, we remark that our results meet Huang's (1987) sufficient conditions 
for Markovian equilibrium. That is, if e and D are well behaved functions of a 
Markov state process X, then the equilibrium (real) security prices defined by (6) 
are also measurable functions of the state process X. 
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APPENDIX A: THE STATIC ARROW-DEBREU ECONOMY 

This Appendix presents the required existence result for the static Arrow-Debreu economy. The 
precise result we require is rather special, but the underlying result is rather general. Since this 
underlying result seems potentially useful in other contexts, we digress slightly to present it first. 

Abstract Arrow-Debreu Existence Result 

Let K be a normed vector lattice with positive cone K+ (see Schaefer (1974)). We consider an 
Arrow-Debreu (pure exchange) economy 9'= (?, e') in K, with m agents described by preference 
relations > i on K+ and initial endowments e' E K+. Throughout, we make the usual assumptions 
on preferences: each >- i is reflexive, transitive, complete, convex, continuous, and strictly monotone. 

We say that a (Hausdorfl) topology T on K is compatible if it is weaker than the norm topology 
and if all order intervals [0, x] = { y e K: 0 < y < x } are r-compact. We say that the preference 
relation >- satisfies the forward cone condition at x E K+ if: 

(FC): There isaveK+, an E> 0 anda p>0suchthatx+Xv-z>-xwheneverx+Xv-zeK+, 
O < X < p, and llzll < Xe. 

The forward cone condition was introduced by Yannelis and Zame (1986), and is a variant of the 
backward cone condition ("properness") introduced by Mas-Colell (1986). The validity of the 
uniform version of the forward cone condition (that is, that (FC) holds at each x E K+, with v, E, p 
fixed) is equivalent to uniform properness, which was used by Mas-Colell to obtain the existence of 
competitive equilibria. However, the pointwise versions of the forward cone condition (which we use) 
and of properness are incomparable. 

An allocation (xi,. . . xm) E (K+)m is feasible for d' if E, (e' - x') = 0. A competitive equilibrium 
is a feasible allocation (xl,. . ., xm) and a linear functional v on K such that, for all i, v - xi < T * ei 
and x'>-1yi for any y .E K+ with q r.yi < i7 * ei. A feasible allocation (xl, ... , xm) is in the core 



CAPITAL ASSET PRICING MODEL 1293 

if there exists no other allocation (yl,..., y i) and nonempty subset W of agents such that 
? (e' - y') = O and y' I xi for all i c- -. 
Our abstract existence result is: 

THEOREM Al: Let K be a normed lattice, let r be a compatible topology on K, and let 4) be an 
Arrow-Debreu economy in K. Assume that: (a) each of the preference relations >-, is T-upper 
semicontinuous; (b) for each core allocation (xi,... xIn) for 4), each >-, satisfies the forward cone 
condition at x'; and (c) e = 2,e' is strictlypositive. Then 8has a competitive equilibrium (x,...,xxm; r), 
where i7 is a positive continuous linear functional on K. 

To prove Theorem Al, we first consider a restricted economy 4. Let K(e) be the order ideal 

K(e) = {xe K: 3s +R: Ixi ?se}, 

where I x =x+ + x-, and define a norm 11 Ile on K(e) by 

lixile=inf{s>O: Ixi sIse}. 

It is easily checked that, equipped with this norm, K(e) is a normed vector lattice. The economy 4) is 
simply the restriction of 8) to K(e). That is, 4) has the same agents (1. m}, with the same 
endowments el,. . ., em, and with the preferences obtained by restricting a, to K(e). 

The following lemma and its proof are slight variations of those in Zame (1987) as well as 
Aliprantis, Brown, and Burkinshaw (1987a). The general idea of working on order ideals of the 
consumption space, allowing one to naturally extend Bewley's (1972) approach, can also be found in 
Brown (1983) and in Aliprantis, Brown, and Burkinshaw (1987b). 

LEMMA A2: The economy 4 has a competitive equilibrium (xl..., xm; ii), where X7 is a positive 
linear functional on K(e) which is continuous with respect to the norm 11 Ile.- 

PROOF: Let f denote the restriction of T to K(e). The feasible consumption sets for &e are the 
order ideal [0, e], which is r-compact (by assumption). Moreover, the endowment e lies in the interior 
of the positive cone of K(e). It follows9 from Theorem 2 of Zame (1986) that 4) has a quasi-equi- 
librium'0 (xl,..., x-; ST), where -6 is continuous with respect to the norm 11 lie. Strict monotonicity 
of preferences implies as usual that 'i is positive and that (xi,.. I xm; *F) is an equilibrium. Q.E.D. 

LEMMA A3: If (xi,... I x M; -7) is an equilibrium for 66 and if each of the preference relations >- 
satisfies the forward cone condition at x', then 6 is continuous with respect to the original norm II on 
K(e). 

PROOF:11 Let v,, Ii, and pi be as in the forward cone condition for >- i at x'. At the cost of 
replacing ?, by E,/2, we may replace v, with any vector v1' E K+ such that lIv, - vI < E,/2. Since 
K(e) is dense in K, we may without loss of generality assume that vi E K(e) for each i. Set v =E,v, 
and E = min {e1..,}. We claim that 

IF V I,ff -YI < -IIYII, Y E- K(e)- 

Note first that (since 'i is positive) it suffices to establish this for each y c K(e)+ with IlYll < 1. 
Suppose that i *y > ST * V/E. For X > 0 small enough, Xy < e, so e-Xy E K(e)+. Since e =?,e' = 
E,x', the Riesz Decomposition Property (Schaefer (1974)) allows us to find vectors z, E K(e) such 

9 Theorem 2 of Zame (1986) assumes that each of the endowments e' lies in the interior of the 
consumption sets, but this assumption is used only to obtain an equilibrium from a quasi-equilibrium 
(no monotonicity assumption is used there). 

10A quasi-equilibrium is the same as an equilibrium, except for the substitution of the condition 
U(x') > U(x') * * x x' in place of the usual optimality condition. 

11 This is the argument of the Price Lemma of Yannelis and Zame (1986). 
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that 0z, 6 x' and AAy =izi. Then 

e+ Av - cAy= (xi+ Avj -z,). 

Since E2zi = EAy, it follows that Ilzill 6 E,jjAyjj for each i, and hence (by the forward cone condition) 
that x' + Av, -zi z>- x' for each i. On the other hand, iF * (Av - EAy) < O so . - (x' + As, - z1) < I *. xi 
for some i. This contradicts the equilibrium properties of (x',..., xm; if), so we conclude that 
f *y 6 (i - v/E) jyjj for each y E K(e)+, and hence that * is continuous with respect to the 11 HI-norm 
on K(e), as asserted. Q.E.D. 

PROOF (of Theorem Al): By Lemma A2, the economy g has an equilibrium (xi,... xm; if). The 
equilibrium allocation (xi,... xm) is in the core of o; since all feasible allocations for of are actually 
in K(e)", the allocation (xi,..., xm) is in the core of 4. Since K(e) is dense in K, the continuity of 
Xi (Lemma A3) implies that so has a (unique) extension to a positive, continuous linear functional iT 
on K. Continuity of preferences implies that (xi,. . . xm; iT) is an equilibrium for 4. Q.E.D. 

An Application to the L2 Case with Additive-Separable Preferences 

We turn now to the precise result required. From now on, the commodity space L = L2(s2 X 
[0, T], .9, v). Let 4= (>- ,, e') denote the corresponding Arrow-Debreu complete markets economy on 
L, where >-, is represented by a utility function U'. 

THEOREM A4: Under condition (A.1) of Section 3 and the assumption that the aggregate endowment 
process e is bounded away from zero, 4 has a competitive equilibrium (xi.... xM; v), where 'r is 
represented by p E L+ as in relation (6) with p bounded and, for all i, if e' *0, then xi is bounded away 
from zero. 

PROOF: Let K denote L equipped with the norm 11 given by 

lixil = E(j )xt dt). 

As such, K is a normed vector lattice. It is easily checked that each of the preference relations is 
continuous in the 11 1l-topology. Let T denote the weak topology on K with respect to the topological 
dual K* of L. This topology T is compatible.'2 Moreover, since norm-closed convex sets are weakly 
closed, the preference relations >- i are T-upper semicontinuous. 

Fix a measurable (predictable) subset A of Q2 x [0, T] and a real number a > 0. If y E K+ and 
y > a on A, then together with the Mean Value Theorem our assumptions imply that 

(13) U'(y) - U'(y - z) < E( Tz,dt) sup ui(a2t) 
Ote[0, T] 

whenever z E K+ is any vector in K+ supported on A and bounded above by a/2. Similarly, for any 
set H E. 9, h > 0, and y E K+ with y S h on H, we obtain 

(14) U'(y+X1A)- Ui(y)1>Av(H) inf u,c(3h/2,t) 
E [O, T ic 

whenever 0 < A < h. There is no loss of generality in assuming that each e' is nonzero, and hence that 
U'(ei) > Ui(0) for each i. Suppose (xl,..., xm) is a core allocation for S. Since U'(x')> U'(e') > 
U'(0), there is a set A, c.9 with v(Ai) > 0 and a number a, > 0 with x' > a, on Ai. If some xi is not 
bounded away from zero, we can find for each h > 0 some He-9 such that v(H) > 0 and xi < h on 
H. Since e is bounded away from zero, say e > c > 0 for some c, we can assume without loss that 
xi > c/m on H for some agent 1. Applying (13) and (14) and our assumption that u,c(k, t) -+ oo as 
k -- 0, we conclude that agents j and I could exchange appropriate multiples of the commodity 
bundles 1H and 1A to effect a Pareto improvement provided h is small enough. Since this would be a 
contradiction, we conclude that each xi is indeed bounded away from zero. 

12 On order intervals, this topology coincides with the weak topology on L with respect to L*; 
Alaoglu's Theorem implies that order intervals are compact in this topology (Schaefer (1974)). 
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We now assert that the forward cone conditions hold at the points x. Xm. Since the x"s are all 
bounded below away from zero and bounded above on some set C E 9 with v(C) > 0, this follows 
immediately from (13) and (14) (taking vi = lc for each i). We now conclude from Theorem Al that 
d' has an equilibrium (xi I ., xm; f7). Since (xl,... I xm) is a core allocation, xi is bounded away from 
zero for each i. Moreover, since v is 11- 1ll-continuous, the Riesz representation theorem implies that ST 

is represented by a positive bounded function p; since v is a finite measure, p is in L. Q.E.D. 

APPENDIX B: ITO'S LEMMA 

We have used Ito's Lemma repeatedly, and it may be best to state it formally for the record in the 
setting of Ito processes. If dXt = ,ux(t) dt + ux(t) dBt is an Rn-valued Ito process for some n, and 
f: R"n x [0, T] -D R is C2 (when extended to an open set), then the process Ydefined by Yt =f(Xt, t) 
is also an Ito process with stochastic differential dYt =.uy(t) dt + ay(t) dBt defined by ay(t)= 
fx(Xt, t)ax(t) and 

ALy(t) =fx(X , t)*x (t) +ft(Xt, t) + trace [x(t)Tfxx(Xt, t)Ox(t)], 

where the vector fx( Xt, t) and matrix fxx( Xt, t) denote the first and second partial derivatives of f 
with respect to the X arguments. (The same formula applies under weaker conditions.) We actually 
use two special cases of this result in the paper. One is the case of n = 1, Xt = et, and Yt =f ( Xt, t) = 
U.c(et, t). In this case, ay(t) = uxcc(et, t)oe(t). The second application of Ito's Lemma in the body of 
the paper is the case of n = 2, XtM) -P,, = pt, and Y, =f(Xt, t) = Xt1lXt2). In the latter case, 
application of Ito's Lemma leads to 

Ay (t) =PtAv (t) + VtJp (t) + UV(t) * op(t). 

Details and extensions can be found, for example, in Lipster and Shiryayev (1977). 

APPENDIX C: SPANNING WITH REAL PRIMITIVE SECURITY DIVIDENDS 

Just as with Arrow's (1953) model of security markets, we have found it convenient in this paper to 
define the primitive, exogenously given, security dividends in (nominal) unit of account, not in (real) 
consumption numeraire terms. This allows an easy development of spanning in continuous-time, 
based on primitive assumptions on the nominal dividend process D. In a general multi-commodity 
model, there is little alternative, as shown by Hart (1975), since equilibria need not exist in general. 
(Although Hart worked in a discrete-time setting, the fact that the span of markets may collapse 
discontinuously at certain endogenous spot price processes does not disappear in continuous-time; it 
only becomes more difficult to deal with.) In the single-commodity setting of this paper, however, one 
can define spanning assumptions directly on a real risky security dividend process y = (Yy.yN), 
provided there is also a nominal numeraire security DO as defined in Section 3. In this case, the 
primitives of an economy are J%= ((Q, -F, F, P),(Ub, e'),(Y, D?)). 

Suppose, for N > K, that Y is an RN_valued Ito process with stochastic differential representation 

dYt = uy (t) dt +ay (t) dB, 

and that Mt = Jjtry(s) dBs is a martingale generator (as defined in (A.3)). For this, it is basically 
enough that the essential infimum of the rank of ay is maximal, and therefore equal to the dimension 
K of the Brownian motion B. As an alternative to (A.3), this is in principle enough to demonstrate 
the existence of an equilibrium satisfying all of the results of the paper. To guarantee this, we need 
only complete the proof of Step (C) of Theorem 1, as follows. 

We take static equilibrium (xl,..., xm; in) as given by Appendix A, Theorem A4, where if has the 
representation ff . c = E(f JTptc dt), for p bounded and bounded away from zero. The corresponding 
nominal dividend process D' is defined by dDt' =pt dYt'. By Girsanov's Theorem (under technical 
regularity conditions on .&y and ay(t) given in Lipster and Shiryayev (1977)), there exists a new 
probability measure Q uniformly equivalent to P and a Brownian motion B relative to Q under 
which dDt =pAay(t) dBt. Since p is bounded above and below away from zero, the spanning 
assumption (A.3) is therefore satisfied under the new measure Q. Let S, = EQ[DT - Dt [JFt define the 
nominal security price processes, where EQ denotes expectation under Q. In order to define a suitable 
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new consumption spot price process pl, first define the density process 

Zt= [dP t ], t[O,T]. 

Now let Pt =Pt/Zt for all t. By Lemma 4.1 and Proposition 4.1 of Duffie (1986), there exist trading 
strategies (61. f) such that ((S,p),(xl,61). (xm,Gm)) is an equilibrium for e'. In order to 
recover the pricing formula (6) on which the rest of the paper is based, we use the fact that, for any 
integrable random variable W, 

EP(WZTI-F) 

Combining this rule with the arguments used in the proof of Lemma 4.1 of Duffie (1986), it is then 
easily shown that the real price process S defined by St = t/At satisfies the basic representative asset 
pricing equation (6), and the paper continues as before. 

This Appendix shows that, in this special setting, one can actually provide conditions directly on 
real primitive security dividends that generate spanning in equilibrium. Aside from being somewhat 
more complicated and requiring additional technical regularity conditions, this yields the same asset 
pricing results stated in the body of the paper. 
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