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Abstract

We define the contact homology for Legendrian submanifolds
in standard contact (2n + 1)-space using moduli spaces of holo-
morphic disks with Lagrangian boundary conditions in complex
n-space. This homology provides new invariants of Legendrian
isotopy which indicate that the theory of Legendrian isotopy is
very rich. Indeed, in [4], the homology is used to detect infinite
families of pairwise non-isotopic Legendrian submanifolds which
are indistinguishable using previously known invariants.
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1. Introduction

The motivating problem for this paper is the classification of Legen-
drian submanifolds up to Legendrian isotopy. Here we restrict attention
to the standard contact structure on R

2n+1. For n = 1, the Legendrian
isotopy problem has been extensively studied, [2, 6, 9, 10, 11], but there
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have been few results for n > 1. In this paper, we give a rigorous defini-
tion of contact homology, a potent new invariant originally described in
[5]. This new invariant was applied in [4] to construct infinite families
of non-Legendrian isotopic, Legendrian n-spheres, n-tori and surfaces
of arbitrary genus. These are the first such high-dimensional exam-
ples. They also demonstrate that the analogues of rotation number and
Thurston–Bennequin invariant (and diffeomorphism type) of a Legen-
drian submanifold are far from complete invariants of Legendrian iso-
topy. (See [4] for a definition of the high-dimensional analogues of the
classical invariants.)

The goal of this paper is to define contact homology and prove that
it is a Legendrian isotopy invariant.

Theorem. The contact homology of Legendrian submanifolds in
R

2n+1 with the standard contact form is well defined. (It is invariant
under Legendrian isotopy.)

We define the contact homology using punctured holomorphic disks
in C

n ≈ R
2n with boundary on the Lagrangian projection ΠC : C

n×R →
C

n of the Legendrian submanifold, and which limit to double points of
the projection at the punctures. This is analogous to the approach
taken by Chekanov [2] in dimension 3 who was the first to prove that
the classical invariants are not enough to distinguish isotopy classes. In
dimension 3, however, the entire theory can be reduced to combinatorics.
As discussed in [4], our contact homology also fits into the over arching
philosophy of Symplectic Field Theory outlined in [8]. There it goes by
the name of the “relative contact homology” of the standard contact
(2n + 1)-space.

In Section 2, we define contact homology more concretely and out-
line its invariance under Legendrian isotopy. If L ⊂ R

2n+1 ≈ C
n × R

is a Legendrian submanifold we associate to L a differential graded al-
gebra (DGA), denoted (A, ∂), freely generated by the double points of
ΠC(L) ⊂ C

n.
Since L is embedded, one may distinguish upper and lower branches

of L at double points of ΠC(L) and using this structure, we associate a
sign to every puncture of a holomorphic disk with boundary on ΠC(L).
We define the differential of the DGA by counting punctured rigid holo-
morphic disks with boundary on ΠC(L) and with exactly one positive
puncture. The contact homology of L is defined to be Ker ∂/ Im ∂.
Thus, contact homology is similar to Floer homology of Lagrangian in-
tersections. The proof of its invariance is similar in spirit to Floer’s
original approach [13, 14]; we study bifurcations of moduli spaces of
rigid holomorphic disks under variations of the Legendrian submanifold
in a generic 1-parameter family of Legendrian submanifolds. Similar
bifurcation analysis is also done in [19, 21, 30, 31].
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In Section 6, the (formal) dimension of the moduli space of punc-
tured holomorphic disks with boundary on an exact Lagrangian immer-
sion which is an instant in a generic 1-parameter family is expressed in
terms of its boundary data. We compute this dimension by relating the
linearization of the ∂̄-equation for punctured disks with boundary on
the exact Lagrangian to the standard vector Riemann–Hilbert problem
on the closed disk (i.e. the disk without punctures).

In Section 7, we show that for Legendrian submanifolds (and their
1-parameter families) in an open dense set in the space of such, the
moduli-spaces of holomorphic disks are being transversely cut out. That
is, we achieve transversality for the ∂̄-equation without perturbing the
complex structure on C

n. The fact that we can keep the standard
complex structure on C

n is important for computations of contact ho-
mology, see [4]. Similar transversality results were obtained by Oh [25]
for closed holomorphic disks with Lagrangian boundary condition, un-
der the additional assumption that the disks have an injective point on
the boundary. In general, disks without such points cannot be excluded
and we manage to prove transversality for disks involved in contact ho-
mology using the fact that they have only one positive puncture, and a
technical result, established in Section 3, that all Legendrian subman-
ifolds may be assumed real analytic close to the preimages of double
points of ΠC.

In Section 9, we show that moduli-spaces of holomorphic disks have
certain compactness properties. We prove a version of Gromov com-
pactness for punctured holomorphic disks with boundary on an im-
mersed exact Lagrangian submanifold in C

n. In particular, it follows
that 0-dimensional moduli-spaces are compact and that 1-dimensional
moduli-spaces have natural compactifications.

In Section 8, we establish gluing theorems. These are used to prove
that the differential ∂ of the DGA A satisfies ∂ ◦ ∂ = 0, and that the
homology of (A, ∂) is left unchanged by the two basic bifurcations which
occur in generic 1-parameter families: appearance of disks of formal di-
mension −1 and self-tangency instances. The most technically difficult
results are the so-called degenerate gluing theorems which are necessary
to control the changes of the DGA under self-tangencies. Here, holo-
morphic disks with punctures at the self-tangency double point must be
glued. To prove these gluing theorems, we use results from Section 4
which give the blow up rate of the constant in the elliptic estimate for
the linearized ∂̄-equation, as the transverse double point at one puncture
approaches a self-tangency double point. To prove invariance under the
appearance of disks of formal dimension −1, we use an auxiliary Leg-
endrian submanifold, see Section 10 and a method similar to the proof
of Floer theory invariance which uses an elegant “homotopy of homo-
topies” argument (see, for example, [15, 29]).
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2. Contact Homology and Differential Graded Algebras

In this section, we describe how to associate to a Legendrian subman-
ifold L in standard contact (2n + 1)-space a differential graded algebra
(DGA) (A, ∂). Up to a certain equivalence relation this DGA is an in-
variant of the Legendrian isotopy class of L. In Section 2.1, we recall the
notion of Lagrangian projection and define the algebra A. The grading
on A is described in Sections 2.2. Sections 2.3 and 2.4 are devoted to
the definition of ∂ and Section 2.5 proves the invariance of the homol-
ogy of (A, ∂), which we call the contact homology. The main proofs of
these three subsections rely on much analysis, which will be completed
in the subsequent sections. In a sense, these last three subsections can
be viewed as an overview of the remainder of the paper.
2.1. The algebra A. Throughout this paper, we consider the standard
contact structure ξ on R

2n+1 = C
n × R which is the hyperplane field

given as the kernel of the contact 1-form

(2.1) α = dz −
n∑

j=1

yjdxj,

where x1, y1, . . . , xn, yn, z are Euclidean coordinates on R
2n+1. A Legen-

drian submanifold of R
2n+1 is an n-dimensional submanifold L ⊂ R

2n+1

everywhere tangent to ξ. We also recall that the standard symplectic
structure on C

n is given by

ω =
n∑

j=1

dxj ∧ dyj,

and that an immersion f : L → C
n of an n-dimensional manifold is

Lagrangian if f∗ω = 0.
The Lagrangian projection projects out the z coordinate:

(2.2) ΠC : R
2n+1 → C

n; (x1, y1, . . . , xn, yn, z) �→ (x1, y1, . . . , xn, yn).
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If L ⊂ C
n × R is a Legendrian submanifold, then ΠC : L → C

n is a
Lagrangian immersion. Moreover, for L in an open dense subset of all
Legendrian submanifolds (with C∞ topology), the self intersection of
ΠC(L) consists of a finite number of transverse double points. We call
Legendrian submanifolds with this property chord generic.

The Reeb vector field X of a contact form α is uniquely defined by
the two equations α(X) = 1 and dα(X, ·) = 0. The Reeb chords of a
Legendrian submanifold L are segments of flow lines of X starting and
ending at points of L. We see from (2.1) that in R

2n+1, X = ∂
∂z and

thus ΠC defines a bijection between Reeb chords of L and double points
of ΠC(L). If c is a Reeb chord, we write c∗ = ΠC(c).

Let C = {c1, . . . , cm} be the set of Reeb chords of a chord generic
Legendrian submanifold L ⊂ R

2n+1. To such an L, we associate an
algebra A = A(L) which is the free associative unital algebra over the
group ring Z2[H1(L)] generated by C. We write elements in A as

(2.3)
∑

i

t
n1,i

1 . . . t
nk,i

k ci,

where the tj ’s are formal variables corresponding to a basis for H1(L)
thought of multiplicatively and ci = ci1 . . . cir is a word in the gener-
ators. It is also useful to consider the corresponding algebra AZ2 over
Z2. The natural map Z2[H1(L)] → Z2 induces a reduction of A to AZ2

(set tj = 1, for all j).

2.2. The grading on A. Let Λn be the Grassman manifold of La-
grangian subspaces in the symplectic vector space (Cn, ω) and recall
that H1(Λn) = π1(Λn) ∼= Z. There is a standard isomorphism

µ : H1(Λn) → Z,

given by intersecting a loop in Λn with the Maslov cycle Σ. To describe
µ more fully, we follow [26] and refer the reader to this paper for proofs
of the statements below.

Fix a Lagrangian subspace Λ in C
n and let Σk(Λ) ⊂ Λn be the subset

of Lagrangian spaces that intersects Λ in a subspace of k dimensions.
The Maslov cycle is

Σ = Σ1(Λ) = Σ1(Λ) ∪ Σ2(Λ) ∪ · · · ∪ Σn(Λ).

This in an algebraic variety of codimension one in Λn. If Γ : [0, 1] → Λn is
a loop then µ(Γ) is the intersection number of Γ and Σ. The contribution
of an intersection point t′ with Γ(t′) ∈ Σ to µ(Γ) is calculated as follows.
Fix a Lagrangian complement W of Λ. Then for each v ∈ Γ(t′)∩Λ there
exists a vector w(t) ∈ W such that v + w(t) ∈ Γ(t) for t near t′. Define
the quadratic form Q(v) = d

dt |t=t′ω(v, w(t)) on Γ(t′) ∩ Λ and observe
that it is independent of the complement W chosen. Without loss of
generality, Q can be assumed non-singular and the contribution of the
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intersection point to µ(Γ) is the signature of Q. Given any loop Γ in Λn,
we say µ(Γ) is the Maslov index of the loop.

If f : L → C
n is a Lagrangian immersion then the tangent planes of

f(L) along any loop γ in L gives a loop Γ in Λn. We define the Maslov
index µ(γ) of γ as µ(γ) = µ(Γ) and note that we may view the Maslov
index as a map µ : H1(L) → Z. Let m(f) be the smallest non-negative
number that is the Maslov index of some non-trivial loop in L. We
call m(f) the Maslov number of f. When L ⊂ C

n × R is a Legendrian
submanifold, we write m(L) for the Maslov number of ΠC : L → C

n.
Let L ⊂ R

2n+1 be a chord generic Legendrian submanifold and let c
be one of its Reeb chords with end points a, b ∈ L, z(a) > z(b). Choose
a path γ : [0, 1] → L with γ(0) = a and γ(1) = b. (We call such path a
capping path of c.) Then ΠC ◦γ is a loop in C

n and Γ(t) = dΠC(Tγ(t)L),
0 ≤ t ≤ 1 is a path of Lagrangian subspaces of C

n. Since c∗ = ΠC(c) is
a transverse double point of ΠC(L), Γ is not a closed loop.

We close Γ in the following way. Let V0 = Γ(0) and V1 = Γ(1).
Choose any complex structure I on C

n which is compatible with ω
(ω(v, Iv) > 0 for all v) and with I(V1) = V0. (Such an I exists since the
Lagrangian planes are transverse.) Define the path λ(V1, V0)(t) = etIV1,
0 ≤ t ≤ π

2 . The concatenation, Γ ∗ λ(V1, V0), of Γ and λ(V1, V0) forms
a loop in Λn and we define the Conley–Zehnder index, νγ(c), of c to be
the Maslov index µ(Γ ∗ λ(V1, V0)) of this loop. It is easy to check that
νγ(c) is independent of the choice of I. However, νγ(c) might depend
on the choice of homotopy class of the path γ. More precisely, if γ1 and
γ2 are two paths with properties as γ above then

νγ1(c) − νγ2(c) = µ(γ1 ∗ (−γ2)),

where (−γ2) is the path γ2 traversed in the opposite direction. Thus
νγ(c) is well defined modulo the Maslov number m(L).

Let C = {c1, . . . , cm} be the set of Reeb chords of L. Choose a capping
path γj for each cj and define the grading of cj to be

|cj| = νγj (cj) − 1,

and for any t ∈ H1(L) define its grading to be |t| = −µ(t). This makes
A(L) into a graded ring. Note that the grading depends on the choice
of capping paths but, as we will see below, this choice will be irrelevant.

The above grading on Reeb chords cj taken modulo m(L) makes AZ2

a graded algebra with grading in Zm(L). (Note that this grading does
not depend on the choice of capping paths.) In addition the map from
A to AZ2 preserves gradings modulo m(L).

2.3. The moduli spaces. As mentioned in the introduction, the dif-
ferential of the algebra associated to a Legendrian submanifold is defined
using spaces of holomorphic disks. To describe these spaces we need a
few preliminary definitions.
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Let Dm+1 be the unit disk in C with m + 1 punctures at the points
p0, . . . pm on the boundary. The orientation of the boundary of the
unit disk induces a cyclic ordering of the punctures. Let ∂D̂m+1 =
∂Dm+1 \ {p0, . . . , pm}.

Let L ⊂ C
n × R be a Legendrian submanifold with isolated Reeb

chords. If c is a Reeb chord of L with end points a, b ∈ L, z(a) > z(b)
then there are small neighborhoods Sa ⊂ L of a and Sb ⊂ L of b that
are mapped injectively to C

n by ΠC. We call ΠC(Sa) the upper sheet
of ΠC(L) at c∗ and ΠC(Sb) the lower sheet. If u : (Dm+1, ∂Dm+1) →
(Cn, ΠC(L)) is a continuous map with u(pj) = c∗, then we say pj is pos-
itive (respectively negative) if u maps points clockwise of pj on ∂Dm+1

to the lower (upper) sheet of ΠC(L) and points anti-clockwise of pi on
∂Dm+1 to the upper (lower) sheet of ΠC(L) (see Figure 1).

S a

S b

c k

Figure 1. Positive puncture lifted to R
2n+1. The gray

region is the holomorphic disk and the arrows indicate
the orientation on the disk and the Reeb chord.

If a is a Reeb chord of L and if b = b1 . . . bm is an ordered collection (a
word) of Reeb chords, then let MA(a;b) be the space, modulo conformal
reparameterization, of maps u : (Dm+1, ∂Dm+1) → (Cn, ΠC(L)) which
are continuous on Dm+1, holomorphic in the interior of Dm+1, and which
have the following properties

• p0 is a positive puncture, u(p0) = a∗,
• pj are negative punctures for j > 0, u(pj) = b∗j ,
• the restriction u|∂D̂m+1 has a continuous lift ũ : ∂D̂m+1 → L ⊂

C
n × R, and

• the homology class of ũ(∂D∗
m+1) ∪ (∪jγj) equals A ∈ H1(L),

where γj is the capping path chosen for cj, j = 1, . . . , m. Elements
in MA(a;b) will be called holomorphic disks with boundary on L or
sometimes simply holomorphic disks.

There is a useful fact relating heights of Reeb chords and the area
of a holomorphic disk with punctures mapping to the corresponding
double points. The action (or height) Z(c) of a Reeb chord c is simply
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its length and the action of a word of Reeb chords is the sum of the
actions of the chords making up the word.

Lemma 2.1. If u ∈ MA(a;b), then

(2.4) Z(a) −Z(b) =
∫

Dm

u∗ω = Area(u) ≥ 0.

Proof. By Stokes theorem,
∫
Dm

u∗ ω =
∫
∂ Dm

u∗ (−∑
j yj dxj) =∫

ũ∗(−dz) = Z(a) − Z(b). The second equality follows since u is holo-
morphic and ω =

∑n
j=1 dxj ∧ dyj . q.e.d.

Note that the proof of Lemma 2.1 implies that any holomorphic disk
with boundary on L must have at least one positive puncture. (In
contact homology, only disks with exactly one positive puncture are
considered.)

We now proceed to describe the properties of moduli spaces MA(a;b)
that are needed to define the differential. We prove later that the moduli
spaces of holomorphic disks with boundary on a Legendrian submanifold
L have these properties provided L is generic among (belongs to a Baire
subset of the space of) admissible Legendrian submanifolds (L is admis-
sible if it is chord generic and it is real analytic in a neighborhood of all
Reeb chord end points). For more precise definitions of these concepts,
see Section 3, where it is shown that admissible Legendrian submani-
folds are dense in the space of all Legendrian submanifolds. In Section
5, we express moduli spaces MA(a;b) as 0-sets of certain C1-maps be-
tween infinite-dimensional Banach manifolds. We say a moduli space is
transversely cut out if 0 is a regular value of the corresponding map.

Proposition 2.2. For a generic admissible Legendrian submanifold
L ⊂ C

n × R, the moduli space MA(a;b) is a transversely cut out man-
ifold of dimension

(2.5) d = µ(A) + |a| − |b| − 1,

provided d ≤ 1. (In particular, if d < 0 then the moduli space is empty.)

Proposition 2.2 is proved in Section 7.8. If u ∈ MA(a;b), we say that
d = µ(A)+|a|−|b| is the formal dimension of u, and if v is a transversely
cut out disk of formal dimension 0 we say that v is a rigid disk.

The moduli spaces we consider might not be compact, but their lack
of compactness can be understood. It is analogous to “convergence to
broken trajectories” in Morse/Floer homology and gives rise to natural
compactifications of the moduli spaces. This is also called Gromov
compactness, which we cover in more detail in Section 9.

A broken holomorphic curve, u = (u1, . . . , uN ), is a union of holomor-
phic disks, uj : (Dmj , ∂Dmj ) → (Cn, ΠC(L)), where each uj has exactly
one positive puncture pj , with the following property. To each pj with
j ≥ 2 is associated a negative puncture qk

j ∈ Dmk
for some k �= j such
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that uj(pj) = uk(qk
j ) and qk′

j′ �= qk
j if j �= j′, and such that the quotient

space obtained from Dm1 ∪ · · · ∪DmN by identifying pj and qk
j for each

j ≥ 2 is contractible. The broken curve can be parameterized by a sin-
gle smooth v : (Dm, ∂D) → (Cn, ΠC(L)). A sequence uα of holomorphic
disks converges to a broken curve u = (u1, . . . , uN ) if the following holds:

• For every j ≤ N , there exists a sequence φj
α : Dm → Dm of linear

fractional transformations and a finite set Xj ⊂ Dm such that
uα ◦ φj

α converges to uj uniformly with all derivatives on compact
subsets of Dm \ Xj

• There exists a sequence of orientation-preserving diffeomorphisms
fα : Dm → Dm such that uα ◦ fα converges in the C0-topology to
a parameterization of u.

Proposition 2.3. Any sequence uα in MA(a;b) has a subsequence
converging to a broken holomorphic curve u = (u1, . . . , uN ). Moreover,
uj ∈ MAj (a

j ;bj) with A =
∑N

j=1 Aj and

(2.6) µ(A) + |a| − |b| =
N∑

j=1

(
µ(Aj) + |aj | − |bj|) .

Heuristically, this is the only type of non-compactness we expect to
see in MA(a;b): since π2(Cn) = 0, no holomorphic spheres can “bubble
off” at an interior point of the sequence uα, and since ΠC(L) is exact no
disks without positive puncture can form either. Moreover, since ΠC(L)
is compact, and since C

n has “finite geometry at infinity” (see Section
9), all holomorphic curves with a uniform bound on area must map to
a compact set.

Proof. The main step is to prove convergence to some broken curve,
which we defer to Section 9. The statement about the homology classes
follows easily from the definition of convergence. Equation (2.6) follows
from the definition of broken curves. q.e.d.

We next show that a broken curve can be glued to form a family of
non-broken curves. For this, we need a little notation. Let c1, . . . , cr

be an ordered collection of words of Reeb chords. Let the length of
(number of letters in) cj be l(j) and let a = a1 . . . ak be a word of Reeb
chords of length k > 0. Let S = {s1, . . . , sr} be r distinct integers
in {1, . . . , k}. Define the word aS(c1, . . . , cr) of Reeb chords of length
k − r +

∑r
j=1 l(j) as follows. For each index sj ∈ S, remove asj from

the word a and insert at its place the word cj .

Proposition 2.4. Let L be a generic admissible Legendrian subman-
ifold. Let MA(a;b) and MB(c;d) be 0-dimensional transversely cut out
moduli spaces and assume that the j-th Reeb chord in b is c. Then there
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exist a ρ > 0 and an embedding

G : MA(a;b) ×MB(c;d) × (ρ,∞) → MA+B(a;b{j}(d)).

Moreover, if u ∈ MA(a;b) and u′ ∈ MB(c;d) then G(u, u′, ρ) converges
to the broken curve (u, u′) as ρ → ∞, and any disk in MA(a;b{j}(d))
with image sufficiently close to the image of (u, u′) is in the image of G.

This follows from Proposition 8.1 and the definition of convergence
to a broken curve.

2.4. The differential and contact homology. Let L ⊂ C
n × R be

a generic admissible Legendrian submanifold, let C be its set of Reeb
chords, and let A denote its algebra. For any generator a ∈ C of A we
set

(2.7) ∂a =
∑

dim MA(a;b)=0

(#MA(a;b))Ab,

where #M is the number of points in M modulo 2, and where the sum
ranges over all words b in the alphabet C and A ∈ H1(L) for which
the above moduli space has dimension 0. We then extend ∂ to a map
∂ : A → A by linearity and the Leibniz rule.

Since L is generic admissible, it follows from Propositions 2.3 and 2.4
that the moduli spaces considered in the definition of ∂ are compact
0-manifolds and hence consist of a finite number of points. Thus ∂ is
well defined. Moreover,

Lemma 2.5. The map ∂ : A → A is a differential of degree −1.
That is, ∂ ◦ ∂ = 0 and |∂(a)| = |a| − 1 for any generator a of A.

Proof. After Propositions 2.3 and 2.4, the standard proof in Morse
(or Floer) homology [28] applies. It follows from (2.5) that ∂ lowers
degree by 1. q.e.d.

The contact homology of L is

HC∗(R2n+1, L) = Ker ∂/Im ∂.

It is essential to notice that since ∂ respects the grading on A the contact
homology is a graded algebra.

We note that ∂ also defines a differential of degree −1 on AZ2(L).

2.5. The invariance of contact homology under Legendrian iso-
topy. In this section, we show

Proposition 2.6. If Lt ⊂ R
2n+1, 0 ≤ t ≤ 1 is a Legendrian isotopy

between generic admissible Legendrian submanifolds, then the contact
homologies HC∗(R2n+1, L0), and HC∗(R2n+1, L1) are isomorphic.
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In fact we show something, that at least appears to be, stronger.
Given a graded algebra A = Z2[G]〈a1, . . . , an〉, where G is a finitely
generated abelian group, a graded automorphism φ : A → A is called
elementary if there is some 1 ≤ j ≤ n such that

φ(ai) =

{
Aiai, i �= j

±Ajaj + u, u ∈ A(a1, . . . , aj−1, aj+1, . . . , an), i = j,

where the Ai are units in Z2[G]. The composition of elementary auto-
morphisms is called a tame automorphism. An isomorphism from A
to A′ is tame if it is the composition of a tame automorphism with an
isomorphism sending the generators of A to the generators of A′. An iso-
morphism of DGA’s is called tame if the isomorphism of the underlying
algebras is tame.

Let (Ei, ∂i) be a DGA with generators {ei
1, e

i
2}, where |ei

1| = i, |ei
2| =

i − 1 and ∂ie
i
1 = ei

2, ∂ie
i
2 = 0. Define the degree i stabilization Si(A, ∂)

of (A, ∂) to be the graded algebra generated by {a1, . . . , an, ei
1, e

i
2} with

grading and differential induced from A and Ei. Two differential graded
algebras are called stable tame isomorphic if they become tame isomor-
phic after each is stabilized a suitable number of times.

Proposition 2.7. If Lt ⊂ R
2n+1, 0 ≤ t ≤ 1 is a Legendrian isotopy

between generic admissible Legendrian submanifolds, then the DGA’s
(A(L0), ∂) and (A(L1), ∂) are stable tame isomorphic.

Note that Proposition 2.7 allows us to associate the stable tame iso-
morphism class of a DGA to a Legendrian isotopy class of Legendrian
submanifolds: any Legendrian isotopy class has a generic admissible
representative and by Proposition 2.7, the DGA’s of any two generic
admissible representatives agree.

It is straightforward to show that two stable tame isomorphic DGA’s
have the same homology, see [2, 11]. Thus Proposition 2.6 follows from
Proposition 2.7. The proof of the later given below is, in outline, the
same as the proof of invariance of the stable tame isomorphism class
of the DGA of a Legendrian 1-knot in [2]. However, the details in our
case require considerably more work. In particular, we must substitute
analytic arguments for the purely combinatorial ones that suffice in
dimension three.

In Section 3, we show that any two admissible Legendrian subman-
ifolds of dimension n > 2 which are Legendrian isotopic are isotopic
through a special kind of Legendrian isotopy: a Legendrian isotopy
φt : L → C

n × R, 0 ≤ t ≤ 1, is admissible if φ0(L) and φ1(L) are ad-
missible Legendrian submanifolds and if there exist a finite number of
instants 0 < t1 < t2 < · · · < tm < 1 and a δ > 0 such that the intervals
[tj − δ, tj + δ] are disjoint subsets of (0, 1) with the following properties.
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(A) For t ∈ [0, t1 − δ] ∪
(⋃m

j=1[tj + δ, tj+1 − δ]
)
∪ [tm + δ, 1], φt(L) is

an isotopy through admissible Legendrian submanifolds.
(B) For t ∈ [tj − δ, tj + δ], j = 1, . . . , m, φt(L) undergoes a stan-

dard self-tangency move. That is, there exists a point q ∈ C
n

and neighborhoods N ⊂ N ′ of q with the following properties.
The intersection N ∩ ΠC(φt(L)) equals P1 ∪ P2(t) which, up to
biholomorphism looks like P1 = γ1 × P ′

1 and P2 = γ2(t) × P ′
2.

Here γ1 and γ2(t) are subarcs around 0 of the curves y1 = 0 and
x2

1 + (y1 − 1 ± t)2 = 1 in the z1-plane, respectively, and P ′
1 and

P ′
2 are real analytic Lagrangian (n − 1)-disks in C

n−1 = {z1 = 0}
intersecting transversely at 0. Outside N ′ × R the isotopy is con-
stant. See Figure 2. (The full definition of a standard self tangency
move appears in Section 3. For simplicity, one technical condition
there has been omitted at this point.)

t  > 0 t  = 0     t  < 0

Figure 2. Type B double point move.

Note that two Legendrian isotopic admissible Legendrian submanifolds
of dimension 1 are in general not isotopic through an admissible Leg-
endrian isotopy. In this case, one must allow also a “triple point move”
see [2, 11].

To prove Proposition 2.7, we need to check that the differential graded
algebra changes only by stable tame isomorphisms under Legendrian
isotopies of type (A) and (B). We start with type (A) isotopies.

Lemma 2.8. Let Lt, t ∈ [0, 1] be a type (A) isotopy between generic
admissible Legendrian submanifolds. Then the DGA’s associated to L0

and L1 are tame isomorphic.

To prove this, we use a parameterized version of Proposition 2.2. If
Lt, t ∈ I = [0, 1] is a type (A) isotopy, then the double points of ΠC(Lt)
trace out continuous curves. Thus, when we refer to a Reeb chord c of
Lt′ for some t′ ∈ [0, 1] this unambiguously specifies a Reeb chord for all
Lt. For any t, we let Mt

A(a;b) denote the moduli space MA(a;b) for
Lt and define

(2.8) MI
A(a;b) = {(u, t)|u ∈ Mt

A(a;b)}.
As above “generic” refers to a member of a Baire subset, see Section 7.2
for a more precise formulation of this term for 1-parameter families.
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Proposition 2.9. For a generic type (A) isotopy Lt, t ∈ I = [0, 1]
the following holds. If a,b, A are such that µ(A) + |a| − |b| = d ≤ 1,
then the moduli space MI

A(a;b) is a transversely cut out d-manifold.
If X is the union of all these transversely cut out manifolds which are
0-dimensional, then the components of X are of the form Mtj

Aj
(aj ,bj),

where µ(Aj) + |aj | − |bj | = 0, for a finite number of distinct instances
t1, . . . , tr ∈ [0, 1]. Furthermore, t1, . . . , tr are such that Mtj

B(c;d) is a
transversely cut out 0-manifold for every c,d, B with µ(B)+|c|−|d| = 1.

Proposition 2.9 is proved in Section 7.9. At an instant t = tj in
the above proposition, we say a handle slide occurs, and an element in
Mtj

Aj
(aj ,bj) will be called a handle slide disk. (The term handle slide

comes form the analogous situation in Morse theory.)
The proof of Lemma 2.8 is similar to that of Lemma 2.5. It uses the

following compactness result.

Proposition 2.10. Any sequence uα in MI
A(a;b) has a subsequence

that converges to a broken holomorphic curve with the same properties
as in Proposition 2.3.

The proof of this proposition is identical to that of Proposition 2.3,
see Section 9.

We now prove Lemma 2.8 in two steps. First, consider type (A)
isotopies without handle slides.

Lemma 2.11. Let Lt, t ∈ [0, 1] be a generic type (A) isotopy of
Legendrian submanifolds for which no handle slides occur. Then, the
boundary maps ∂0 and ∂1 on A = A(L0) = A(L1) satisfies ∂0 = ∂1.

Proof. Proposition 2.10 implies that MI
A(a;B) is compact when its

dimension is one. Since if a sequence in this space converged to a broken
curve (u1, . . . , uN ), then at least one uj would have negative formal
dimension. This contradicts the assumptions that no handle slide occurs
and that the type (A) isotopy is generic. Thus the corresponding 0
dimensional moduli spaces M0

A and M1
A used in the definitions of ∂0

and ∂1, respectively, form the boundary of a compact 1-manifold. Hence,
their modulo 2 counts are equal. q.e.d.

In order to see what happens around a handle slide instant, we con-
struct an auxiliary Legendrian submanifold of dimension one larger than
L. The details of this can be found in Section 10 where the following is
proved. Let Lt, t ∈ [−δ, δ] and M0

A(a;b) be as MA(a;b) in Subsection
10.2. Let ∂− denote the differential on A = A(L−δ), and ∂+ the one on
A = A(Lδ). For generators c in A, define

φm
a (c) =

{
c if c �= a,

a + mAb if c = a,
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where m ∈ Z2 and extend φm
a to a tame algebra automorphism of A.

Lemma 2.12. There exists m ∈ Z2 so that the map φm
a : A → A is

a tame isomorphism from (A, ∂−) to (A, ∂+).

This is Lemma 10.8.

Proof of Lemma 2.8. The lemma follows from Lemmas 2.11 and 2.12.
q.e.d.

We consider elementary isotopies of type (B). Let Lt, t ∈ I = [−δ, δ]
be an isotopy of type (B) where two Reeb chords {a, b} are born as t
passes through 0. Let o be the degenerate Reeb chord (double point)
at t = 0 and let C′ = {a1, . . . , al, b1, . . . , bm} be the other Reeb chords.
Again, we note that ci ∈ C′ unambiguously defines a Reeb chord for all
Lt and a and b unambiguously define two Reeb chords for all Lt when
t > 0. It is easy to see that (with the appropriate choice of capping
paths) the grading on a and b differ by 1, so let |a| = j and |b| = j − 1.
Let (A−, ∂−) and (A+, ∂+) be the DGA’s associated to L−δ and Lδ,
respectively.

Lemma 2.13. The stabilized algebra Sj(A−, ∂−) is tame isomorphic
to (A+, ∂+).

Proof of Proposition 2.7 and 2.6. The first proposition follows from
Lemmas 2.8 and 2.13 and implies in its turn the second. q.e.d.

We prove Lemma 2.13 in several steps below. Label the Reeb chords
of Lt so that

Z(bm) ≤ . . . ≤ Z(b1) ≤ Z(b) < Z(a) ≤ Z(a1) ≤ . . . ≤ Z(al),

let B = Z2[H1(L)]〈b1, . . . , bm〉 and note that B is a subalgebra of both
A− and A+. Then

Lemma 2.14. For δ > 0 small enough

∂+a = b + v,

where v ∈ B.

Proof. Let 0 ∈ H1(L) denote the zero element. In the model for
the type (B) isotopy, there is an obvious disk in Mt

0(a; b) for t > 0
small which is contained in the z1-plane. We argue that this is the only
point in the moduli space. We restrict attention to the neighborhood
N of o∗ that is biholomorphic to the origin in C

n as in the description
of a type (B) move. Let πi : C

n → C be the projection onto the ith

coordinate. If u : D → C
n is a holomorphic map in Mt

0(a; b), then πi◦u
will either be constant or not. If πi ◦ u is non-constant for i > 1, then
the image of π1 ◦ u intersected with N has boundary on two transverse
Lagrangian submanifolds. As such it will have a certain area Ai. Since
Z(a) − Z(b) → 0 as t → 0+, we can choose t small enough so that
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Z(a) − Z(b) < Ai, for all i > 1. Then, πi ◦ u must be a point for all
i > 1 and for i = 1, it can only be the obvious disk. Lemma 7.24 shows
that Mt

0(a; b) is transversely cut out and thus contributes to ∂+a. If
u ∈ Mt

A(a; b), where A �= 0, then the image of u must leave N . Thus,
the above argument shows that Mt

A(a; b) = ∅ for t small enough. Also,
for t > 0 sufficiently small Z(a)−Z(b) < Z(bm). Hence, by Lemma 2.1,
v ∈ B. q.e.d.

Define the elementary isomorphism Φ0 : A+ → Sj(A−) (on genera-
tors) by

Φ0(c) =

⎧⎪⎨⎪⎩
ej
1 if c = a,

ej
2 + v if c = b

c otherwise.
The map Φ0 fails to be a tame isomorphism since it is not a chain map.
However, we use it as the first step in an inductive construction of a
tame isomorphism Φl : A+ → Sj(A−). To this end, for 0 ≤ i ≤ l, let Ai

be the subalgebra of A+ generated by {a1, . . . , ai, a, b, b1, . . . , bm} (note
that Al = A+). Then, with τ : Sj(A−) → A− denoting the natural
projection and with ∂s− denoting the differential induced on Sj(A−), we
have

Lemma 2.15.

(2.9) Φ0 ◦ ∂+w = ∂s
− ◦ Φ0w

for w ∈ A0 and

(2.10) τ ◦ Φ0 ◦ ∂+ = τ ◦ ∂s
− ◦ Φ0.

Before proving this lemma, we show how to use it in the inductive
construction which completes the proof of Lemma 2.13.

Proof of Lemma 2.13. The proof is similar to the proof of Lemmas 6.3
and 6.4 in [11] (cf. [2]). Define the map H : Sj(A−) → Sj(A−) on
words w in the generators by

H(w) =

⎧⎪⎨⎪⎩
0 if w ∈ A−,
0 if w = αej

1β and α ∈ A−
αej

1β if w = αej
2β and α ∈ A−,

and extend it linearly. Assume inductively that we have defined a graded
isomorphism Φi−1 : A+ → Sj(A−) so that it is a chain map when
restricted to Ai−1 and so that Φi−1(ak) = ak, for k > i − 1. (Note that
Φ0 has these properties by Lemma 2.15.)

Define the elementary isomorphism gi : Sj(A−) → Sj(A−) on gener-
ators by

gi(c) =

{
c if c �= ai,
ai + H ◦ Φi−1 ◦ ∂+(ai) if c = ai
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and set Φi = gi ◦ Φi−1. Then Φi is a graded isomorphism. To see that
Φi is a chain map when restricted to Ai observe the following facts:
τ ◦H = 0, τ ◦gi = τ , and τ ◦Φi = τ ◦Φ0 for all i. Moreover, ∂+ai ∈ Ai−1

and τ − idSj(A−) = ∂s− ◦ H + H ◦ ∂s−, where in the last equation, we
think of τ : Sj(A−) → Sj(A−) as τ : Sj(A−) → A− composed with the
natural inclusion.

Using these facts, we compute

∂s
−gi(ai) = ∂s

−(ai) + (∂s
−H)Φi−1∂+(ai)

= ∂s
−(ai) + (H∂s

− + τ + id)Φi−1∂+(ai)

= ∂s
−(ai) + τΦ0∂+(ai) + Φi−1∂+(ai)

= Φi−1∂+(ai).

Thus Φi ◦∂+(ai) = ∂s− ◦gi(ai) = ∂s− ◦Φi(ai). Since Φi and Φi−1 agree on
Ai−1 it follows that Φi is a chain map on Ai. Continuing, we eventually
get a tame chain isomorphism Φl : A+ → Sj(A−). q.e.d.

The proof of Lemma 2.15 depends on the following two propositions.

Proposition 2.16. Let Lt, t ∈ I = [−δ, δ] be a generic Legendrian
isotopy of type (B) with notation as above (that is, o is the degenerate
Reeb chord of L0 and the Reeb chords a and b are born as t increases
past 0).

1) Let M0
A(o, c) be a moduli space of rigid holomorphic disks. Then

there exist ρ > 0 and a local homeomorphism

S : M0
A(o; c) × [ρ,∞) → M(0,δ]

A (a; c),

with the following property. If u ∈ M0
A(o; c), then any disk in

M(0,δ]
A (a; c) sufficiently close to the image of u is in the image of

S.
2) Let M0

A(c,d) be a moduli space of rigid holomorphic disks. Let
S ⊂ {1, . . . , m} be the subset of positions of d where the Reeb
chord o appears (to avoid trivialities, assume S �= ∅). Then there
exists ρ > 0 and a local homeomorphism

S′ : M0
A(c,d) × [ρ,∞) → M(0,δ]

A (c,dS(b)),

with the following property. If u ∈ M0(c;d), then any disk in
M(0,δ]

A (c;dS(b)) sufficiently close to the image of u is in the image
of S′.

This is a rephrasing of Theorem 8.2 and the following proposition is
a restatement of Theorem 8.3.

Proposition 2.17. Let Lt, t ∈ I = [−δ, δ] be a generic isotopy of type
(B). Let M0

A1
(o; c1), . . . , M0

Ar
(o; cr), and M0

B(c;d) be moduli spaces of
rigid holomorphic disks. Let S ⊂ {1, . . . , m} be the subset of positions
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in d where the Reeb chord o appears and assume that S contains r
elements. Then there exists ρ > 0 and an embedding

G : M0
B(c;d)×Πr

j=1M0
Aj

(o;dj)×[ρ,∞) → M[−δ,0)
B+

P
Aj

(c;dS(c1, . . . , cr)),

with the following property. If v ∈ M0(c;d) and uj ∈ M0(o; cj), j =
1, . . . , r then any disk in M[−δ,0)

B+
P

Aj
(c;dS(c1, . . . , cr)) sufficiently close

to the image of (v, u1, . . . , ur) is in the image of G.

Proof of Lemma 2.15. Equation (2.9) follows from arguments similar to
those in Lemma 2.8. Specifically, one can use these arguments to show
that ∂+bi = ∂−bi. Then since ∂+bi ∈ B and since Φ0 is the identity on
B,

Φ0∂+bi = ∂+bi = ∂−bi = ∂s
−Φ0bi.

We also compute

Φ0∂+a = Φ0(b + v) = ej
2 + v + v = ej

2 = ∂s
−Φ0a,

and, since ∂+b and ∂+v both lie in B,

Φ0∂+b = ∂+b, ∂s
−Φ0b = ∂s

−(ej
1 + v) = ∂−v = ∂+v.

Since 0 = ∂+∂+a = ∂+b + ∂+v, we conclude that (2.9) holds.
To check (2.10), we write ∂+ai = W1 + W2 + W3, where W1 lies in

the subalgebra generated by {a1, . . . , al, b1, . . . , bm}, where W2 lies in
the ideal generated by a and where W3 lies in the ideal generated by b
in the subalgebra generated by {a1, . . . , al, b, b1, . . . , bm}.

Let ut, be a family of holomorphic disks with boundary on Lt. As
t → 0, ut converges to a broken disk (u1, . . . , uN ) with boundary on L0.
This together with the genericity of the type (B) isotopy implies that
for t �= 0 small enough, there are no disks of negative formal dimension
with boundary on Lt since a broken curve which is a limit of a sequence
of such disks would have at least one component uj with negative formal
dimension.

Let us : D → C
n, s �= 0 be rigid disks with boundary on Ls. If,

the image u−t(∂D) stays a positive distance away from o∗ as t → 0+
then the argument above implies that u−t converges to a non-broken
curve. Hence, ∂−ai = W1 + W4 where for each rigid disk u−t : D → C

n

contributing to a word in W4, there exists points q−t ∈ ∂D such that
u−t(q−t) → o∗ as t → 0+. The genericity assumption on the type
(B) isotopy implies that no rigid disk with boundary on L0 maps any
boundary point to o∗, see Corollary 7.22. Hence, u−t must converge to
a broken curve (u1, . . . , uN ) which brakes at o∗. Moreover, by genericity
and (2.6), every component uj of the broken curve must be a rigid disk
with boundary on L0. Proposition 2.17 shows that any such broken
curve may be glued and Proposition 2.16 determines the pieces which
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we may glue. It follows that W4 = Ŵ2 where Ŵ2 is obtained from W2

by replacing each occurrence of b with v. Therefore,

τΦ0∂+(ai) = τΦ0(W1 + W2 + W3) = W1 + Ŵ2 = ∂−(ai) = τ∂s
−Φ0(ai).

q.e.d.

3. Admissible Legendrian submanifolds and isotopies

3.1. Chord genericity. Recall that a Legendrian submanifold L ⊂
R

2n+1 is chord generic if all its Reeb chords correspond to transverse
double points of the Lagrangian projection ΠC. For a dense open set
in the space of paths of Legendrian embeddings, the corresponding 1-
parameter families Lt, 0 ≤ t ≤ 1, are chord generic except for a finite
number of parameter values t1, . . . , tk where ΠC(Ltj ) has one double
point with self-tangency, and where for some δ > 0 ΠC(Lt), (tj−δ, tj+δ),
is a versal deformation of ΠC(Ltj), for j = 1, . . . , k. We call 1-parameter
families Lt with this property chord generic 1-parameter families.

3.2. Local real analyticity. For technical reasons, we require our
Legendrian submanifolds to be real analytic in a neighborhood of the
endpoints of their Reeb chords and that self-tangency instants in 1-
parameter families have a very special form.

Definition 3.1. A chord generic Legendrian submanifold L ⊂ C
n×R

is admissible if for any Reeb chord c of L with endpoints q1 and q2, there
are neighborhoods U1 ⊂ L and U2 ⊂ L of q1 and q2, respectively, such
that ΠC(U1) and ΠC(U2) are real analytic submanifolds of C

n.

We will require that self-tangency instants in 1-parameter families
have the following special form. Consider 0 ∈ C

n and coordinates
(z1, . . . , zn) on C

n. Let P1 and P2 be Lagrangian submanifolds of C
n

passing through 0. Let x = (x1, . . . , xn) ∈ R
n and y = (y1, . . . , yn) ∈ R

n

be coordinates on P1 and P2, respectively. Let R1 ⊂ P1 and R2 ⊂ P2 be
the boxes |xj| ≤ 1 and |yj | ≤ 1, j = 1, . . . , n. Let Bj(2) and Bj(2 + ε)
for some small ε > 0 be the balls of radii 2 and 2 + ε around 0 ∈ Pj,
j = 1, 2. We require that in R1, P1 has the form

(3.1) γ1 × P̂1

where γ1 is an arc around 0 in the real line in the z1-plane and where
P̂1 is a Lagrangian submanifold of C

n−1 ≈ {z1 = 0}. We require that
in R2, P2 has the form

(3.2) γ2(t) × P̂2,

where γ2 is an arc around 0 in the unit-radius circle centered at i in z1-
plane and where P̂2 is a Lagrangian submanifold of C

n−1 ≈ {z1 = 0},
which meets P̂1 transversally at 0.
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If q ∈ C
n, let λq denote the complex line in TqC

n parallel to the
z1-line. We also require that for every point p ∈ Bj(2 + ε) \ Bj(2), the
tangent plane TpPj satisfies

(3.3) TpPj ∩ λp = 0, j = 1, 2.

Definition 3.2. Let Lt be a chord generic 1-parameter family of
Legendrian submanifolds such that L0 has a self-tangency. We say that
the self-tangency instant L0 is standard if there is some neighborhood
U of the self-tangency point and a biholomorphism φ : U → V ⊂ C

n

such that

(3.4) φ(Lt ∩ U) = P1 ∪ P2(t) ∩ N,

where N is some neighborhood of 0 ∈ C
n, and where P2(t) is P2

transalted t units in the y1-direction.

Definition 3.3. Let Lt, 0 ≤ t ≤ 1 be a chord generic 1-parameter
family of Legendrian submanifolds. Let t1, . . . , tk be its self tangency
instants. We say that Lt is an admissible 1-parameter family if Lt is ad-
missible for all t �= tk, if there exists small disjoint intervals (tj−δ, tj +δ)
where the 1-parameter family is constant outside some small neighbor-
hood W of the self-tangency point, and if all self-tangency instants are
standard.

Definition 3.4. A Legendrian submanifold L ⊂ R × C
n which is a

self-tangency instant of an admissible 1-parameter family will be called
semi-admissible.

3.3. Reducing the Legendrian isotopy problem. We prove a se-
quence of lemmas which reduce the classification of Legendrian sub-
manifolds up to Legendrian isotopy to the classification of admissible
Legendrian submanifolds up to admissible Legendrian isotopy.

We start with a general remark concerning lifts of Hamiltonian iso-
topies in C

n. If h is a smooth function with compact support in C
n,

then the Hamiltonian vector field

Xh = − ∂h

∂yi
∂xi +

∂h

∂xi
∂yi

associated to h generates a 1-parameter family of diffeomorphisms Φt
h

of C
n. Moreover, the vector field Xh lifts to a contact vector field

X̃h = − ∂h

∂yi
∂xi +

∂h

∂xi
∂yi +

(
h − yi

∂h

∂yi

)
∂z

on C
n × R, which generates a 1-parameter family Φ̃t

h of contact diffeo-
morphisms of C

n × R which is a lift of Φt
h. We write Φh = Φ1

h and
similarly Φ̃h = Φ̃1

h.
We note for future reference that in case the preimage of the support

of h in L has more than one connected component, we may define a
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Legendrian isotopy of L by moving only one of these components (for a
short time) using X̃h and keeping the rest of them fixed.

An ε-isotopy is an isotopy during which no point moves a distance
larger than ε > 0.

Lemma 3.5. Let L be a Legendrian submanifold. Then, for any ε >
0, there is an admissible Legendrian submanifold Lε which is Legendrian
ε-isotopic to L.

Proof. As mentioned, we may after arbitrarily small Legendrian iso-
topy assume that L is chord generic. Thus, it is enough to consider
one transverse double point. We may assume that one of the sheets of
L close to this double point is given by x �→ (x, df(x), f(x)) for some
smooth function f . Let g be a real analytic function approximating f
(e.g. its Taylor polynomial of some degree). Consider a Hamiltonian
h which is h(x, y) = g(x) − f(x) in this neighborhood and 0 outside
some slightly larger neighborhood. It is clear that the corresponding
Hamiltonian vector field can be made arbitrarily small. Its flow map
at time 1 is given by Φ1

h(x, y) = (x, y + dg(x) − df(x)). Using this and
suitable cut-off functions for the lifted Legendrian isotopies the lemma
follows. q.e.d.

Lemma 3.6. Let Lt be any chord generic Legendrian isotopy from an
admissible Legendrian submanifold L0 to another one L1. Then for any
ε > 0, there is an admissible Legendrian isotopy ε-close to Lt connecting
L0 to L1.

Proof. Let t1, . . . , tk be the self tangency instants of the isotopy. First,
change the isotopy so that there exists small disjoint intervals (tj −
δ, tj + δ) where the 1-parameter family is constant outside some small
neighborhood W of the self-tangency point. Consider the restriction of
the isotopy to the self-tangency free regions. The 1-parametric version
of the proof of Lemma 3.5 clearly applies to transform this part of the
isotopy into one consisting of admissible Legendrian submanifolds. Then
change the isotopy in the neighborhoods of the self tangency instants,
using essentially the same argument as above, to a self-tangency of the
from given in (3.1) and (3.2).

It remains to show how to fulfill the condition (3.3). To this end,
consider a Lagrangian submanifold of the form (3.1). Locally it is given
by (x, df(x̂)), where x̂ = (x2, . . . , xn). Let φ(x) be a function which
equals 0 in B(2− 1

2ε) and outside B(2 + 2ε) and has ∂2φ
∂x1xj

�= 0 for some
j at all points in B(2+ ε)\B(2). (For example, if K is a small constant
a suitable cut-off of the function Kx1(x2 + . . . xn) has this property).
We see as above that our original Legendrian is Legendrian isotopic
to (x, df(x) + dφ(x)). The tangent space of the latter submanifold is
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spanned by the vectors

∂x1 +
∑

j

∂2φ

∂xj∂x1
∂yj ,(3.5)

∂xr +
∑

j

∂2φ

∂xj∂xr
∂yj +

∂2f

∂xj∂xr
∂yj , 2 ≤ r ≤ n.(3.6)

Any non-trivial linear combination of the last n − 1 vectors projects
non-trivially to the subspace dx1 = dy1 = dy2 = · · · = dyn = 0. The
first vector lies in the subspace dx2 = · · · = dxn = 0; thus, since the
first vector does not lie in the z1-line because ∂2φ

∂x1xj
�= 0 for some j �= 1,

no linear combination of the vectors does either. P2 can be deformed in
a similar manner.

After the self-tangency moment is passed, it is easy to Legendrian
isotope back to the original family through admissible Legendrian sub-
manifolds. q.e.d.

4. Holomorphic disks

In this section, we establish notation and ideas that will be used
throughout the rest of the paper.

4.1. Reeb chord notation. Let L ⊂ C
n×R be a Legendrian subman-

ifold and let c be a Reeb chord of L. The z-coordinate of the upper and
lower end points of c will be denoted by c+ and c−, respectively. See
Figure 3. So as a point set c = c∗× [c−, c+] and the action of c is simply
Z(c) = c+ − c−.

C

C

C

y  

z

x

+

*

-
L

Figure 3. A Reeb chord in R
3.

If r > 0 is small enough so that Π−1
C

(B(c∗, r)) intersects L is exactly
two disk about the upper and lower end points of c, then we define
U(c±, r) to be the component of Π−1

C
(B(c∗, r)) ∩ L containing c∗ × c±.
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4.2. Definition of holomorphic disks. If M is a smooth manifold,
then let Hloc

k (M, Cn) denote the Frechet space of all functions which
agree locally with a function with k derivatives in L2. Let ∆m ⊂ C

denote the unit disk with m punctures on the boundary, let L ⊂ C
n×R

be a (semi-)admissible Legendrian submanifold.

Definition 4.1. A holomorphic disk with boundary on L consists of
two functions u ∈ Hloc

2 (∆m, Cn) and h ∈ H 3
2
(∂∆m, R) such that

∂̄u(ζ) = 0, for ζ ∈ int(∆m),(4.1)

(u(ζ), h(ζ)) ∈ L, for ζ ∈ ∂∆m,(4.2)

and such that for every puncture p on ∂∆m, there exists a Reeb chord
c of L such that

(4.3) lim
ζ→p

u(ζ) = c∗.

When (4.3) holds, we say that (u, h) maps the puncture p to the Reeb
chord c.

Remark 4.2. Since u ∈ Hloc
2 (∆m, Cn), the restriction of u to the

boundary lies in Hloc
3
2

(∂∆m, Cn). Therefore, both u and its restriction

to the boundary are continuous. Hence, (4.2) and (4.3) make sense.

Remark 4.3. If u ∈ Hloc
2 (∆m, Cn), then ∂̄u ∈ Hloc

1 (∆m, T ∗0,1Dm ⊗
C

n) and hence, the trace of ∂̄u (its restriction to the boundary ∂∆m) lies
in Hloc

1
2

(∂∆m, T ∗0,1Dm ⊗ C
n). If u is a holomorphic disk, then ∂̄u = 0

and hence, its trace ∂̄u|∂∆m is also 0.

Remark 4.4. It turns out, see Section 9.5, that if (u, f) is a holomor-
phic disk with boundary on a smooth L, then the function u is in fact
smooth up to and including the boundary and thus f is also smooth.
Hence, it is possible to rephrase Definition 4.1 in terms of smooth func-
tions. (Also, it follows that the definition above agrees with that given in
Section 2.3.) The advantage of the present definition is that it allows for
Legendrian submanifolds of lower regularity. (The boundary condition
makes sense for Legendrian submanifolds L which are merely C1.)

4.3. Conformal structures. We describe the space of conformal
structures on ∆m as follows. If m ≤ 3, then the conformal structure is
unique. Let m > 4 and let the punctures of ∆m be p1, . . . , pm. Then
fixing the positions of the punctures p1, p2, p3, the conformal structure
on ∆m is determined by the position of the remaining m− 3 punctures.
In this way, we identify the space of conformal structures Cm on ∆m

with an open simplex of dimension m − 3.
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4.4. A family of metrics. Let ∆ denote the unit disk in the complex
plane. Consider ∆m with m punctures p1, . . . , pm on the boundary and
conformal structure κ. Let d be the smallest distance along ∂∆ between
two punctures and take

δ = min
{

d

100
,

π

100

}
.

Define D(p, δ) to be a disk such that ∂∆(p, δ) intersects ∂∆ orthogonally
at two points a+ and a− of distance δ (in ∂∆) from p.

Let Lp be the oriented tangent-line of ∂∆ at p and let gp be the
unique Möbius transformation which fixes p, maps a+ to the point of
distance δ from p along Lp, maps a− to the point of distance −δ from
p along Lp, and such that the image of gp(∆) intersects the component
of C − Lp which intersects ∆.

The function hp : D(p, δ) ∩ ∆m → [0,∞) × [0, 1] defined by

hp(ζ) = − 1
π

(
log (−ip̄(gp(ζ) − p)) − log(δ)

)
,

is a conformal equivalence. Let g0 denote the Euclidean metric on C.
Then there exists a function s : [0, 1

2 ] × [0, 1] → R such that h−1
p

∗
g0 =

s(ζ)g0 on [0, 1
2 ]×[0, 1]. Let φ : [0,∞) → [0, 1] be a smooth function which

is 0 in a neighborhood of 0 and 1 in a neighborhood of 1
2 for τ > 1

2 . Let
gp be the metric

gp(τ + it) =
(
φ(τ) + (1 − φ(τ))s(t + it)

)
g0,

on [0,∞) × [0, 1].
Now, consider ∆m with the metric g(κ) which agrees with h∗

pj
gpj

on h−1
pj

([ 1
2π ,∞) × [0, 1]) for each puncture pj , and with g0 on ∆m −

(D(p1, δ)∪ . . . , D(pm, δ)). Then (∆m, g(κ)) is conformally equivalent to
(∆m, g0).

We denote by Dm(κ) the disk ∆m with the metric g(κ). If the specific
κ is unimportant or clear from context, we will simply write Dm. Also
Epj ⊂ Dm will denote the Euclidean neighborhood [1,∞)× [0, 1] of the
jth puncture pj of Dm. We use coordinates ζ = τ + it on Epj and let
Epj [M ] denote the subset of τ + it ∈ Epj with |τ | ≥ M .

4.5. Sobolev spaces. Consider Dm with metric g(κ) for some κ ∈ Cm.
Let D̂m denote the open Riemannian manifold which is obtained by
adding an open collar to ∂Dm and extending the metric in a smooth
and bounded way to ĝ(c).

The Sobolev spaces Hloc
k (D̂m, Cn) are now defined in the standard

way as the space of C
n-valued functions (distributions) the restrictions

of which to any open ball B in any relatively compact coordinate chart
≈ R

2 lies in the usual Sobolev space Hk(B, Cn).
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Using the metric ĝ(κ) and the finite cover⋃
j

int(Êpj [1]) ∪ (D̂m − ∪jÊpj [2]),

where Êpj is the union of Epj and the corresponding part of the collar of
D̂m, we define, for each integer k, the space Hk(D̂m, Cn) as the subspace
of all f ∈ Hloc

k (D̂m, Cn) with ‖f‖k < ∞.
We consider Hk (D̂m, C

n) as a space of distributions acting on
C∞

0 (D̂m, Cn). We write

• Hk(Dm, Cn) for the space of restrictions to int(Dm) ⊂ D̂m of
elements in Hk(D̂m, Cn), and

• Ḣk(A, Cn) for the set of distributions in Hk(D̂m, Cn) supported in
A ⊂ D̂m.

Then Ḣk(Dm, Cn) is a closed subspace of Hk(D̂m, Cn) and if Km =
D̂m − int(Dm), then

Hk(Dm, Cn) = Hk(D̂m, Cn)/Ḣk(Km, Cn).

We endow Hk(Dm, Cn) and Ḣk(Dm, Cn) with the quotient- and
induced-topology, respectively. Let C∞

0 (Dm, Cn) denote the space of
restrictions of elements in C∞

0 (D̂m, Cn) to Dm.

Lemma 4.5. C∞
0 (Dm, Cn) is dense in Hk(Dm, Cn), C∞

0 (int(Dm), Cn)
is dense in Ḣk(Dm, Cn), and the spaces Hk(Dm, Cn) and Ḣ−k(Dm, Cn)
are dual with respect to the extension of the bilinear form∫

Dm

〈u, v〉 dA

where u ∈ C∞
0 (Dm, Cn), v ∈ C∞

0 (int(Dm), Cn) and 〈 , 〉 denotes the
standard Riemannian inner product on C

n ≈ R
2n.

This is essentially Theorem B.2.1 p. 479 in [20].
We will also use weighted Sobolev spaces: for a ∈ R, let ej

a : Dm → R

be a smooth function such that ej
a(τ + it) = eaτ for τ + it ∈ Epj [3]

and ea(ζ) = 1 for ζ ∈ Dm − Epj [2]. For µ = (µ1, . . . , µm) ∈ R
m, let

eµ : Dm → R ⊗ id ⊂ GL(Cn) be

eµ(ζ) = Πm
j=1e

j
µj

(ζ) id .

Note that eµ(ζ) preserves Lagrangian subspaces. We can now define
Hk,µ(Dm, Cn) = {u ∈ Hloc

k (Dm, Cn) : eµu ∈ Hk(Dm, Cn)}, with norm
‖u‖k,µ = ‖eµu‖k.
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4.6. Asymptotics. Let Λ0 and Λ1 be (ordered) Lagrangian subspaces
of C

n. Define the complex angle θ(Λ0, Λ1) ∈ [0, π)n inductively as fol-
lows:

If dim(Λ0 ∩ Λ1) = r ≥ 0, let θ1 = · · · = θr = 0 and let C
n−r denote

the Hermitian complement of C ⊗ Λ0 ∩ Λ1 and let Λ′
i = Λi ∩ C

n−r for
i = 0, 1. If dim(Λ0 ∩ Λ1) = 0, then let Λ′

i = Λi, i = 0, 1 and let r = 0.
Then Λ′

0 and Λ′
1 are Lagrangian subspaces. Let α be smallest angle such

that dim(eiαΛ0 ∩Λ1) = r′ > 0. Let θr+1 = · · · = θr+r′ = α. Now repeat
the construction until θn has been defined. Note that θ(AΛ0, AΛ1) =
θ(Λ0, Λ1) for every A ∈ U(n) since multiplication with eiα commutes
with everything in U(n).

Proposition 4.6. Let (u, h) be a holomorphic disk with boundary on
a (semi-)admissible Legendrian submanifold L. Let p be a puncture on
Dm such that p maps to the Reeb chord c. For M > 0 sufficiently large,
the following is true:

If ΠC(L) self-intersects transversely at c∗, then

(4.4) |u(τ + it)| = O(e−θτ ), τ + it ∈ Ep[M ],

where θ > 0 is the smallest complex angle of c.
If ΠC(L) has a self-tangency at c∗, then either there exists a real

number c0 such that

(4.5) u(τ + it) =
( ±2

c0 + τ + it
, 0, . . . , 0

)
+ O(e−θτ ) τ + it ∈ Ep[M ],

or

(4.6) |u(τ + it)| = O(e−θτ ), τ + it ∈ Ep[M ],

where θ is the smallest non-zero complex angle of L at p.
In particular, if the punctures p1, . . . , pm on Dm map to Reeb chords

c1, . . . , cm and if f : Dm → C
n is any smooth function which is con-

stantly equal to c∗1, . . . , c∗m in neighborhoods of p1, . . . , pm, then u − f ∈
H2(Dm, Cn).

Proof. Similar statements appear in [13] and [14]. (See also Theorem
B in [27] for (4.4).) To see that (4.5) holds, we may assume that the self-
tangency point is 0 ∈ C

n and that around 0, ΠC(L) agrees with the local
model in Definition 3.3. Elementary complex analysis (see Lemma 6.2
below) shows that for a standard self tangency the first component u1

of a holomorphic disk is given by

(4.7) u1(ζ) =
±2

ζ − c0 +
∑

n∈Z
cn exp(nπζ)

,

where cj are real constants, in Ep[M ]. The remaining components u′
of u are controlled as above and the claim follows. The last statement
follows immediately from the asymptotics at punctures. q.e.d.
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5. Functional analytic setup

As explained in Section 2, contact homology is built using moduli-
spaces of holomorphic disks. In this section, we construct Banach mani-
folds of maps of punctured disks into C

n which satisfy certain boundary
conditions. In this setting, moduli-spaces will appear as the zero-sets of
bundle maps.

In Section 5.1, we define our Banach manifolds as submanifolds in
a natural bundle of Banach spaces. To find atlases for our Banach
manifolds, we proceed in the standard way: construct an “exponential
map” from the proposed tangent space and show it is a diffeomorphism
near the origin. To do this, in Section 5.2, we turn our attention to
a special metric on the tangent bundle of the Legendrian submanifold.
From this, we construct a family of metrics on C

n in Section 5.3 and
use it to define a preliminary version of the “exponential map” for the
Banach manifold. Section 5.4 contains some technical results needed
to deal with families of Legendrian submanifolds. In Section 5.5, we
show how to construct the atlas. Section 5.6 discusses how to invoke
variations of the conformal structure of the source space into the present
setup. In Section 5.7, we linearize the bundle map, the zero set of which
is the moduli-space. Section 5.8 discusses some issues involving the
semi-admissible case.

5.1. Bundles of affine Banach spaces. Let Lλ ⊂ C
n × R, λ ∈ Λ,

where Λ is an open subset of a Banach space, denote a smooth family
of chord generic admissible Legendrian submanifolds. That is, Λ is
smoothly mapped into the space of admissible Legendrian embeddings
of L endowed with the C∞-topology.

We also study the semi-admissible case. To this end, we also let Lλ,
λ ∈ Λ, be a smooth family of semi-admissible Legendrian submanifolds.
For simplicity, and since it will suffice for our applications, we assume
that in this case, the self tangency point of ΠC(Lλ) remain fixed as λ
varies and that in a neighborhood of this point, the product structure
of ΠC(Lλ) is preserved and the first components γ1 and γ2, shown in
Figure 2 remain fixed as λ varies.

Let a(λ) = (a1(λ), . . . , am(λ)), λ ∈ Λ be an ordered collection of Reeb
chords of Lλ depending continuously on λ. Consider Dm with punctures
p1, . . . , pm, and a conformal structure κ ∈ Cm.

Fix families, smoothly depending on (λ, κ) ∈ Λ × Cm, of smooth
reference functions

uref [a(λ), κ] : Dm → C
n

such that uref [a(λ), κ] is constantly equal to a∗k in Epk
, and

href [a(λ), κ] : ∂Dm → R
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such that href [a(λ), κ] is constantly equal to a−1 (λ) and a+
1 (λ) on [1,∞) ⊂

Ep1 , and [1,∞) + i ⊂ Ep1 , respectively, and, for k ≥ 2, constantly equal
to a+

k (λ) and a−k (λ) on [1,∞) ⊂ Epk
, and [1,∞)+ i ⊂ Epk

, respectively.
Let ε = (ε1, . . . , εm) ∈ [0,∞)m. For u : Dm → C

n and h : ∂Dm → R

consider the conditions

u − uref [a(λ), κ] ∈ H2,ε(Dm, Cn),(5.1)

h − href [a(λ), κ] ∈ H 3
2
,ε(∂Dm+1, R).(5.2)

(Note that the κ-dependence of the right-hand sides in (5.1) and (5.2)
has been dropped from the notation.) Define the affine Banach space

F2,ε(a(λ), κ)

=
{

(u, h) : Dm → C
n × R : u satisfies (5.1), h satisfies (5.2)

}
,

endowed with the norm which is the sum of the norms of the compo-
nents. Let

F2,ε,Λ(a, κ) =
⋃
λ∈Λ

F2,ε(a(λ), κ)

be the metric space with distance function

d((v, f, λ), (w.g, µ)) = ‖(v − uref [a(λ), κ]) − (w − uref [a(µ), κ])‖2,ε

(5.3)

+ ‖(f − href [a(λ), κ])− (g − href [a(µ), κ])‖ 3
2
,ε

+ |λ − µ|.
We give F2,ε,Λ(a, κ) the structure of a Banach manifold by producing

an atlas as follows. Let (w, f, λ) ∈ F2,ε,Λ(a, κ). Let (wµ, fµ, µ) be any
family such that (wλ, fλ, λ) = (w, f, λ) and such that

µ �→ (wµ − uref [a(µ), κ], fµ − href [a(µ), κ])

is a smooth map into H2,ε(Dm, Cn) × H 3
2
,ε(∂Dm, R). Then a chart is

given by

H2,ε(Dm, Cn) ×H 3
2
,ε(∂Dm, R) × Λ → F2,ε,Λ(a, κ);(5.4)

(g, r, µ) �→ (wµ + g, fµ + r, µ).

If (u, h, λ) ∈ F2,ε,Λ(a(λ), κ) then ∂̄u ∈ H1,ε(Dm, T ∗0,1Dm ⊗ C
n) and

its trace ∂̄u|∂Dm lies in H 1
2
(Dm, T ∗0,1Dm ⊗ C

n)).

Definition 5.1. Let W2,ε,Λ(a, κ) ⊂ F2,ε,Λ(a, κ) denote the subset of
elements (u, h, λ) which satisfy

(u, h)(ζ) ∈ Lλ for all ζ ∈ ∂Dm,(5.5) ∫
∂Dm

〈∂̄u, v〉 ds = 0, for every v ∈ C∞
0 (∂Dm, T ∗0,1Dm ⊗ C

n),(5.6)
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where 〈 , 〉 denotes the inner product on T ∗0,1 ⊗ C
n induced from the

standard (Riemannian) inner product on C
n.

Lemma 5.2. W2,ε,Λ(a, κ) is a closed subset.

Proof. If (uk, hk, λk) is a sequence in W2,ε,Λ(a, κ) which converges in
F2,ε,Λ(a, κ), then λk → λ and the sequence (uk|∂Dm, hk) converges in
sup-norm. Hence, (5.5) is a closed condition. Also, ∂̄ is continuous as is
the trace map. It follows that (5.6) is a closed condition as well. q.e.d.

5.2. The normal bundle of a Lagrangian immersion with a
special metric. Let L ⊂ C

n × R be an instant of a chord generic
1-parameter family of Legendrian submanifolds. Then ΠC : L → C

n is a
Lagrangian immersion and the normal bundle of ΠC is isomorphic to the
tangent bundle TL of L. On the restriction TL(TL) of the tangent bun-
dle T (TL) of TL to the zero-section L there is a natural endomorphism
J : TL(TL) → TL(TL) such that J2 = −1. It is defined as follows. If
p ∈ L, then T(p,0)(TL) is a direct sum of the space of horizontal vectors
tangent to L at p and the space of vertical vectors tangent to the fiber
of π : TL → L at p. If v ∈ TL(TL) is tangent to L at p ∈ L, then Jv is
the vector v viewed as a tangent vector to the fiber TpL of π : TL → L
at (p, 0), and if w is a vector tangent to the fiber of π at (p, 0) then
Jw = −w, where −w is viewed as a tangent vector in TpL. This defines
J on the two direct summands. Extend it linearly.

The immersion ΠC : L → C
n extends to an immersion P of a neigh-

borhood of the zero-section in TL and P can be chosen so that along
L, i ◦ dP = dP ◦ J .

From a Riemannian metric g on L, we construct a metric ĝ on a
neighborhood of the zero-section in TL in the following way. Let v ∈ TL
with π(v) = p. Let X be a tangent vector of TL at v. The Levi–Civita
connection of g gives the decomposition X = XH + XV , where XV is
a vertical vector, tangent to the fiber, and XH lies in the horizontal
subspace at v determined by the connection. Thus XV is a vector in
TpL with its endpoint at v. It can be translated linearly to the origin
0 ∈ TpL. We use the same symbol XV to denote this vector translated
to 0 ∈ TpL. Write πX ∈ TpL for the image of X under the differential
of the projection π and let R denote the curvature tensor of g.

Define the field of quadratic forms ĝ on TL as
(5.7)

ĝ(v)(X, Y ) = g(p)(πX, πY ) + g(p)(XV , Y V ) + g(p)(R(πX, v)πY, v),

where v ∈ TL, π(v) = p, and X, Y ∈ Tv(TL).

Proposition 5.3. There exists ρ > 0 such that ĝ is a Riemannian
metric on

{v ∈ TL : g(v, v) < ρ}.
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In this metric, the zero section L is totally geodesic and the geodesics
in L are exactly those in the metric g. Moreover, if γ is a geodesic in
L and X is a vector field in T (TL) along γ, then X satisfies the Jacobi
equation if and only if JX does.

Proof. Since g(R(πX, v)πY, v) = g(R(πY, v)πX, v), ĝ is symmetric.
When restricted to the 0-section, ĝ is non-degenerate. The first state-
ment follows from the compactness of L.

In Lemmas 5.5 and 5.6 below, we show L is totally geodesic and the
statement about Jacobi-fields, respectively. q.e.d.

Let x = (x1, . . . , xn) be local coordinates around p ∈ L and let
(x, ξ) ∈ R

2n be the corresponding coordinates on TM , where ξ = ξs∂s

(here, and in the rest of this section, we use the Einstein summation
convention, repeated indices are summed over) where ∂j is the tangent
vector of TL in the xj-direction. We write ∂j∗ for the tangent vector
of TL in the ξj-direction. Let ∇, ∇̂ denote the Levi–Civita connections
of g and ĝ, respectively. Let Roman and Greek indices run over the
sets {1, . . . , n} and {1, 1∗, 2, 2∗, . . . , n, n∗}, respectively and recall the
following standard notation:

gij = g(∂i, ∂j), ĝαβ = ĝ(∂α, ∂β),

∇∂i
∂j = Γk

ij∂k, ∇̂∂α∂β = Γ̂γ
αβ∂γ

R(∂i, ∂j)∂k = Rl
ijk∂l, g(R(∂i, ∂j))∂k, ∂r) = Rijkr.

Lemma 5.4. The components of the metric ĝ satisfies

ĝij(x, ξ) = gij(x) + ξsξt

(
gkr(x)Γk

is(x)Γr
jt(x) + Risjt(x)

)
,(5.8)

ĝi∗j∗(x, ξ) = gij(x),(5.9)

ĝij∗(x, ξ) = ξsgjk(x)Γk
is(x).(5.10)

Proof. Since ∂j∗ is vertical, (5.9) holds. Note that the horizontal
space at (x, ξ) is spanned by the velocity vectors of the curves obtained
by parallel translating ξ along the coordinate directions through x. Let
V (t) be a parallel vector field through x in the ∂j-direction with V (0) =
ξ and V̇ (0) = ak∂k. Then

V (t) = (ξk + tak + O(t2))∂k

and applying ∇∂j
to V (t) we get

0 = ∇∂j
V (t) = ξs∇∂j

∂s + ak∂k + O(t).

Taking the limit as t → 0, we find ak∂k = −ξsΓk
js(x)∂k. Hence, the

horizontal space at (x, ξ) is spanned by the vectors ∂j − ξsΓk
js∂k∗ , j =

1, . . . , n and therefore,

∂V
j = ξsΓk

js(x)∂k∗ .
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Straightforward calculation gives (5.8) and (5.10). q.e.d.

Lemma 5.5. The Christofel symbols of the metric ĝ at (x, 0) satisfies

Γ̂k
ij(x, 0) = Γ̂k∗

ij∗(x, 0) = Γk
ij(x),(5.11)

Γ̂k∗
ij (x, 0) = Γ̂k

ij∗(x, 0) = Γk∗
i∗j∗(x, 0) = 0.(5.12)

Hence, if γ is a geodesic in (L, g), then it is also a geodesic in (TL, ĝ).

Proof. The equations

Γ̂γ
αβ =

1
2
ĝγδ(ĝαδ, β + ĝβδ, α − ĝαβ, δ),

where ĝαβ denotes the components of the inverse matrix of ĝ and Lemma
5.4 together imply (5.11) and (5.12).

Let x(t) be a geodesic in (L, g). Then (x, x∗) = (x(t), 0) satisfies

ẍk + Γ̂k
ij ẋiẋj + Γ̂k

i∗j ẋi∗ ẋj + Γ̂k
ij∗ ẋiẋj∗ + Γ̂k

i∗j∗ ẋi∗ ẋj∗ = ẍk + Γk
ij ẋiẋj = 0,

ẍk∗ + Γ̂k∗
ij ẋiẋj + Γ̂k∗

i∗j ẋi∗ ẋj + Γ̂k∗
ij∗ ẋiẋj∗ + Γ̂k∗

i∗j∗ ẋi∗ ẋj∗ = 0.

This proves the second statement. q.e.d.

Lemma 5.6. If γ is a geodesic in (TL, ĝ) which lies in L, then X is
a Jacobi-field along γ if and only if JX is.

Proof. The proof appears in the Appendix. q.e.d.

5.3. A family of metrics on C
n. Let L ⊂ C

n × R be an instant of a
chord generic 1-parameter family of Legendrian submanifolds and fix a
Riemannian metric g on L. Using the metric ĝ on TL (see Section 5.2),
we construct a 1-parameter family of metrics g(L, σ), 0 ≤ σ ≤ 1, on C

n

with good properties with respect to ΠC(L).
Let c1, . . . , cm be the Reeb chords of L. Fix δ > 0 such that all the

6δ-balls B(c∗j , 6δ) are disjoint and such that the intersections B(c∗j , 6δ)∩
ΠC(L) are homeomorphic to two n-disks intersecting at a point.

Identify the normal bundle of the immersion ΠC with the tangent
bundle TL. Consider the metric ĝ on a ρ-neighborhood of the 0-section
in TL (ρ > 0 as in Proposition 5.3). Let P : W → C

n be an immersion of
a ρ′-neighborhood N(ρ′) of the 0-section ρ′ ≤ ρ such that i◦dP = dP ◦J
along the 0-section.

Consider the P -push-forward of the metric ĝ to the image of N(ρ′)
restricted to L \ ⋃

j U(c−j , δ). Note that if ρ′ > 0 is small enough this
restriction of P is an embedding and the push-forward metric is defined
in a neighborhood of ΠC(L \⋃j U(c−j , 2δ)). Extend it to a metric g1 on
all of C

n, which agrees with the standard metric outside a neighborhood
of ΠC(L).

Consider the P -push-forward of the metric ĝ to the image of the
ρ′-neighborhood of the 0-section restricted to L \ ⋃

j U(c+
j , δ). This

metric is defined in a neighborhood of ΠC(L \⋃j U(c+
j , 2δ)) and can be



THE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS 207

extended to a metric g0 on all of C
n, which agrees with the standard

metric outside a neighborhood of ΠC(L).
Choose the metrics g0 and g1 so that they agree outside ∪jB(c∗j , 3δ)

and let gσ, 0 ≤ σ ≤ 1 be a smooth 1-parameter family of metrics on C
n

with the following properties:
• gσ = g0 in a neighborhood of σ = 0,
• gσ = g1 in a neighborhood of σ = 1,
• gσ is constant in σ outside ∪jB(c∗j , 4δ).

We take g(L, σ) = gσ.

Remark 5.7. If Lλ, λ ∈ Λ is a smooth family of chord generic
Legendrian submanifolds then, as is easily seen, the above construction
can be carried out in such a way that the family of 1-parameter families
of metrics g(Lλ, σ) becomes smooth in λ.

Given a vector field v along a disk u : Dm → C
n with boundary on

L, we would like to be able to exponentiate v to get a variation of u
among disks with boundaries on L. We will not be able to use a fixed
metric gσ to do this. To solve this problem, let σ : C

n × R → [0, 1] be a
smooth function which equals 0 on

C
n × R −

⋃
j

B(c∗j , 5δ) ×
[
c+
j − 1

2
Z(cj), c+

j + 1
]

and equals 1 on ⋃
j

B(c∗j , 4δ) ×
[
c+
j − 1

4
Z(cj), c+

j +
1
2

]
.

Let expg
p denote the exponential map of the metric g at the point p.

If p ∈ Lλ and v is tangent to Lλ at p, then write x(p) = ΠC(p) and
ξ(v) = ΠC(v). One may now easily prove the following lemma.

Lemma 5.8. Let Lλ, λ ∈ Λ be a family of (semi-)admissible Legen-
drian submanifolds. Let 0 ∈ Λ and let σ : C

n×R → [0, 1] be the function
constructed from L0 as above. There exists ρ > 0 and a neighborhood
W ⊂ Λ of 0 such that if p is any point in Lλ, λ ∈ W and v any vector
tangent to Lλ at p with |ξ(v)| < ρ then

expg(Lλ,σ(p))
x tξ ∈ ΠC(Lλ) for 0 ≤ t ≤ 1.

5.4. Extending families of Legendrian embeddings and their
differentials. In the next subsection, we will need to exponentiate vec-
tor fields along a disk whose boundary is in L0 (0 ∈ Λ) to get a disk
with boundary in Lλ for λ near 0. To accomplish this, we construct
diffeomorphisms of C

n.
Consider Lλ ⊂ C

n × R, λ ∈ Λ and let 0 ∈ Λ. There exists a smooth
family of Legendrian embeddings

kλ : L0 → C
n × R,
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such that k0 is the inclusion, kλ(L0) = Lλ, and kλ(c±j (0)) = c±j (λ) for
each j.

As in Section 5.3, fix δ > 0 such that all the 6δ-balls B(c∗j (0), 6δ)
are disjoint and such that the intersections B(c∗j (0), 6δ) ∩ ΠC(L0) are
homeomorphic to two n-disks intersecting at a point.

Let W ⊂ Λ be a neighborhood of 0 such that c∗j(λ) ∈ B(c∗j(0), δ)
for λ ∈ W . We construct a smooth Λ-family (λ ∈ W ) of 1-parameter
families of diffeomorphisms ψσ

λ : C
n → C

n, 0 ≤ σ ≤ 1, λ ∈ W . Note
that

K1
λ = ΠC ◦ kλ : L1

0 = L0 \
⋃
j

U(c+
j , 3δ) → C

n,(5.13)

K0
λ = ΠC ◦ kλ : L0

0 = L0 \
⋃
j

U(c−j , 3δ) → C
n

are Lagrangian embeddings and that K1
λ(c∗j(0)) = K0

λ(c∗j(0)) = c∗j (λ),
for each Reeb chord cj(0) of L0.

Identify tubular neighborhoods of L1
0 and L0

0 with their respective
tangent bundles so that J along the 0-section of the tangent bundles
corresponds to i in C

n (see Section 5.3). Define for (p, v) ∈ TLα
0 ⊂ C

n,
α = 0, 1,

(5.14) K̂α
λ (p, v) = Kα

λ (p) + idKα
λ (v).

Then K̂α
λ is a diffeomorphism on some neighborhood of Lα

0 ⊂ C
n,

α = 0, 1. Note that the diffeomorphisms K̂0
λ and K̂1

λ agree outside⋃
j B(c∗j , 4δ).
Extend K̂0

λ and K̂1
λ to diffeomorphisms on all of C

n in such a way
that their extensions agree outside

⋃
j B(c∗j , 4δ). Call these extensions

ψα
λ , α = 0, 1.
Let ψσ

λ , 0 ≤ σ ≤ 1 be a Λ-family of 1-parameter families of diffeomor-
phisms which are constant in σ near σ = 0 and σ = 1 and with the fol-
lowing properties. First, ψσ

λ , 0 ≤ σ ≤ 1 connects ψ0
λ to ψ1

λ. Second, ψσ
λ

is constant in σ outside ∪jB(c∗j , 5δ) and in ∪j(B(c∗j , 5δ)\B(c∗j , 4δ))∩L0.
Third, ψσ

λ(c∗j(0)) = c∗j(λ), 0 ≤ σ ≤ 1.
For future reference, we let Y σ

λ denote the 1-parameter family of 1-
forms on Λ with coefficients in smooth vector fields on Cn defined by

(5.15) Y σ
λ (x, µ) = Dλψσ

λ(x) · µ, λ ∈ Λ, µ ∈ TλΛ, x ∈ C
n, σ ∈ [0, 1].

By (5.14), dψα
λ , α = 0, 1 are complex linear maps when restricted to

the restriction of the tangent bundle of C
n to Lα

0 . Moreover, these maps
fit together to a smooth Λ-family of maps Âλ : L0 → GL(Cn) which is
obtained as follows. Pick a smooth function β on L0 with values in [0, 1]
which is 0 outside U(c+

j , 5δ) and 1 inside U(c+
j , 4δ) define

Âλ(p) = dψβ(p)(dΠC(TpL)).
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Let Aσ
λ : C

n → GL(Cn) be an s-parameter family of 1-parameter fami-
lies of maps with the following properties.

• Aσ
λ = Âλ on ΠC(L0) \ ΠC(U(c+

j , 5δ))
• A1

λ = Âλ on ΠC(U(c+
j , 4δ))

• Aσ
λ is constant in σ on B(c∗j , 5δ) \ B(c∗j , 4δ) ∩ L0

• ∂̄A0
λ = 0 along ΠC(L0)\ΠC(U(c+

j , 4δ)) and ∂̄A1
λ = 0 along ΠC(L0)\

ΠC(U(c−j , 4δ)).
• ‖Aσ

λ − id ‖C∞ ≤ 2‖Âλ − id ‖C∞ .

5.5. Local coordinates. We consider first the chord generic case. Let
Lλ ⊂ C

n × R, λ ∈ Λ be a family of chord generic Legendrian submani-
folds. We construct local coordinates on W2,ε,Λ(a, κ).

Let σ : C
n × R → [0, 1] be the function constructed from L0, 0 ∈ Λ.

For p ∈ Lλ and v a tangent vector of ΠC(Lλ) at q = ΠC(p), write

expg(Lλ,σ(p))
q v = expλ,σ

q v.

Moreover, if ρ > 0 is as in Lemma 5.8 and |v| ≤ ρ, we write z(p, v)
for the z-coordinate of the endpoint of the unique continuous lift of the
path expλ,σ(p)

q tv, 0 ≤ t ≤ 1, to L ⊂ C
n × R.

Let (w, f) ∈ W2,ε,Λ(a, κ). Let F : Dm → R be an extension of f such
that F ∈ H2,ε(Dm, R) (in particular, F is continuous) and such that
F is smooth with all derivatives uniformly bounded outside a small
neighborhood of ∂Dm. Then w × F : Dm → C

n × R. In the case
that w and f are smooth, we take F to be smooth. Furthermore, in
the case that w and f are constant close to each puncture we take F
to be an affine parameterization of the corresponding Reeb chord in
a neighborhood of each puncture where w and f are constant. The
purpose of this choice of F is that when we exponentiate a vector field
at the disk (w, f), we need (w, F ) to determine the metric.

For r > 0, define

B2,ε((w, f), r) ⊂ H2,ε(Dm, Cn)

as the intersection of the closed subspace of v ∈ H2,ε(Dm, Cn) which
satisfies

v(ζ) ∈ ΠC

(
T(f(ζ),w(ζ))L

)
, for ζ ∈ ∂Dm,(5.16) ∫

∂Dm

〈∂̄v, a〉 ds = 0, for every a ∈ C∞
0 (∂Dm, Cn)(5.17)

and the ball {u : ‖u‖2,ε < r}.
When the parameter space Λ is 0-dimensional, we can define a coor-

dinate chart around (f, w, 0) ∈ W2,ε,Λ(a, κ) (0 ∈ Λ) by

Φ[(w, f, 0)] : B2,ε((w, f), r) × Λ → F2,ε,Λ(a, κ);

Φ[(w, f, 0)](v, λ) = (u, l, λ)
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where

u(ζ) = expλ,σ(ζ)
w(ζ)

(
v(ζ)

)
,

l(ζ) = z
(
(w(ζ), f(ζ)), v(ζ)

)
, ζ ∈ ∂Dm.

When Λ is not 0-dimensional, we will need to use the maps Aσ
λ to

move the “vector field” v from L0 to Lλ. Moreover, to ensure our new
maps are in the appropriate space of functions, we will also need to cut
off the original map w. To this end, let (w, f, λ) ∈ W2,ε,Λ(a, κ). Then,
there exists M > 0 and vector-valued functions ξj , j = 1, . . . , m such
that

w(τ + it) = expλ,ω(t)
a∗

j
ξj(τ + it), for τ + it ∈ Epj [M ],

where ω : [0, 1] → [0, 1] is a smooth approximation of the identity, which
is constant in neighborhoods of the endpoints of the interval. Define
(w[M ], f [M ]) as follows. Let

w[M ](ζ) =

{
w(ζ), for ζ /∈ ∪jEpj [M ],
expλ,ω(t)

a∗
j

(αξj), for ζ = τ + it ∈ Epj [M ],

where α : Epj → C is a smooth function which is 1 on Epj \Epj [M +1], 0
on Epj [2M ], and holomorphic on the boundary. Let f [M ] be the natural
lift of the boundary values of w[M ]. It is clear that (w[M ], f [M ]) →
(w, f) as M → ∞. For convenience we use the notation (w[∞], f [∞])
to denote this limit. We write F [M ] for the extension of f [M ] to Dm.

Let (w, f, 0) ∈ W2,ε,Λ(a, κ) (0 ∈ Λ). For large M > 0, consider
(w [M ], F [M ]). To simplify notation, write σ [M ] (ζ) = σ(w[M ](ζ),
F [M ](ζ)) and w[M ]λ(ζ) = ψ

σ[M ](ζ)
λ (w[M ](ζ)). Define

Φ[(w, f, 0); M ] : B2,ε((w[M ], f [M ]), r)× Λ → F2,ε,Λ(a, κ);

Φ[(w, f, 0); M ](v, λ) = (u, l, λ)

where

u(ζ) = expλ,σ[M ](ζ)
w[M ]λ(ζ)

(
A

σ[M ](ζ)
λ v(ζ)

)
,

l(ζ) = z
(
(w[M ]λ(ζ), f [M ]λ(ζ)), Aσ[M ](ζ)

λ v(ζ)
)
, ζ ∈ ∂Dm.

In the semi-admissible case, we use the above construction close to
all Reeb chords except the chord c0 at the self-tangency point. At c∗0,
we utilize the fact that we have a local product structure of ΠC(Lλ)
which is assumed to be preserved in a rather strong sense under λ ∈ Λ,
see Section 5.1. This allows us to construct the family of metrics gσ

λ as
product metrics close to c∗0. Once we have metrics with this property, we
can apply the cut-off procedure above to the last (n− 1) coordinates of
an element (w, f, 0) ∈ W2,ε,Λ and just keep the first coordinate of w in a
neighborhood of c∗0 as it is. We use the same notation (w[M ], f [M ]) for
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the map which results from this modified cut-off procedure from (w, f)
in the semi-admissible case.

Proposition 5.9. Let ε ∈ [0,∞)m. Then there exists r > 0, M > 0,
and a neighborhood W ⊂ Λ of 0 such that the map

Φ[(w, f, 0)] : B2,ε((w[M ], f [M ]), r)× W → F2,ε,Λ(a, κ)

is C1 and gives local coordinates on some open subset of W2,ε,Λ(a, κ)
containing (w, f, 0). Moreover, if Λ is 0-dimensional, then we may take
M = ∞.

Proof. Fix some small r > 0. Consider the auxiliary map

Ψ: B2,ε((w[M ], f [M ]), r) ×H 3
2
,ε(∂Dm, R) × Λ → F2,ε,Λ(a),

Ψ(v, r, λ) = Φ[(w[M ], f [M ]), 0](v, λ) + (0, 0, r)

where (u, h, µ) + (0, 0, r) = (u, h, µ + r).
We show in Lemma 5.11 that Ψ is C1 with differential in a neigh-

borhood of (0, 0, 0) which maps injectively into the tangent space of the
target and has closed images. These closed images have direct comple-
ments and hence, the implicit function theorem applies and shows that
the image is a submanifold. Moreover, for M large enough (w, f, 0) is
in the image.

We finally prove in Lemma 5.13, that W2,ε(a, κ) lies inside the image
and that it corresponds exactly to r = 0 in the given coordinates. q.e.d.

Lemma 5.11 is a consequence of the following technical lemma.

Lemma 5.10. Let Λ be an open neighborhood of 0 in a Banach space.
Let (w, f, λ) ∈ F2,ε,Λ(a, κ), and v, u, q ∈ B2,ε((w, f), r). Let ζ be a
coordinate on Dm and let ε ∈ [0,∞)m.

(a) Let
G : C

n × C
n × C

n × C
n × [0, 1] × Λ → C

n

be a smooth function with all derivatives uniformly bounded and
let σ : C

n×R → [0, 1] be a smooth function with the same property.
If

G(x, 0, 0, θ, σ, λ) = 0,(5.18)

G(x, ξ, 0, θ, σ, 0) = 0,(5.19)

then there exists a constant C (depending on ‖Dw‖1,ε, ‖DF‖1,ε

and r) such that G (ζ, λ) = G (w (ζ), v (ζ), u (ζ), q(ζ), σ (F (ζ),
w(ζ)), λ) satisfies

(5.20) ‖G(ζ, λ)‖2,ε ≤ C(‖u‖2,ε + ‖v‖2,ε + |λ|).
(b) Let

G : C
n × C

n × C
n × [0, 1] × Λ → C

n
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be a smooth function with all derivatives uniformly bounded. If

G(x, 0, 0, σ, λ) = 0,(5.21)

G(x, ξ, 0, σ, 0) = 0,(5.22)

D3G(x, ξ, 0, σ, 0) = 0, and(5.23)

D5G(x, ξ, 0, σ, 0) = 0(5.24)

then there exists a constant C (depending on ‖Dw‖1,ε, ‖DF‖1,ε

and r) such that G(ζ, λ) = G(w(ζ), v(ζ), u(ζ), σ(F (ζ), w(ζ)), λ)
satisfies

‖G(ζ, λ)‖2,ε ≤ C(‖u‖2
2,ε + |λ|2).

Proof. The proof appears in the Appendix. q.e.d.

In order to express the derivative of Ψ, we will use the function
K : C

n × C
n × [0, 1] × Λ → C

n defined by

(5.25) K(x, ξ, σ, λ) = expλ,σ
ψσ

λ(x) Aσ
λξ − ψσ

λ(x).

We will need to lift K (at least on part of its domain) so that it maps
to C

n × R. We describe this lift.
Consider Lλ ⊂ C

n × R, λ ∈ Λ. Let Kλ : TL0 → C
n × R be an

embedding extension of kλ (see Section 5.4). Consider the immersion
Pλ : V ⊂ TL0 → C

n which extends ΠC ◦ kλ, where V is a neighborhood
of the 0-section in TL0. Choose V and a neighborhood W ⊂ Λ of 0, so
small that the self-intersection of Pλ is contained inside

⋃
j B(c∗j(0), 2δ).

Consider the following subset N of the product C
n × [0, 1].

N =P (V ) \
⋃
j

B(c∗j (0), 3δ) × [0, 1]

∪
⋃
j

P (V |Lλ ∩ U(c+
j , 4δ)) × [1 − ε, 1]

∪
⋃
j

P (V |Lλ ∩ U(c−j , 4δ)) × [0, ε].

We define a map ψλ : N → C
n × R in the natural way, ψλ(q, σ) =

Kλ(pσ, vσ) where (pσ, vσ) is the preimage of q under P with p ∈U(c±j , 4δ)
where the sign is determined by σ.

Using this construction, we may do the following. If W ⊂ C
n ×C

n ×
[0, 1]×Λ and G : W → C

n is a function such that (G, σ)(W ) ∈ N , then
we may define a lift G̃ : W → C

n × R.
We now use this construction to lift the function K defined in (5.25).

For x sufficiently close to L0, ξ sufficiently small and σ sufficiently close
to 0 or 1 when x is close to double points of ΠC(L0) the lift K̃ of K can
be defined. Let KR denote the R-coordinate of K̃.
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Lemma 5.11. If dimΛ > 0, let M < ∞. If dim Λ = 0, let M = ∞.
The map

Ψ: B2,ε((w[M ], f [M ]), r)×H 3
2
,ε(∂Dm, R) × Λ → F2,ε,Λ(a, κ)

is C1. Its derivative at (v, h, µ) is the map

(u, l, λ) �→
(
D2K · v + D4K · λ, 〈D2KR · v + D4KR · λ〉 + l, λ

)
,

where all derivatives of K and K̃ are evaluated at (w[M ]λ, v, σ[M ], λ)
and where 〈u〉 denotes restriction of u : Dm → R to the boundary.

Proof. Using local coordinates on F2,ε,Λ as described in Section 5.1,
we write Ψ = (Ψ1, Ψ2, Ψ3) Statements concerning Ψ3 are trivial. Note
that Ψ1 = K + Ψσ

λ(x). So, to see that Ψ1 is continuous, we note that
K(x, 0, σ, λ) = 0 and apply Lemma 5.10 (a) to get that K is Lipschitz
in v and λ and hence continuous. To see that Ψ1 is differentiable, we
note that if

G(x, ξ, η, σ, λ) = K(x, ξ + η, σ, µ + λ) − K(x, ξ, σ, µ)

−
(
D2K(x, ξ, σ, µ) · η + D4K(x, ξ, σ, µ) · λ

)
,

then the conditions (5.21)–(5.24) are fulfilled and Lemma 5.10 (b) im-
plies Ψ1 is differentiable and has differential as claimed. Finally, apply-
ing Lemma 5.10 (a) to the map

G(x, ξ, η, σ, λ) = D2K(x, ξ, σ, µ) · η + D4K(x, ξ, σ, µ) · λ
shows Ψ1 is C1.

Using K̃, we can extend the R-valued function z((w[M ]λ, f [M ]λ),
Aσ

λv) to a small neighborhood of ∂Dm in Dm. With this done the (non-
trivial part) of the derivative of Ψ2 can be handled exactly as above.

q.e.d.

Let ζ = x1 + ix2 be a complex local coordinate in Dm. Then,
if u : Dm → C

n, we may view ∂̄u as ∂1u + i∂2u. As in the proof
of Lemma 5.11, we use local coordinates on F2,ε,Λ and write Ψ =
(Ψ1, Ψ2, Ψ3).

Lemma 5.12. Assume that w : Dm → C
n and v : Dm → C

n are
smooth functions and let g be any metric on C

n with Levi–Civita con-
nection ∇. Let ζ = τ1 + iτ2 ∈ Dm, if u(ζ) = expw(ζ)(v(ζ)) then,
∂̄u = X1(1) + iX2(1), where Xj, j = 1, 2 are the Jacobi-fields along
the geodesic expw(ζ)(tv(ζ)), 0 ≤ t ≤ 1, with Xj(0) = ∂jw(ζ) and
∇tXj(0) = ∇∂j

v(ζ).
In particular, there exists r> 0 such that if (v(ζ), λ) ∈ H2,ε(Dm, Cn)×

Λ, ‖v‖2,ε ≤ r, then the restriction of ∂̄Ψ1(v, λ) to ∂Dm equals 0 if and
only if the restriction of ∂̄v to the boundary equals 0.
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Proof. Consider

α(s, t) = expw(ζ+s)(tv(ζ + s)), 0 ≤ t ≤ 1,−ε ≤ s ≤ ε.

Since for fixed s, t �→ α(s, t) is a geodesic, we find that ∂sα(0, t) =
X1(t) is a Jacobi field along the geodesic t �→ expw(ζ)(tv(ζ)) with initial
conditions

X1(0) = ∂s expw(ζ+s)(0 · v) = ∂1w(ζ),

∇tX1(0) = ∇t∂sα(0, 0) = ∇s∂tα(0, 0) = ∇sv(ζ).

Moreover,

expw(ζ+s)(v(ζ + s)) = α(s, 1)

and hence,

∂1 expw(ζ)(v(ζ)) = ∂sα(0, 1) = X1(1).

A similar analysis shows that

∂2 expw(ζ)(v(ζ)) = X2(1).

This proves the first statement.
Consider the second statement. Note that the metrics g (Lλ,

σ(w[M ](ζ), F [M ](ζ))) are constant in ζ for ζ in a neighborhood of ∂Dm.
Consider first the case that w[M ] and v are smooth. Then the above
result together with the Jacobi-field property of the metric ĝ (see Lemma
5.6), from which g(Lλ, σ) is constructed implies that for ζ = τ1 + iτ2 ∈
∂Dm, ∂̄(Ψ1(v, λ)) = X1(1) + iX2(1) equals the value of the Jacobi-field
X1 + JX2 = Y with initial condition Y (0) = 0, ∇tY (0) = (∇∂1 +
i∇∂2)(A

σ
λv).

Note Y (0) = 0 since, along the boundary, ∂̄w = 0. Let u = Aσ
λv. We

check that ∇tY (0) = ∂̄u. To this end, let (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn)
be coordinates on T ∗L, and use notation as in Lemma 5.5. Noting that
u is tangent to L at w(ζ), we compute

∇∂τ1
u =

∂u

∂τ1
+

(
Γk

ij

(
∂w

∂τ1

)
i

+ Γk
i∗j

(
∂w

∂τ1

)
i∗

)
uj ∂k

+
(

Γk∗
ij

(
∂w

∂τ1

)
i

+ Γk∗
i∗j

(
∂w

∂τ1

)
i∗

)
uj ∂k∗

J∇∂τ2
u = J

∂u

∂τ2
+

(
Γk

ij

(
∂w

∂τ2

)
i

+ Γk
i∗j

(
∂w

∂τ1

)
i∗

)
uj ∂k∗

−
(

Γk∗
ij

(
∂w

∂τ2

)
i

+ Γk∗
i∗j

(
∂w

∂τ2

)
i∗

)
uj ∂k.
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Since ∂̄w(ζ) = 0, we have(
∂w

∂τ1

)
j

=
(

∂w

∂τ2

)
j∗(

∂w

∂τ1

)
j∗

= −
(

∂w

∂τ2

)
j

.

This together with Lemma 5.5 shows that ∇tY (0) = ∂̄u.
Hence, ∂̄(Ψ1(v, λ)) = 0 for ζ ∈ ∂Dm if and only if the same is true for

v provided v is shorter than the minimum of injectivity radii of g(Lλ, σ).
An approximation argument together with the continuity of Ψ1 (also in
w[M ], see the proof of Lemma 5.10 (a)), ∂̄, and of restriction to the
boundary gives the second statement in full generality. q.e.d.

Lemma 5.13. For r > 0 small enough, the image of Ψ is a submani-
fold of F2,ε,Λ. Moreover, there exists M > 0, r > 0, and a neighborhood
U of (w[M ], f [M ], 0) in F2,ε,Λ such that (w, f) ∈ U and U ∩ W2,ε,Λ is
contained in the image of Ψ and corresponds to the subset h = 0 in the
coordinates

(v, h, λ) ∈ B2,ε((w[M ], f [M ]), r)×H 3
2
,ε(∂Dm, R) × Λ.

Proof. Let (w, f) ∈ W2,ε(a, κ). Let K be as in Lemma 5.11. Then
D2K(x, 0, σ, 0) · η = η and D4K(x, 0, σ, 0) = 0. Hence, the differential
of Ψ at (0, 0, 0) is

dΨ(0, 0, 0) =

⎛⎝ ι 0 0
〈ιR〉 id 0
0 0 id

⎞⎠ ,

where ι denotes the inclusion of the tangent space of B2,ε((f, w), r) into
H2,ε(Dm, Cn) and 〈ιR〉v denotes the R-component of the vector field ṽ
which maps to v under ΠC and is tangent to L0. Note that the tangent
space of B2,ε((w, f), r) is a closed subspace of H2,ε(Dm, Cn).

Thus, dΨ(0, 0, 0) is an injective map with closed image. Since the
first component of F2,ε is modeled on a Banach space which allow a
Hilbert-space structure, we see that the image of the differential admits
a direct complement. Moreover, applying Lemma 5.10 to the explicit
differential in Lemma 5.11, we conclude that the norm of the differential
of Ψ is Lipschitz in v and λ with Lipschitz constant depending only on
‖Dw[M ]‖1,ε and ‖DF [M ]‖1,ε. Hence, the implicit function theorem
shows that there exists r > 0 and W ⊂ Λ (independent of M) such
that the image of B((w[M ], f [M ]), r) × W is a submanifold. From the
norm-estimates on the differential, it follows that for M large enough
(w, f) lies in this image.

The statement about surjectivity onto U∩W2,ε,Λ follows from the fact
that ΠC(Lλ) is totally geodesic in the metric g(Lλ, σ) and Lemma 5.12.
The statement on coordinates is trivial. q.e.d.
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5.6. Bundle over conformal structures. The constructions above
all depend on the conformal structure κ on Dm. This conformal struc-
ture is unique if m ≤ 3. Assume that m > 3 and recall that we identified
the space of conformal structures Cm on Dm with an open simplex of
dimension m − 3.

The space
W2,ε,Λ(a) =

⋃
κ∈Cm

W2,ε,Λ(a, κ),

has a natural structure of a locally trivial Banach manifold bundle, over
Cm. To see this, we must present local trivializations.

Let ∆ denote the unit disk in the complex plane and let ∆m denote
the same disk with m punctures p1, . . . , pm on the boundary and con-
formal structure κ. Fixing the positions of p1, p2, p3, this structure is
determined by the positions of the remaining m − 3 punctures. We
coordinatize a neighborhood of the conformal structure κ in Cm as fol-
lows. Pick m − 3 vector fields v1, . . . , vm−3, with vk supported in a
neighborhood of pk+3, k = 1, . . . , m − 3 in such a way that vk gen-
erate a 1-parameter family of diffeomorphism φτk

pk+3
: ∆ → ∆, τk ∈ R

which is a rigid rotation around pk+3 and which is holomorphic on the
boundary. Let the supports of vk be sufficiently small so that the sup-
ports of φτk

pk+3
, k = 1, . . . , m− 3 are disjoint. Then the diffeomorphisms

φτ1
p3

, . . . , φ
τm−3
pm all commute. Define, for τ = (τ1, . . . , τm−3) ∈ R

m−3,
φτ = φτ1

p3
◦ · · · ◦ φ

τm−3
pm and a local coordinate system around κ in Cm by

τ �→
(
dφτ

)−1 ◦ jκ ◦ dφτ .

These local coordinate systems give an atlas on Cm.
Using this family, we define the trivialization over R

m−3 ≈ U ⊂ Cm

by composition with φ−τ . That is, a local trivialization over U is given
by

Φ: W2,ε,Λ(a, κ) × U → W2,ε,Λ(a);

Φ(w, f, λ, τ) =
(
w ◦ φ−τ , f ◦ φ−τ , λ, θ

)
.

In a similar way, we endow the space

H1,ε(Dm, T ∗Dm) =
⋃

κ∈Cm

H1,ε(Dm, T ∗Dm, g(κ)),

with its natural structure as a locally trivial Banach space bundle over
Cm.

Representing the space of conformal structures Cm in this way, we
are led to consider its tangent space TκCm as generated by γ1, . . . , γm−3,
where γk = i·∂̄vk, in the following sense. If γ is any section of End(TDm)
which anti-commutes with jκ and which vanishes on the boundary, then
there exists unique numbers a1, . . . , am−3 and a unique vector field v on
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∆m which is holomorphic on the boundary and which vanish at pk,
k = 1, . . . , m such that

(5.26) γ =
∑

k

akγk + i∂̄v.

The existence of such v is a consequence of the fact that the classical
Riemann–Hilbert problem for the ∂̄-operator on the unit disk with tan-
gential boundary conditions has index 3 and is surjective (the kernel
being spanned by the vector fields z �→ iz, z �→ i(z2 + 1), z �→ z2 − 1).

Going from the punctured disk ∆m to Dm with our standard metric,
the behavior of the vector fields vj close to punctures where they are
supported is easily described. In fact the vector fields can be taken as ∂x

in coordinates z = x+iy ∈ (C+, R, 0) in a neighborhood of the puncture
p on ∂∆m. The change of coordinates taking us to the standard end
[0,∞) × [0, 1] is τ + it = ζ = − 1

π log z and we see the corresponding
vector field on [0,∞) × [0, 1] is 1

πeπζ (where we identify vector fields
with complex valued functions). As in Proposition 6.13, we see that
equation (5.26) holds on Dm with v in a Sobolev space with (small)
negative exponential weights at the punctures.

Consider the space H1,ε(Dm, T ∗0,1Dm ⊗C
n) and the closed subspace

H1,ε[0](Dm, T ∗0,1Dm ⊗ C
n) consisting of elements whose trace (restric-

tion to the boundary) is 0. The elements of this space are complex
anti-linear maps TDm → C

n and so depend on the complex struc-
ture jκ on Dm. For simplicity, we keep the notation and consider
H1,ε[0](Dm, T ∗0,1Dm ⊗ C

n) as a bundle over Cm. To do this, we must
find local trivializations of this bundle. To this end, we note that any
complex structure jµ in a neighborhood of a given complex structure jκ

on Dm can be written as jµ = jκ(id+γµ)(id−γµ)−1 where γ is a section
of End(TDm) such that γ ◦ jκ + jκ ◦ γ = 0. It is then easy to check
that the map which takes A ∈ Hom(TDm, Cn) to A ◦ (id+γµ) identifies
the (i, jκ) anti-linear maps with the (i, jµ) anti-linear maps. We thus
trivialize the bundle H1,ε[0](Dm, T ∗0,1Dm ⊗ C

n) over U ⊂ Cm around
κ ∈ U by taking the (i, jκ) anti-linear section A to the (i, jµ) anti-linear
map A(1 + γµ).

Note finally that in our local coordinates on Cm from above, we have
dφ−τ ◦ jκ ◦ dφτ = jκ(1 + γτ )(1 − γτ )−1, where γτ = −1

2 ∂̄v up to first
order in τ .

5.7. The ∂̄-map and its linearization. Consider the bundle
H1,ε[0](Dm, T ∗0,1Dm ⊗ C

n) over Cm as in the previous section. We ex-
tend this bundle to a bundle over Λ making it trivial in the Λ directions
and denote the result H1,ε,Λ[0](Dm, T ∗0,1Dm ⊗ C

n).
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The ∂̄-map is the map

Γ̂: W2,ε,Λ(a) → H1,ε,Λ[0](Dm, T ∗0,1Dm ⊗ C
n);

Γ̂(w, f, κ, λ) =
(
dw + i ◦ dw ◦ jκ, κ, λ

)
.

We will denote the first component of this map simply Γ. An element
(w, f, κ, λ) is thus holomorphic with respect to the complex structure
jκ if and only if Γ̂(w, f, κ, λ) = (0, κ, λ). Hence, if Lλ, λ ∈ Λ is a fam-
ily of chord generic Legendrian submanifolds, then the (parameterized)
moduli-space of holomorphic disks with boundary on Lλ, positive punc-
ture at a1, and negative punctures at a2, . . . , am is naturally identified
with the preimage under Γ̂ of the 0-section in H1,ε,Λ[0](Dm, T ∗0,1Dm ⊗
C

n) for sufficiently small ε ∈ [0,∞).
We compute the linearization of the ∂̄-map. As in Section 5.6, we

think of tangent vectors γ to Cm at κ as sections of End(TDm). For
κ ∈ Cm and u : Dm → C

n, let ∂̄κu = du + i ◦ du ◦ jκ and let ∂κu =
du − i ◦ du ◦ jκ.

Let (w, f, κ, 0) ∈ W2,ε,Λ(a). Identify the tangent space of W2,ε,λ(a)
at (w, f, κ, 0) with TB2,ε((w, f), r) × TκCm × T0Λ.

Lemma 5.14. The differential of Γ at (w, f, κ, 0) is the map

(5.27) dΓ(v, γ, λ) = ∂̄κv + ∂̄κ

(
Y σ

0 (w, λ)
)

+ i ◦ ∂κw ◦ γ.

Recall Y σ
0 was defined in (5.15).

Proof. Assume first w and f are constant close to punctures. Let
B2,ε((w, f), r) × Cm × Λ be a local coordinates around (w, f, κ, 0).

Let K(x, ξ, σ, λ) = ψσ
λ(x) + ξ. Then

R(x, ξ, σ, λ) = expλ,σ
ψσ

λ(x) Aσ
λξ − K(x, ξ, σ, λ)

satisfies

R(x, 0, σ, λ) = 0, D2R(x, 0, σ, 0) = 0, D4R(x, 0, σ, 0) = 0;

thus, Lemma 5.10 (b) implies that

‖R(w, v, σ, λ)‖2,ε ≤ C(‖v‖2
2,ε + |λ|2).

Continuity of the linear operators

∂̄κ+γ : H2,ε(Dm, Cn) → H1,ε(Dm, T ∗Dm ⊗ C
n),

where we use local coordinates R
m−3 on Cm, κ + γ ∈ R

m−3 ⊂ Cm, and
the trivialization of H1,ε[0](Dm, T ∗0,1Dm ⊗ C

n) described in subsection
5.6, shows that

(5.28) ‖∂̄κ+γR(w, v, σ, λ)‖1,ε ≤ C(‖v‖2
2,ε + |λ|2).
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It is straightforward to check that

∥∥∥∂̄κ+γK(w, v, κ + µ, λ) − ∂̄κw −
(
∂̄κv + ∂̄κ

(
Y0(w, λ)

)
+ i ◦ ∂κw ◦ γ

)∥∥∥
1,ε

(5.29)

≤ C(‖v‖2
2,ε + |λ|2 + |γ|2).

Equations (5.29) and (5.28) imply the lemma in the special case when
(w, f) is constant close to punctures (and in the general case if dim(Λ) =
0).

If (w, f) is not constant close to punctures, consider the maps (w[M ],
f [M ]) which are constant close to punctures. We have (w[M ], f [M ]) →
(w, f) as M → ∞. Since the local coordinates are C1 a limiting argu-
ment proves (5.27) in the general case. q.e.d.

5.8. Auxiliary spaces in the semi-admissible case. In Section 7.9,
we show that for a dense open set of semi-admissible Legendrian sub-
manifolds L, no rigid holomorphic disks with boundary on L have expo-
nential decay at their degenerate corners. Once this has been shown, we
know that if 0 is the degenerate corner and L has the form (3.4) around
0, then for any rigid holomorphic disk u : Dm → C

n with puncture p
mapping to 0, there exists M > 0 and c ∈ R such that

u(ζ) =
(
−2(ζ + c)−1, 0, . . . , 0

)
+ O(e−θ|ζ|), for ζ ∈ Ep[±M ],

where θ > 0 is the smallest non-zero complex angle of the Reeb chord
at 0. (Here we implicitly assume that P2 in our standard self tan-
gency model lies above P1 in the z-direction, and that neighborhoods
of positive (negative) punctures are parameterized by [1,∞) × [0, 1]
((−∞,−1] × [0, 1]).) To study disks of this type, we use the follow-
ing construction.

Let a0 denote the Reeb chord at 0. Assume that a has the Reeb chord
a0 in k positions. For C = (c1, . . . , ck) ∈ R

k, fix a smooth reference
function which equals

uC
ref(ζ) =

(
−2(ζ + cj)−1, 0, . . . , 0

)
,

in a neighborhood of the jth puncture mapping to a0 and also a smooth
function FC

ref : ∂Dm → R so that (uref , Fref)|∂Dm maps to L.
Let Lλ, λ ∈ Λ be a family of semi-admissible Legendrian subman-

ifolds. We construct for ε ∈ [0,∞)m, with those components εj of ε
which correspond to punctures mapping to the degenerate corner satis-
fying 0 < εj < θ and for fixed C ∈ R

k, the spaces

FC
2,ε(a)

by using reference functions looking like uC
ref for C ∈ R

k in neighbor-
hoods of punctures mapping to a∗0 = 0 ∈ C

n. We construct local coor-
dinates as in Section 5.1 taking advantage of the fact that λ ∈ Λ fixes
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a∗0. Also we consider the space

WC
2,ε,Λ(a),

which is defined in the same way as before. We note that the con-
struction giving local coordinates on this space in Section 5.5 can still
be used since in the semi-admissible case, we need not cut-off the first
component of w in (w, f) close to punctures mapping to c0 since λ ∈ Λ
are assumed to preserve the product structure and γ1 and γ2.

With this done, we consider the bundle

(5.30) W̃2,ε,Λ =
⋃

C∈Rk

WC
2,ε,Λ(a),

which is a locally trivial bundle over R
k.

In the case that a has ≥ 3 elements, we fix for C ∈ R
k the diffeomor-

phism φC : Dm → Dm which equals to ζ → ζ + cj in Epj [M ] for any
puncture pj mapping to c0, equals the identity on Dm \⋃

j Epj [M − 2],
and is holomorphic on the boundary. (Since we often reduce the few
punctured cases to the many punctured case, see Section 8.6, the follow-
ing two constructions will not be used in the sequel, we add them here
for completeness.) In case a has length 1, we think of D1 as of the upper
half-plane C+ with the puncture at ∞. The map z �→ − 1

π log z identifies
the region {z ∈ C+ : |z| > R} with the strip [ 1

π log R,∞) × [0, 1] where
we think of the latter space as a part of Ep, where p is the puncture of
D1. Also, this map takes the conformal reparameterization z �→ eπCz to
φC : ζ �→ ζ +C in Ep and we identify R with this set of conformal repa-
rameterizations {φC}C∈R. In case a has length 2, we think of D2 as the
strip R × [0, 1] and identify R with the conformal reparameterizations
φC(ζ) = ζ �→ ζ + C.

We construct local coordinates

Φ: B2,ε(0, r) × Cm × R
k × Λ → W̃2,ε,Λ

in a neighborhood of uC
ref . For fixed (v, c) ∈ B2,ε(0, r)×R

k, Φ is depends
on κ×Λ exactly as above. We therefore fix (κ, 0) ∈ Cm×Λ and describe
the dependence of the remaining factors. For c ∈ R

k in a neighborhood
of C, define the map Ac,C : Dm → End(Cn),

[Ac,C(ζ)](v1, . . . , vn) =

{
(v1, . . . , vn) if ζ /∈ Epj ,(
d(uc

ref)1 ◦ d(uC
ref)

−1
1 v1, v2, . . . , vn

)
if ζ ∈ Epj ,

where (uc
ref)1 denotes the first component of uc

ref , and let

Φ(v, c) = expσ(F (ζ))
uc
ref(ζ) (Ac,C(ζ)v(ζ)).

Note that if w : Dm → C
n is any holomorphic disk with boundary on L

which is asymptotic to some uC
ref at the degenerate corner, then we may
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define coordinates on a neighborhood of w in W̃2,ε by replacing uc
ref in

the above formulas by w ◦ φc.
Using these coordinates, we find that the linearization of the ∂̄-map

Γ at a holomorphic (w, f, κ, 0, 0) equals

dΓ(v, γ, c, λ) = ∂̄κv + ∂̄κ

(
(Y0(w, λ))

)
(5.31)

+ i ◦ ∂κw ◦ γ + ∂̄κ

(
dw ·

(
∂φC

∂C
|C=0

)
· c

)
.

Here c = (c1, . . . , ck) is a tangent vector to R
k written in the basis

{Ĉ1, . . . , Ĉk} where Ĉj is a unit vector in the tangent space to Cj ∈ R.
We notice that the second term in (5.31) lies in H1,ε[0](Dm, T ∗0,1Dm)
because of the special assumptions on Lλ in a neighborhood of c∗0 and
that the last term does as well since the holomorphicity of w allows us
to control its higher derivatives and since it vanishes in the region where
φC is just a translation.

5.9. Homology decomposition. Let L ⊂ C
n×R be a (semi-)admiss-

ible Legendrian submanifold. Let c = c0c1 . . . cm be a word of Reeb
chords of L. If (u, f) ∈ W2,ε(c), then the homotopy classes of the
paths induced by (u|∂Dm, f) in L connecting the Reeb chord endpoints
determines the path component of (u, f) ∈ W2,ε(c).

Let A ∈ H1(L) and let W2,ε(c; A) ⊂ W2,ε(c) be the union of those
path components of W2,ε(c) such that the homology class of the loop
f(∂Dm)∪ (

⋃
j γj) equals A, where γj is the capping path chosen for the

Reeb chord cj endowed with the appropriate orientation, see Section 2.3.
For fixed conformal structure κ, we write W2,ε(c, κ; A) and in the chord
semi generic case W̃2,ε(c; A) and interpret these notions in a similar
way.

6. Fredholm properties of the linearized equation

In this section, we study properties of the linearized ∂̄-equation. In
particular, we determine the index of the ∂̄-operator with Legendrian
boundary conditions. It will be essential for our geometric applications
to use weighted Sobolev spaces and to understand how constants in
certain elliptic estimates depend on the weights.

Our presentation has two parts: the “model” case where the domain
is a strip or half-plane; and the harder case where the domain is Dm.

In Section 6.1, we discuss the existence of smooth representatives of
cokernel elements. In Section 6.2, we derive expansions for the kernel
and cokernel elements. We use these two subsections in Sections 6.3
through 6.5, to prove the elliptic estimate for the model problem, as
well as derive a formula for the index. In Sections 6.6, we set up the
boundary conditions for the linearized problem with domain Dm. In
Sections 6.7 through 6.10, we prove the Fredholm properties for the Dm
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case. In Sections 6.10 and 6.11, we connect the index formula to the
Conley–Zehnder index of Section 2.
6.1. Cokernel regularity. To control the cokernels of the operators
studied below, we use the following regularity lemma.

For this subsection only, we use coordinates (x, y) for the half-plane
R

2
+ = {(x, y) : y ≥ 0}. Let A : R → GL(Cn) be a smooth map with

det(A) uniformly bounded away from 0 and all derivatives uniformly
bounded. We also simplify notation for this subsection only and define
the following Sobolev spaces: let Hk = Hk(R2, Cn); let H̄k denote the
space of restrictions of elements in Hk to int(R2

+); let Ḣk denote the
subspace of elements in Hk with support in R

2
+; let H̄1[0] denote the

subspace of all elements in H̄1 which vanish on the boundary; and let
H̄2[A] denote the subspace of elements u in H̄2 such that u(x, 0) ∈
A(x)Rn and such that the trace of ∂̄u (its restriction to the boundary)
equals 0 in H 3

2
(R, Cn).

An element ξ in the cokernel of ∂̄ will be in the dual space of H1[0].
The dual of H1 is H−1 and thus the dual of H1[0] is the quotient space

(6.1) H−1/H1[0]⊥,

where H1[0]⊥ denotes the annihilator of H1[0] in H−1. As usual, let 〈 , 〉
denote the standard Riemannian inner product on C

n ≈ R
n.

Lemma 6.1. Fix h > 0 and assume that v ∈ Ḣ−1 satisfies

(6.2)
∫

R×[0,h)
〈∂̄u, v〉 dx ∧ dy = 0,

for all u ∈ H̄2[A] with compact support in R × [0, h). Then, for every
ε with 0 < ε < h and every k > 0, the class [v] ∈ Ḣ−1/H̄1[0]⊥ of v
contains an element v0 which is Ck in R × [0, ε), up to and including
the boundary.

Proof. The proof is standard and therefore omitted. q.e.d.
6.2. Kernel and cokernel elements. Consider the strip R × [0, 1] ⊂
C endowed with the standard flat metric, the corresponding complex
structure and coordinates ζ = τ + it. For k ≥ 0, let

Hk = Hk(R × [0, 1], Cn),

and for k ≤ 0, let Hk denote the L2-dual of H−k. We also use the notions
Hloc

k which are to be understood in the corresponding way.
If u ∈ Hloc

k , then the restriction of u to ∂(R × [0, 1]) = R ∪ R + i lies
in Hloc

k− 1
2

(R∪R+ i, Cn). For u ∈ Hloc
1 , consider the boundary conditions∫

R

〈u, v〉 dτ = 0 for all v ∈ C∞
0 (R, iRn),(6.3) ∫

R+i
〈u, v〉 dτ = 0 for all v ∈ C∞

0 (R + i, Rn).(6.4)
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Let f : R×[0, 1] → C
n be a smooth function satisfying (6.3) and (6.4).

Define the function fd : R × [0, 2] → C
n as

fd(τ + it) =

{
f(τ + it) for 0 ≤ t ≤ 1,

−f(τ + i(2 − t)) for 1 < t ≤ 2,

where w denotes the complex conjugate of w ∈ C
n. Then, fd and ∂τf

d

are continuous, ∂tf
d may have a jump discontinuity over the line R + i,

fd(τ +0i) = −fd(τ +2i), and ‖fd‖1 = 2‖f‖1. Hence, we can define the
double ud ∈ Hloc

1 (R × [0, 2]) of any u ∈ Hloc
1 which satisfies (6.3) and

(6.4). For u ∈ Hloc
k , let ∂̄u = (∂τ + i∂t)u and ∂u = (∂τ − i∂t)u.

Lemma 6.2. If u ∈ Hloc
1 satisfies (6.3) and (6.4) and

(a) ∂̄u = 0 in the interior of R × [0, 1] then

u(ζ) =
∑
n∈Z

Cn exp
(
(π

2 + nπ)ζ
)
,

where Cn ∈ R.
(b) ∂u = 0 in the interior of R × [0, 1] then

u(ζ) =
∑
n∈Z

Cn exp
(
(π

2 + nπ)ζ̄
)
,

where Cn ∈ R.

Moreover, if u satisfies (a) or (b) and u ∈ Hk for some k ∈ Z, then
u = 0.

Proof. We prove (a), (b) is proved in the same way. Clearly, it is
enough to consider one coordinate at a time. So assume the target is C

and let u be as in the statement.
Consider ud, then ∂̄ud is an element of Hloc

0 (R×[0, 2], C) with support
on R + i ∪ ∂(R × [0, 2]). Such a distribution is a three-term linear
combination of tensor products of a Dirac-delta in the t-variable and a
distribution on R and hence lies in H0(R × [0, 2], C) only if it is zero.
Thus ∂̄u = 0 and we may use elliptic regularity to conclude that u is
smooth in the interior of R × [0, 2]. (In fact, doubling again and using
the same argument, we find that u is smooth also on the boundary.)

We may now Fourier expand ud(τ, ·) in the eigenfunctions φ of the
operator i∂t which satisfy the boundary condition φ(0) = −φ(2). These
eigenfunctions are

t �→ exp
(
i(π

2 + nπ)t
)
, for n ∈ Z.

We find
ud =

∑
n

cn(τ) exp
(
i(π

2 + nπ)t
)
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where, by the definition of ud, cn(τ) are real valued functions and

∂̄ud =
∑

n

(
c′n(τ) − (π

2 + nπ)cn(τ)
)
exp

(
i(π

2 + nπ)t
)
.

Hence,

u(ζ) =
∑

n

Cn exp
(
(π

2 + nπ)ζ
)
.

Assume that u ∈ Hk for some k ∈ Z. Then, since for j ≥ 0 the
restriction of any v ∈ Hj(R × [0, 2], C) to R × [0, 1] lies in Hj ,

λu(v) =
∫

R×[0,2]
〈v, ud〉 dτ ∧ dt,

is a continuous linear functional on Hj(R × [0, 2], C) for j = k if k ≥ 0
or j = −k if k < 0.

Let ψ : R → [0, 1] be a smooth function equal to 1 on [0, 1] and 0
outside [−1, 2]. For n, r ∈ Z let

αn,r(τ + it) = ψ(τ + r) exp(i(π
2 + nπ)t).

Then, αn,r ∈ Hj(R × [0, 2], C) and ‖αn,r‖j = K(n) for some constant
K(n) and all r. It is straightforward to see that

λu(αn,r) = 2Cn

∫ r+2

r−1
ψ(τ + r) exp((π

2 + nπ)τ) dτ = ln,r.

The set {ln,r}r∈Z is unbounded unless Cn = 0. Hence, λu is continuous
only if each Cn = 0. q.e.d.

6.3. The right angle model problem. As mentioned, we will use
weighted Sobolev spaces. The weight functions are functions on R×[0, 1]
which are independent of t and have the following properties.

For a = (a+, a−) ∈ R
2 and θ ∈ [0, π), let

(6.5) m(θ, a) = min
{
|nπ + θ + a+|, |nπ + θ + a−|

}
n∈Z

.

For a ∈ R
2 with m(π

2 , a) > 0, let ea : R → R be a smooth positive
function with the following properties:

P1. There exists M > 0 such that ea(τ) = ea+τ for τ ≥ M and
ea(τ) = ea−τ for τ ≤ −M .

P2. The logarithmic derivative of ea, α(τ) = e′a(τ)
ea(τ) , is (weakly) mono-

tone and α′(τ) = 0 if and only if α(τ) equals the global maximum
or minimum of α.

P3. The derivative of α satisfies |α′(τ)| < 1
5m(π

2 , a)2 for all τ ∈ R.
Let

µ = (µ1, . . . , µn) = (µ+
1 , µ−

1 , . . . , µ+
n , µ−

n ) ∈ R
2n,
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be such that m(π
2 , µj) > 0, for j = 1, . . . , n. Define the (n × n)-matrix

valued function eµ on R as

eµ(τ) = Diag(eµ1(τ), . . . , eµn(τ)).

Define the weighted Sobolev spaces

Hk,µ =
{
u ∈ Hloc

k : eµu ∈ Hk

}
, with norm ‖u‖k,µ = ‖eµu‖k.

To make the doubling operation used in Section 6.2 work on H2, we
impose further boundary conditions. If u ∈ Hloc

1 , then its trace lies in
Hloc

1
2

(R ∪ R + i, Cn). We say that u vanishes on the boundary if

(6.6)
∫

R∪R+i
〈u, v〉 dτ = 0 for every v ∈ C

∞
0 (R ∪ R + i, Cn).

Define

H2,µ(π
2 , . . . , π

2︸ ︷︷ ︸
n

) =
{

u ∈ H2,µ : u satisfies (6.3), (6.4),

and ∂̄u satisfies (6.6)
}
,

H1,µ[0] = {u ∈ H1,µ : u satisfies (6.6)} .

Proposition 6.3. If m(π
2 , µj) > 0 for j = 1, . . . , n then the operator

∂̄ : H2,µ(π
2 , . . . , π

2 ) → H1,µ[0]

is Fredholm with index
n∑

j=1

�

(
−µ−

j

π − 1
2 ,−µ+

j

π − 1
2

)
− �

(
µ−

j

π − 1
2 ,

µ+
j

π − 1
2

)
where �(a, b) denotes the number of integers in the interval (a, b).

Moreover, if µ+
j = µ−

j for all j and M (µ) = min {m(π
2 , µ1), . . . ,

m (π
2 , µn)}, then u ∈ H2,µ(π

2 , . . . , π
2 ) satisfies

(6.7) ‖u‖2,µ ≤ C(µ)‖∂̄u‖1,µ,

where C(µ) ≤ K
M(µ) , for some constant K.

Proof. The problem studied is split and it is clearly sufficient to con-
sider the case n = 1. We first determine the dimensions of the kernel and
cokernel. It is immediate from Lemma 6.2 that the kernel of ∂̄ is finite
dimensional on H2,µ(π

2 ) and that the number of linearly independent

solutions is exactly �
(
−µ−

π − 1
2 ,−µ+

π − 1
2

)
.

Recall that an element in the cokernel of ∂̄ is an element ξ in the dual
space of H1,µ[0]. The dual of H1,µ is H−1,−µ and thus, as in (6.1), the
dual of H1,µ[0] is the quotient space

H−1,−µ/H1,µ[0]⊥.
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Lemma 6.1 implies that any element in the cokernel has a smooth rep-
resentative. Let v be a smooth representative. Then∫

R×[0,1]
〈∂̄u, v〉 dτ ∧ dt = 0,

for any smooth compactly supported function u which meets the bound-
ary conditions (6.3), (6.4), and (6.6). Using partial integration, we con-
clude

(6.8)
∫

R×[0,1]
〈u, ∂v〉 dτ ∧ dt = 0.

Thus ∂v = 0 in the interior. Noting that for any two functions φ0 ∈
C∞

0 (R, R) and φ1 ∈ C∞
0 (R, iR), there exists a function u ∈ C

∞
0 (R ×

[0, 1], C) such that ∂̄u|∂(R× [0, 1]) = 0, u|R = φ0, and u|R + i = φ1, we
find that iv satisfies (6.3) and (6.4). Lemma 6.2 then implies that the

cokernel has dimension �

(
µ−

j

π − 1
2 ,

µ+
j

π − 1
2

)
.

We now prove that the image of ∂̄ is closed, and in doing so also
establish (6.7). Let

A(τ) = exp
(∫ τ

0
α(σ) dσ

)
.

Then multiplication with A defines a Banach space isomorphism A : Hk,µ

→ Hk. The inverse A−1 of A is multiplication with A(τ)−1. These iso-
morphisms give the following commutative diagram

H2,µ(π
2 ) A−1←−−−− H2(π

2
∗)

∂̄

⏐⏐# ⏐⏐#∂̄−α

H1,µ[0] −−−−→
A

H1[0],

where H2(π
2
∗) is defined as H2(π

2 ) except that instead of requiring that
∂̄u vanishes on the boundary, we require that (∂̄ − α)u does. We prove
that the operator ∂̄ − α on the right in the above diagram has closed
range and conclude the corresponding statement for the operator on the
left. Note that if u ∈ H2(π

2
∗), then both ∂τu and ∂tu satisfy (6.3) and

(6.4). Hence, the doubling operation described in Section 6.2 induces a
map H2(π

2
∗) → H2(R × [0, 2]) with ‖ud‖2 = 2‖u‖2.

Let

(6.9) S(µ) = {n ∈ Z : − µ−
π − 1

2 < n < −µ+

π − 1
2}.

(Note that S(µ) = ∅ if µ+ ≥ µ−.) The map γn : H2(π
2
∗) → H2(R, R),

(6.10) u �→ cn(τ) =
∫ 2

0
ud(τ, t) exp

(−i(π
2 + nπ)t

)
dt
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is continuous. Let W2 ⊂ H2(π
2
∗) be the closed subspace

(6.11) W2 =
⋂

n∈S(µ)

ker(γn).

Using the Fourier expansion of ud, we see that W2 has a direct comple-
ment

(6.12) V2 =
⋂

n/∈S(µ)

ker(γn).

(Note that if µ+ > µ−, then W2 = H2(π
2
∗) and V2 = ∅.)

Similarly, we view the maps γn defined by (6.10) as maps H1[0] →
H1(R, R) and get the corresponding direct sum decomposition H1[0] =
W1 ⊕ V1. If u ∈ H2(π

2
∗), then the Fourier expansion of ud is

ud(τ + it) =
∑
n

cn(τ)ei(
π
2 +nπ)t.

Hence,

(6.13) (∂̄ − α)ud(τ + it) =
∑
n

(c′n(τ) − (α(τ) + π
2 + n)cn(τ))ei(

π
2 +nπ)t.

It follows that ∂̄(W2) ⊂ W1 and ∂̄(V2) ⊂ V1.
Let w ∈ W2. Fourier expansion of wd gives

2‖(∂̄ − α)w‖2
0(6.14)

=
∑

n/∈S(µ)

∫
R

(|c′n|2 +
(
(π

2 + nπ + α(τ))2 + α′) |cn|2
)

dτ

≥ 2C‖w‖2
1,

where the constant C is obtained as follows. If µ+ > µ−, then P2
implies that the coefficients of |cn|2 are strictly positive, and if µ+ < µ−,
then P3 implies that the coefficients in front of |cn|2 are larger than
4
5m(π

2 , µ)2 since n /∈ S(µ). Finally, if µ− = µ+, then α′ = 0 and the
coefficients in front of |cn|2 are larger than m(π

2 , µ)2 for all n.
If w ∈ H2(π

2
∗), then ∂τw and i∂tw satisfies (6.3) and (6.4) and the

Fourier coefficients cn(τ) of their doubles vanish for n ∈ S(µ). Thus, the
same argument applies to these functions and the following estimates
are obtained

‖(∂̄ − α)∂τw‖0 ≥ C‖∂τw‖1,

‖(∂̄ − α)∂tw‖0 ≥ C‖∂tw‖1.
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If µ+ = µ−, then α′ = 0 and ∂̄ − α commutes with both ∂t and ∂τ .
Hence,

‖(∂̄ − α)w‖1 ≥ 1
2
(‖(∂̄ − α)w‖0 + ‖∂τ (∂̄ − α)w‖0 + ‖∂t(∂̄ − α)w‖0)

≥ C(‖w‖1 + ‖∂τw‖1 + ‖∂tw‖1) ≥ C‖w‖2,

where C = Km(µ, π
2 ). This proves (6.7).

If µ+ �= µ−, then ∂τ (∂̄ − α)w = (∂̄ − α)∂τw − α′w, and with K > 0,
we conclude from the triangle inequality

K‖(∂̄ − α)w‖0 + ‖∂τ (∂̄ − α)w‖0 + ‖∂t(∂̄ − α)w‖0

≥ KC‖w‖1 + C‖∂τw‖1 − ‖α′w‖0 + C‖∂tw‖1

≥
(

KC − m(π
2 , µ)2

5

)
‖w‖1 + C‖∂τw‖1 + C‖∂tw‖1,

since |α′| <
m(

π
2 ,µ)2

5 . Thus, choosing K sufficiently large, we find that
there exists a constant K1 such that for w ∈ W

(6.15) ‖w‖2 ≤ K1‖(∂̄ − α)w‖1.

Thus, if µ+ > µ−, we conclude that the range of ∂̄ − α is closed. If
µ+ < µ−, we need to consider also V2.

For v ∈ V2, we have

vd(τ, t) =
∑

n∈S(µ)

cn(τ) exp
(
i(π

2 + nπ)t
)
.

Let V ⊥
2 be the space of functions in V2 which, under doubling, map to

the orthogonal complement of the doubles φd
n of the functions φn(ζ) =

exp((π
2 + nπ)ζ +

∫
α dτ), n ∈ S(µ) with respect to the L2-pairing on

H2(R× [0, 2], C). Then V ⊥
2 is a closed subspace of finite codimension in

V2.
We claim there exists a constant K2 such that for all v⊥ ∈ V ⊥

2

(6.16) ‖v⊥‖2 ≤ K2‖(∂̄ − α)v⊥‖1.

Assume that this is not the case. Then there exists a sequence v⊥j of
elements in V ⊥

2 such that

‖v⊥j ‖2 = 1,(6.17)

‖(∂̄ − α)v⊥j ‖1 → 0.(6.18)

Let P > M be an integer (see condition P1) and let v⊥ ∈ V ⊥.
Consider the restriction of v⊥ and ∂̄v⊥ to ΘP = {τ + it : |τ | ≥ P}.
Using Fourier expansion as in (6.14), partial integration, and the fact
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that α′(τ) = 0 for |τ | > M , we find

2‖(∂̄ − α)v⊥|ΘP ‖1(6.19)

≥ C

(
‖v⊥|ΘP ‖2 +

∑
n∈S(µ)

µ+(|cn(P )|2 + |c′n(P )|2)

− µ−(|cn(−P )|2 + |c′n(−P )|2)
)

.

By a compact Sobolev embedding, we find for each positive integer P
a subsequence {v⊥j(P )} which converges in H1([−P, P ]× [0, 1], C). More-
over, we may assume that these subsequences satisfies {v⊥j(P )} ⊃ {v⊥j(Q)}
if P < Q.

Let (cn)j be the sequence of Fourier coefficient functions associated
to the sequence v⊥j . The estimates

(6.20) ‖c‖k ≤ C

(
‖c‖k−1 +

∥∥∥∥( d

dτ
− (π

2 + nπ + α)
)

c

∥∥∥∥
k−1

)
,

and (6.18) implies that (cn)j(P ) converges to a smooth solution of the
equation ( d

dτ − (π
2 + nπ + α))c = 0 on [−P, P ]. Hence, v⊥j(P ) converges

to a smooth solution of (∂̄ − α)u = 0 on ΘP satisfying the boundary
conditions (6.3) and (6.4). Such a solution has the form∑

n∈S(µ)

knφn(ζ),

where kn are real constants.
We next show that in fact all kn must be zero. Note that by Morrey’s

theorem and (6.17), we get a uniform C0-bound |v⊥j | ≤ K. Therefore,
|(cn)j | ≤ 2K and hence,∫

〈(v⊥j )d, (φn)d〉 dτ ∧ dt

=
∫

R

(cn)j exp
(

(π
2 + nπ)τ +

∫
α dτ

)
dτ

=
∫ P

−P
(cn)j exp

(
(π

2 + nπ)τ +
∫

α dτ

)
dτ

+
∫ ∞

P
(cn)j exp((π

2 + nπ + µ+)τ) dτ

+
∫ −P

−∞
(cn)j exp((π

2 + nπ + µ+)τ) dτ.
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But ∣∣∣∣∫ ∞

P
(cn)j exp((π

2 + nπ + µ+)τ) dτ

∣∣∣∣
+

∣∣∣∣∫ −P

−∞
(cn)j exp((π

2 + nπ + µ−)τ) dτ

∣∣∣∣
≤ 2K

m(π
2 , µ)

(
exp((π

2 + nπ + µ+)P )

+ exp(−(π
2 + nπ + µ−)P )

)
→ 0 as P → ∞.

We conclude from this that unless kn = 0, v⊥j(P ) violates the orthogo-
nality conditions for P and j(P ) sufficiently large.

Consider (6.19) applied to elements in the sequence {v⊥j }. As j → ∞
the term on the left-hand side and the sum in the right-hand side tends
to 0. Hence, ‖v⊥j |ΘP ‖2 → 0. Applying (6.20) to (cn)j and noting that
both terms on the right-hand side goes to 0, we conclude that also
‖v⊥j |[−P × P ] × [0, 1]‖2 → 0. This contradicts (6.17) and hence (6.16)
holds.

The estimates (6.15) and (6.16) together with the direct sum decom-
positions H2(π

2
∗) = W2 ⊕ V2 and H1[0] = W1 ⊕ V1, and the fact that

∂̄−α respects this decomposition shows that the image of ∂̄−α is closed
also in the case µ+ < µ−. q.e.d.

Remark 6.4. In many cases, the first statement in Proposition 6.3
still holds with weaker assumptions on the weight function than P1–
P3. For example, if µ+ < µ−, then we need only know that max{α′, 0}
is sufficiently small compared to (π

2 + nπ + α)2 for n /∈ S(µ) to derive
(6.15) and the derivation of (6.16) is quite independent of α′ as long as
α eventually becomes constant.

6.4. The model problem with angles. We study more general
boundary conditions than those in Section 6.3. Recall (x1+iy1, . . . , xn+
iyn) are coordinates on C

n. Let ∂j denote the unit tangent vector in the
xj-direction, for j = 1, . . . , n. For θ = (θ1, . . . , θn) ∈ [0, π)n, let Λ(θ) be
the Lagrangian subspace of C

n spanned by the vectors eiθ1∂1, . . . , e
iθn∂n.

Consider the following boundary conditions for u ∈ Hloc
1 .∫

R

〈u, v〉 dτ = 0 for all v ∈ C∞
0 (R, iRn),(6.21) ∫

R+i
〈u, v〉 dτ = 0 for all v ∈ C∞

0 (R + i, iΛ(θ)).(6.22)

If m(θj , µj) > 0 (see (6.5)) for all j, then define

H2,µ(θ) =
{
u ∈ H2,µ : u satisfies (6.21), (6.22), and ∂̄u satisfies (6.6)

}
,

H1,µ[0] = {u ∈ H1,µ : u satisfies (6.6)} .
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Proposition 6.5. If m(θj , µj) > 0 for j = 1, . . . , n then the operator

∂̄ : H2,µ(θ) → H1,µ[0]

is Fredholm of index

(6.23)
n∑

j=1

�

(
−µ−

j +θj

π ,−µ+
j +θj

π

)
− �

(
µ−

j +θj

π − 1,
µ+

j +θj

π − 1
)

.

Moreover, if µ+
j = µ−

j for all j and M (µ) = min {m (µ1, θ1), . . . ,

m(µn, θn)}, then u ∈ H2,µ(θ1, . . . , θn) satisfies

(6.24) ‖u‖2,µ ≤ C(µ)‖∂̄u‖1,µ,

where C(µ) ≤ K
M(µ) , for some constant K.

Proof. Consider the holomorphic (n × n)-matrix

gθ(ζ) = Diag
(
(exp(π

2 − θ1)ζ), . . . , (exp(π
2 − θn)ζ)

)
.

Multiplication with gθ defines isomorphisms

H2,µ(θ) → H2,λ(π
2 , . . . , π

2 ) and

H1,µ[0] → H1,λ[0]

where λ = (λ1, . . . , λn) and λ±
j = µ±

j − π
2 + θj . Since gθ is holomorphic

it commutes with ∂̄. The proposition now follows from Proposition 6.3.
q.e.d.

6.5. Smooth perturbations of the model problem with angles.
Let B : R × [0, 1] → U(n) be a smooth map such that

(6.25) ∂̄B|∂R × [0, 1] = 0.

Let θ ∈ [0, π) and consider the following boundary conditions for u ∈
Hloc

1 : ∫
R

〈u, v〉 dτ ∧ dt = 0,

for all v ∈ C∞
0 (R, Cn) such that v(τ) ∈ iB(τ)Rn,(6.26) ∫

R+i
〈u, v〉 dτ ∧ dt = 0,

for all v ∈ C∞
0 (R + i, Cn) such that v(τ + i) ∈ iB(τ)Λ(θ).(6.27)

For µ = (µ+, µ−) ∈ R
2 let λ(µ) = (µ+, µ−, µ+, µ−, . . . , µ+, µ−) ∈ R

2n

define

H2,µ(θ, B) = {u ∈ Hloc
2 : u satisfies (6.26) and (6.27),

∂̄u satisfies (6.6) and eλ(µ)u ∈ H2}.
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Proposition 6.6. If m(θj , µ) > 0 for j = 1, . . . , n, then there exists
δ > 0 such that for all B satisfying (6.25) with ‖B − id ‖C2 < δ, the
operator

∂̄ : H2,µ(θ, B) → H1,µ[0]
is Fredholm of index

(6.28)
n∑

j=1

�
(
−µ−+θj

π ,−µ++θj

π

)
− �

(
µ−+θj

π − 1,
µ++θj

π − 1
)

.

Proof. Multiplication with B and B−1 defines Banach space isomor-
phisms

H2,µ(θ) ×B−→ H2,µ(θ, B),
and

H1,µ[0] ×B−1−→ H1,µ[0].
Thus up to conjugation, the operator considered is the same as

∂̄ + B−1∂̄B : H2,µ(θ) → H1,µ[0].

The theorem now follows from Proposition 6.5, and the fact that the
subspace of Fredholm operators is open and that the index is constant
on path components of this subspace. q.e.d.
6.6. Boundary conditions. In the upcoming subsections, we study
the linearized ∂̄-problem on a disk Dm with m punctures. Refer back
to Section 4.4 for notation concerning Dm.

Definition 6.7. A smooth map A : ∂Dm → U(n) will be called small
at infinity if there exists M > 1 such that for each j = 1, . . . , m, the
restriction of A to ∂Epj [M ] approaches a constant map in the C2-norm
on each component of ∂Epj [M

′] as M ′ → ∞. It will be called constant
at infinity if there exists M > 1 such that for each j = 1, . . . , m, the
restriction of A to each component of ∂Epj [M ] is constant.

Let A : ∂Dm → U(n) be small at infinity. For u ∈ Hloc
1 (Dm, Cn),

consider the boundary condition:

(6.29)
∫

∂Dm

〈u, v〉 ds = 0, for all v ∈ C0
0(∂Dm, Cn)

such that v(ζ) ∈ iA(ζ)Rn for all ζ ∈ ∂Dm.

In previous subsections, coordinates ζ = τ + it on R× [0, 1] were used
and we implicitly considered the bundle T ∗0,1

R× [0, 1] as trivialized by
the form dζ̄, and sections in this bundle as C

n-valued functions. We do
not want to specify any trivialization of T ∗0,1Dm and so we view the ∂̄-
operator as a map from H2-functions into H1-sections of T ∗0,1Dm⊗C

n.
Consider, for u ∈ Hloc

1 (Dm, T ∗0,1Dm ⊗ C
n), the boundary condition

(6.30)
∫

∂Dm

〈u, v〉 ds = 0, for all v ∈ C0
0 (∂Dm, T ∗0,1Dm ⊗ C

n).
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Henceforth, to simplify notation, if the source space X in a Sobolev
space Hk(X, Y ) is Dm, we will drop it from the notation. If u ∈
Hloc

2 (Cn), then ∂̄u ∈ Hloc
1 (T ∗0,1Dm ⊗ C

n). Define

H2(Cn; A) =
{
u ∈ H2(Cn) : u satisfies (6.29) and ∂̄u satisfies (6.30)

}
,

and

H1(T ∗0,1Dm ⊗ C
n; [0]) =

{
u ∈ H1(T ∗0,1Dm ⊗ C

n) : u satisfies (6.30)
}

.

Define

H2,µ(Cn; A)

=
{
u ∈ Hloc

2 (Cn) : u satisfies (6.29), ∂̄u satisfies (6.30),

and eµu ∈ H2(Cn)
}

and

H1,µ(T ∗0,1Dm ⊗ C
n; [0])

=
{
u ∈ Hloc

1 (T ∗0,1Dm ⊗ C
n) : u satisfies (6.30)

and eµu ∈ H1(T ∗0,1Dm ⊗ C
n)

}
.

Let pj be a puncture of Dm. The orientation of Dm induces an
orientation of ∂Dm. Let A0

j and A1
j denote the constant maps to which

A converges on the component of ∂Epj close to pj corresponding to R

and R + i, respectively. Define

θ(j) = θ(A0
jR

n, A1
jR

n).

Then, there are unique unitary complex coordinates

z(j) = (x(j)1 + iy(j)1, . . . , x(j)n + iy(j)n)

in C
n such that

A0
jR

n = Span 〈∂(j)1, . . . , ∂(j)n〉 ,

A1
jR

n = Span
〈
eiθ(j)1∂(j)1, . . . , eiθ(j)n∂(j)n

〉
.

Proposition 6.8. Let A : ∂Dm → U(n) be small at infinity. If µ
satisfies µj �= −θ(j)r + kπ for j = 1, . . . , m, r = 1, . . . , n, and every
k ∈ Z, then the operator

(6.31) ∂̄ : H2,µ(Cn; A) → H1,µ(T ∗0,1Dm ⊗ C
n; [0])

is Fredholm.

Proof. Assume that for M > 0, A|∂Epj [M − 1] is sufficiently close to
a constant map (see Proposition 6.6). Choose smooth complex-valued
functions α0, α1, . . . , αm with the following properties: αj is constantly
1 on Epj [M + 2]; the sum

∑
j αj is close to the constant function 1,
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∂̄αj = 0 on ∂Dm; and αj is constantly equal to 0 on Dm −Epj [M + 1],
for j = 1, . . . , m.

Glue to each Epj [M ] a half-infinite strip (−∞, M ]× [0, 1] and denote
the result Ēpj . Extend the boundary conditions from Epj [M ] to Ēpj

keeping them close to constant. Let the weight in the weight function
remain constant. Glue to Dm −⋃

j Epj [M +2], m half disks and extend
the boundary conditions smoothly. Denote the result D̄m. Note that the
boundary value problem on D̄m is the vector-Riemann–Hilbert problem,
which is known to be Fredholm, and that the weighted norm on this
compact disk is equivalent to the standard norm.

Now let u ∈ H2,µ(Cn; A). Then αju is in the appropriate Sobolev
space for the extended boundary value problem on Ēpj (D̄m if j = 0)
and because the elliptic estimate holds for all of these problems and
since all of them except possibly the one on D̄m has no kernel, there
exists a constant C such that

‖u‖2,µ ≤ ‖α0u‖2,µ +
n∑

j=1

‖αju‖2,µ(6.32)

≤ C

⎛⎝‖α0u‖1,µ +
n∑

j=0

‖∂̄(αju)‖1,µ

⎞⎠
≤ C

⎛⎝ n∑
j=0

‖∂̄αju‖1,µ + ‖α0u‖1,µ +
n∑

j=0

‖αj ∂̄u‖1,µ

⎞⎠ .

We shall show that (6.32) implies that every bounded sequence ur

such that ∂̄ur converges has a convergent subsequence. This implies that
∂̄ has a closed image and a finite dimensional kernel ([20] Proposition
19.1.3). Clearly, it is sufficient to consider the case ∂̄ur → 0. Consider
the restrictions of ur to a compact subset K of Dm such that

supp(α0) ∪ supp(∂̄α0) ∪ · · · ∪ supp(∂̄αm) ⊂ K.

A compact Sobolev embedding argument gives a subsequence {ur′}
which converges in H1(K, Cn). Thus, (6.32) implies that {ur′} is a
Cauchy sequence in H2,µ(A; Cn) and hence it converges.

It remains to prove that the cokernel is finite dimensional. Lemma
6.1 shows that any element in the cokernel of ∂̄ can be represented by
a smooth function v on Dm. Partial integration implies this function
satisfies ∂v = 0 with boundary conditions given by the matrix function
iA. Assume first that A is constant at infinity. Then, Lemma 6.2 and
conjugation with the holomorphic (n × n)-matrix gθ as in the proof
of Proposition 6.5 gives explicit formulas for the restrictions of these
smooth functions to Epj [M ], for each j. It is straightforward to check
from these local formulas that v lies in H2,−µ(Cn, iA). Thus, repeating
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the argument above with ∂ replacing ∂̄ shows that the cokernel is finite
dimensional. The lemma follows in the case when A is constant at
infinity. The general case then follows by an approximation argument
as in the proof of Proposition 6.6. q.e.d.

6.7. Index-preserving deformations. We compute the index of the
operator in (6.31). Using approximations, it is easy to see that it is
sufficient to consider the case when A : ∂Dm → U(n) is constant at
infinity. Thus, let A be such a map which is constant on ∂Epj [M ] for
every j and consider the Fredholm operator

(6.33) ∂̄ : H2,µ(Cn; A) → H1,µ(T ∗0,1Dm ⊗ C
n; [0]),

where µ = (µ1, . . . , µm) ∈ R
m satisfies

(6.34) µj �= −θ(j)r + nπ for every j, r, n.

Lemma 6.9. Let Bs : Dm → U(n), s ∈ [0, 1], be a continuous family
of smooth maps such that

Bs is bounded in the C2-norm,(6.35)

Bs|∂Epj [M ] is constant in τ + it,

∂̄Bs|∂Dm = 0, and
B0 ≡ id .

Let λ : [0, 1] → R
m be a continuous map such that λ(0) = µ and λ(s)

satisfies (6.34) for every s ∈ [0, 1]. Then the operator

∂̄ : H2,λ(1)(C
n; B1A) → H1,λ(1)(T

∗0,1Dm ⊗ C
n; [0])

has the same Fredholm index as the operator in (6.33).

Proof. The Fredholm operator

∂̄ : H2,λ(s)(C
n; BsA) → H1,λ(s)(T

∗0,1Dm ⊗ C
n; [0])

is conjugate to

∂̄ − Bs∂̄B−1
s : H2,µ(Cn; A) → H1,µ(T ∗0,1Dm ⊗ C

n; [0]).

The family ∂̄ − Bs∂̄B−1
s is then a continuous family of Fredholm oper-

ators. q.e.d.

In order to apply Lemma 6.9, we shall show how to deform given
weights and boundary conditions into other boundary conditions and
weights keeping the Fredholm index constant using the conditions in
Lemma 6.9. We accomplish this in two steps: first deform the problem
so that the boundary value matrix is diagonal; then change the weights
and angles at the ends into a special form where compactification is
possible.
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Lemma 6.10. Let A : ∂Dm → U(n) be constant at infinity. Then,
there exists a continuous family Bs : Dm → U(n), 0 ≤ s ≤ 1, of maps
satisfying (6.35) such that

B1(ζ)A(ζ) = Diag(b1(ζ), . . . , bn(ζ)), ζ ∈ ∂Dm.

Proof. We first make A diagonal on the ends where it is constant.
Note that in canonical coordinates z(j) on the end Epj [M ] the matrix A
is diagonal. Let Bj ∈ U(n) be the matrix which transforms the complex
basis ∂(j)1, . . . , ∂(j)n to the standard basis. Let Bj(s) be a smooth path
in U(n), starting at id and ending at Bj. Define Bs = Bj(s) on Epj [M ]
for each j.

We need to extend this map to all of Dm. To this end, consider
the loop on the boundary of S = Dm − Epj [M ]. There exists a 1-
parameter family of functions Bs : S → U(n) such that B0 = id and
B1A is diagonal, since any loop is homotopic to a loop of diagonal
matrices. The loops Bs can be smoothly extended to all of Dm.

Finally, we need that ∂̄Bs = 0 on the boundary. We get this as
follows: let C be a collar on the boundary with coordinates τ along
the boundary and t orthogonal to the boundary, 0 ≤ t ≤ ε and let
φ : [0, ε] → R be a smooth function which equals the identity on [0, ε

4 ]
and 0 for t ≥ ε

2 . Redefine Bs on the collar as

B̃s = Bs(ζ) exp(iφ(t)B−1
s (ζ)∂̄Bs(ζ)).

Then B̃s satisfies the boundary conditions and equals Bs on the bound-
ary and in the complement of the collar.

Consider the loop on the boundary of S = Dm − ∂Epj [M ]. There
exists a 1-parameter family of functions Bs : S → U(n) such that B0 =
id and B1A is diagonal, since any loop is homotopic to a loop of diagonal
matrices. The loops Bs can be smoothly extended to all of Dm and the
above trick makes Bs satisfy the boundary conditions. q.e.d.

Now let A : Dm → U(n) take values in diagonal matrices. Assume
that A is constant near the punctures and that µ = (µ1, . . . , µm) ∈ R

m

satisfies (6.34).

Lemma 6.11. There are continuous families of smooth maps Bs : Dm

→ Diag ⊂ U(n) and λ : [0, 1] → R which satisfy (6.35) and (6.34)
(where the θ(j) are computed w.r.t. Bs) respectively such that

B1A = id

in a neighborhood of each puncture.

Proof. Let M > 0 be such that A is constant in Epj [M ] for each
j. Let φ : [0, 1] → [0, 1] be an approximation of the identity which is
constant near the endpoints of the interval. Let ψ : [M,∞) → [0, 1] be
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a smooth increasing function which is identically 0 on [M, M + 1] and
identically 1 on [M + 2,∞). For α = (α1, . . . , αm) ∈ (−π, π)m, let

g̃α(ζ) =

{
1 for ζ ∈ Dm −⋃

j Epj [M ],
eiψ(τ)αjφ(t) for ζ = τ + it ∈ Epj [M ],

and let gα be a function which agrees with g̃α except on Epj [M ] −
Epj [M + 2] and which satisfies ∂̄gα|∂Dm = 0.

Consider the complex angle θ(j) ∈ [0, π)n and the weight µj . Assume
first that µj �= kπ for all k ∈ Z and j = 1, . . . , m. Let mj be the unique
number 0 ≤ mj ≤ π such that mj = kπ − µj for some k ∈ Z. By
(6.34) θ(j)r �= mj for all r. If θ(j)r > mj, define αr = π − θ(j)r, and if
θ(j)r < m∗

j , define α(j)r = −θ(j)r. Define

Bs = Diag (gsα1 , . . . , gsαn)

and let λ(s) ≡ µ.

Assume now that µj = kπ for some j. For 0 ≤ s ≤ 1
2 , let Bs = id and

take λj = µj − εs for some sufficiently small ε > 0. Repeat the above
construction to construct Bs for s ≤ 1

2 ≤ 1. q.e.d.

6.8. The Fredholm index of the standardized problem. Consider
Dm with m punctures on the boundary, conformal structure κ and met-
ric g(κ) as above and neighborhoods Epj of the punctures p1, . . . , pm.

Let ∆m denote the representative of the conformal structure κ on Dm

which is the unit disk in C with m punctures at 1, i,−1, q3, . . . , qm with
the flat metric. Then there exists a conformal and therefore holomorphic
map Γ: Dm → ∆m. We study the behavior of Γ on Epj . Let p = pj

and let q be the puncture on ∆m to which p maps. After translation
and rotation in C, we may assume that the point q = 0 and that ∆m

is the disk of radius 1 centered at i. We may then find a holomorphic
function on a neighborhood U ⊂ ∆m of q = 0 which fixes 0 and maps
∂∆m ∩ U to the real line. Composing with this map, we find that Γ
maps ∞ to 0, τ +0i to the negative real axis and τ +i to the positive real
axis for τ > M for some M . Thus this composition equals C exp(−πζ)
where C < 0 is some negative real constant. Thus, up to a bounded
holomorphic change of coordinates on a neighborhood of q, the map Γ on
Epj looks like Γ(ζ) = exp(−πζ) and its inverse Γ−1 in these coordinates
satisfies Γ−1(z) = − 1

π log(z).
Let A : ∂Dm → Diag ⊂ U(n) be a smooth function which is con-

stantly equal to id close to each puncture. We may now think of A as
being defined on ∂∆m. We extend A smoothly to ∂∆ by defining its
extension Â at the punctures as Â(pj) = id for each j.
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Consider the following boundary condition for u ∈ H2(∆, Cn):

(6.36)
∫

∂∆
〈u, v〉 ds = 0 for all v ∈ C∞

0 (∂∆, Cn)

with v(z) ∈ iÂ(z)Rn for all z ∈ ∂∆.

For u ∈ H1(∆, T ∗0,1∆ ⊗ C
n), consider the boundary conditions

(6.37)
∫

∂∆
〈u, v〉 ds = 0 for all v ∈ C∞

0 (∂∆, T 0,1∆ ⊗ C
n).

Define

H2(∆, Cn; Â) =
{
u ∈ H2(∆, C) : u satisfies (6.36)

and ∂̄u satisfies (6.37)
}

H1(∆, T ∗0,1∆; [0]) = {u ∈ H2(∆, C) : u satisfies (6.37)} .

Lemma 6.12. The operator

∂̄ : H2(∆, Cn; Â) → H1(∆, T ∗0,1∆; [0])

is Fredholm of index n + µ(Â), where µ(Â) denotes the Maslov index of
the loop z �→ A(z)Rn, z ∈ ∂∆, of Lagrangian subspaces in C

n.

Proof. This is (a direct sum of) classical Riemann–Hilbert problems.
q.e.d.

Let λ(a) = (a, . . . , a) ∈ R
m.

Proposition 6.13. For −π < a < 0, the Fredholm index of the
operator

∂̄ : H2,λ(a)(C
n; A) → H1,λ(a)(T

∗0,1Dm ⊗ C
n; [0])

equals n + µ(A).

Proof. The holomorphic map Γ: Dm → ∆m and its holomorphic in-
verse commute with the ∂̄ operator. Any solution on Dm must look like∑

n≤0 cneπnζ (the negative weights allows for c0 �= 0) in canonical coor-
dinates close to each puncture. Thus, Γ−1 pulls back solutions on Dm to
solutions on ∆m. Using also Γ, we see that the kernels are isomorphic.

Elements in the cokernel on Dm are of the form (
∑

n<0 cnenπζ̄)dζ̄ (the
positive weight implies c0 = 0). Pulling back with Γ−1 gives elements
of the form (

∑
n>0 z̄n)dz̄

z̄ which are in the cokernel of the ∂̄ on ∆. So,
the cokernels are also isomorphic. q.e.d.
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6.9. The index of the linearized problem. In this subsection, we
determine the Fredholm indices of the problems which are important in
our applications to contact geometry.

Let A : ∂Dm → U(n)) be a map which is small at infinity. Assume
that A0

jR
n and A1

jR
n are transverse for all j. For 0 ≤ s ≤ 1, let

fj(s) ∈ U(n) be the matrix which in the canonical coordinates z(j) is
represented by the matrix

Diag(e−i(π−θ(j)1)s, . . . , e−i(π−θ(j)n)s).

If p and q are consecutive punctures on ∂Dm, then let I(a, b) denote
the (oriented) path in ∂Dm which connects them. Define the loop ΓA

of Lagrangian subspaces in C
n by letting the loop

(A|I(p1, p2)) ∗ f2 ∗ (A|I(p2, p3)) ∗ f3 ∗ · · · ∗ (A|I(pm, p1)) ∗ f1

of elements of U(n) act on R
n ⊂ C

n.

Proposition 6.14. For A as above, the index of the operator

∂̄ : H2(Cn; A) → H1(T ∗0,1Dm ⊗ C
n; [0])

equals n + µ(ΓA) where µ is the Maslov index.

Proof. Using Lemmas 6.10 and 6.11, we deform A to put the problem
into standardized form with weight −ε at each corner, without changing
the index. Call the new matrix B. We need to consider how B is
constructed from A. The key step to understand is the point where
we make B equal the identity on the ends. This is achieved by first
introducing a small negative weight and then rotating the space

A1
jR

n = Span
〈
eiθ(j)1∂1, . . . , e

iθ(j)n∂n

〉
to A0

j according to

(6.38) Span
〈
ei(θ(j)1+sφ(τ)(π−θ(j)1)∂1, . . . , e

i(θ(j)n+sφ(τ)(π−θ(j)n)∂n

〉
,

where 0 ≤ s ≤ 1 and φ : [M,∞) → [0, 1] equals 1 on [M + 2,∞) and 0
on [M, M + 1].

We now calculate the Maslov-index µ(B). Since as we follow R + i
along the negative τ -direction from M + 1 to M , B experiences the
inverse of the rotation (6.38), the proposition follows. q.e.d.

We now consider the simplest degeneration at a corner. Compare
this with Theorem 4.A of [13] or the appendix of [30]. Let ε > 0 be a
small number. Let As : Dm → U(n), 0 ≤ s ≤ 1 be a family matrices
which are small at infinity and constant in s near each puncture in
S ⊂ {1, . . . , m}, where each component of the complex angle is assumed
to be positive. At pr, r �∈ S, assume that θ(r)s = (π−s, θ2(r), . . . , θn(r)),
where θj(r) �= 0, j = 2, . . . , n.. Let β(ε) ∈ R

m satisfy β(ε)r = 0 if r ∈ S
and β(ε)r = −ε if r /∈ S.
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Proposition 6.15. The index of the operators

∂̄ : H2(Cn; As) → H1(T 0,1Dm; [0])

for s > 0 and of the operator

∂̄ : H2,β(ε)(C
n; A0) → H1,(−ε,0,...,0)(T

0,1Dm; [0]),

are the same.

Proof. This is a consequence of Lemma 6.9. q.e.d.

Finally, we show how the index is affected if the weight is changed.

Proposition 6.16. Let A : Dm → U(n) be constant at infinity and
suppose that the complex angle at each puncture except possibly p1 has
positive components. Assume that 0 ≤ π − θ(1)1 < π − θ(1)2 < · · · <
π−θ(1)n. Let ε > 0 be smaller than minr(π−θ(r)r), and let π−θ(1)j <
δ < π − θ(1)j−1 Then, the index of the problem

∂̄ : H2,(−ε,0,...,0)(C
n; A) → H1,(−ε,0,...,0)(T

∗0,1Dm; [0])

is j larger than that of

∂̄ : H2,(δ,0,...,0)(C
n; A) → H1,(δ,0,...,0)(T

∗0,1Dm; [0]).

Proof. First, deform the matrix into diagonal form without changing
the weights. If n > 1, this can be done in such a way that the index
corresponding to the first component is positive. Then put the first
component in standardized form. We must consider the index difference
arising from the first component as the weight changes from negative
to positive. The condition that a solution lies in H2,δ means that the
corresponding solution on ∆ vanishes at p1. Thus, the dimension of
the kernel increases by 1. The cokernel remains zero-dimensional. This
argument can then be repeated for other components. To handle the
1-dimensional case, one may either use similar arguments for cokernels
or reduce to the higher dimensional case by adding extra dimensions.

q.e.d.

6.10. The index and the Conley–Zehnder index. We translate
Proposition 6.14 into a more invariant language. Recall from Section 2.2
that we denote by νγ(c) the Conley–Zehnder index of Reeb chord c with
capping path γ. In the following proposition, we suppress γ from the
notation.

Proposition 6.17. Let (u, f) ∈ W2(c, κ; B) be a holomorphic disk
with boundary on an admissible L, and with j positive punctures at Reeb
chords a1, . . . , aj and k negative punctures at Reeb chords b1, . . . , bk.
Then the index of dΓ(u,f) equals

(6.39) µ(B) + (1 − j)n +
j∑

r=1

ν(ar) −
k∑

r=1

ν(br).
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Remark 6.18. Note that (6.39) is independent of the choices of
capping paths.

Proof. We simply translate the result of Proposition 6.14. At a pos-
itive puncture p, the tangent space corresponding to R + 0i (R + i) in
∂Ep is the lower (upper) one and at a negative puncture the situation
is reversed. We must compare the rotation path λ(V1, V0) used in the
definition of the Conley–Zehnder index with the rotation used in the
construction of the arcs fi in Proposition 6.14. At a negative puncture,
the path fi is the inverse path of λ(V1, V0). Hence, the contribution to
the Maslov index of fi at a negative corner equals minus the contribu-
tion from λ. Consider the situation at positive puncture mapping to a∗.
Let λ(V1, V0) be the path used in the definition of the Conley–Zehnder
index. Then, λ(V1, V0) rotates the lower tangent space V1 of ΠC(L) at
a∗ to the upper V0 according to esI , 0 ≤ s ≤ π

2 , where I is a complex
structure compatible with ω. Let λ(V0, V1) be the path which rotates
V0 to V1 in the same fashion. Then, the path fj is the inverse path of
λ(V0, V1) and hence the contribution to the Maslov index of fj equals
the contribution from λ(V1, V0) minus n.

To get the loop B from ΓA (see Proposition 6.14), the arcs fi must be
removed and replaced by the arcs Γi, induced from the capping paths
of the Reeb chords. A straightforward calculation gives

µ(ΓA) = µ(B) +
j∑

r=1

ν(ar) − nj −
k∑

s=1

ν(bs).

Hence,

n + µ(ΓA) = µ(B) + (1 − j)n +
j∑

r=1

ν(ar) −
k∑

s=1

ν(bs).

q.e.d.

6.11. The index and the Conley–Zehnder index at a self tan-
gency. In this section, we prove the analog of Proposition 6.17 for semi-
admissible submanifolds. First, we need a definition of the Conley–
Zehnder index of a degenerate Reeb chord. Let L ⊂ R × C

n be a chord
semi generic Legendrian submanifold. Let c be the Reeb chord of L
such that ΠC(L) has a double point with self tangency along one direc-
tion at c∗. Let c+ and c− be the end points of c, z(c+) > z(c−). Let
V0 = dΠC(Tc+L) and V1 = dΠC(Tc−L). Then V0 and V1 are Lagrangian
subspaces of C

n such that dimR(V0 ∩ V1) = 1. Let W ⊂ C
n be the 1-

dimensional complex linear subspace containing V0∩V1 and let Cn−1 be
the Hermitian orthogonal complement of W . Then V ′

0 = V0 ∩ C
n−1

and V ′
1 = V1 ∩ C

n−1 are transverse Lagrangian subspaces in C
n−1.

Pick a complex structure I ′ on C
n−1 compatible with ω|Cn−1 such

that I ′V ′
1 = V ′

0 . Define λ(V1, V0) to be the path of Lagrangian planes
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s �→ V0 ∩ V1 × esI′V ′
1 . Also pick a capping path γ : [0, 1] → L with

γ(0) = c+ and γ(1) = c−. Then γ induces a path Γ of Lagrangian
subspaces of C

n. Define the Conley–Zehnder index of c as

νγ(c) = µ(Γ ∗ λ(V1, V0)).

Let 0 < ε < θ, where θ is the smallest non-zero complex angle of L
at c. Let W2,ε(c; κ) denote the space of maps with boundary conditions
constructed from the Sobolev space with weight ε at each puncture
mapping to c and define W̃2,ε(c; κ) as in Section 5.8. If a is a Reeb
chord of L, then let δ(a, c) = 0 if a �= c and δ(c, c) = 1. Again we
suppress capping paths from the notation.

Proposition 6.19. Let (u, f) ∈ W2,ε(c, κ; B) and (v, g) ∈ W̃2,ε(c, κ;
B) be holomorphic disks. If c = (a; b1, . . . , bm) where a �= c, then the
index of dΓ(u,f) equals

µ(B) + ν(a) −
k∑

r=1

(ν(bj) + δ(bj, c)),

and the index of dΓ(v,g) equals

µ(B) + ν(a) −
k∑

r=1

ν(bj).

If c = (c; b1, . . . , bm), then the index of dΓ(u,f) equals

µ(B) + ν(c) −
k∑

r=1

(ν(bj) + δ(bj , c)),

and the index of dΓ(v,g) equals

µ(B) + (ν(c) + 1) −
k∑

r=1

ν(bj).

Remark 6.20. Note again that the index computations are indepen-
dent of the choices of capping paths.

Proof. The proof is similar to the proof of Proposition 6.17. Consider
first the ∂̄-operator with boundary conditions determined by (u, f) and
acting on a Sobolev space with small negative weight. Again we need
to compute the Maslov index contributions from the paths fi in the
loop ΓA, where fi fixes the common direction in the tangent spaces at
a self tangency double point. Note that at a positive puncture c the
contribution is now the contribution of λ(V1, V0) minus (n − 1). At a
negative puncture it is again minus the contribution of λ(V1, V0). Apply-
ing Proposition 6.16, the first and third index calculations above follow.
Noting that the tangent space of W̃2,ε(c, κ, B) is obtained from that of
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W2,ε(c, κ; B) by adding one R-direction for each puncture mapping to c
the other index formulas follow as well. q.e.d.

7. Transversality

In this section, we show how to achieve transversality (or “surjectiv-
ity”) for the linearized ∂̄ equation by perturbing the Lagrangian bound-
ary condition. When proving transversality for some Floer-type theory,
it is customary to show that solution-maps are “somewhere injective”
(see [22, 16], for example). One then constructs a small perturbation,
usually of the almost complex structure or the Hamiltonian term, which
is supported near points where the map is injective. With a partial in-
tegration argument, these perturbations eliminate non-zero elements of
the cokernel of ∂̄.

For our set-up, we perturb the Lagrangian boundary condition. In
Sections 7.1 through 7.4, we describe the space of perturbations for
the chord generic, one-parameter chord generic, and chord semi-generic
cases. Although we do not have an injective (boundary) point, we ex-
ploit the fact that there is only one positive puncture, and hence, by
Lemma 2.1, the corresponding double point can represent a corner only
once. Of course other parts of the boundary can map to this corner
elsewhere, but not at other boundary punctures. With this observa-
tion, we prove transversality in Sections 7.7 and 7.9 first for the open
set of non-exceptional maps, defined in Section 7.6 and from this for all
maps provided the expected kernel has sufficiently low dimension. We
also prove some results in Sections 7.10 and 7.12 which will be useful
later for the degenerate gluing of Section 8.

7.1. Perturbations of admissible Legendrian submanifolds. Let
L ⊂ C

n ×R be an admissible Legendrian submanifold. Let a(L) denote
the minimal distance between the images under ΠC of two distinct Reeb
chords of L and let A(L) be such that ΠC(L) is contained in the ball
B(0, A(L)) ⊂ C

n. Fix δ > 0 and R > 0 such that δ � a(L) and such
that R � A(L).

Definition 7.1. Let Ham(L, δ, R) be the linear space of smooth func-
tions h : C

n → R with support in B(0, R) and satisfying the following
two conditions for any Reeb chord c.

(i) The restriction of h to B(c∗, δ) is real analytic,
(ii) The differential of h satisfies Dh(c∗) = 0 and also h(c∗) = 0.

We are going to use Hamiltonian vector fields of elements in Ham(L, δ,
R) to perturb L. Condition (i) ensures that L stays admissible, and (ii)
that the set of Reeb chords {c0, . . . , cm} of L remains fixed.

Lemma 7.2. The space Ham(L, δ, R) with the C∞-norm is a Banach
space.
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Proof. Using the characterization of real analytic functions as smooth
functions, the derivatives of which satisfy certain uniform growth re-
strictions, one sees that the limit of a C∞-convergent sequence of real
analytic functions on an open set is real analytic. q.e.d.

Lemma 7.3. If L is admissible and h ∈ Ham(L, δ, R), then Φ̃h(L)
(see Section 3) is admissible.

Proof. For each Reeb chord c, the Hamiltonian vector field is real an-
alytic in B(c∗, δ). Also, Φh(c∗) = c∗ and hence, there exists a neighbor-
hood W of c∗ such that Φt

h(W ) ⊂ B(c∗, δ) for 0 ≤ t ≤ 1. A well-known
ODE-result implies that the flow of a real analytic vector field depends
in a real analytic way on its initial data. This shows that Φ̃h(L) is
admissible. q.e.d.

7.2. Perturbations of 1-parameter families of admissible sub-
manifolds. Let Lt, t ∈ [0, 1] be an admissible 1-parameter family of
Legendrian submanifolds without self-tangencies. Let a=min0≤t≤1a(Lt)
and A = max0≤t≤1 A(Lt). Fix δ > 0 and R > 0 such that δ � a and
R � A.

We define a continuous family of isomorphisms Ham(δ, R, L0) →
Ham(δ, R, Lt), 0 ≤ t ≤ 1. Let (c1(t), . . . , cm(t)) be the Reeb chords
of Lt. Then (c∗1(t), . . . , c∗m(t)), 0 ≤ t ≤ 1 is a continuous curve in
(Cn)m. Let ψt : B(0, R) → B(0, R) be a continuous family of com-
pactly supported diffeomorphisms which when restricted to B(c∗j(0), δ),
j = 1, . . . , m agree with the map

z �→ z + (c∗j(t) − c∗j (0)).

Composition with ψt can be used to give the space

pHam(Lt, δ, R) =
⋃

0≤t≤1

Ham(Lt, δ, R)

the structure of a Banach manifold which is a trivial bundle over [0, 1].
We note that if (h, t) in pHam(Lt, δ, R), then Lemma 7.3 implies that
Φ̃a(Lt) is admissible.

7.3. Bundles over perturbations. Let L ⊂ C
n ×R be an admissible

chord generic Legendrian submanifold. Above we constructed a smooth
map of the Banach space Ham(L, δ, R) into the space of admissible chord
generic Legendrian embeddings of L into C

n × R.
Let c = (c0, c1, . . . , cm) be Reeb chords of L and let ε ∈ [0,∞)m and

consider, as in Section 5.1, the space

(7.1) W2,ε,Ham(L,δ,R)(c)

and its tangent space

T(w,f,κ,a)W2,ε,Ham(L,δ,R) ≈ T(w,f)W2,ε ⊕ TκCm ⊕ Ham(L, δ, R).(7.2)
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In a similar way, we consider for a 1-parameter family Lt the space

(7.3) W2,ε,pHam(Lt,δ,R)(c)

and its tangent space.
For Λ = Ham(L, δ, R) or Λ = pHam(Lt, δ, R), consider also the bun-

dle map Γ: W2,ε,Λ(c) → H1,ε,Λ[0](T ∗0,1Dm⊗C
n). Here, we are thinking

of the spaces as bundles over Ham(L, δ, R) and we denote projection
onto this space by pr . To emphasize this, we will write (Γ, pr) instead
of just Γ in the sequel. The differential dΓ was calculated in Lemma 5.14.

7.4. Perturbations in the semi-admissible case. Let L ⊂ C
n × R

be a semi-admissible Legendrian submanifold. Let (c0, . . . , cm) be the
Reeb chords of L. Assume that the self tangency Reeb chord is c0,
that c∗0 = 0, and that L has standard form in a neighborhood of 0, see
Definition 3.3.

Let a(L) denote the minimal distance between the images under ΠC

of two distinct Reeb chords of L. Fix δ > 0 such that δ � a(L).
For r > 0, let C(r) = C × B′(0, r) ⊂ C

n, where B′(0, r) is the r-ball in
C

n−1 ≈ {z1 = 0}, where as, always, (z1, . . . , zn) = (x1+iy1, . . . , xn+iyn)
are coordinates on C

n.

Definition 7.4. Let Ham0(L, δ) be the linear space of smooth func-
tions h : C

n → R with support in C(10δ)∪⋃
j≥1 B(c∗j , 10δ) and satisfying

the following conditions.
(i) The restriction of h to B(c∗j , δ) 1 ≤ j ≤ m is real analytic,
(ii) In C(10δ), ∂h

∂x1
= 0 = ∂h

∂y1
and the restriction of h to C(δ) is real

analytic.
(iii) The differential of h satisfies Dh(c∗j) = 0 and also h(c∗j) = 0, for

all j.

Lemma 7.5. The space Ham0(L, δ) with the C∞-norm is a Banach
space.

Proof. See Lemma 7.2 and note that the restriction of h to C(10δ)
can be identified with a function of (n−1)-complex variables supported
in B′(0, 10δ). q.e.d.

Let Φ̃h be the Legendrian isotopy which is defined by using the flow
of h locally around the Reeb chords of L. This is well-defined for
h sufficiently small. Let Ham0(L, δ, s) denote the s-ball around 0 in
Ham0(L, δ).

Lemma 7.6. There exists s > 0 such that for h ∈ Ham0(L, δ, s),
Φ̃h(L) is an admissible chord semi-generic Legendrian submanifold.

Proof. Note that the product structure in C(10δ) is preserved since h
does not depend on (x1, y1). Moreover, the isotopy is fixed in the region
B(0, 2 + ε) \ B(0, 2) for s and δ sufficiently small. q.e.d.
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We have defined a smooth map of Ham0(L, δ, s) into the space of
admissible chord semi-generic Legendrian submanifolds and this maps
fulfills the conditions on Λ in Section 5.8. We can therefore construct
the spaces

(7.4) W2,ε,Ham0(L,δ,s), and W̃2,ε,Ham0(L,δ),

see Sections 5.1 and 5.8, respectively. Moreover, as there, we will con-
sider the ∂̄-map and its linearization.

7.5. Consequences of real analytic boundary conditions. For
r > 0, let E+ = {z ∈ C : |z| < r, Im(z) ≥ 0}. If w : (E+, ∂E+) →
(Cn, M) where M is a real analytic Lagrangian submanifold and w is
holomorphic in the interior and continuous on the boundary, then by
Schwartz-reflection principle, w extends in a unique way to a holomor-
phic map wd : E → C

n mapping Im(z) = 0 to M , where E = {z ∈
C : |ζ| < r} for r sufficiently small. We call wd the double of w.

Let L ⊂ C
n × R be a chord (semi-)generic Legendrian submanifold.

Lemma 7.7. Let p be a point in U ⊂ L such that ΠC(U) is real
analytic, where U ⊂ L is a neighborhood of p on which ΠC is injective.
Assume that

w : (E+, ∂E+, 0) → (Cn, ΠC(U), p),
is holomorphic. Then, there is a holomorphic function u with Taylor
expansion at 0,

u(z) = a0 + a1z + . . . , a0 �= 0
such that w(z) = p + zku(z) for some integer k > 0.

Proof. The double wd has a Taylor expansion. q.e.d.

Lemma 7.8. Let p, U and L satisfy the conditions of Lemma 7.7.
Assume that w : Dm → C

n is holomorphic with boundary on ΠC(L).
Then w−1(p) ∩ ∂Dm is a finite set.

Proof. Using Lemma 4.6, we may find M > 0 such that there are
no preimages of p in ∪jEpj [M ]. Since the complement of ∪jEpj [M ] is
compact, the lemma now follows from Lemma 7.7. q.e.d.

Lemma 7.9. Let p ∈ L satisfy the conditions of Lemma 7.7, and let

w1, w2 : (E+, ∂E+, 0) → (Cn, ΠC(L), p),(7.5)

be holomorphic maps such that w2 maps one of the components I of
∂E+ \ {0} to w1(I). Then there exists a map ŵ : E → C

n and integers
kj ≥ 1 such that wd

j (z) = ŵ(zkj ), j = 1, 2.

Proof. As above, we may reduce to the case when ΠC(L) = R
n ⊂ C

n.
The images Cj = wd

j (E), j = 1, 2 are analytic subvarieties of complex
dimension 1 which intersects in a set of real dimension 1. Hence, they
agree. Projection of C = C1 = C2 onto a generic complex line through
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p identifies C (locally) with the standard cover of the disk possibly
branched at 0. This gives the map ŵ. q.e.d.

7.6. Exceptional holomorphic maps. Let Λ be one of the spaces
Ham(L, δ, R), pHam(L, δ, R), or Ham0(L, δ, s). Let (w, f, λ) ∈ W2,ε,Λ(c)
(or W̃2,ε,Λ(c)) be a holomorphic disk and let q be a point on ∂Dm such
that w(q) lies in a region where ΠC(Lλ) is real analytic. Assume that
dw(q) = 0. Since w has a Taylor expansion around q in this case, we
know there exists a half-disk neighborhood E of q in Dm such that q is
the only critical point of w in E. The boundary ∂E is subdivided by
q into two arcs ∂E \ {q} = I+ ∪ I−. We say that q is an exceptional
point of (w, f) if there exists a neighborhood E as above such that
w(I+) = w(I−).

Definition 7.10. Let (w, f, λ) ∈ W2,ε,Λ(c), where c = (c0(λ), c1(λ),
. . . , cm(λ)) and c0(λ) is the Reeb chord on Lλ of the positive puncture
of Dm+1. Let B1(λ) and B2(λ) be the two local branches of ΠC(Lλ) at
c∗0(λ). Then (w, f) is exceptional holomorphic if it has two exceptional
points q1 and q2 with w(q1) = w(q2) = c∗0(λ) and if a neighborhood in
∂Dm of qj maps to Bj(λ), j = 1, 2.

Definition 7.11. Let W ′
2,ε,Λ(c) (W̃ ′

2,ε,Λ(c)) denote the complement
of the closure of the set of all exceptional holomorphic maps in W2,ε,Λ(c)
(W̃2,ε,Λ(c)).

We note that W ′
2,ε,Λ(c) is an open subspace of a Banach manifold and

hence a Banach manifold itself.

7.7. Transversality on the complement of exceptional
holomorphic maps in the admissible case.

Lemma 7.12. For L admissible (respectively Lt a 1-parameter family
of admissible submanifolds) the bundle map, see Section 5.7

(Γ, pr) : W ′
2,ε,Λ(c) → H1,ε,Λ[0](Dm, T ∗Dm ⊗ C

n),

where Λ = Ham(L, δ, R) (respectively Λ = pHam(Lt, δ, R)) is transverse
to the 0-section.

Proof. The proof for 1-parameter families Lt is only notationally more
difficult. We give the proof in the stationary case. We must show that if
w : Dm → C

n is a (non-exceptional) holomorphic map (in the conformal
structure κ on Dm) which represents a holomorphic disk (w, f) with
boundary on L = Lλ (without loss of generality, we take λ = 0 below)
then

dΓ
(
T((w,f),κ,0)W2,ε,Λ(c)

)
= H1,ε(Dm, T ∗Dm ⊗ C

n),

i.e., dΓ is surjective. To show this, it is enough to show that{
dΓ

(
T((w,f),κ,0)W2,ε,Λ(c)

)}⊥
= {0},
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where V ⊥ denotes the annihilator with respect to the L2-pairing of
V ⊂ H1,ε[0](Dm, T ∗Dm ⊗ C

n) in its dual space.
An element u in this annihilator satisfies

(7.6)
∫

Dm

〈∂̄v, u〉 dA = 0,

for all v ∈ TwB2,ε(0, r). Here dA is the area form on Dm. Lemma 6.1
implies that u can be represented by a C2-function which is anti-holo-
morphic.

We note that integrals of the form

(7.7)
∫

Dm

〈φ, ψ〉 dA,

where 〈 , 〉 is the inner product on T ∗Dm and where φ and ψ are sections,
are conformally invariant. We may therefore compute integrals of this
form in any conformal coordinate system on the disk Dm.

Restrict attention to a small neighborhood of the image of the positive
corner at c∗0. Recall that w is assumed non-exceptional and consider a
branch B of ΠC(L) at c∗0 such that w does not have an exceptional point
mapping to c∗0 ∈ B. Since B is real analytic we may biholomorphically
identify (Cn, B, c∗0) with (Cn, Rn, 0).

Let p be the positive puncture on Dm. For M large enough, by Propo-
sition 4.6, the image of the component of ∂Ep[M ] which lies in B is a
regular oriented curve. Denote it by γ. For simplicity we assume that
the component mapping to γ is [M,∞) × {0} ⊂ Ep0 [M ] and we let
E0 = [M,∞) × [0, 1

2).
Let p1, . . . , pr be the preimages under w of c∗0 with the property that

one of the components of a punctured neighborhood of pj in ∂Dm maps
to γ. Note that r < ∞ by Proposition 4.6 and Lemma 7.8 and that by
shrinking γ, we may assume that all these images are exactly γ.

We say that a point pj is positive if close to pj , w and the natural
orientation on the boundary of ∂Dm induce the positive orientation on
γ. Otherwise, we say it is negative.

The image of the other half of the punctured neighborhood of p1

in ∂Dm maps to a curve γ′ under w. Our assumption that w is non-
exceptional guarantees that γ and γ′ are distinct.

Let wj denote the restriction of w to a small neighborhood of pj .
Let E = {z ∈ C : |z| < r}, let E+ = {z ∈ E : Im(z) ≥ 0}, and let
E− = {z ∈ E : Im(z) ≤ 0}. Lemma 7.9 implies that we can find a
map ŵ : E → C

n and coordinate neighborhoods (E±(j), ∂E±(j)) of pj

(where the sign ± is that of pj) such that wd
j (z) = ŵ(zkj ) for each j.

Note that w non-exceptional implies all kj are odd.
Let k = k1k2 . . . kr and let k̂j = k

kj
. Let φj : E → E(j) be the map

z �→ zk̂j . Consider the restrictions uj of the anti-holomorphic map u
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to the neighborhoods (E±(j), ∂E±(j)). Because of the real analytic
boundary conditions (recall that (B, Cn) is biholomorphically identified
with (Rn, Cn)), these maps can be doubled using Schwartz reflection
principle. Use φj to pull-back the maps uj and wj to E.

Let a : C
n → R be any smooth function with support in a small ball

around a point q′ ∈ γ′, where q′ is chosen so that no point outside⋃
j E±(j) in ∂Dm maps to q′. (There exists such a point because of

the asymptotics of w at punctures and Lemma 7.7.) Let Ya be the
Hamiltonian vector field associated with a, see Section 3.3.

If v is a smooth function with support in
⋃

j E±(j) which is real and
holomorphic on

⋃
j ∂E±(j), if ξ + iη are coordinates on E±(j), and if

the support of a is sufficiently small, then

0 =
∫

Dm

〈∂̄(Ya + v), u〉 dA

(7.8)

= −
∑

j

∫
E±(j)

〈Ya + v, ∂u〉 dξ ∧ dη +
∑

j

∫
∂E±(j)

〈−i(Ya + v), u〉 dξ

(7.9)

=
∑

j

∫
∂E±(j)

〈−i(Ya + v), u〉 dξ.

(7.10)

The equality in (7.8) follows since u is an element of the annihilator
and since a can be arbitrarily well C2-approximated by elements in
Ham(L, δ, R). The equality in (7.9) follows by partial integration and
the restrictions on the supports of a and v. The equality in (7.10) follows
from ∂u = 0. Taking a = 0, we see, since we are free to choose v, that
u must be real valued on ∂E±(j) for every j.

We then take v = 0 and express the integral in (7.10) as an integral
over I+ = {x + 0i : x > 0} ⊂ E. Note that if ξ + iη are coordinates on
E(j) then under the identification by φj , dξ = dxk̂j = k̂jx

k̂j−1 dx and

∑
j

∫
∂E±(j)

〈−iYa, u〉 dξ(7.11)

=
∫

I+

〈−iYa(ŵ(zk)),
∑

j

σ(j)k̂j z̄
k̂j−1uj(zk̂j )〉 dx,

where σ(j) = ±1 equals the sign of pj . Thus, if

α(z) =
∑

j

σ(j)k̂j z̄
k̂j−1uj(zk̂j ),
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then α is antiholomorphic and by varying a, we see that α vanishes in
the R

n-directions along an arc in I+. Therefore, α vanishes identically
on E.

Pick now instead a supported in a small ball around q in γ. With the
same arguments as above, we find

0 =
∫

Dm

〈∂̄(Ya + v), u〉 dA(7.12)

= −
∫

E0

〈Ya + v, ∂u〉 dτ ∧ dt −
∑

j

∫
E±(j)

〈Ya + v, ∂u〉 dξ ∧ dη

+
∫

[M,∞)
〈−i(Ya + v), u〉 dτ +

∑
j

∫
∂E±(j)

〈−i(Ya + v), u〉 dξ

=
∫

[M,∞)
〈−i(Ya + v), u〉 dτ +

∑
j

∫
∂E±(j)

〈−i(Ya + v), u〉 dξ.

and conclude that u(τ, 0) ∈ R
n for τ ∈ [M,∞) as well.

Again taking v = 0, we get for the last integral in (7.12)

(7.13)
∑

j

∫
∂E±(j)

〈−iYa, u〉 dξ =
∫

I−
〈−iYa(ŵ(zk)), α(z))〉 dx = 0,

where I− = {x + 0i : x < 0} ⊂ E, and where the last equality follows
since α = 0. Equations (7.13) and (7.12) together implies (by varying a)
that u must vanish along an arc in [M,∞). Since u is antiholomorphic,
it must then vanish everywhere. This proves the annihilator is 0 and
the lemma follows. q.e.d.

Remark 7.13. In the case that w has an injective point on the
boundary, the above argument can be shortened. Namely, under this
condition, there is an arc A on the boundary of Dm where w is in-
jective and varying v and a, there we see that u must vanish along A
and therefore everywhere. Oh achieves transversality using boundary
perturbations assuming an injective point [25].

Corollary 7.14. Let c = ab1 . . . bm. For a Baire set of h ∈ Ham(L, δ,
R) = Λ, Γ−1(0) ∩ pr−1(h) ∩W ′

2,ε,Λ(c; A) is a finite dimensional smooth
manifold of dimension

µ(A) + νγ(a) −
∑

j

νγ(bj) + max(0, m − 2).

For a Baire set of h ∈ pHam(L, δ, R) = Λ Γ−1(0)∩pr−1(h)∩W ′
2,ε,Λ(c; A)

is a finite dimensional smooth manifold of dimension

µ(A) + νγ(a) −
∑

j

νγ(bj) + max(0, m − 2) + 1.
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Proof. Let Z ⊂ W ′
2,ε,Λ(c; A) denote the inverse image of the 0-section

in H1,ε,Λ[0](T ∗0,1Dm ⊗ C
n) under (Γ, pr). By the implicit function the-

orem and Lemma 7.12, Z is a submanifold. Consider the restriction of
the projection π : Z → Λ. Then π is a Fredholm map of index equal to
the index of the Fredholm section Γ. An application of the Sard–Smale
theorem shows that for generic λ ∈ Λ, π−1(λ) is a submanifold of dimen-
sion given by the Fredholm index of Γ. Note that in the first case, the
restriction of dΓ to the complement of the max(0, m − 2)-dimensional
subspace TCm ⊂ TW2,ε(c; A) is an operator of the type considered in
Proposition 6.17. Thus, the proposition follows in this first case. In the
second case, we restrict to a (max(0, m−2)+1)-codimensional subspace
instead. q.e.d.

7.8. General transversality in the admissible case. If c is a col-
lection of Reeb chords, we define l(c) as the number of elements in
c. We note that if (f, w) is a holomorphic disk with boundary on L
with r punctures, then, if r ≤ 2, the kernel of dΓ at (f, w) is at least
(3−r)-dimensional. This is a consequence of the existence of conformal
reparameterizations in this case.

Theorem 7.15. For a dense open set of h ∈ Ham(L, δ, R) (h ∈
pHam(L, δ, R)), Γ−1(0) ∩ pr−1(h) ⊂ W2,ε,Λ(c) is a finite dimensional
C1-smooth manifold of dimension as in Corollary 7.14, provided this
dimension is ≤ 1 if l(c) ≥ 3 and ≤ 1 + (3 − l(c)) otherwise.

Proof. After Corollary 7.14, we need only exclude holomorphic disks
in the closure of exceptional holomorphic disks. Let a ∈ Ham (a ∈
pHam) be such that Γ−1(0) is regular. Then the same is true for ã
in a neighborhood of a. Now assume there exists a holomorphic disk
in the closure of exceptional holomorphic disks at a. Then there must
exists an exceptional holomorphic disk for some ã in the neighborhood.
However, such a disk w has k ≥ 2 points mapping to the image of
the positive puncture and with w(I+) = w(I−). It is then easy to
construct (by “moving the branch point”) a k-parameter (k+(3− l(c))-
parameter if l(c) ≤ 2) family of distinct (since the location of the branch
point changes) non-exceptional holomorphic disks with boundary on
L(ã). This contradicts the fact that the dimension of Γ−1(0) is < k
(< k + (3 − l(c)) for every ã in the neighborhood. q.e.d.

Proof of Proposition 2.2. If the number of punctures is ≥ 3, the propo-
sition is just Theorem 7.15. The case of fewer punctures can be reduced
to that of many punctures as in Section 8.6. q.e.d.

Corollary 7.16. For chord generic admissible Legendrian subman-
ifolds in a Baire set of such manifolds, no rigid holomorphic disk with
boundary on L decays faster than e−(θ+δ)|τ | close to any of its punctures
mapping to a Reeb chord c. Here θ is the smallest complex angle of the
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Reeb chord c, δ > 0 is arbitrary, and τ + it are coordinates near the
puncture.

Proof. Such a holomorphic disk would lie in W2,ε(c), where the com-
ponent of ε corresponding to the puncture mapping to the Reeb chord
c is larger than θ. By Proposition 6.16, this change of weight lowers
the Fredholm index of dΓ by at least 1. Since the Fredholm index of
dΓ with smaller weight (e.g., 0-weight) is the minimal which allows for
existence of disks, the lemma follows from Theorem 7.15. q.e.d.

Proof of Proposition 2.9. The first statement in the proposition follows
exactly as above. To see that handle slides appear at distinct times, let
(a1b1; A1) and (a2b2; A2) be such that

µ(A1) + |a1| − |b1| = µ(A2) + |a2| − |b2| = 0

and consider the bundle W2,Λ(a1b1; A1)×̃W2,Λ(a2b2; A2). Here ×̃ de-
notes the fiberwise product where, in the fibers, the deformation co-
ordinates (t1, t2) are restricted to lie in the diagonal: t1 = t2 = t.
This is a bundle over Λ, and Γ induces a bundle map to the bundle
H1,Λ(Dm1, C

n)×H1,Λ(Dm2 , C
n), where × denotes fiberwise product. It

is then easy to check that Γ is a Fredholm section of index −1. As in
Theorem 7.15, we see that dΓ is surjective and that the inverse image
of the 0-section intersected with pr−1(h) is empty for generic h. This
shows that the handle slides appear at distinct times.

The statement about all rigid disks being transversely cut out at a
handle slide instant can be proved in a similar way: let (a1b1; A1) be as
above and let (a3b3; A3) be such that

µ(A3) + |a3| − |b3| = 1.

Consider the bundle

W2,Λ(a3b3; A3)×̃W2,Λ(a3b3; A3)×̃W2,Λ(a1b1; A1),

and the bundle map Γ defined in the natural way with target

H1,Λ(Dm3 , C
n) ×H1,Λ(Dm3 , C

n) ×H1,Λ(Dm1 , C
n).

Then the map Γ has Fredholm index 0 and as above, we see dΓ is sur-
jective. Hence, Γ−1(0)∩pr−1(h) is a transversely cut out 0-manifold for
generic h. We show that this implies that if t is such that Mt

A1
(a1;b1) =

{(v, g)} �= ∅, then Mt
A3

(a3;b3) is transversally cut out. Let (u, f) ∈
Mt

A3
(a3;b3) and assume the differential dΓt

(u,f), which is a Fredholm
operator of index 0 is not surjective. Then it has a cokernel of dimension
d > 0. Furthermore, the image of the tangent space to the fiber under
the differential dΓ at the point

(
((u, f), (u, f), (v, g)), h

)
is contained in

a subspace of codimension ≥ 2d− 1 in the tangent space to the fiber of
the target space. This contradicts Γ−1(0) ∩ pr−1(h) being transversely
cut out. q.e.d.
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7.9. Transversality in the semi-admissible case.

Lemma 7.17. Suppose L is admissible chord-semi-generic and Λ =
Ham0(L, δ, s), then the bundle maps

(Γ, pr) : W ′
2,ε,Λ(c) → H1,ε,Λ(Dm, T 0,1Dm ⊗ C

n),

(Γ, pr) : W̃ ′
2,ε,Λ(c) → H1,ε,Λ(Dm, T 0,1Dm ⊗ C

n)

are transverse to the 0-section.

Proof. We proceed as in the proof of Lemma 7.12. Let u be an element
in the annihilator. The argument of Lemma 7.12 still applies up to the
point where we conclude α|I+ equals 0. In the present setup not all
Hamiltonian vector fields are allowed (see Definition 7.4). However, the
ones that are allowed can be used exactly as in the proof of Lemma 7.12
to conclude the last (n − 1) components of u must vanish identically.

Since Dm is conformally equivalent to the unit disk ∆m with m punc-
tures on the boundary and since integrals as in (7.7) are conformally
invariant, we have for any smooth compactly supported v with appro-
priate boundary conditions

(7.14) 0 =
∫

∆m

〈∂̄v, u〉 dA =
∫

∆m

〈v, ∂u〉 dA +
∫

∂∆m

〈u, e−iθv〉 dθ.

As usual, the first term in (7.14) vanishes and we find that u is orthog-
onal to eiθTw(eiθ)ΠC(L).

Now the boundary of the holomorphic disk must cross the region
X = B(0, 2 + ε) \ B(0, 2), and the inverse image of this region contains
an arc A in the boundary. The intersection between the tangent plane
of TpΠC(L), p ∈ X and the z1-line equals 0 and the z1-line is invari-
ant under multiplication by eiθ. Hence, the orthogonal complement of
eiθTw(eiθ)ΠC(L) intersects the z1-line trivially as well (for θ ∈ A). We
conclude that the first component of u must vanish identically along A
and by anti-analytic continuation vanish identically. It follows that u is
identically zero. q.e.d.

In analogy with Corollary 7.14, we get (with c denoting the degenerate
Reeb chord of L)

Corollary 7.18. For a dense open set of h ∈ Ham0(L, δ, s), Γ−1(0)∩
pr−1(h) ⊂ W ′

2,ε,Λ(c; A) and Γ−1(0) ∩ pr−1(h) ⊂ W̃ ′
2,ε,Λ(c; A) are finite

dimensional manifolds. If c = ab1 . . . bm with a �= c, then the dimensions
are

µ(A) + ν(a) −
m∑

r=1

(ν(bj) + δ(bj, c)) + max(0, m − 2) and

µ(A) + ν(a) −
m∑

r=1

(ν(bj)) + max(0, m − 2), respectively.
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If c = cb1 . . . bk, then the dimensions are

µ(B) + ν(c) −
m∑

r=1

(ν(bj)) + max(0, m − 2) and

µ(B) + ν(c) + 1 −
m∑

r=1

(ν(bj)) + max(0, m − 2), respectively.

The same argument as in the proof of Theorem 7.15 gives

Theorem 7.19. For a dense open set of h ∈ Ham0(L, δ, s), Γ−1(0)∩
pr−1(h) ∩W2,ε,Λ(c) and Γ−1(0) ∩ pr−1(h) ∩ W̃2,ε,Λ(c) are finite dimen-
sional manifolds of dimensions given by the dimension formula in Corol-
lary 7.18, provided this dimension is ≤ 1 if l(c) ≥ 3 and ≤ 1+(3− l(c))
otherwise.

Remark 7.20. Note that the expected dimension of the set of disks
with dimension count in W̃2,ε equal to 1 in W2,ε is equal to −k (or
−k+(3− l(c)) if l(c ≤ 2)), where k is the number of punctures mapping
to the self-tangency Reeb chord. Therefore for a dense open set in
the space of chord semi-generic Legendrian submanifolds, this space is
empty. Since any disk with exponential decay at the self-tangency point
has a neighborhood in W2,ε, we see that generically such disks do not
exist, provided their dimension count in W̃2,ε is as above.

7.10. Enhanced transversality. Let L be a (semi-)admissible sub-
manifold. If q ∈ L and ζ0 ∈ ∂Dm, then define

W2,ε(c, ζ0, p) = {(w, f) ∈ W2,ε(c) : (w, f)(ζ0) = p}
and in the semi-admissible case also W̃2,ε(c, ζ0, p) in a similar way.

If evζ0 : W2,ε(c) → L denotes the map evζ0(w, f) = (w, f)(ζ0). Then
evζ0 is smooth and transverse to p (as is seen by using local coordi-
nates on W2,ε(c)). Moreover, ev−1

ζ0
(p) = W2,ε(c, p) and hence, W2,ε(c, p)

is a closed submanifold of W2,ε(c) of codimension dim(L). Note that
the tangent space T(w,f)W2,ε(c, p, ζ0) is the closed subspace of elements
(v, γ) in the tangent space T(w,f)W2,ε(c) which are such that v : Dm →
C

n satisfies v(ζ0) = 0.
We consider

W2,ε(c, p) =
⋃

ζ∈∂Dm

W2,ε(c, ζ, p)

as a locally trivial bundle over ∂Dm. Local trivializations are given
compositions with suitable diffeomorphisms which move the boundary
point ζ a little.

We define perturbation spaces as the closed subspaces Hamp(L, δ, R)
⊂ Ham(L, δ, R) and Hamp

0(L, δ) ⊂ Ham0(L, δ) of functions h such that
h(p) = 0 and Dh(p) = 0. Thus, Φ̃h fixes p. (Note that if p is the
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projection of a Reeb chord, this is no additional restriction.) If Λ denotes
one of these perturbation spaces, we form the bundles

W2,ε,Λ(c, p) =
⋃

Lλ,λ∈Λ

W2,ε(c, p),

W̃2,ε,Λ(c, p) =
⋃

Lλ,λ∈Λ

W2,ε(c, p)

with local coordinates as before.
As before, let ′ denote exclusion of exceptional holomorphic maps.

Lemma 7.21. Assume that p ∈ L has a neighborhood U such that
ΠC(U) is real analytic. Then the bundle maps

(Γ, pr) : W ′
2,ε,Λ(c, p) → H1,ε,Λ(Dm, T 0,1∗Dm ⊗ C

n)(7.15)

(Γ, pr) : W̃ ′
2,ε,Λ(c, p) → H1,ε,Λ(Dm, T 0,1∗Dm ⊗ C

n)

are transverse to the 0-section.

Proof. The proof is the same as the proof of Lemma 7.12 in the ad-
missible case and the same as that of Lemma 7.17 in the semi-admissible
case, provided the arcs γ and γ′ used there do not contain the special
point p. On the other hand, if one of these arcs does contain p, we
may shorten it until it does not. (The key point is that the condition
that the Hamiltonian vanishes at a point does not destroy the approxi-
mation properties of the elements in the perturbation space for smooth
functions supported away from this point). q.e.d.

Corollary 7.22. Let n > 1. For L in a Baire subset of the space
of (semi-)admissible Legendrian n-submanifolds, no rigid holomorphic
disk passes through the end point of any Reeb chord of L.

Note, when n = 1, this corollary is not true.

Proof. The proof of Theorem 7.15 shows that for a Baire set, there
are no exceptional holomorphic disks. The Sard–Smale theorem in com-
bination with Lemma 7.21 implies that for a Baire subset of this Baire
set, the dimension of the space of rigid holomorphic disks with some
point mapping to the end point of a specific Reeb chord is given by the
Fredholm index of the operator dΓ corresponding to Γ in (7.15). Since
the source space of this operator is the sum of a copy of R (from the
movement of ζ on the boundary) and a closed codimension dimL sub-
space of the source space of dΓ in Lemma 7.12 which has minimal index
for disks to appear generically, we see the index in the present case is
too small. This implies that the subset is generically empty. Taking the
intersection of these Baire subsets for the finite collection of Reeb chord
endpoints of L, we get a Baire subset with the required properties. q.e.d.
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Corollary 7.23. If L is as in Corollary 7.22, then there are no rigid
holomorphic disks with boundary on L which are nowhere injective on
the boundary.

Proof. Let w : Dm+1 → C
n represent a holomorphic disk with bound-

ary on L. By Corollary 7.22, we may assume that no point in the
boundary of ∂Dm maps to an intersection point of ΠC(L).

Assume that w has no injective point on the boundary and let the
punctures of Dm+1 map to the Reeb chords (c0, . . . , cm) where the pos-
itive puncture maps to c0. Let C be the holomorphic chain which is
the closure of image w(Dm) of w with local multiplicity 1 everywhere.
Then

(7.16) Area(C) < Area(w)

since close to the point in C most distant from the origin in C
n, w has

multiplicity at least two.
The corners of C is a subset S of c∗0, . . . , c∗m and by integrating∑
j yjdxj along the boundary ∂C of C which lies in the exact Lagrangian

ΠC(L) we find

(7.17) Area(C) = Z(c0) −
∑

c∗j∈S,j>0

Z(cj),

where the first term must be present (i.e. C must have a corner at c∗0)
since, otherwise, the area of C would be negative contradicting the fact
that C is holomorphic. On the other hand

(7.18) Area(w) = Z(c0) −
∑
j>0

Z(cj).

Hence

(7.19) Area(C) ≥ Area(w),

which contradicts (7.16). This contradiction finishes the proof. q.e.d.

7.11. Transversality in a split problem. In this section, we discuss
transversality for disks, with one or two punctures, lying entirely in one
complex coordinate plane. Let L ⊂ C

n×R be an admissible Legendrian
submanifold. Let ∆ ⊂ R

2 denote the standard simplex. Let ∆1 (∆2)
be the subsets of R

2 which is bounded by ∂∆, smoothened at two (one)
of its corners. Let (z1, . . . , zn) be coordinates on C

n. Let πi : C
n → C

denote projection to the i-th coordinate and let π̂i : C
n → C

n−1 denote
projection to the Hermitian complement of the zi-line. Finally, if γ(t),
t ∈ I ⊂ R is a one parameter family of lines, then we let

∫
γ dθ denote

the (signed) angle γ(t) turns as t ranges over I.

Lemma 7.24. Let (u, h) ∈ W2(ab; A), µ(A) + |a| − |b| = 1, be a
holomorphic disk with boundary on L such that π̂1 ◦ u is constant and
such that π1 ◦ u = f ◦ g, where g : ∆2 → D2 is a diffeomorphism and
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f : ∆2 → C is an immersion. Furthermore, if t1, t2 are coordinates along
components of ∂D2, assume that the paths Γ(t) = dΠC(T(u,h)(tj)L) of
Lagrangian subspaces are split: Γ(tj) = γ(tj) × V̂j, where γ(t) ⊂ C is a
(real line) and V̂j ⊂ C

n−1, j = 1, 2, are transverse Lagrangian subspaces.
Then, dΓ(u,h) is surjective. (In other words, (u, h) is transversely cut
out.)

Proof. The Fredholm index of dΓ at (u, h) equals 1. If v is the vector
field on D2 which generates the 1-parameter family of conformal auto-
morphisms of D2 (the vector field ∂τ in coordinates τ + it ∈ R × [0, 1]
on D2), then ξ = du · v lies in the kernel of dΓ and dπ̂ · ξ = 0.

Since the boundary conditions are split, we may consider them sepa-
rately. It follows from Section 6.4 that the π̂1dΓ with boundary condi-
tions given by the two transverse Lagrangian subspaces V̂1 and V̂2 has
index 0, no kernel and no cokernel.

Let θ1 and θ2 be the interior angles at the corners of the immersion
f . Since f(∂∆2) bounds an immersed disk, we have∫

γ1

dθ +
∫

γ2

dθ + (π − θ1) + (π − θ2) = 2π.

If η1 = π1 ◦ η, where η is in the kernel of dΓ then, thinking of D2 as
R × [0, 1], we find that, asymptotically, for some integers n1 ≥ 0 and
n2 ≥ 0

η1(τ + it) =

{
c1e

−(θ1+n1π)(τ+it), for τ → +∞,

c2e
(θ2+n2π)(τ+it), for τ → −∞,

where c1 and c2 are real constants. Cutting D2 off at |τ | = M for some
sufficiently large M , we thus find a solution of the classical Riemann–
Hilbert problem with Maslov-class

1
π

(
θ1 + θ2 − θ1 − θ2 − (n1 + n2)π

)
.

Since the classical Riemann–Hilbert problem has no solution if the Mas-
lov class is negative and exactly one if it is 0, we see that the solution
ξ = ξ1 produced above is unique up to multiplication with real con-
stants. q.e.d.

Lemma 7.25. Let (u, h) ∈ W2(a; A), µ(A) + |a| = 1, be a holomor-
phic disk with boundary on L such that π̂1 ◦ u is constant and such that
π1 ◦u = f ◦g, where g : ∆1 → D2 is a diffeomorphism and f : ∆1 → C is
an immersion. Furthermore, if t is a coordinate along ∂D1, assume that
the path Γ(t) = dΠC(T(u,h)(tj)L) of Lagrangian subspaces is split: Γ(t) =
γ1(tj) × γ2(t) × · · · × γn(t), where γj(t) ⊂ C is a (real line) such that∫

γj

dθ < 0, for 2 ≤ j ≤ n.

Then dΓ(u,h) is surjective.
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Proof. The proof is similar to the one just given. Using asymptotics
and the classical Riemann–Hilbert problem, it follows that the kernel of
dΓ is spanned by two linearly independent solutions ξj , j = 1, 2, with
π̂1ξ

j = 0. q.e.d.

7.12. Auxiliary tangent-like spaces in the semi-admissible case.
Let L be a chord semi-admissible Legendrian submanifold and assume
that L lies in the open subset of such manifolds where the moduli-
space of rigid holomorphic disks with corners at c is 0-dimensional (and
compact by Theorem 9.2). Now if (w, f) is a holomorphic disk with
boundary on L, then by Lemma 7.17, we know that the operator

(7.20) dΓ: T(w,f)W̃2,ε(c) → H1,ε(Dm, T ∗Dm ⊗ C
n)

is surjective.
For any (w, f) with m + 1 punctures which maps the punctures

p1, . . . pk to the self tangency Reeb chord of Lh let ε̂ ∈ [0,∞)m+1−k ×
(−δ, 0)k, where δ > 0 is small compared to the complex angle of the
self tangency Reeb chord and the components of ε̂ which are negative
correspond to the punctures p1, . . . , pk. Define the tangent-like space

T(w,f,h)W2,ε̂(c)

as the linear space of elements (v, γ) where γ ∈ TκCm+1 and where
v ∈ H2,ε̂(Dm+1, C

n) satisfies

v(ζ) ∈ ΠC(T(w,f)(ζ)L) for all ζ ∈ ∂Dm,∫
∂Dm

〈∂̄v, u〉 ds = 0 for all u ∈ C
∞
0 (∂Dm, Cn).

and consider the linear operator

(7.21) dΓ̂(v, γ) = ∂̄κv + i ◦ dw ◦ γ.

The index of this Fredholm operator equals that of the operator in (7.20)
and moreover, by asymptotics of solutions to these equations (close to
the self-tangency Reeb chord, we can use the same change of coordi-
nates in the first coordinate as in the non-linear case, see Section 4.6
to determine the behavior of solutions), we find that the kernels are
canonically isomorphic. Thus, since the operator in (7.20) is surjective
so is the operator in (7.21).

8. Gluing theorems

In this section, we prove the gluing theorems used in Sections 2.3 and
2.5. In Section 8.1, we state the theorems. Our general method of gluing
curves is the standard one in symplectic geometry. However, some of
our specific gluings require a significant amount of analysis. We first
“preglue” the pieces of the broken curves together. For the stationary
case, this is done in Section 8.5 and for the self-tangency case in Sections
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8.10 and 8.15. We then apply Picard’s Theorem, stated in Section
8.2. Picard’s Theorem requires a sequence of uniformly bounded right
inverses of the linearized ∂̄ map. We prove the bound for the stationary
case in Section 8.7 and for the self-tangency case in Sections 8.13 and
8.19. Picard’s Theorem also requires a bound on the non-linear part of
the expansion of ∂̄, which we discuss in Section 8.20. To handle disks
with too few boundary punctures, we show in Sections 8.6 through 8.6.2,
how by marking boundary points the disks can be thought of as sitting
inside a moduli space of disks with many punctures.

Recall the following notation. Bold-face letters will denote ordered
collections of Reeb chords. If c denotes a non-empty ordered collection
(c1, . . . , cm) of Reeb chords, then we say that the length of c is m. We
say that the length of the empty ordered collection is 0. Let c1, . . . , cr

be an ordered collection of ordered collections of Reeb chords. Let the
length of cj be l(j) and let a = (a1, . . . , ak) be an ordered collection of
Reeb chords of length k > 0. Let S = {s1, . . . , sr} be r distinct integers
in {1, . . . , k}. Define the ordered collection aS(c1, . . . , cr) of Reeb chords
of length k − r +

∑r
j=1 l(j) as follows. For each index sj ∈ S, remove

asj from the ordered collection a and insert at its place the ordered
collection cj .

Recall that if a is a Reeb chord and b is a collection of Reeb chords
of a Legendrian submanifold, then MA(a;b) denotes the moduli space
of holomorphic disks with boundary on L, punctures mapping to (a,b),
and boundary in L which after adding the chosen capping paths rep-
resents the homology class A ∈ H1(L). After Theorem 7.15, we know
that if the length of b is at least 2, then MA(a;b) is identified with the
inverse image of the regular value 0 of the ∂̄-map Γ in Section 5.7. If the
length of b is 0 or 1, then MA(a;b) is identified with the quotient of
Γ−1(0) under the group of conformal reparameterizations of the source
of the holomorphic disk.

Similarly, if Lλ, λ ∈ Λ is a 1-parameter family of chord generic Leg-
endrian submanifolds, we write MΛ

A(a;b) for the parameterized moduli
space of rigid holomorphic disks with boundary in Lλ, and punctures
at (a(λ),b(λ)), λ ∈ Λ. We also write Mλ

A(a,b) to denote the moduli
space for a fixed Lλ, λ ∈ Λ.

Finally if K ⊂ C
n and δ > 0, then B(K, δ) denotes the subset of all

points in C
n of distance less than δ from K.

8.1. The Gluing Theorems. In this section, we state the various
gluing theorems.
8.1.1. Stationary gluing. Let L be an admissible Legendrian sub-
manifold. Recall that a holomorphic disk with boundary on L is defined
as a pair of functions (u, f), where u : Dm → C

n and f : ∂Dm → R. Be-
low we will often drop the function f from the notation and speak of
the holomorphic disk u. Let MA(a;b) and MC(c;d) be moduli spaces



260 T. EKHOLM, J. ETNYRE & M. SULLIVAN

of rigid holomorphic disks, where b has length m, 1 ≤ j ≤ m, and d
has length l.

Theorem 8.1. Assume that the j-th Reeb chord in b equals c. Then
there exists δ > 0, ρ0 > 0 and an embedding

MA(a;b) ×MC(c;d) × [ρ0,∞) → MA+C(a;b{j}(d));

(u, v, ρ) �→ u �ρv,

such that if u ∈ MA(a;b) and v ∈ MC(c;d) and the image of w ∈
MA+C(a;bj(d)) lies inside B(u(Dm+1) ∪ v(Dl+1); δ), then w = u �ρv
for some ρ ∈ [ρ0,∞).

Proof. The theorem follows from Lemmas 8.5, 8.9, and 8.16 and
Proposition 8.4. q.e.d.

8.1.2. Self tangency shortening and self tangency gluing. Let
Lλ, λ ∈ (−1, 1) = Λ be an admissible 1-parameter family of Legendrian
submanifolds such that L0 is semi-admissible with self-tangency Reeb
chord a. For simplicity (see Section 3), we assume that all Reeb chords
outside a neighborhood of a remain fixed under Λ. We take Λ so that
if λ > 0, then L−λ has two new-born Reeb chords a+ and a−, where
Z(a+) > Z(a−). Assume that all moduli spaces of rigid holomorphic
disks with boundary on Lλ are transversely cut out for all fixed λ ∈ Λ,
that for all λ ∈ Λ, there are no disks with negative formal dimension, and
that all rigid disks with a puncture at a satisfy the non-decay condition
of Lemma 4.6 (see Remark 7.20).

Theorem 8.2. Let Λ− = (−1, 0). Let M0
A(a,b) be a moduli space

of rigid holomorphic disks where the length of b is l. Then there exist
ρ0 > 0, δ > 0 and a local homeomorphism

M0
A(a;b) × [ρ0,∞) → MΛ−

A (a+;b);

(u, ρ) �→ �ρu,

such that if u ∈ M0
A(a;b) and the image of w ∈ MΛ−

A (a+;b) lies inside
B(u(Dl+1); δ), then w = �ρu for some ρ ∈ [ρ0,∞).

Let M0
C(c,d) be a moduli space of rigid holomorphic disks where the

length of d is m. Let S ⊂ {1, . . . , m} be the subset of positions of d
where the Reeb chord a appears (to avoid trivialities, assume S �= ∅).
Then there exists ρ0 > 0 and δ > 0 and a local homeomorphism

M0
C(c,d) × [ρ0,∞) → MΛ−

C (c,dS(a−));

(u, ρ) �→ �ρu,

such that if u ∈ M0
C(c;d) and the image of w ∈ MΛ−

C (c;dS(a−)) lies
inside B(u(Dm+1); δ), then w = �ρu for some ρ ∈ [ρ0,∞).
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Proof. Consider the first case, the second follows by a similar ar-
gument. Applying Proposition 8.4 and Lemmas 8.10, 8.11 and 8.17,
we find a homeomorphism M0

A(a;b) → Mλ−
A (a+,b) for λ− < 0 small

enough. The proof of Corollary 7.14 implies that MΛ−(a+,b) is a 1-
dimensional manifold homeomorphic to Mλ−(a;b) × Λ−, the theorem
follows. q.e.d.

Theorem 8.3. Let Λ+ = (0, 1) and let M0
A1

(a;b1), . . . ,M0
Ar

(a;br)
and M0

C(c;d) be a moduli spaces of rigid holomorphic disks where the
length of bj is l(j), and the length of d is m. Let S ⊂ {1, . . . , m} be
the subset of positions of d where the Reeb chord a appears and assume
that S contains r elements. Then there exists δ > 0, ρ0 > 0 and an
embedding

M0
C(c;d) × Πr

j=1M0
Aj

(a;bj) × [ρ0,∞) → MΛ+

C+
P

j Aj
(c;dS(b1, ...,br));

(v, u1, . . . , ur, ρ) �→ v �ρ(u1, . . . , ur),

such that if v ∈ M0
C(c;d) and uj ∈ M0

Aj
(a;bj), j = 1, . . . , r and the

image of w ∈ MΛ+

C+
P

j Aj
(c;dS(b1, . . . ,br)) lies inside B(v(Dm+1) ∪

u1(Dl(1)+1) ∪ · · · ∪ ur(Dl(r)+1)); δ) then w = v �ρ(u1, . . . , ur) for some
ρ ∈ [ρ0,∞).

Proof. Apply Proposition 8.4 and Lemmas 8.13, 8.15, and 8.18 and
reason as above. q.e.d.

8.2. Floer’s Picard lemma. The proofs of the theorems stated in the
preceding subsections are all based on the following.

Proposition 8.4. Let f : B1 → B2 be a smooth map between Banach
spaces which satisfies

f(v) = f(0) + df(0)v + N(v),

where df(0) is Fredholm and has a right inverse G satisfying

‖GN(u) − GN(v)‖ ≤ C(‖u‖ + ‖v‖)‖u − v‖,
for some constant C. Let B(0, ε) denote the ε-ball centered at 0 ∈ B1

and assume that

‖Gf(0)‖ ≤ 1
8C

.

Then for ε < 1
4C , the zero-set of f−1(0)∩B(0, ε) is a smooth submanifold

of dimension dim(Ker(df(0))) diffeomorphic to the ε-ball in Ker(df(0)).

Proof. See [12]. q.e.d.

In our applications of Proposition 8.4, the map f will be the ∂̄-map,
see Section 5.7.
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8.3. Notation and cut-off functions. To simplify notation, we devi-
ate slightly from our standard notation for holomorphic disks. We use
the convention that the neighborhood Ep0 of the positive puncture p0

in the source Dm of a holomorphic disk (u, f) will be parameterized by
[1,∞)× [0, 1] and that neighborhoods of negative punctures Epj , j ≥ 1
are parameterized by (−∞,−1] × [0, 1].

In the constructions and proofs below, we will use certain cut-off
functions repeatedly. Here we explain how to construct them. Let
K > 0, a < b, and let φ : [a, b + K + 1] → [0, 1] be a smooth function
which equals 1 on [a, b] and equals 0 in [b + K, b + K + 1]. It is easy
to see there exists such functions with |Dkφ| = O(K−k) for k = 1, 2.
Let ε > 0 be small. Let ψ : [0, 1] → R be a smooth function such that
ψ(0) = ψ(1) = 0, ψ′(0) = ψ′(1) = 1, with |ψ| ≤ ε. We will use cut-off
functions α : [a, b + K + 1] × [0, 1] → C of the form

α(τ + it) = φ(τ) + iψ(t)φ′(τ).

Note that α|∂([a, b + K + 1] × [0, 1]) is real-valued and ∂̄α = 0 on
∂([a, b + K + 1] × [0, 1]). Also, |Dkα| = O(K−1) for k = 1, 2.

8.4. A gluing operation. Let L be a chord generic Legendrian sub-
manifold. Let (u, f) ∈ W2,ε(a,b) where b = (b1, . . . , bm) and let (vj , hj)
∈ W2,ε(bj , cj), j ∈ S ⊂ {1, . . . , m}. Denote the punctures on Dm+1 by
pj , j = 0, . . . , m and the positive puncture on Dl(j)+1 by qj .

Let gσ, σ ∈ [0, 1] be a 1-parameter family of metrics as in Section 5.3.
Then for M > 0 large enough, there exists unique functions

ξ : Epj [−M ] → Tb∗j C
n

ηj : Eqj [M ] → Tb∗j C
n,

such that

expt
b∗j

(ξ(τ + it)) = u(τ + it),

expt
b∗j

(ηj(τ + it)) = vj(τ + it),

where expσ denotes the exponential map of the metric gσ. Note that
by our special choice of metrics the functions, ξ and η are tangent to
ΠC(L) and holomorphic on the boundary.

For large ρ > 0, let DS
r (ρ), r = 1 + m +

∑
j∈S(l(j) − 1) be the disk

obtained by gluing to the end of

Dm+1 \
⋃
j∈S

Epj [−ρ]

corresponding to pj a copy of

Dl(j)+1 − Eqj [ρ]

by identifying ρ×[0, 1] ⊂ Epj with −ρ×[0, 1] ⊂ Eqj , for each j ∈ S. Note
that the metrics (and the complex structures κ1 and κ2(j)) on Dm+1
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and Dl(j)+1 glue together to a unique metric (and complex structure
κρ) on DS

r (ρ). We consider Dm+1 \
⋃

j∈S Epj [−ρ] and Dl(j)+1 \Eqj [ρ] as
subsets of DS

r (ρ).
For j ∈ S, let Ωj ⊂ DS

r (ρ) denote the subset

Eqj [ρ − 2, ρ] ∪ Epj [−ρ,−ρ + 2] ≈ [−2, 2] × [0, 1]

of DS
r (ρ). Let z = τ+it be a complex coordinate on Ωj and let α± : Ωj →

C be cut-off functions which are real valued and holomorphic on the
boundary and with α+ = 1 on [−2,−1]× [0, 1], α+ = 0 on [0, 2]× [0, 1],
α− = 1 on [1, 2] × [0, 1], and α− = 0 on [−2, 0] × [0, 1]. Define the
function ΣS

ρ (u, v1, . . . , vr) : Dr → C
n as

ΣS
ρ (u, v1, . . . , vr)(ζ)

=

⎧⎪⎨⎪⎩
vj(ζ), ζ ∈ Dl(j)+1 \ Eqj [ρ − 2],
u(ζ), ζ ∈ Dm+1 \

⋃
j∈S Epj [−ρ + 2],

expt
b∗j

(α−(z)ξj(z) + α+(z)ηj(z)), z = τ + it ∈ Ωj .

8.5. Stationary pregluing. Let L ⊂ Cn × R be an admissible Leg-
endrian submanifold. Let u : Dm+1 → C

n be a holomorphic disk with
its j-th negative puncture p mapping to c, (u, f) ∈ W2(a,b), and let
v : Dl+1 → C

n be a holomorphic disk with the positive puncture q map-
ping to c, (v, h) ∈ W2(c,d). Define

(8.1) wρ = Σ{j}
ρ (u, v).

Lemma 8.5. The function wρ satisfies wρ ∈ W2(a,b{j}(d)) and

(8.2) ‖∂̄wρ‖1 = O(e−θρ),

where θ is the smallest complex angle at the Reeb chord c. In particular,
‖∂̄wρ‖1 → 0 as ρ → ∞.

Proof. The first statement is trivial. Outside Ωj , wρ agrees with u or
v which are holomorphic. Thus it is sufficient to consider the restriction
of wρ to Ωj . To derive the necessary estimates, we Taylor expand the
exponential map at c∗. To simplify notation, we let c∗ = 0 ∈ C

n and
let ξ ∈ R

2n be coordinates in T0C
n and x ∈ R

2n coordinates around
0 ∈ C

n. Then

(8.3) expt
0(ξ) = ξ − Γk

ij(t)ξ
iξk∂k + O(|ξ|3).

This implies the inverse of the exponential map has Taylor expansion

(8.4) ξ = x + Γk
ij(t)x

ixk∂k + O(x3).

From (8.3) and (8.4), we get

(8.5) expt
0(α

+ξj) = α+u + ((α+)2 − α+)Γk
ij(t)u

iuj∂k + O(|u|3)
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and a similar expression for α−ηj in terms of vj . Lemma 4.6 implies
that u and Du are O(e−θρ) in Epj [ρ], which together with (8.5) implies
(8.2). q.e.d.

8.6. Marked points. In order to treat disks with less than three punc-
tures (i.e., disks with conformal reparameterizations) in the same way
as disks with more than three punctures, we introduce special points
which we call marked points on the boundary. When disks with few
punctures and marked points are glued to a disk with many punctures
there arises a disk with many punctures and marked points and we must
study also that situation.

Remark 8.6. Below we will often write simply W2,ε to denote spaces
like W2,ε(c), dropping the Reeb chords from the notation.

Let L ⊂ C
n × R be a (semi-)admissible Legendrian submanifold and

let u : Dm → C
n represent (u, f) ∈ W2,ε(κ) where κ is a fixed confor-

mal structure on Dm. Let Ur ⊂ ΠC(L), r = 1, . . . , k be disjoint open
subsets where ΠC(L) is real analytic and let qr ∈ ∂Dm be points such
that u(qr) ∈ Ur and du(qr) �= 0. After possibly shrinking Ur, we may
biholomorphically identify (Cn, Ur, u(qr)) with (Cn, V ⊂ R

n, 0). Let
(x1 + iy1, . . . , xn + iyn) be coordinates on C

n and assume these coordi-
nates are chosen so du(qr) · v0 = ∂1, where v0 ∈ TqrDm is a unit vector
tangent to the boundary. Let Hr ⊂ R

n denote an open neighborhood
of 0 in the submanifold {x1 = 0}.

Let S denote the cyclically ordered set of points S = {p1, . . . , pm, q1,
. . . , qk} where pi ∈ ∂Dm are the punctures of Dm. Fix three points
s1, s2, s3 ∈ {p1, p2, p3, q1, . . . , qk}, then the positions of the other points
in S parameterizes the conformal structures on ∆m+k. As in Section 5.6,
we pick vector fields ṽj , j = 1, . . . , m+k−3 supported around the non-
fixed points in S. Given a conformal structure on ∆m+k, we endow it
with the metric which makes a neighborhood of each puncture pj look
like the strip and denote disks with such metrics D̃m,k.

If (u, f), u : D̃m,k → C
n and f : ∂D̃m,k → R are maps and κ̃ is a con-

formal structure on D̃m+k then forgetting the marked points q1, . . . , qk,
we may view the maps as defined on Dm and the conformal structure
κ̃ gives a conformal structure κ on Dm. Note though that the standard
metrics on Dm corresponding to κ may be different from the metric
corresponding to κ̃ (this happens when one of the punctures qj is very
close to one of the punctures pr). However, the metrics differ only on
a compact set and thus using this forgetful map, we define for a fixed
conformal structure κ̃ on D̃m,k the space

WS
2,ε(κ̃) ⊂ W2,ε(κ)

as the subset of elements represented by maps w : Dm → C
n such that

w(qr) ∈ Hr for r = 1, . . . , k. Using local coordinates on W2,ε(κ) around
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(u, f) we see that for some ball B around (u, f), WS
2,ε(κ̃) ∩ B is a codi-

mension k submanifold with tangent space at (w, g) the closed subset
of T(w,g)W2,ε consisting of v : Dm → C

n with 〈v(qr), ∂1〉 = 0. We call
D̃m,k a disk with m punctures and k marked points.

The diffeomorphisms φ̃
σj

j , σj ∈ R generated by ṽj gives local co-
ordinates σ = (σ1, . . . , σm+k−3) ∈ R

m+k−3 on the space of conformal
structures on D̃m,k and the structure of a locally trivial bundle to the
space

WS
2,ε =

⋃
κ̃∈Cm+k

WS
2,ε(κ̃).

The ∂̄-map is defined in the natural way on this space and we denote it
Γ̃.

8.6.1. Marked points on disks with few punctures. Let L ⊂
C

n × R be a (semi-)admissible submanifold, let m ≤ 2 and consider
a holomorphic disk (u, f) with boundary on L, represented by a map
u : Dm → C

n . We shall put 3 − m marked points on Dm.
Pick Ur ⊂ ΠC(L), 1 ≤ r ≤ 3 − m as disjoint open subsets in which

ΠC(L) is real analytic and let qr ∈ ∂Dm be points such that u(qr) ∈ Ur

and du(qr) �= 0. Such points exists by Lemma 7.7. As in Section 8.6, we
then consider the qr as marked points and as there we use the notation
Hr for the submanifold into which qr is mapped.

Then the class in the moduli space of holomorphic disks of every
holomorphic disk (w, g) which is sufficiently close to (u, f) in W2,ε has
a unique representative (ŵ, ĝ) ∈ WS

2,ε. Namely, any such (w, g) must
intersect Hr in a point q′r close to qr, 1 ≤ r ≤ 3 − m. If ψ denotes
the unique conformal reparameterization of Dm which takes qr to q′r,
1 ≤ r ≤ 3 − m then ŵ(ζ) = w(ψ(ζ)). Moreover, if

(8.6) dΓ(u,f) : T(u,f)W2,ε → H1,ε[0](Dm, T ∗0,1Dm ⊗ C
n),

has index k (note k ≥ 3−m since the space of conformal reparameteri-
zations of Dm is (3−m)-dimensional), then the restriction of dΓ(u,f) to
T(u,f)WS

2,ε has index k − (3 − m). In particular, if dΓ(u,f) is surjective,
so is its restriction.

We conclude from the above that to study the moduli space of holo-
morphic disks in a neighborhood of a given holomorphic disk, we may
(and will) use a neighborhood of that disk in WS

2,ε and Γ̃ rather than a
neighborhood in the bigger space W2,ε and Γ.

8.6.2. Marked points on disks with many punctures. Let L ⊂
C

n × R be as above, let m ≥ 3 and consider a holomorphic disk (u, f)
with boundary on L, represented by a map u : Dm → C

n . We shall put
k marked points on Dm.

Pick Ur ⊂ ΠC(L), 1 ≤ r ≤ k as disjoint open subsets in which ΠC(L)
is real analytic and let qr ∈ ∂Dm be points such that u(qr) ∈ Ur and
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du(qr) �= 0. As in Section 8.6, we then consider the qr as marked points
and as there we use the notation Hr for the submanifold into which qr

is mapped.
Note that (u, f) lies in W2,ε as well as in WS

2,ε. We define a map

Ω: U ⊂ WS
2,ε → W2,ε; Ω((w, g, φ̃s)) = (ŵ, ĝ, φ̃t)

where U is a neighborhood of ((u, f), κ̃) as follows.
Consider the local coordinates ω ∈ R

m+k−3 on Cm+k around κ̃ and
the product structure

R
m+k−3 = R

m−3 × R
j × R

k−j ,

where R
m−3 is identified with the diffeomorphisms

φτ = φ̃τ1
p4

◦ · · · ◦ φ̃τm−3
pm

, τ = (τ1, . . . , τm−3) ∈ R
m−3,

where j is the number of elements in {s1, s2, s3}\{p1, p2, p3}, and where
Rk−j is identified with the diffeomorphisms

φσ = φ̃σ1
ŝ1

◦ · · · ◦ φ̃
σk−j

ŝk−j
, σ = (σ1, . . . , σk−j) ∈ R

k−j

where {ŝ1, . . . , ŝk−j} = S \ ({p4, . . . , pm} ∪ {s1, s2, s3}).
For θ̃ near κ̃, let {s′1, . . . , s′m+k−3} denote the corresponding positions

of punctures and marked points in ∂∆ and let ψ : ∆ → ∆ be the unique
conformal reparameterization such that ψ(pj) = p′j for j = 1, 2, 3 and
note that we may view ψ as a map from Dm to D̃m,k. Let s′′l = ψ−1(s′l)
for 3 ≤ l ≤ k + m − 3 and sl �= pi, i = 1, 2, 3 let (τ, σ) ∈ R

m+k−3−j be
the unique element such that φτ ◦ φσ(sl) = s′′l . Define

Ω(w, θ̃) = (w ◦ ψ ◦ φσ, (φτ )−1),

where (φτ )−1 is interpreted as a conformal structure on Dm in a neigh-
borhood of κ in local coordinates given by φτ , τ ∈ R

m−3 and where
we drop the boundary function from the notation since it is uniquely
determined by the C

n-function component of Ω(w, θ̃) and g.

Lemma 8.7. The map Ω maps U ∩ Γ̃−1(0) into Γ−1(0). Moreover,
Ω is a C1-diffeomorphism on a neighborhood of (u, f).

Proof. Assume that (w, g) ∈ Γ̃−1(0). Then w is holomorphic in the
conformal structure θ̃. Since ψ is a conformal equivalence and since the
conformal structure θ̃ is obtained from κ̃ by action of the inverses of
φτ ◦ φσ this implies

0 = dw ◦ dψ + i ◦ (dw ◦ dψ) ◦ (dφσ) ◦ (dφτ ) ◦ jκ ◦ (dφτ )−1 ◦ (dφσ)−1.

Thus

0 =
(
dw ◦dψ ◦dφσ + i◦ (dw ◦dψ ◦dφσ)◦ (dφτ )◦ jκ ◦ (dφτ )−1

)
◦ (dφσ)−1,

and w ◦ ψ ◦ φσ is holomorphic in the conformal structure dφτ jκ(dφτ )−1

as required.



THE CONTACT HOMOLOGY OF LEGENDRIAN SUBMANIFOLDS 267

For the last statement we use the inverse function theorem. It is
clear that the map Ω is C1 and that the differential of Ω at (u, f)
is a Fredholm operator. In fact, on the complement of all conformal
variations on D̃m,k not supported around any of p3, . . . , pm, it is just an
inclusion into a subspace of codimension k, which consists of elements
v which vanish at q1, . . . , qk. Since du(qr) �= 0 for all r, it follows easily
that the image of the remaining k directions in T(u,f)WS

2,ε spans the
complement of this subspace. q.e.d.

It is a consequence of Lemma 8.7 that if (u, f) is a holomorphic disk
with boundary on L and more than 3 punctures, then we may view
a neighborhood of (u, f) in the moduli space of such disks either as a
submanifold in WS

2,ε or in W2,ε in a neighborhood of (u, f).

Remark 8.8. Below we extend the use of the notion W2,ε to include
also spaces WS

2,ε, when this is convenient. The point being that after
Sections 8.6.1 and 8.6.2, we may always assume the number of marked
points and punctures is ≥ 3, so that the moduli space of holomorphic
disks (locally) may be viewed as a submanifold of W2,ε.

8.7. Uniform invertibility of the differential in the stationary
case. Let

Γ: W2 → H1[0](Dm, T ∗0,1Dm ⊗ C
n)

be the ∂̄-map defined in Section 5.7 (see Remark 8.6 for notation). Let
u : Dm+1 → C

n and v : Dl+1 → C
n be as in Section 8.1.1 and consider

the differential dΓρ at (wρ, κρ), where wρ is as in Lemma 8.5 and κρ

is the natural metric (complex structure) on Dr(ρ), r = m + l. After
Sections 8.6.1 and 8.6.2, we know that after adding 3−m or 3−l marked
points on holomorphic disks with ≤ 2 punctures, we may assume that
m ≥ 2 and l ≥ 2 below.

Lemma 8.9. There exist constants C and ρ0 such that if ρ > ρ0,
then there are continuous right inverses

Gρ : H1[0](T ∗0,1Dr(ρ) ⊗ C
n) → T(wρ,κρ)W2

of dΓρ with
‖Gρ(ξ)‖ ≤ C‖ξ‖1.

Proof. The kernels

ker(dΓ(u,κ1)) ⊂ TuW2 ⊕ Tκ1Cm+1,

ker(dΓ(v,κ2)) ⊂ TvW2 ⊕ Tκ2Cl+1

are both 0-dimensional. As in Section 8.6, we view elements γ1 ∈
Tκ1Cm+1 (γ2∈Tκ2Cl+1) as linear combinations of sections of End(TDm+1)
(End(TDl+1)) supported in compact annular regions close to all punc-
tures and marked points, except at three. Since these annular regions
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are disjoint from the regions affected by the gluing of Dm+1 and Dl+1,
we get an embedding

Tκ1Cm+1 ⊕ Tκ2Cl+1 → TκρCr.

In fact, using this embedding,

TκρCr = Tκ1Cm+1 ⊕ Tκ2Cl+1 ⊕ R,

where the last summand can be taken to be generated by a section
γ0 of End(TDr(ρ)) supported in an annular region around a puncture
(marked point) in Dr(ρ) where there was no conformal variation before
the gluing. Then γ0 spans a subspace of dimension 1 in T(wρ,κρ)W2. Let
a be a coordinate along this 1-dimensional subspace. We prove that for
(ξ, γ) ∈ Wρ = {a = 0}, we have the estimate

(8.7) ‖(ξ, γ)‖ ≤ C‖dΓρ(ξ, γ)‖1,ε,

for all sufficiently large ρ. Since the Fredholm-index of dΓρ equals 1,
this shows dΓρ are surjective and with uniformly bounded inverses Gρ

as claimed and thus finishes the proof.
Assume (8.7) is not true. Then there exists a sequence of elements

(ξN , γN ) ∈ Wρ(N), ρ(N) → ∞ as N → ∞ with

‖(ξN , γN )‖ = 1,(8.8)

‖∂̄κρ(N)
ξN + i ◦ ∂κwρ(N) ◦ γN‖1 → 0.(8.9)

As in Section 8.4, we glue a negative puncture at p to a positive one at
q. Note that on the strip

(8.10) Θρ = (Ep[−1]\Ep[−ρ])∪(Eq[1]\Eq[ρ]) ≈ [−ρ, ρ]×[0, 1] ⊂ Dr(ρ)

the conformal structure κρ is the standard one and therefore ∂̄κρ is just
the standard ∂̄ operator. Also, since γN does not have support in Θρ

the second term in (8.9) equals 0 when restricted to Θρ.
Let αρ : Θρ → C be cut-off functions which are real and holomorphic

on the boundary, equal 1 on [−2, 2]× [0, 1], equal 0 outside [−1
2ρ, 1

2ρ]×
[0, 1], and satisfy |Dkαρ| = O(ρ−1), k = 1, 2.

Then αρ(N)ξN is a sequence of functions on R × [0, 1] which sat-
isfy boundary conditions converging to two transverse Lagrangian sub-
spaces. Just as we prove in Lemma 6.9 that the (continuous) index is
preserved under small perturbations, we conclude that the (upper semi-
continuous) dimension of the kernel stay zero for large enough ρ(N);
thus, there exists a constant C such that
(8.11)
‖ξN |[−2, 2] × [0, 1]‖2 ≤ ‖αξN‖2 ≤ C

(
‖αρ(N)(∂̄ξN )‖1 + ‖(∂̄αρ(N))ξN‖1

)
.

As N → ∞, both terms on the right-hand side in (8.11) approaches 0.
Hence,

(8.12) ‖ξN |[−2, 2] × [0, 1]‖2 → 0, as N → ∞.
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Pick cut-off functions β+
N and β−

N on Dr(ρ) which are real valued
and holomorphic on the boundary and have the following properties.
On Dm+1 \ Ep[−ρ + 1], β+

N = 1 and on Dl+1 \ Eq[ρ], β+
N = 0. On

Dl+1\Eq[ρ−1], β−
N = 1 and on Dm+1\Ep[−ρ], β−

N = 0. Let (ξN , γN )± =
(β±

NξN , β±
NγN ). Using the invertibility of dΓ+ = dΓ(u,κ1) and dΓ− =

dΓ(v,κ2), we find a constant C such that

‖(ξN , ΓN )±‖ ≤ C‖dΓ±(ξN , γ)±‖1(8.13)

≤ C
(
‖β±

NdΓρ(ξN , γN )‖1 + ‖(∂̄β±
N )ξN‖1

)
.

The first term in the last line of (8.13) tends to 0 as N → ∞ by (8.9),
the second term tends to 0 by (8.12). Hence, the left-hand side of (8.13)
tends to 0 as N → ∞. Thus, (8.12) and (8.13) contradict (8.8) and we
conclude (8.7) holds. q.e.d.

8.8. Self-tangencies, coordinates and genericity assumptions.
Let z = x + iy = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn) be coordinates
on C

n. Let L ⊂ C
n × R be a semi-admissible Legendrian submanifold

with self-tangency double point at 0. We assume that the self-tangency
point is standard, see Section 3.

Theorems 7.19 and 9.2 imply that the moduli-space of rigid holomor-
phic disks with boundary on L is a 0-dimensional compact manifold.
Moreover, because of the enhanced transversality discussion in Section
7.10, we may assume that there exists r0 > 0 such that for all 0 < r < r0,
if u : Dm → C

n is a rigid holomorphic disk with boundary on L, then
∂Dm ∩ u−1(B(0, r)) is a disjoint union of subintervals of ∂Epj [±M ], for
some M > 0 and some punctures pj on ∂Dm mapping to 0.

By Lemma 4.6, if u : Dm → C
n is a rigid holomorphic disk with q+ a

positive (q− a negative) puncture mapping to 0, then there exists c ∈ R

such that for ζ = τ + it ∈ Eq± [±M ]

u(ζ) =
(
−2(ζ + c)−1, 0, . . . , 0

)
+ O(e−θ|τ |),

for some θ > 0. For simplicity, we assume below that coordinates on
Eq± [M ] are chosen in such a way that c = 0 above.

8.9. Perturbations for self-tangency shortening. For 0 < a < 1,
with a very close to 1 and R > 0 with R−1 � r0, let bR : [0,∞) → R

be a smooth non-increasing function with support in [0, R−1) and with
the following properties

bR(r) = (R + Ra)−2 for r ∈
[
0, (R +

1
2
Ra)−1

]
,(8.14)

|DbR(r)| = O(R−a),

|D2bR(r)| = O(R2−2a),

|D3bR(r)| = O(R4−3a),
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|D4bR(r)| = O(R6−4a).

The existence of such a function is easily established using the fact that
the length of the interval where DbR is supported equals

R−1 −
(

R +
1
2
Ra

)−1

=
1
2
Ra−2 + O(R2(a−2)).

Let

(8.15) hR(z) = −x1(z)bR(|z|).

Let L1 and L2 be the two branches of the local Lagrangian projection
near the self-tangency, see Section 3 or Figure 2. For s > 0, let Ψs

R
denote the time s Hamiltonian flow of hR and let LR(s) denote the
Legendrian submanifold which results when Ψs

R is lifted to a contact flow
on C

n×R (see Section 3) which is used to move L2. Let L2
R(s) = Ψs

R(L2).
Let g(R, s, σ) be a 3-parameter family of metrics on C

n such that L1

is totally geodesic for g(R, s, 0), L2
R(s) is totally geodesic for g(R, s, 1)

and such that g(R, s, 0) and g(R, s, 1) have properties as the metrics
constructed in Section 5.3.

Note that L2
R(1)∩L1 consists of exactly two points with coordinates

(±(R + Ra)−1 + O(R−3), 0, . . . , 0).

We will use Ψs
R to deform holomorphic disks below. It will be impor-

tant for us to know they remain almost holomorphic in a rather strong
sense, for which we need to derive some estimates on the flow Ψs

R and
its derivatives. Let XR denote the Hamiltonian vector field of hR. Then
if D denotes derivative with respect to the variables in C

n and · denotes
contraction of tensors

d

ds
Ψs

R =XR; Ψ0
µ = id,(8.16)

d

ds
DΨs

R =DXR · DΨs
R; DΨ0

µ = id,

(8.17)

d

ds
D2Ψs

R =D2XR · DΨs
R · DΨs

R + DXR · D2Ψs
R; D2Ψ0

R = 0,

(8.18)

d

ds
D3Ψs

R =D3XR · DΨs
R · DΨs

R · DΨs
R + 2D2XR · D2Ψs

R · DΨs
R

+ D2XR · DΨs
R · D2Ψs

R + DXR · D3Ψs
R; D3Ψ0

R = 0.(8.19)
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Since XR = i ·DhR and x1(z) = O(R−1) for |z| in the support of bR,
(8.14) implies

|XR| = O(R−(1+a)),(8.20)

|DXR| = O(R(1−2a)),(8.21)

|D2XR| = O(R(3−3a)),(8.22)

|D2XR| = O(R(5−4a)).(8.23)

If 0 ≤ s ≤ 1, then
F0. (8.16) and (8.20) imply |Ψs

R − id | = O(R−(1+a)).
F1. (8.17) and (8.21) first give |DΨs

R| = O(1). This together with
(8.21) imply |DΨs

R − id | = O(R1−2a).
F2. (8.18), (8.21), (8.22), F1, and Duhamel’s principle imply |D2Ψs

R|
= O(R3−3a).

F3. In a similar way, as in F2, we derive |D3Ψs
R| = O(R5−4a).

Let u : R× [0, 1] → C
n be a holomorphic function and and let ω : [0, 1]

→ [0, 1] be a smooth non-decreasing surjective approximation of the
identity which is constant in a δ-neighborhood of the ends of the interval.
Consider the function uR(τ + it) = Ψω(t)

R (u(τ + it)). We want estimates
for uR, ∂̄uR and D∂̄uR and ∂τD∂̄uR.

F0 implies

(8.24) uR = u + O(R−(1+a)).

For the estimates on ∂̄uR and its derivatives, we note

(8.25) ∂̄uR = DΨω(t)
R

∂u

∂τ
+ i

(
DΨω(t)

R

∂u

∂t
+

dω

dt
XR(u)

)
.

By (8.20), (8.21), F1, and the holomorphicity of u,

(8.26) |∂̄uR| = O(R1−2a)|Du| + O(R−(1+a)).

Taking derivatives of (8.25) with respect to τ and t, we find (using
F0–3 and (8.20)–(8.23))

|D∂̄uR| =O(R1−2a)|D2u| + O(R3−3a)|Du|2
+ O(R1−2a)|Du| + O(R−(1+a)),(8.27)

|∂τD∂̄uR| =O(R1−2a)|D3u| + O(R3−3a)|Du||D2u| + O(R5−4a)|Du|3
+ O(R1−2a)|D2u| + O(R3−3a)|Du|2 + O(R−(1+a))|Du|.(8.28)

Finally, let θ : [0, 1] → R be a smooth function supported in a 1
2δ-

neighborhood of the endpoints of the interval with θ′(0) = θ′(1) = 1.
Define

(8.29) ûR(τ + it) = uR(τ + it) + iθ(t)∂̄uR(τ + it).
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Then uR = ûR on the boundary and ûR is holomorphic on the boundary.
Also for some constant C

|ûR| ≤ C(|uR| + |∂̄uR|),(8.30)

|∂̄ûR| ≤ C(|∂̄uR| + |D∂̄uR|),(8.31)

|D∂̄ûR| ≤ C(|∂̄uR| + |D∂̄uR| + |∂τD∂̄uR|).(8.32)

8.10. Self-tangency preshortening. Let u : Dm+1 → C
n be a rigid

holomorphic disk with boundary on L and with negative punctures
p1, . . . , pk mapping to 0. (The case of one positive puncture mapping
to 0 is completely analogous to the case of one negative puncture so for
simplicity, we consider only the case of negative punctures.)

For large ρ > 0, let R = R(ρ) be such that the intersection points of
L1 and L2

R(1) are a± = (±(ρ+ρa)−1, 0, . . . , 0). Then R(ρ) = ρ+O(ρ−1).
Define

uρ(ζ) =

{
u(ζ) for ζ ∈ Dm+1 \

(⋃k
j=1 Epj [−1

2ρ]
)
,

ûR(ρ)(τ + it) for ζ = τ + it ∈ Epj [−1
2ρ].

Then there exist unique functions

ξR(j) : Epj [−ρ] → Ta−C
n

such that
expR,t(ξR(j)(ζ)) = uρ(ζ), ζ ∈ Epj [−ρ],

where expR,t denotes the exponential map in the metric g(R, ω(t), t) at
a−.

Let αρ : (−∞,−ρ] × [0, 1] → C be a smooth cut-off function, real
valued and holomorphic on the boundary and such that αρ(τ + it) = 1
for τ in a small neighborhood of −ρ, αρ(τ + it) = 0 for τ ≤ −ρ − 1

2ρa,
and |Dkαρ| = O(ρ−a), k = 1, 2. Define wρ : Dm+1 → C

n as
(8.33)

wρ(ζ) =

⎧⎪⎪⎨⎪⎪⎩
uρ(ζ) for ζ ∈ Dm+1 \

(⋃
j Epj [−ρ]

)
,

expR,t(αρ(ζ)ξR(j)(ζ)) for ζ = τ + it ∈ Epj [−ρ], j = 1, ..., k,

a− for ζ ∈ ⋃
j Epj [−ρ − 1

2ρa].

8.11. Weight functions for shortened disks. Let u : Dm+1 → C
n

be a rigid holomorphic disk with boundary on L. Let ε > 0 be small
and let eρ : Dm+1 → R be a function which equals e−ε|τ | for τ + it ∈
Epj \Epj [−ρ] and is constantly equal to e−ερ for τ +it ∈ Epj [−ρ]. Define
W2,−ε,ρ just as in Section 5.8, but replacing the weight function eε with
the new weight function eρ. The corresponding weighted norms will be
denoted ‖ · ‖2,−ε,ρ. We also write H1,−ε,ρ[0](Dm+1, T

∗0,1⊗C
n) to denote

the subspace of elements in the Sobolev space with the weight function
eρ which vanishes on the boundary.
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8.12. Estimates for self-tangency preshortened disks.

Lemma 8.10. The function wρ in (8.33) lies in W2,−ε,ρ (see Remark
8.6 for notation) and there exists a constant C such that

‖∂̄wρ‖1,−ε,ρ ≤ Ce−ερρ−1− 1
2
a.

Proof. The first statement is obvious. Consider the second. In Dm+1\(
Epj [−ρ]

)
, wρ equals u which is holomorphic. It thus remains to check

Epj [−ρ] ≈ (−∞,−ρ] × [0, 1].
Taylor expansion of expR,t gives

(8.34) expR,t ξ = ξ − Γk
ij(R, t)ξiξj∂k + O(|ξ|3).

The Taylor expansion of the inverse then gives

(8.35) ξR = ûR + Γk
ij(R, t)ûi

Rûj
R∂k + O(|ûR|3).

Thus in (−∞,−ρ] × [0, 1], we have

(8.36) wρ = αρûR + (αρ − α2
ρ)Γ

k
ij(R, t)ûi

Rûj
R∂k + O(|ûR|3).

Now R = ρ+O(ρ−1) from Section 8.10, |Dkαρ| = O(ρ−a) for all cut-off
functions, and by Lemma 4.6 |Dku| = O(ρ−(1+k)), in (−∞,−ρ]× [0, 1];
thus, applying (8.30) through (8.32) to (8.36), we get

|∂̄wρ| + |D∂̄wρ| = O(ρ−(1+a)).

Noting that ∂̄wρ is supported on an interval of length 1
2ρa, so multi-

plying with the weight function, we find

‖∂̄wρ‖1,−ε,ρ ≤ Ce−ερρ−1− 1
2
a.

q.e.d.

8.13. Controlled invertibility for self-tangency shortening. Let
dΓρ denote the differential of the map

Γρ : W2,−ε,ρ → H1,−ε,ρ[0](Dm+1, T
∗0,1 ⊗ C

n).

Referring to Sections 8.6.1 and 8.6.2, we assume that m ≥ 2 and l(j) ≥ 2
for each j.

Lemma 8.11. There exist constants C and ρ0 such that if ρ > ρ0,
then there is a continuous right inverse Gρ of dΓρ

Gρ : H1,−ε,ρ[0](T ∗0,1Dr(ρ) ⊗ C
n) → T(wρ,κρ,0)W2,−ε,ρ

such that for any δ > 0

(8.37) ‖Gρ(ξ)‖ ≤ Cρ1+δ‖ξ‖1,−ε,ρ.
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Proof. The kernel

ker(dΓu) ⊂ TuW2,−ε ⊕ TκCm+1

has dimension 0. By the invertibility of dΓu, we conclude there is a
constant C such that for ξ ∈ TuWε,2,ρ we have

(8.38) ‖ξ‖ ≤ C‖dΓu,ρξ‖1,−ε.

Assume that (8.37) is not true. Then there exists a sequence ξN ∈
TwρW2,−ε,ρ(N) with ρ(N) → ∞ as N → ∞ such that

‖ξN‖ = 1,(8.39)

‖dΓρξN‖1,−ε,ρ(N) ≤ Cρ−1− δ
2 .(8.40)

Let α : Dm+1 → C be a smooth function which equals 0 on Epj [−ρ−
1
4ρa] and equals 1 on Dm+1 \

(⋃
Epj [−ρ − 10]

)
, which is real valued

and holomorphic on the boundary and with |Dkα| = O(ρ−a), k = 1, 2.
Then (8.38) implies

(8.41) ‖αξN‖ ≤ C(‖(∂̄α)ξN‖1,−ε + ‖αdΓu,ρξN‖1,−ε) = O(ρ−a).

Finally, we let φ̂ : (−∞,−ρ + ρa] → C be the function which equals
θ(ρ) − θ(τ), where θ(τ) denotes the angle between the tangent line of
L2

ρ(1) intersected with the z1-plane (the plane of the first coordinate in
C

n) at u(τ + i) and the real line in that plane. From Lemma 4.6, we cal-
culate that |Dkφ̂| = O(ρa−2), 0 ≤ k ≤ 2. Using the same procedure as
for cut-off functions, we extend it to a function φ : (−∞,−ρ+ρa)× [0, 1]
which is holomorphic on the boundary, which equals φ̂ on (−∞,−ρ +
ρa)×{1} and which equals 0 on (−∞,−ρ+ρa)×{0} and with the same
derivative estimates. Let M = Diag(φ, 1, . . . , 1).

Let α be a cut-off function which is 0 in Dm+1 \ Epj [−ρ + ρa] and 1
on Epj [−ρ]. Having frozen the angle away from 0, we can use Lemmas
6.8 and 6.9 (assuming that ε is smaller than the smallest component of
the complex angle) to get

(8.42) ‖e−εραMξN‖ ≤ Cρ(‖e−ερ(∂̄αM)ξN‖ + ‖e−εραMdΓρξN‖).
The first term on the right-hand side inside the brackets is O(ρa−2) +
O(ρ−2a) the second term is O(ρ−1−δ). Hence as ρ → ∞ the right-hand
side goes to 0. This together with (8.41) contradicts (8.39) and we
conclude the lemma holds. q.e.d.
8.14. Perturbations for self-tangency gluing. For R > 0 with
R−1 � r0, let aR : [0,∞) → R be a smooth non-increasing function
with support in [0, 1

2R−1) and with the following properties

aR(r) = R−1 for r ∈ [0, R−2],(8.43)

|DaR(r)| = O(1),

|D2aR(r)| = O(R).
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The existence of such functions is easily established. Let hR : C
n → C

n

be given by

(8.44) hR(z) = x1(z)aR(|z1|).
For s > 0, let Φs

R denote the time s Hamiltonian flow of hR and let
LR(s) denote the Legendrian submanifold which results when Φs

R is
lifted to a local contact flow on C

n × R which is used to move L2.
(Note that Φs

R fixes the last n− 1 coordinates and has small support in
the z1-direction and so its lift can be extended to the identity outside
L2(s).) Let L2

R(s) = Φs
R(L2). We pick aR so that L2

R(s) ∩ L1 = ∅, for
0 < s ≤ (KR)−1 for some fixed K > 4.

As in Section 8.9, we derive the estimates

|Φs
R − id | ≤ O(R−2),(8.45)

|DΦs
R − id | = O(R−1),(8.46)

|D2Φs
R| = O(1).(8.47)

For convenient notation, we write γ2
R(s) for the curve in which L2

R(s)
intersects the z1-line in a neighborhood of 0.
8.15. Self-tangency pregluing. Let u : Dm → C

n be a rigid holomor-
phic disk with boundary on L and with negative punctures p1, . . . , pk (as
above, we write S = {p1, . . . , pk}) mapping to 0. Let vj : Dl(j)+1 → Cn

be rigid holomorphic disks with positive punctures qj mapping to 0.
For 0 < ρ < ∞, let R = ρ, s = (Kρ)−1 and let Lρ be the Legendrian

submanifold which results when Φs
R is applied. Consider the region Ξρ in

the z1-line bounded by the curves γ2
R(s), γ1

R(s), u1(ρ+it), 0 ≤ t ≤ 1, and
v(j)1(ρ+it), 0 ≤ t ≤ 1. By the Riemann mapping theorem there exists a
holomorphic map from a rectangle φρ : [−A(ρ), A(ρ)]× [0, 1] → C which
parameterizes this region in such a way that [−A(ρ), A(ρ)] × {j − 1}
maps to γj(s), j = 1, 2. Moreover, since Ξρ is symmetric with respect
to reflections in the Im z1 = y1-axis we have φρ(0 + i[0, 1]) ⊂ {Re z1 =
x1 = 0}.

Lemma 8.12. The shape of the rectangle depends on ρ. More pre-
cisely, there exists constants 0 < K1 < K2 < ∞ such that K1ρ ≤ A(ρ) ≤
K2ρ for all ρ.

Proof. Identify the z1-line with C. Consider the region Θρ bounded
by the circles of radius 1 and 1 + 4ρ−2 both centered at i ∈ C, and the
lines through i which intersects the x1-axis in the points ±2(ρ)−1. Mark
the straight line segments of its boundary. The conformal modulus of
this region is easily seen to be ρ + O(ρ−1).

On the other hand, using (8.45) and (8.46) one constructs a (K +
O(ρ−1))-quasi conformal map from Θρ to Ξρ, for some K > 0 indepen-
dent of ρ. This implies the conformal modulus mρ of Θρ satisfies

(8.48) (K+O(ρ−1))−1(ρ+O(ρ−1)) ≤ mρ ≤ (K+O(ρ−1))(ρ+O(ρ−1))
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and the lemma follows. q.e.d.

Let u1 and v1
j denote the z1-components of the maps u and vj . Since

Φs
R fixes γ2 outside |x1| ≤ (2ρ)−1, we note that

(8.49) u1 maps the region Epj [−ρ] \ Epj [−2ρ] into Θρ \ φρ(0 × [0, 1]).

and that

(8.50) v1
j maps the region Epj [ρ] \ Epj [2ρ] into Θρ \ φρ(0 × [0, 1]).

Fix 0 < a < 1
4 . Using u1, v1

j , the conformal map φρ and their
inverses, we construct a complex 1-dimensional manifold Dr(ρ) by glu-
ing Ωj(ρ) = [−A(ρ), A(ρ)] × [0, 1] to Dm+1 \

(⋃
j Epj [−(1 + a)ρ]

)
and

Dl(j)+1Eq[(1 + a)ρ]. Note that, by construction, Dr(ρ) comes equipped
with a holomorphic function

(8.51) w1
ρ : Dr(ρ) → C,

which equals u1 on Dm+1\
⋃

j Epj [−(1+a)ρ], which equals v1
j on Dl(j)+1\

Eqj [(1 + a)ρ], and which equals φρ on Ωj , for all j.
We next exploit the product structure of ΠCL in a neighborhood of 0.

If u′ and v′j denotes the remaining components of u and vj so that u =
(u1, u′) and vj = (v1

j , v
′
j), then in some neighborhood of the punctures qj

and pj , v′j and u′
j are holomorphic functions with boundary on the two

transverse Lagrangian manifolds P1 and P2, see Section 3. As in Section
5.3, we find a 1-parameter family g(σ) of metrics on C

n−1 ≈ {z1 = 0}.
Then, for M sufficiently large, there exist unique vector valued functions
ξ′j and η′j such that

expt
0 ξ′j(τ + it) = u′(τ + it), τ + it ∈ Epj [−M ],(8.52)

expt
0 η′j(τ + it) = v′j(τ + it), τ + it ∈ Eqj [M ].(8.53)

Now pick a cut-off function α+ which equals 1 on Dm+1 \
⋃

j Epj [−ρ+5]
and 0 on Epj [−ρ+3]. Pick similar cut-off functions α− on Dl(j)+1. Define
w′

ρ : Dr(ρ) → C
n−1 by

(8.54) w′
ρ(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u′(ζ), ζ ∈ Dm+1 \
⋃

Epj [−ρ + 5],
v′j(ζ), ζ ∈ Dl(j)+1 \ Eqj [ρ − 5],
expt

0(α
+(ζ)ξj(ζ)), ζ ∈ Epj [−ρ + 5] \ Epj [−ρ],

expt
0(α

−(ζ)ηj(ζ)), ζ ∈ Eqj [ρ − 5] \ Epj [ρ],
0, ζ ∈ Ωj .

Finally, combining (8.51) and (8.54), we define

(8.55) wρ = (w1
ρ, w

′
ρ).
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8.16. Weight functions and Sobolev norms for self tangency
gluing. Consider Dr(ρ) from the previous section, ε > 0, and a smooth
function f : Dr(ρ) → C

n. Let
• f+ denote the restriction of f to

int
(
Dm+1 \

⋃
j

Epj [−(1 + a)ρ]
)
,

which we consider as a subset of Dm+1.
• f− denote the restriction of f⋃

j

int
(
Dl(j)+1 \ Eqj [(1 + a)ρ]

)
,

which we consider as subset of the disjoint union
⋃

j Dl(j)+1

• f0 denote the restriction of f to the disjoint union
⋃

j int(Ωj(ρ)).

For ε > 0, let e−ε denote the weight function on
⋃

j Dl(j)+1 which
equals 1 on Dl(j)+1 \ Eqj and equals eδ|τ | in Eqj , each j. Let ‖ · ‖k,ε,−
denote the Sobolev norm with weight e−δ . Let e0

ε denote the weight
function on Ωj which equals eε(A(ρ)+ρ+τ) and ‖·‖k,ε,0 denote the Sobolev
norm with this weight. Finally, let e+

ε be the function on Dm+1 which
equals e2ε(A(ρ)+ρ) on Dm+1 \

⋃
j Epj ] and equals e2ε(A(ρ)+ρ)−ε|τ | in Epj .

Let ‖ · ‖k,ε,+ denote the corresponding norm.
Define

(8.56) ‖f‖k,ε,ρ = ‖f+‖k,ε,+ + ‖f0‖k,ε,0 + ‖f−‖k,ε,−.

Using this norm, we define as in the shortening case the spaces W2,ε,ρ

and H1,ε,ρ[0](Dm+1, T
∗0,1 ⊗ C

n). The ∂̄-map

Γ: W2,ε,ρ → H1,ε,ρ[0](T ∗0,1Dm ⊗ C
n)

is defined in the natural way.

8.17. Estimates for self tangency glued disks.

Lemma 8.13. The function wρ in (8.55) lies in W2,ε,ρ and there
exists a constant C such that

‖∂̄wρ‖1,ε,ρ ≤ Ce(−θ+2K2ε)ρ,

where θ � ε is the smallest non-zero complex angle at the self tangency
point 0 and where K2 is as in Lemma 8.12.

Proof. Note that the first coordinate of wρ is holomorphic and that
the support of ∂̄wρ is disjoint from Ωj . Using the asymptotics of u′ and
v′j , the proof of Lemma 8.5 applies to give the desired estimate once we
note that the weight function is O(eK2ερ) by Lemma 8.12. q.e.d.
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8.18. Estimates for real boundary conditions. In order to prove
the counterpart of Lemma 8.11 in the self tangency gluing case, we study
an auxiliary non-compact counterpart of the gluing region.

Let Ω(ρ) = [−A(ρ), A(ρ)]× [0, 1] and let Mρ be the complex manifold
which results when (−∞,−(1 − a)ρ] × [0, 1] and [(1 − a)ρ,∞) × [0, 1]
are glued to Ω(ρ) with the holomorphic gluing maps u1 ◦ (φρ)−1 and
v1
j ◦(φρ)−1, respectively. (That is, the maps which were used to construct

Dr(ρ).) We consider Sobolev norms on Mρ similar to those used above.
For ε > 0, let
• e0

ε : : [−A(ρ), A(ρ)] × [0, 1] → R be the function e0
ε (τ + it) = eετ ,

• e−ε : (−∞,−(1 − a)ρ] × [0, 1] → R be the function e−ε (τ + it) =
eε(ρ−A(ρ)+τ)

• e+
ε : [(1−a) ρ, ∞) × [0, 1] → R be the function e+

ε (τ + it) =
eε(−ρ+A(ρ)+τ)

If f : Mρ → C is function we let as above f−, f0, f+ denote the restric-
tions of f to the interiors of the pieces from which Mρ was constructed
and define the Sobolev norm

(8.57) ‖f‖k,ρ,ε = ‖f−‖k,ε + ‖f0‖k,ε + ‖f+‖k,ε.

Lemma 8.14. There are constants C and ρ0 if ρ > 0 and if f : Mρ →
C is function which is real valued and holomorphic on the boundary and
has ‖f‖k,ρ,ε ≤ ∞, then

(8.58) ‖f‖k,ρ,ε ≤ C‖∂̄f‖k−1,ρ,ε,

for k = 1, 2.

Proof. To prove the lemma, we first study the gluing functions. Let
ψ : [−ρ,−(1−a)ρ)×[0, 1] → [−A(ρ), 0]×[0, 1] be the function u1◦(φρ)−1.
Note that ψ is holomorphic and that by (8.49) has a holomorphic ex-
tension (still denoted ψ) to [−ρ, 0) × [0, 1].

To simplify notation, we change coordinates and think of the source
[−ρ, 0) × [0, 1] as [0, ρ) × [0, 1] and of the target [−A(ρ), 0] × [0, 1] as
[0, A(ρ)] × [0, 1]. Thus

(8.59) ψ : [0, ρ] × [0, 1] → [0, A(ρ)] × [0, 1]

is a holomorphic map. Consider the complex derivative ∂ψ
∂z . This is

again a holomorphic function which is real on the boundary of [0, ρ) ×
[0, 1]. In analogy with Lemma 6.2, we conclude that

(8.60)
∂ψ

∂z
=

∑
n∈Z

c′nenπz,

for some real constants c′n. Integrating this and using ψ(0) = 0, we find

(8.61) ψ(z) = c0z +
∑

cnenπz,
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for some real constants cn. Then

(8.62) i = ψ(i) = c0i +
∑

cnenπi

and we conclude c0 = 1. Moreover, if ψd denotes the double of ψ (which
has the same Fourier expansion), then since ψd(it) is purely imaginary
for 0 ≤ t ≤ 2, we find that cn = −cn for all n �= 0. Thus

(8.63) ψ(z) = z +
∑
n

cn(enπz − e−nπz).

The area of the image of ψd is O(ρ) by Lemma 8.12. Since this area
equals the L2-norm of the derivative of ψd, we conclude that

(8.64) 2
∫ ρ

0
12 dτ +

∑
n∈Z

∫ ρ

0
n2π2|cn|2e2nπτ dτ = O(ρ).

Integrating, we find there exists a constant K and 0 < δ � 1 such that

(8.65) |cn| ≤ Kρ(n)−
1
2 e−nπρ ≤ Ke−n(π−δ)ρ,

for each n �= 0. Thus, in the gluing region [0, aρ), we find

(8.66) |ψ(z) − z| ≤ K
∑
n>0

e−n(π−δ−a)ρ ≤ K ′e−(π−2(δ+a))ρ = K ′e−ηρ,

where η > 0. Similarly, one shows |Dψ − id | ≤ Ke−
1
2
ηρ and |D2ψ| ≤

Ke−
1
2
ηρ.

Assume (8.58) is not true, then there exists a sequence fj of functions
on Mρ(j), ρ(j) → ∞ as j → ∞, with

‖fj‖2,ρ,ε = 1,(8.67)

‖∂̄fj‖1,ρ,ε → 0, as j → ∞.(8.68)

Let γ : (−∞,−(1 − a)ρ] × [0, 1] be a cut-off function which equals 1
on (−∞,−(1− 1

4a)ρ]× [0, 1] which equals 0 on [−(1− 1
2a)ρ,−(1− a)ρ),

has |Dkγ| = O(ρ−1), k = 1, 2, and is real valued and holomorphic on
the boundary. Then by uniform invertibility of the ∂̄-operator on the
strip with constant weight ε, we find

(8.69) ‖γf‖2,ε ≤ C(‖(∂̄γ)f‖1,ε + ‖γ∂̄f‖1,ε).

Here both terms on the right-hand side goes to 0 as ρ → ∞. In a similar
way, we conclude

(8.70) ‖βf‖2,ε → 0,

for β a cut-off function on [(1 − a)ρ,∞).
Now let α be a cut-off function on [−A(ρ), A(ρ)]× [0, 1] which equals

1 on [−A(ρ)+2, A(ρ)−2]× [0, 1] and equals 0 outside [−A(ρ)+1, A(ρ)−
1] × [0, 1]. We find

(8.71) ‖αf‖2,ε ≤ C(‖(∂̄α)f‖1,ε + ‖α∂̄f‖1,ε).
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Here the second term on the right-hand side goes to 0 as ρ → ∞ by
(8.68). The first goes to 0 as well since ‖γf‖ → 0 and ‖βf‖ → 0 and
since the transition functions are very close to the identity for ρ large.

In conclusion, we find ‖f‖2,ρ,ε → 0, contradicting (8.67), and (8.58)
holds. q.e.d.

8.19. Uniform invertibility for self tangency gluing. Let dΓρ de-
note the differential of the map

Γ: W2,ε,ρ → H1,ε,ρ[0](Dm+1, T
∗0,1 ⊗ C

n),

at wρ. Referring to Sections 8.6.1 and 8.6.2, we assume that m ≥ 2 and
l(j) ≥ 2 for each j.

Lemma 8.15. There exist constants C and ρ0 such that if ρ > ρ0

and then there is a continuous right inverse Gρ of dΓρ

Gρ : H1,ε,ρ[0](T ∗0,1Dr(ρ) ⊗ C
n) → T(wρ,κρ)W2,ε,ρ

such that
‖Gρ(ξ)‖ ≤ C‖ξ‖1,ε,ρ.

Proof. Recall 0 < ε � θ, where θ > 0 is the smallest non-zero complex
angle at the self-tangency point. Assume we glue k disks v1, . . . , vk to
u. The kernels

dΓ(u,κ1) ⊂ T(u,κ1)W2,−ε,

dΓ(vj ,κ2(j)) ⊂ T(vj ,κ2(j))W̃2,ε,(8.72)

are both of dimension 0 and dΓ(u,κ1) and dΓ(vj ,κ2(j)) are invertible.
As usual, we consider the embedding

(8.73) Tκ1Cm+1 ⊕
k⊕

j=1

Tκ2(j)Cl(j)+1 → TκρCr,

which identifies the left-hand side with a subspace of codimension k in
TκρCr. Let Wρ denote the complement of this subspace in T(wρ,κρ)W2,ε,ρ.
We show that there exists a constant C such that for ρ large enough
and (ξ, γ) ∈ Wρ

(8.74) ‖(ξ, γ)‖ ≤ C‖dΓρ(ξ, γ)‖.
Assume (8.74) is not true, then there exists a sequence (ξN , γN ) ∈
Wρ(N), where ρ(N) → ∞ as N → ∞ with

‖(ξN , γN )‖ = 1,(8.75)

‖dΓρ(N)(ξN , γN )‖ → 0, as N → ∞.(8.76)

Let β0
ρ : Dr(ρ) → C be a cut-off function which equals 1 on Dm+1 \

(
⋃

j Epj [−1
2ρ]), equals 0 outside Dm+1 \ (

⋃
j Epj [−3

4ρ]), with |Dkβ0
ρ | =
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O(ρ−1), k = 1, 2. By the uniform invertibility of dΓ(u,κ1) we find

‖β0
ρ(j)(ξN , γN )‖2,ε,ρ(8.77)

≤ C‖dΓ(u,κ1)β
0
ρ(N)(ξN , ΓN )‖1,ε,ρ

≤ C
(
‖(∂̄β0

ρ(N))ξN‖1,ε,ρ + ‖β0
ρ(N)dΓρ(ξN , γN )‖1,ε,ρ

)
.

Both terms on the right-hand side go to 0 as N → ∞. Hence

(8.78) ‖β0
ρ(N)(ξN , γN )‖2,ε,ρ → 0, as N → ∞.

Similarly, with βj
ρ : Dr(ρ) → C a cut-off function which equals 1 on

Dl(j)+1 \ Eqj [
1
2ρ], equals 0 outside Dl(j)+1 \ Eqj [

3
4ρ], with |Dkβ0

ρ | =
O(ρ−1), k = 1, 2, we find, by the uniform invertibility of dΓ(vj ,κ2(j))

that

(8.79) ‖βj
ρ(N)(ξN , γN )‖2,ε,ρ → 0, as N → ∞ for all j.

For 1 ≤ j ≤ k, we consider the region

Θj(ρ)(8.80)

=
(
Epj \ Epj [−(1 + a)ρ]

)
∪(

(φρ)−1◦u1
) Ωj(8.81)

∪(
(φρ)−1◦v1

j

) (
Eqj \ Eqj [(1 + a)ρ]

)
.

Note that there is a natural inclusion Θj(ρ) ⊂ Mρ, where Mρ is as in
Lemma 8.14. Also note that the boundary conditions of the linearized
equation over Ωj(ρ) splits into a 1-dimensional problem corresponding to
the first coordinate and an (n− 1)-dimensional problem with boundary
conditions converging to two transverse Lagrangian subspaces in the
remaining (n − 1) coordinate directions.

Let α+
ρ be a cut-off function on Θj(ρ) which equals 1 on

(8.82) Epj

[
−1

4
ρ

]
\ Epj

[
−

(
1 +

1
2
a

)
ρ

]
,

equals 0 outside

(8.83) Epj

[
−1

8
ρ

]
\ Epj

[
−

(
1 +

2
3
a

)
ρ

]
,

with |Dkα+| = O(ρ−1), k = 1, 2, and which is real valued and holomor-
phic on the boundary. Note that over the region where α+ is supported,
the boundary conditions of wρ agrees with those of u. Thus the angle
between the line giving the boundary conditions of wρ and the real line
is O(ρ−1) and it is easy to construct a unitary diagonal matrix function
M on the support α+ with |DkM| = O(ρ−1), k = 1, 2 with the property
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that MξN has the boundary conditions of wρ in the last (n − 1) coor-
dinates and has real boundary conditions in the first coordinate. Thus
Lemma 8.14 implies that
(8.84)

‖α+ξN‖2,ρ,ε ≤ C‖Mα+ξN‖ ≤ C
(
‖(∂̄α+M)ξ‖1,ε,ρ + ‖M∂̄ξN‖1,ε,ρ

)
.

Here both terms in the right-hand side goes to 0 as N → ∞.
In exactly the same way, we show that

(8.85) ‖α−ξN‖ → 0 as ρ → ∞,

for a cut-off function α− with support on the other end of Θρ.
Let α0 be a cut-off function which equals 1 on [−A(ρ)+2, A(ρ)−2]×

[0, 1] and equals 0 outside [−A(ρ) + 1, A(ρ) − 1] × [0, 1] and with the
usual properties. Then the function

(8.86) (τ + it) �→ (dΦts(N)
R(N)(φρ(τ + it)))−1 · α0(τ + it)ξN(τ + it)

has the boundary conditions of wρ in the last (n − 1) coordinates (two
transverse Lagrangian subspaces in this region) and has real boundary
conditions in the first coordinate.

Lemma 8.14 implies

‖α0ξN‖1,ρ,ε ≤ C‖(dΦts(N)
R (N))−1 · α0ξN‖1,ρ,ε(8.87)

≤ C
(
‖∂̄(α0dΦts(N)

R (N))−1) · ξN‖0,ρ,ε

+ ‖(α0dΦts(N)
R (N))−1) · ∂̄ξN‖0,ρ,ε

)
.

Using (8.46) and (8.47) in combination with (8.84) and (8.85), we find
that the first term in (8.87) goes to 0 as N → 0. By (8.76), so does the
second. Hence

(8.88) ‖α0ξN‖1,ρ,ε → 0.

Applying the same argument to ∂τξN and i∂tξN , we conclude that

(8.89) ‖α0ξN‖2,ρ,ε → 0.

Now (8.79), (8.78), (8.84), (8.85), and (8.89) contradict (8.75) and
we find that (8.74) holds.

To finish the proof, we let µj = ∂̄ ∂φCj

∂Cj
, see Section 7.9. Then µj

anti-commutes with jκρ and we consider the µj as newborn conformal
variations spanning the complement of Wρ in T(wρ,κρ)W2,ε,ρ.

The images of µj , j = 1, . . . , k under dΓρ are clearly linearly inde-
pendent since they have mutually disjoint supports. We show that their
images stays a uniformly bounded distance away from the subspace
dΓρ(Wρ). Assume not, then there exists a sequence of elements (ξρ, γρ)
in Wρ with

(8.90) ‖dΓρ

(
(ξρ, γρ) − µj

)‖1,ε,ρ → 0 as ρ → ∞.
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Since ‖dΓρµj‖1,ε,ρ = O(1), we conclude from (8.74) that ‖(ξρ, γρ)‖2,ε,ρ =
O(1). Then, with the cut-off function βj

ρ from above and notation as in
Section 7.9 we find

‖dΓ(vj ,κ2(j))(β
j
ρ(ξρ, γρ) − Ĉj)‖1,ε(8.91)

= ‖dΓρ(βj
ρ(ξρ, γρ) − µj)‖1,ε,ρ

≤ ‖βj
ρ(dΓρ(ξρ, γρ) − µj)‖1,ε,ρ + ‖(∂̄βj

ρ)((ξρ, γρ) − µj)‖1,ε,ρ.(8.92)

The right-hand side of the above equation goes to 0 as ρ → ∞. Hence,
so does the left-hand side. This, however, contradicts the invertibility
of dΓ(vj ,κ2(j)) and we conclude dΓρ(Wρ) stays a bounded distance away
from dΓρ(µj). Thus, defining Gρ(dΓρµj) = µj finishes the proof. q.e.d.
8.20. Estimates on the non-linear term. In Section 5.7, we lin-
earized the map Γ using local coordinates B around (w, f) ∈ W2,ε. To
apply Floer’s Picard lemma, we must study also higher order variations
of Γ.

For (w, f) ∈ W2,ε, w : Dm → C
n and conformal structure κ on Dm,

we take as in Section 5.5 local coordinates (v, κ) ∈ B2,ε ×R
m−3 on W2,ε

around (w, f) and write (in these coordinates)

Γ(vγ) = ∂̄κv + i ◦ ∂κw ◦ γ + N(v, γ).

We refer to N(v, γ) as the non-linear term.
We first consider stationary gluing

Lemma 8.16. There exists a constant C such that the non-linear
term N(v, γ) of Γ in a neighborhood wρ, where wρ is as in Section 8.5
satisfies

‖N(u, β) − N(v, γ)‖1(8.93)

≤ C
(
‖u‖2 + |β| + ‖v‖2 + |γ|

)(
‖u − v‖2 + |β − γ|

)
.

Proof. With notation as in Section 5.5, we have

Γ(v, γ) = ∂̄κ+γ

(
expσ(ζ)

wρ(ζ) v(ζ)
)
.

We prove (8.93) first in the special case γ = β = 0. We perform our
calculation in coordinates x+iy on Dr(ρ), which agree with the standard
coordinates on the ends and in the gluing region on Dr(ρ). On the
remaining parts of the disk, the metric of these coordinates differs from
the usual metric by a conformal factor, but since the remaining part is
compact, the estimates are unaffected by this change of metric. In these
coordinates, we write ∂̄κ = ∂x + i∂y. Now, as in Lemma 5.12, we find

∂x expσ
wρ

v = J [wρ, v, ∂xwρ, ∂xv, σ](1) + ∂σ(expσ
wρ

v) · ∂xσ,

where J [x, ξ, x′, ξ′, σ] denotes the Jacobi field in the metric g(σ) along
the geodesic expσ

x tξ with initial conditions J(0) = x′, J ′(0) = ξ′. Of
course a similar equation holds for ∂y expσ

wρ
v.
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Let G : (Cn)4 × [0, 1] × R → C
n be the function

G(x, ξ, x′, ξ′, σ, σ′) = J [x, ξ, x′, ξ′, σ](1) − x′ − ξ′ + ∂σ expσ
x ξ · σ′

(unrelated to the earlier right inverses Gρ) then with wρ = w,

N(v) = G(w, v, ∂xw, ∂xv, σ, ∂xσ) + iG(w, v, ∂yw, ∂yv, σ, ∂yσ).

Moreover, the function G is smooth with uniformly bounded derivatives,
it is linear in x′, ξ′, σ′, and satisfies

G(x, 0, x′, ξ′, σ, σ′) = 0,(8.94)

D2G(x, 0, x′, ξ′, σ, σ′) = 0,

where the last equation follows from Taylor expansion of the exponential
map and the Jacobi field.

With this established, the arguments needed to prove estimates on
integral norms in the lemma are similar to those given in the proof of
Lemma 5.10 and will be omitted. Finally, we remark that the input of
the space of conformal structures is easily controlled since this space is
finite dimensional. q.e.d.

In the self-tangency shortening case, the estimate is somewhat changed
since we work in Sobolev spaces with negative exponential weights in
the gluing region. Here we have

Lemma 8.17. There exists a constant C such that the non-linear
term N(v, γ, λ) of Γ in a neighborhood of wρ, where wρ is as in Section
8.10 satisfies

‖N(u, β) − N(v, κ)‖1,−ε,ρ

≤ Ceερ
(
‖u‖2,−ε,ρ + |β| + ‖v‖2,−ε,ρ + |γ|

)(
‖u − v‖2,−ε,ρ + |β − γ|

)
.

Proof. The proof is exactly the same as the proof of Lemma 8.16.
We must only take into account in what way the weights affect the
estimates. Starting with the L2-norm, we see that the norm ‖ · ‖2,ρ,−ε

does not control the sup-norm uniformly in ρ. But it does control e−ερ

times the sup-norm. Thus we conclude instead of the usual L2-estimate
that

(8.95) ‖N(u) − N(v)‖ ≤ Ceερ(‖u‖2,−ε,ρ + ‖v‖2,−ε,ρ)‖u − v‖2,−ε,ρ.

Similarly, we loose this factor in the other estimates where we use the
sup-norm. Let eρ denote the weight function from Section 8.11. When
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we use the L4-estimate, we have instead the following∫
Dm

(|Du| + |Dv|)2|Du − Dv|2e2
ρ dA

≤ e2ερ

∫
Dm

(|Du| + |Dv|)2|Du − Dv|2e4
ρ dA

≤ e2ερ

(∫
Dm

(|Du| + |Dv|)4e4
ρ

) 1
2
(∫

Dm

(|Du − Dv|)4e4
ρ

) 1
2

≤ Ce2ερ(‖u‖2,−ε,ρ + ‖v‖2,−ε,ρ)2(‖u − v‖2,−ε,ρ)2.

We conclude finally

‖N(u) − N(v)‖1,−ε,ρ ≤ Ceερ(‖u‖2,−ε,ρ + ‖v‖2,−ε,ρ)‖u − v‖2,−ε,ρ.

The conformal structures can be handled as in Lemma 8.16. q.e.d.

Finally, we consider self-tangency gluing, where we have a large weight
function which does not interfere (destructively) with the sup-norm and
the L4 estimates.

Lemma 8.18. There exists a constant C such that the non-linear
term N(v, γ) of Γ in a neighborhood of wρ, where wρ is as Section 8.15
satisfies

‖N(u, β) − N(v, κ)‖1

≤ C
(
‖u‖2,ε,ρ + |β| + ‖v‖2,ε,ρ + |γ|

)(
‖u − v‖2,ε,ρ + |β − γ|

)
.

Proof. See the proof of Lemma 8.16 q.e.d.

9. Gromov compactness

In this section, we prove a version of the Gromov compactness the-
orem. In Section 9.2, we discuss the compactification of the space of
conformal structures which is done in [17]. In Section 9.3, we translate
the notions of convergence and (limiting) broken curves from [22] to
our setting. There are two notions of convergence we must prove: a
strong local convergence and a weak global convergence. In Sections
9.5 and 9.6, we discuss how to adopt Floer’s original approach [13] to
prove the strong local convergence. Local convergence implies that our
holomorphic disks, away from the punctures, are smooth up to and
including the boundaries, see Remark 9.5. To prove the weak global
convergence in Section 9.7, we analyze where the area (or energy) of a
sequence of disks accumulates, and construct an appropriate sequence
of reparameterizations of the domain to recover this area.

We note that although our holomorphic curves map to a non-compact
space, C

n, the set of curves we consider lives in a compact subset. This
follows because C

n is a symplectic manifold with “finite geometry at



286 T. EKHOLM, J. ETNYRE & M. SULLIVAN

infinity”: a holomorphic curve with a non-compact image must contain
infinite area. And the area of any disk we consider is bounded above by
the action of the chords mapped to at its corners. Thus, we can prove
the Gromov compactness theorem in this non-compact set-up. For a
review of finite geometry at infinity (also known as “tame”), see [1]
Chapter 5, as well as [7, 18, 31].

9.1. Notation and conventions for this section. Unlike in the
other sections, we need to consider Sobolev spaces with derivatives in Lp

for p �= 2. We define in the obvious way the spaces W p,loc
k (∆m, Cn) to

indicate C
n-valued functions on ∆m whose first k derivatives are locally

Lp-integrable. For this section only, we denote the corresponding norm
by ‖ · ‖k,p.

In order to define broken curves in the next subsection, we will need to
extend the disk continuously to the boundary punctures. Of course the
extra Legendrian boundary condition, h, does not extend continuously.
For this reason, we will only extend u to ∆̄m, the closure of ∆m; thus,
u : ∆̄m → C

n. Note that ‖u‖p,k might still blow up at these punctures.
We sometimes only consider u and u|∂∆̄m in which case we write u :
(∆̄m, ∂∆̄m) → (Cn, ΠC(L)). For X ⊂ ∆̄m, let ‖u‖k,p:X = ‖u|X‖k,p, and
‖u‖k,p:ε denote the norm restricted to some disk (or half-disk) of radius
ε.

Because we sometimes change the number of boundary punctures, we
will denote by D the unit disk in C

n.

9.2. Compactification of space of conformal structures. Recall
Cm is the space of conformal structures (modulo conformal reparame-
terizations) on the unit disk in C with m boundary punctures.

When m ≥ 3, we define a stable cusp disk representative with m
marked boundary points, (Σ; p1, . . . , pm), to be a connected, simply-
connected union of unit disks in C where pairs of disks may overlap
at isolated boundary points (which we call double points of Σ) and each
disk in Σ has at least 3 points, called marked points, which correspond
either to double points or the original boundary marked points. When
m = 1 or 2, the stable cusp disk representative shall be a single disk.
Two stable cusp disk representatives are equivalent if there exist a con-
formal reparameterization of the disks taking one set of marked points
to the other. We define a stable (cusp) disk with m marked points to
be an equivalence class of stable disk representatives with m marked
points.

In Section 10 of [17], Fukaya and Oh prove that C̄m, the compactifi-
cation of Cm, is the space of stable disks with m marked points.

9.3. The statement. A broken curve (u, h) = ((u1, h1), . . . (uN , hN ))
is a connected union of holomorphic disks, (uj , hj), (recall uj is extended
to ∆̄mj) where each uj has exactly one positive puncture and except for
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one disk, say u1, the positive puncture of uj agrees with the negative
puncture of some other uj′ . One may easily check that a broken curve
can be parameterized by a single smooth v : (Dm, ∂D) → (Cn, ΠC(L)),
such that v−1 is finite except at points where two punctures were iden-
tified, here v−1 is an arc in ∆m.

Definition 9.1. A sequence of holomorphic disks (uα, hα) converges
to a broken curve (u, h) = ((u1, h1), . . . , (uN , hN )) if the following holds

1) (Strong local convergence) For every j ≤ N , there exists a sequence
φj

α : D → D of linear fractional transformations and a finite set
Xj ⊂ D such that uα ◦ φj

α converges to uj uniformly with all
derivatives on compact subsets of D \ Xj

2) (Weak global convergence) There exists a sequence of orientation-
preserving diffeomorphisms fα : D → D such that uα ◦ fα con-
verges in the C0-topology to a parameterization of u.

Henceforth, to simplify notation when passing to a subsequence, we
will not change the indexing.

Theorem 9.2. Assume (uα, hα) ∈ M(a; b1, . . . , bm) is a sequence of
holomorphic disks with Lα Legendrian boundary condition. Let κα ∈
Cm+1 denote the conformal structure on the domain of uα. Assume Lα

converges to an embedded Legendrian L in the C∞-topology. Then, there
exists a subsequence (uα, hα, κα) such that κα converges to κ ∈ C̄m+1 and
(uα, hα) converges to a broken curve (u, h) whose domain is a stable disk
representative of κ.

Note that using the strong local convergence property a posteriori,
this compactness result proves that all derivatives of a holomorphic
disk (u, h) are locally integrable away from the finite set of points. In
particular, such disks are smooth at the boundary away from these
points. See Remark 9.5.

We also remark that, the appropriately modified, Theorem 9.2 holds
if the disks have more than one positive puncture.

9.4. Area of a disk. For holomorphic u : (D, ∂D) → (Cn, ΠC(L)),
recall that Area(u) =

∫
u∗ω, where ω =

∑
i dxi∧dyi, denotes its (signed)

area.

Lemma 9.3. Consider an admissible Legendrian isotopy parameter-
ized by λ ∈ Λ. We assume Λ ⊂ R is compact. Denote by Lλ the moving
Legendrian submanifold. There exists a positive upper semi-continuous
function � : Λ → R

+ such that for any non-constant holomorphic map
u : (D, ∂D) → (Cn, ΠC(Lλ)), Area(u) ≥ �(λ).

Proof. We need the following statement from Proposition 4.3.1 (ii)
of Sikorav in [1]: There are constants r1, k (depending only on C

n)
such that if r ∈ (0, r1] and u : Σ → B(x, r) is a holomorphic map of a
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Riemann surface containing x in its image and with u(∂Σ) ⊂ ∂B(x, r),
then Area(Σ) ≥ kr2.

Since u is non-constant, Stokes Theorem implies u must have bound-
ary punctures. Choose r > 0, an upper semi-continuous function of λ,
such that:

• for all Reeb chords c, ΠC(Lλ) ∩ B(c∗, r) is real analytic and dif-
feomorphic either to R

n × {0} ∪ {0} × R
n or the local picture of

the singular moment in a standard self-tangency move (see Defi-
nition 3.3).

• for all distinct Reeb chords c1, c2, B(c∗1, r) ∩ B(c∗2, r) = ∅ and
• r < r1.

Let θλ be the smallest angle among all the complex angles associated
to all the tranverse double points of ΠC(Lλ). Now set

�(λ) = min
{

min
c∈C(Lλ)

Z(c),
kr2 cos2 θλ

8

}
> 0.

Suppose u maps all n of its punctures to the same double point c∗,
then by (2.4)

Area(u) ≥ Z(c) ≥ �.

(Note the number of positive punctures of u must be larger than the
number of negative ones since u is not constant.)

Otherwise, assume u maps boundary punctures to at least two dis-
tinct double points c∗1, c∗2 where c∗1 is a non-degenerate double point.
Then, c∗2 /∈ B̄(c∗1, r) implies that there exists a point x ∈ u(D) ∩
ΠC(L) ∩ ∂B(c∗1,

r
2). Moreover, B(x, r cos θλ

2 ) ⊂ B(x, r) intersects ΠC(L)
in only one sheet. Using the real-analyticity of the boundary, we double
u(D) ∩ B(x, r cos θλ

2 ) and apply the proposition of Sikorav to conclude

Area(u) ≥ Area
(

u(D) ∩ B

(
x,

r cos θλ

2

))
≥ kr2 cos2 θλ

8
≥ �.

q.e.d.

We introduce one more area-related notion, again borrowed from [22].
Given a sequence of holomorphic maps uα, we say z ∈ D is a point mass
of {uα} with mass m if there exists a sequence zα ∈ D converging to
z ∈ D such that

lim
ε→0

lim
α→∞Area (u |Bε(zα) ∩ D ) = m.

9.5. Strong local convergence I: bootstrapping. In this subsec-
tion, we formulate the following “bootstrap” elliptic estimate: if we
know a holomorphic curve lies locally in W p

k with p > 2, k ≥ 1, then the
‖ · ‖p′,k-(local)-norm controls the ‖ · ‖p′,k+1-(local)-norm for p′ ∈ [2, p).

Let A ⊂ C denote the open disk or half-disk with boundary on the
real line. Let W p

k (A, Cn) denote the closure, under the ‖ · ‖k,p-norm, of
the set of all smooth compactly supported functions from A to C

n.
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Theorem 9.4. Fix k ≥ 1 and (not necessarily small ) δk−1 > δk ≥ 0.
For any compact K ⊂ A, there exists a “constant” C1 = C1(‖u‖k,2+δk−1

)
depending continuously on ‖u‖k,2+δk−1

such that for all holomorphic
maps u ∈ W

2+δk−1

k (A, Cn) with u(∂A) ⊂ ΠC(L), we have

(9.1) ‖u‖k+1,2+δk:K ≤ C1‖u‖k,2+δk:A.

Moreover, if uα is a sequence of holomorphic maps in W
2+δk−1

k (A, Cn)
such that uα(∂A) ⊂ ΠC(L) and ‖uα‖k,2+δk−1

is uniformly bounded, then
there exists a subsequence uα converging in W 2+δk

k (K, Cn) to some holo-
morphic map u : K → C

n.

Remark 9.5. Note how we can use the Sobolev embedding theorem
to conclude that all derivatives of the curve lie in L2 locally, assuming
we have a finite local ‖ · ‖1,2+δ0 norm to begin with. In particular, a
holomorphic disk (h, u) with boundary punctures becomes smooth at
the boundary away from the punctures. We did not have to assume this
smoothness a priori.

This proof first appeared as Lemma 2.3 in [13] and later corrected as
Proposition 3.1 [24]. Floer and Oh both prove the k = 1 case and state
the general case. Since there are no new techniques here, we omit the
proof for the general case. Instead, we simply formulate a key lemma
for the proof.

Lemma 9.6. For every l > k, l − 2/q > k − 2/p, there exists a
constant C such that if ξ ∈ W p

k (A, Cn) is compactly supported, ξ|∂A ⊂
R

n, and ∂̄ξ ∈ W q
l−1(A, Cn) then

(9.2) ‖ξ‖l,q ≤ C‖∂̄ξ‖l−1,q.

This is stated as Lemma 2.2 of [13] and Lemma 3.2 of [24]. Floer
attributes this result to Theorem 20.1.2 of [20]. However, we were
unable to deduce Lemma 9.6 for k > 1 from Hörmander’s theorem.
Alternatively, one can use the Seeley extension theorem (see [23], section
1.4 for example) to extend the map to the full disk (in the case of the
half disk) and then use the well-known full disk version of Lemma 9.6.

9.6. Strong local convergence II: uniformly bounding higher
Sobolev norms. In order to apply Theorem 9.4, we need a uniform
bound on the ‖ · ‖k,2+δ-norm where δ > 0 might be large. Our holomor-
phic disk only come with a bound on the ‖ · ‖1,2-norm in terms of the
action. In this subsection, we indicate how the latter norm controls the
former.

Theorem 9.7. Consider the sequence of holomorphic disks (uα, hα) ∈
M(a; b1, . . . , bm). There exists a finite number of points z1, . . . , zl ∈
∂∆m and a “constant” C11 = C11(K, p, k) such that for any positive
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integer k, for any p ∈ R with k > 2
p , and for any compact set K ⊂

∆m \ {z1, . . . , zl},
‖Dkuα‖0,p:K ≤ C11.

Proof. Theorem 2 in [13], and later Proposition 3.3 in [24], prove
this result when m = 2, k = 1 and the boundary conditions are two
embedded Lagrangians instead of one immersed Lagrangian. So for the
sake of brevity, we only sketch the ideas.

Consider a small ball Bα centered at zα where ‖Dkuα‖0,p:Bα is un-
bounded. Zoom in by changing coordinates z �→ z−zα

εα
where εα con-

verges to 0 at some appropriate rate. We remark that when rescal-
ing variables (s, t) �→ (βs, βt), the (1, 2)-norm is conformally invariant,
whereas the (k, p)-norm changes like

(9.3)
∥∥∥Dkf

∥∥∥
p
→

(
(β−k)p(β2)

) 1
p
∥∥∥Dkf

∥∥∥
p

= β
−k+ 2

p

∥∥∥Dkf
∥∥∥

p
;

thus, the cases (k, p), k > 2
p and (1, p), p > 2 from [13] are identical.

If zα converges to an interior point, one can construct, by zooming
in, a holomorphic sphere which contradicts

∫
S2 ω = 0. If zα converges to

a boundary point z1, one can construct, by zooming in, a holomorphic
disk

w : (D, ∂D) → (Cn, ΠC(L))

for which by Lemma 9.3, ‖w‖0,2 ≥ �.
The limit point z1 is an example of a point mass for the sequence

uα. We repeat this for another B′
α, where B′

α ∩ Bα = ∅ for large α and
‖Dkuα‖0,p:B′

α
is unbounded. This produces a separate point mass z2.

Since the area of uα divided by � is bounded (uniformly) from above,
this process can be repeated only a finite number of times. q.e.d.

9.7. Recovering the bubbles. The goal of this subsection is to con-
struct a (not necessarily conformal) reparameterization of ∆̄m which
recovers all disks which bubble off. This reparameterization implies the
second convergence in Definition 9.1.

Consider a sequence (uα, hα) which converges strongly on any com-
pact K ⊂ ∆m\{z1, . . . , zl}. By the proof of Theorem 9.7, we can assume
that z1 is a point mass with mass m1 > 0.

Let C+ ⊂ C denote the upper-half plane. Let Br = {z ∈ C+ : ‖z‖ <
r} and Cr = ∂Br. Define the conformal map

ψα : C+ → ∆̄m, ψα(z) =
−z + iR2

α

z + iR2
α

· z1

where Rα ∈ R is such that

Area (uα |ψα (BRα)) = m1.
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Pass to a subsequence and assume α < α′ implies Rα < Rα′ , which
can be done since by the definition of point mass, limα→∞ Rα = ∞.
Note that

(9.4) lim
α→∞ψα (BRα) = lim

α→∞ψα

(
B

R
3/2
α

)
= z1.

Assume α is large enough so that ψα

(
B

R
3/2
α

)
contains no other point

masses of the sequence uα. However, ψα

(
B

R
3/2
α

)
might contain bound-

ary punctures.
After passing to a subsequence, we can use Theorems 9.4 and 9.7

to assume that uα converges to some u on any compact set in ∆m \(
{z2, . . . , zl} ∪ ψα

(
B

R
3/2
α

))
.

The definition of Rα and (9.4) imply

(9.5) lim
α→∞Area

(
uα

∣∣∣ψα

(
B

R
3/2
α

\ BRα

))
= 0.

Use (9.5) and argue as in the previous subsection to find some half
circle CR′

α
⊂ C+, with R′

α ∈ (R3/2
α − 1, R

3/2
α ] such that

‖uα ◦ ψα‖C0:CR′
α
→ 0.

Define the center of mass of uα ◦ ψα to be

zα = xα + iyα =
1

m1

∫
BRα

|D(uα ◦ ψα)|2 (x + iy) dx ∧ dy ∈ BRα ,

where x+iy are coordinates on C+. Define the conformal map φα which
sends i to zα:

φα : C+ → C+, φα(z) = yαz + xα.

Note that although φ−1
α (CRα) might remain bounded, φ−1

α

(
CR′

α

)
con-

verges to ∞ because∣∣∣φ−1
α

(
R′

αeiθ
)∣∣∣ ≥ (R3/2

α − 1)
|yα| max{| cos θ|, | sin θ|}

and yα < Rα.
Define the conformal map

Ψ : D → C+, Ψ(z) =
z − 1
iz + i

where D ⊂ C is the unit disk. Note that Ψ−1φ−1
α

(
CR′

α

) → −1 and that
uα ◦ψα ◦φα ◦Ψ all have center of mass at 0 ∈ D. (Recall that the center
of mass uses the Euclidean metric on C+, not on D.)

Since
‖uα ◦ ψα ◦ φα ◦ Ψ‖

C0:Ψ−1◦φ−1
α

“
CR′

α

” → 0,

pass to a subsequence as before and conclude that uα ◦ψα ◦φα ◦Ψ con-
verges to some holomorphic w on compact sets outside of some boundary
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point masses and punctures, as well as −1 (since uα ◦ψα ◦φα ◦Ψ is not
defined at −1).

As before, w can be continuously extended to −1. We claim that
under this reparameterization, −1 is not a point mass of uα◦ψα◦φα◦Ψ.
Otherwise, in the C+ set-up, as some mass escaped to ∞, the center of
mass would have to go to ∞ as well, contradicting the fact that it is
fixed at i ∈ C+.

Because uα converges to u outside of ψα

(
B

R
3/2
α

)
, and because no area

is “unaccounted” for by (9.5), we can continuously extend u to z1 so
that u(z1) = w(−1). Considering how u and w were obtained from uα, it
is easy to see that the sign of the punctures (z1 for u and −1 for w) will
be opposite. Thus since each of u and w must have a positive puncture,
each will have exactly one. Repeat the above argument at all the other
point masses zj. Then repeat for any new point masses in the sequences
defining the holomorphic disks wj associated to zj. Continuing until all
point masses have been dealt with, we see no holomorphic curves were
overlooked in the reparameterization.

9.8. Proof of Theorem 9.2. Let ΠC(L) denote the limiting La-
grangian boundary condition. Let � = � (ΠC(L)) be the minimal area of
non-constant maps defined in Section 9.4. Use the discussion in Section
9.2 to pass to a subsequence whose conformal structures converge to a
stable disk.

We wish to apply Theorem 9.4 to derive strong local convergence. To
achieve the required uniform bound on ‖uα‖k,2+δk−1:K for some compact
set K ⊂ ∆m which lies away from point masses, we apply Theorem 9.7 k
times to bound ‖uα‖i,2+δk−1:K for i = 1, . . . , k. The reparameterizations
φj

α in Definition 9.1 come from the discussion in Section 9.7.
The weak global convergence follows readily from Section 9.7. q.e.d.

10. Handle slides

In this section, we will prove Lemma 2.12 which was used to show
that the stable tame isomorphism type of the contact homology algebra
associated to a Legendrian submanifold does not change under handle
slide instances in generic 1-parameter families of Legendrian subamni-
folds.

10.1. An auxiliary Legendrian submanifold. We associate to a 1-
parameter family of Legendrian embeddings φt : L → C

n×R, 0 ≤ t ≤ 1,
Legendrian embeddings Φδ

f : L × R → C
n+1 × R, depending on δ > 0

and a positive Morse function f : R → R.
Let φt : L ⊂ C

n × R, t ∈ [−1, 1] be a Legendrian isotopy. For small
δ > 0, fix smooth non-decreasing functions

(10.1) αδ : [−1, 1] → [−δ, δ]
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such that αδ(±t) = ±δ for 3
4 ≤ t ≤ 1, and such that αδ(t) = δt for

−1
4 ≤ t ≤ 1

4 . Note that αδ → 0 as δ → 0.
Fix standard coordinates(

(x1, y1, . . . , xn, yn), z
)

= (x, y, z)

on C
n × R. Define φδ

t , t ∈ R as

φδ
t =

⎧⎪⎨⎪⎩
φ−δ for t ∈ (−∞,−1],
φαδ(t) for t ∈ [−1, 1],
φδ for t ∈ [1,∞).

Write
φδ

t (q) =
(
xt(q), yt(q), zt(q)

)
, q ∈ L.

Fix a positive Morse function f : R → R and δ > 0. Let f ′(t) = df
dt

denote the derivative of f . Define Φδ
f : R × L → C × C

n × R,

Φδ
f (t, q) =

(
x0(t, q), y0(t, q), x(t, q), y(t, q), z(t, q)

)
, (t, q) ∈ R × L,

where

x0(q, t) = t,

y0(q, t) = f(t)
(

∂zt

∂t
+ yjt(q)

∂xjt

∂q

)
+ f ′(t)zt(q),

x(q, t) = xt(q),

y(q, t) = f(t)yt(q),

z(q, t) = f(t)zt(q).

It is straightforward to check that Φδ
f is a Legendrian embedding.

Assume that the Morse function f : R → R above has local minima
at ±1 and no critical points in the region (−∞,−1)∪ (1,∞). Then the
x0-coordinate c0 of each Reeb chord c of Φ satisfies |c0| ≤ 1.

Let u be a holomorphic disk with boundary on Φδ
f and one positive

puncture.

Lemma 10.1. If the positive puncture of u maps to a Reeb chord c
of Φ with c0 = ±1. Then the image of u lies in {x0 = ±1}.

Proof. For definiteness, assume the positive puncture of u maps to
c with c0 = 1. Project Φδ

f to the (x0, y0)-plane. The image of this
projection is contained in the region{−α|x0 − 1| ≤ y0 ≤ α|x0 − 1|}
for some α. If the projection u0 of u to the (x0, y0)-plane is non-constant,
then it covers at least one of the regions{−α|x0 − 1| > y0

} ∩ Br

(
(1, 0)

)
or

{
α|x0 − 1| < y0

} ∩ Br

(
(1, 0)

)
,
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for some ball Br

(
(1, 0)

)
. Since u has boundary on Φδ

k, u0 takes no
boundary point to the line {x0 = 1}. This and the above covering
property contradicts u0 being bounded in the y0-direction. The lemma
follows. q.e.d.

Lemma 10.2. The image of every holomorphic disk with boundary
on Φδ

f is contained in the region {|x0| ≤ 1}.
Proof. Arguing as in the proof of Lemma 10.1, we find that the pro-

jection to the (x0, y0)-plane of a holomorphic disk with boundary on
Φδ

f cannot intersect the lines {x0 = ±1} in interior points. It follows
that the image of any disk lies entirely in one of the regions {x0 ≤ −1},
{|x0| ≤ 1}, or {x0 ≥ 1}. However, a disk with image in {x0 ≥ 1}
({x0 ≤ −1}) must have its positive puncture at a Reeb chord c with
c0 = 1 (c0 = −1). The lemma follows from Lemma 10.1. q.e.d.

Assume now that φδ(L) is generic for each δ �= 0. Then, (see the proof
of Lemma 7.24) any rigid disk with boundary on Φδ

f and positive corner
at some Reeb chord c with c0 = ±1 is transversely cut out. Moreover,
by Lemma 7.12, transversality of the ∂̄-equation can be achieved by
perturbation near the positive puncture of a disk and it follows that
there exists (arbitrarily small) perturbations of Φδ

f which are supported
in the region {|x0| < 1} and which makes every moduli space (of formal
dimension ≤ 1) transversely cut out. We fix such a perturbation of Φδ

f ,
but keep the notation Φδ

f for the perturbed Legendrian embedding.
Let A(Φδ

f ) denote the algebra over Z2[H1(R × L)] = Z2[H1(L)] gen-
erated by the Reeb chords of Φδ

f as in Subsection 2 and define the map
(differential) ∂ of A(Φδ

f ) as there.

Lemma 10.3. The map ∂ : A(Φδ
f ) → A(Φδ

f ) satisfies ∂ ◦ ∂ = 0.

Proof. In the light of Lemma 10.2, a word by word repetition of the
proof of Lemma 2.5 establishes the lemma. q.e.d.

10.2. Invariance under handle slides. Let φt : L → C
n × R, −1 ≤

t ≤ 1 be a Legendrian isotopy such that L0 is a generic handle slide
moment. That is, there exists one handle slide disk in some MA(a;b),
which is the only non-empty moduli space of formal negative dimension,
that all moduli spaces of holomorphic disk with boundary on φt(L) = Lt,
t �= 0 of negative formal dimension are empty, and that all moduli spaces
of rigid disks are transversally cut out. We choose notation so that
{b1, . . . , br, a, c1, . . . , cs} are the Reeb chords of L0 and so that

Z(b1) ≤ · · · ≤ Z(br) ≤ Z(a) ≤ Z(c1) ≤ · · · ≤ Z(cs).

Let f : R → R be a positive Morse function with local minima at
±1, no critical points in the region (−∞,−1) ∪ (1,∞), and one local
maximum at 0.
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Lemma 10.4. For all sufficiently small δ > 0, the Reeb chords of Φδ
f

are{
bj [−1], bj [1], bj[0]

}r

j=1
∪
{
a[−1], a[1], a[0]

}
∪
{
cj[−1], cj[1], cj[0]

}s

j=1
,

where for any Reeb chord c of L0, |c[−1]| = |c[1]| = |c[0]| − 1 = |c|.
Proof. It is easy to see that for δ = 0, the Reeb chords are as described

above and that the corresponding double points in C×C
n are transverse.

This shows that the Reeb chords are as claimed for all sufficiently small
δ.

The second statement in the lemma is a straightforward consequence
of the grading formula (for example, the front projection formula, see
Lemma 3.4 in [4]). q.e.d.

We call bj [0], a[0], and cj [0], [0]-Reeb chords, and bj [±1], a[±1], and
cj [±1], [±1]-Reeb chords. As above, we perturb Φδ

f slightly in the region
|x0| < 1 to make it generic with respect to holomorphic disks. Note
that the x0-coordinate of [±1]-Reeb chord equals ±1 and that the x0-
coordinate of a [0]-Reeb chord is very close to 0 for small δ > 0.

Consider a sequence of functions fk as above with fk → 1 as k → ∞
(i.e. each fk has a non-degenerate maximum at 0 and non-degenerate
local minima at ±1). Fix k and pick δ > 0 sufficiently small so that Φδ

fk

satisfies Lemma 10.4. Let Φδ
k = Φδ

fk
.

We next note that as δ → 0, Φδ
k → Φ0

k where

Φ0
k(t, q) =

(
t, f ′

k(t)z(q), x(q), fk(t)y(q), fk(t)z(q)
)
,

with (x(q), y(q), z(q)) = φ0(q).

Lemma 10.5. There exists k0 such that for all k > k0, there exists a
δk > 0 such that for all δ < δk and any Reeb chord c, the following holds.
The moduli spaces M(c[0], c[1]) and M(c[0], c[−1]) of holomorphic disks
with boundary on Φδ

k consist of exactly one point which is a transversely
cut out rigid disk.

Proof. First consider the case δ = 0. It is easy to find rigid disks in
the (x0, y0)-plane with positive puncture at c[0] and negative puncture
at c[±1]. Moreover, by Lemma 7.24, these disks are transversely cut
out.

To see that these are the only disks, let U and V be neighborhoods of
the endpoints of the Reeb chord c in L0 and consider the projections of
Φ0

k([−1, 1]×U) and Φ0
k([−1, 1]×V ) to C

n. For sufficiently large k, these
projections intersect only at 0 and it follows that there exists a positive
h > 0 such that the area of the projection of any disk with boundary
on Φ0

k, positive puncture at c[0], and negative at c[±1] is either equal to
zero or larger than h. Since Z(c[0]) → Z(c[±1]) as k → ∞, it follows
that for k large enough the disks in the (x0, y0)-plane are the only ones.



296 T. EKHOLM, J. ETNYRE & M. SULLIVAN

Finally, we note that the fact that the moduli space M(c[0], c[±1])
corresponding to Φ0

k is transversely cut out implies that the statement
of the lemma holds also for Φδ

k for all sufficiently small δ (where the
smallness depends on k). q.e.d.

We next note that as k → ∞, Φ0
k approaches the Legendrian sub-

manifold
Φ(t, q) = (t, 0, x(q), y(q), z(q)).

The projection of this Legendrian submanifold to C is simply the x0-axis
and its projection to C

n agrees with that of L0.

Lemma 10.6. There exists k0 such that for all k > k0, there exists a
δk > 0 such that for all δ < δk and any Reeb chord c �= a, the following
holds. If the moduli space MA(c[0]; e), where e is a word constant in the
[0]-generators and e �= c[±1], has formal dimension 0 then it is empty.

Proof. Again we start with the case δ = 0. Consider a disk u as
above with boundary on Φ0

k. As k → ∞, Φ0
k → Φ and the projection

of u converges to a broken disk {vj}m
j=1 with boundary on L0. The

components vj of such a broken disk either have formal dimension at
least 0, or equals the handle slide disk. Also, any Reeb chord b appearing
as a puncture of some vj has Z(b) ≤ Z(c) and exactly one component
of the broken disk must have its positive puncture at c �= a. This
component has formal dimension at least 0 (since it is not the handle
slide disk). For a disk vj, let |vj

+| be the grading of its positive puncture
and |vj

−| the sum of gradings of its negative punctures and the negative
of the grading of the homology data. Then the formal dimension of (the
moduli space of) vj is |vj

+| − |vj
−| − 1. The above implies that

N =
m∑

j=1

(|vj
+| − |vj

−|) ≥ 1.

Since the positive puncture of u is its only [0]-puncture, it follows that
the formal dimension of u equals N . The statement of the lemma follows
for δ = 0. Since emptiness of a moduli space is an open condition, the
lemma follows in general. q.e.d.

Let Ω be the map from A(Φδ
k) to A(L0) which maps c[±1] to c and

c[0] to 0 for any Reeb chord c of L.

Lemma 10.7. There exists k0 such that for all k > k0, there exists a
δk > 0 such that for all δ < δk, the following holds. If u is a holomorphic
disk with boundary on Φδ

k in MC(a[0], e), where e is a word constant
in the [0]-generators and e �= a[±1], and if this moduli space has formal
dimension 0, then C = A and Ωe = b.
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Proof. Consider first the case δ = 0. Taking the limit as k → ∞ and
arguing as in the proof of Lemma 10.6, we see that the projection of u
converges to a broken disk {vj}m

j=1, that all Reeb chords b appearing as
a puncture of some vj satisfies Z(a) ≥ Z(b), and that there is a unique
component with its positive puncture at a. If this component is not
the handle slide disk, then the argument in the proof of Lemma 10.6
shows that the formal dimension of u is at least 1. If, on the other hand,
this component is the handle slide disk, then the formal dimension of u
equals 0 only if the broken disk has no other components. This shows
the lemma for δ = 0. Again since the condition that a moduli space is
empty is open, the lemma follows in general. q.e.d.

Fix k sufficiently large and δ > 0 sufficiently small so that Lemmas
10.5, 10.6, and 10.7 holds for Φδ

k. We also assume that Φδ
k is generic

with respect to holomorphic disks. Let Φ = Φ̃δ
k

Let Â = A(Φ). We denote the differential of Â by ∆, see Lemma
10.3. There are natural inclusions A± = A(L±δ) ⊂ Â. Lemma 10.1
implies that this is an inclusion of DGA’s in other words,

∆c[±1] = Γ±(∂±c),

where Γ± : A± → Â is the map defined on generators by Γ±(c) = c[±1],
and where ∂± is the differential on A±. For generators bj [0], we have
by Lemmas 10.5 and 10.6

(10.2) ∆bj [0] = bj [1] + bj [−1] + βj
1 + O(2),

where βj
1 is linear in the c[0]-generators and O(2) denotes a linear com-

bination of monomials which are at least quadratic in the [0]-generators.
For the generator a[0], we have by Lemmas 10.5 and 10.7

(10.3) ∆a[0] = a[1] − a[−1] + ε + α1 + O(2),

where Ω(ε) = mAb, where m ∈ Z2 and where α1 is linear in the [0]-
generators. For generators cj[0] we have by Lemmas 10.5 and 10.6

(10.4) ∆cj [0] = cj [1] + cj [−1] + γj
1 + δj

1(a[0]) + O(2),

where γj
1 + δj

1(a[0]) is linear in the [0]-generators, where δj
1(a[0]) lies

in the ideal generated by a[0], and where γj
1 is constant in the a[0]

generator.
Below we will consider ∂+ and ∂− as different differentials on the

algebra A. Let ε be as in (10.3) and write θ = Ω(ε). Consider the stable
tame isomorphism ψ of (A, ∂+) defined on generators as

ψ(c) =

{
c if c �= a,

a + θ if c = a.
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If v ∈ A and c is a generator of A, then let(v

c

)
• : A → A

be the map defined on monomials by replacing each occurrence of c by
v. Then with ∂ψ

+ = ψ−1 ◦ ∂+ ◦ ψ denoting the induced differential, a
straightforward calculation gives

∂ψ
+(c) =

{(
a−θ

a

) • (∂+c) if c �= a,

∂+a + ∂+θ if c = a.
(10.5)

Lemma 10.8. The algebra (A, ∂−) is isomorphic to the algebra
(A, ∂ψ

+).

Proof. We prove that the two differentials agree on generators. By
Lemma 10.3, ∆2 = 0. Thus, summing the terms constant in the [0]-
generators after acting by ∆ in (10.2), we find

(10.6) 0 = ∂+bj [1] + ∂−bj [−1] + (∆β1)0 ,

where (∆γ1)0 denotes the part of ∆γ1 which is constant in the [0]-
generators. Since the constant part of ∆bk[0] equals bk[1] + bk[−1], it
follows that

Ω (∆β1)0 = 0.

Therefore, applying Ω in (10.6), we conclude

(10.7) ∂−bj = ∂+bj =
(

a − θ

a

)
• (∂+bj),

since no monomial in ∂+bj contains a.
Applying ∆ to (10.3), we find similarly

(10.8) ∂−a[−1] = ∂+a[1] + ∆ε + (∆α1)0 .

The first equality in (10.7) implies that

Ω(∆ε) = ∂+θ.

Since every [0]-generator in α1 is for the form bj [0], we find, as with β1

above, that Ω (∆α1)0 = 0. We conclude

(10.9) ∂−a = ∂+a + ∂+θ.

Applying ∆ to (10.4) gives

(10.10) ∂−cj [−1] = ∂+cj [1] +
(
∆γj

1

)
0
+

(
∆δj

1(a[0])
)

0
.
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Applying
(

a[−1]+ε
a[1]

)
• to both sides in (10.10) and noting that no mono-

mial in ∂−cj[−1] contains an a[1] generator, we get

∂−cj [−1] =
(

a[−1] + ε

a[1]

)
• (∂+cj[1]) +

(
a[−1] + ε

a[1]

)
•
(
∆γj

1

)
0

+
(

a[−1] + ε

a[1]

)
•
(
∆δj

1(a[0])
)

0
.

(10.11)

Each term in
(
∆δj

1(a[0])
)

0
arises by replacing a[0] in every monomial

ξa[0]η of δj
1(a[0]) with (a[1] − a[−1] + ε) yielding ξ(a[1] + a[−1] + ε)η.

When
(

a[1]+ε
a[−1]

)
• is a applied to ξ(a[1] + a[−1] + ε)η, the result is

ξ(a[−1] + ε + a[−1] + ε)η = 0.

Thus, the last term in (10.11) vanishes. Since the [0]-generator of any
monomial in γj

1 equals either ck[0] for some k, or br[0] for some r and
since the constant part of ∆ck[0] equals ck[1]+ ck[−1], and the constant
part of ∆bk[0] equals bk[1] + bk[−1], we conclude that

Ω
(

a[−1] + ε

a[1]

)
•
(
∆γj

1

)
0

= 0.

Thus, applying Ω to (10.11), we arrive at

(10.12) ∂−cj =
(

a + θ

a

)
• ∂+cj.

The lemma follows from (10.7), (10.9), (10.12). q.e.d.

Corollary 10.9. If Lt ⊂ C
n×R, −1 ≤ t ≤ 1, is a Legendrian isotopy

with a generic handle slide at t = 0 as above, then the stable tame
isomorphism classes of (A(L−1, ∂−1)) and (A(L1), ∂1) are the same.

Appendix

In this appendix, we present the proofs of two technical lemmas.

Proof of Lemma 5.6. We establish the following two properties of the
metric ĝ and the endomorphism J . If γ is a curve in L with tangent
vector T and X is any vector field in T (TL) along γ, then

(10.13) ∇̂T JX = J∇̂T X.

If X, Y , and Z are tangent vectors to TL at (p, 0) ∈ L such that Y

and Z are horizontal (i.e. tangent to L) and if R̂ denotes the curvature
tensor of ĝ at (p, 0) then

(10.14) R̂(JX, Y )Z = JR̂(X, Y )Z.
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For (10.13), use local coordinates and write, for γ(t) = x(t), T (x) =
ak(x)∂k, X(x) = bj(x)∂j + bj∗(x)∂j∗. By Lemma 5.5,

∇̂T JX = ak∇̂∂k
(−bj∗∂j + bj∂j∗)

= ak

[
−(∂kbj∗)∂j + (∂kbj)∂j∗

− bj∗(Γ̂r
kj∂r + Γ̂r∗

kj∂r∗) + bj(Γ̂r
kj∗∂r + Γ̂r∗

kj∗∂r∗)
]

= ak

[
−(∂kbj∗)∂j + (∂kbj)∂j∗ − bj∗Γ̂r

kj∂r + bjΓ̂r∗
kj∗∂r∗

]
= Jak

[
(∂kbj∗)∂j∗ + (∂kbj)∂j + bj∗Γ̂r∗

kj∗∂r∗ + bjΓ̂r
kj∂r

]
= J∇̂T X.

For (10.14), introduce normal coordinates x around p. Then,

(10.15) gij(0) = δij , Γk
ij(0) = 0

for all i, j, k, and hence Lemma 5.4 implies,

ĝij(0, ξ) = δij + O(ξ2), ĝi∗j(0, ξ) = 0, ĝi∗j∗(0, ξ) = δij .

Therefore,

(10.16) ĝij(0, ξ) = δij + O(ξ2), ĝi∗j(0, ξ) = 0, ĝi∗j∗(0, ξ) = δij .

We show that, in these normal coordinates,

(10.17) R̂(∂i∗ , ∂j)∂k = JR̂(∂i, ∂j)∂k

at (0, 0). Since R̂ is a tensor field, (10.17) implies (10.14).
Lemma 5.5 implies that all Christofel symbols of ĝ vanishes at (x, ξ) =

(0, 0) and also that ∂iΓr∗
jk(x, 0) = 0 all i, j, k, r∗. Hence,

R̂(∂i, ∂j)∂k = ∇̂∂i
∇̂∂j

∂k − ∇̂∂j
∇̂∂i

∂k

= (∂iΓ̂r
jk)∂r + (∂iΓ̂r∗

jk)∂r∗ − (∂jΓ̂r
ik)∂r − (∂jΓ̂r∗

ik )∂r∗

= (∂iΓr
jk)∂r − (∂jΓr

ik)∂r,

and thus,

(10.18) JR̂(∂i, ∂j)∂k = (∂iΓr
jk)∂r∗ − (∂jΓr

ik)∂r∗ .

We compute the left-hand side of (10.17):

R̂(∂i∗ , ∂j)∂k = ∇̂∂i∗ ∇̂∂j
∂k − ∇̂∂j

∇̂∂i∗∂k

= ∇̂∂i∗

(
Γ̂r

jk∂r + Γ̂r∗
jk∂r∗

)
− ∇̂∂j

(
Γ̂r

i∗k∂r + Γ̂r∗
i∗k∂r∗

)
.(10.19)

Lemma 5.5 gives ∂jΓ̂r
i∗k = 0, and Lemma 5.4 in combination with (10.16)

give ∂i∗Γ̂r
jk = 0. Hence,

(10.20)
R̂(∂i∗ , ∂j)∂k = (∂i∗Γ̂r∗

jk)∂r∗ − (∂jΓ̂r∗
ik∗)∂r∗ = (∂i∗Γ̂r∗

jk)∂r∗ − (∂jΓr
ik)∂r∗ .
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It thus remains to compute ∂i∗Γ̂r∗
jk.

∂i∗Γ̂r∗
jk =

1
2
∂i∗

(
ĝr∗l∗(ĝjl∗,k + ĝkl∗,j − ĝjk,l∗) + ĝr∗l(ĝjl,k + ĝkl,j − ĝjk,l)

)(10.21)

=
1
2
ĝrl∂i∗(ĝjl∗,k + ĝkl∗,j − ĝjk,l∗) [by (10.16)]

=
1
2
grl

(
(∂kΓm

ji)gml + (∂jΓm
ki)gml − (Rjikl + Rjlki)

)
[Lemma 5.4, (10.15)]

=
1
2
(∂kΓr

ji + ∂jΓr
ki − (Rjikr + Rjrki)) [(10.15)].

But

Rjikr = g(∇∂j
∇∂i

∂k −∇∂i
∇∂j

∂k, ∂r) = ∂jΓr
ik − ∂iΓr

jk = ∂jΓr
ki − ∂iΓr

jk,

and
Rjrki = Rkijr = ∂kΓr

ij − ∂iΓr
kj = ∂kΓr

ji − ∂iΓr
jk.

Hence
∂i∗Γ̂r∗

jk = ∂iΓr
jk,

which together with (10.19) and (10.20) imply (10.17).
Consider a geodesic of (TL, ĝ) in L with tangent vector T . By (10.13)

and (10.14),

(10.22) ∇̂T ∇̂T JX + R̂(JX, T )T = J(∇̂T ∇̂T X + R̂(X, T )T ).

Thus X is a Jacobi field if and only if JX is. q.e.d.

Proof of Lemma 5.10. For simplicity, we suppress intermediate func-
tions in the notation, e.g., we write σ(ζ) for σ(w(ζ), F (ζ)). Consider
(a). Assume that w, v, u, q, F are smooth functions. By (5.18)

(10.23) |G(ζ, λ)| ≤ C(|v| + |u|),
since the derivatives of G are uniformly bounded.

(For simplicity, we will use the letter C to denote many different
constants in this proof. This (constant!) change of notation will not be
pointed out each time.)

Let Ĝ(ζ) = G(ζ, λ). We write (w, v, u, q, σ) = (x1, x2, x3, x4, x5) and
use the Einstein summation convention. The derivative of Ĝ(ζ) is

DĜ(ζ) = DjĜ · Dxj ,

where D without subscript refers to derivatives with respect to ζ, and
DjĜ refers to the derivative of Ĝ with respect to its j-th argument. We
use the following notation for functions (y1, . . . , yl),

|Dj1y|k1 . . . |Djmy|km =
∑
α∈A

Πl
k=1|Dj1yk|α1

k . . . |Djmyk|αm
k
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where A = {α ∈ (Z≥0)lm : αr
1 + · · · + αr

l = kr}.
Let (w, F, q) = (y1, y2, y3) and (v, u) = (z1, z2), then by (5.18)

|DjĜ| ≤ C|z|, j ∈ {1, 4, 5}
|DjĜ| ≤ C, j ∈ {2, 3}
Dσ = D1σ · DF + D2σ · Dw, hence, |Dσ| ≤ C|Dy|.

Then

(10.24) |DĜ(ζ)|2 ≤ C
(
|z|2|Dy|2 + |z||Dz||Dy|+ |Dz|2

)
.

The second derivative of Ĝ(ζ) is

D2Ĝ(ζ) = DiDjĜ · Dxi · Dxj + DjĜ · D2xj .

By (5.18),

|DiDjĜ| ≤ C|z|, i, j ∈ {1, 4, 5}
|DiDjĜ| ≤ C, j ∈ {2, 3}

D2σ = D2
1σ · DF · DF + 2D2D1σ · Dw · DF

+ D2
2σDw · Dw + D1σ · D2F + D2σ · D2w,

hence |D2σ| ≤ C(|Dy|2 + |D2y|).
Thus,

|D2Ĝ(ζ)|2 ≤ C
(
|z2|(|Dy|4 + |Dy|2|D2y|) + |z||Dz||Dy||D2y|

+|Dz|4 + |Dz||D2z||Dy| + |Dz|2|D2z| + |D2z|2
)
.(10.25)

Note that by (5.21) and (5.23), r, which the constant C absorbs,
controls the q (or y3) norms. Moreover, the remaining y1 and y2 norms
are also absorbed by C. Thus, using (10.23), (10.24), and (10.25) we
derive the estimate

(10.26) ‖Ĝ(ζ)‖2,ε ≤ C(‖u‖2,ε + ‖v‖2,ε)

as follows. The Sobolev-Gagliardo-Nirenberg theorem implies ‖Dy‖L4 ≤
C‖Dy‖1,2 (and the corresponding statement for u and v). Morrey’s the-
orem implies that ‖u‖2,ε controls the sup-norm of u (and the correspond-
ing statement for v). These facts together with Hölder’s inequality give
(10.26).

It is now straightforward to prove (a). Let Ω = (x, ξ, η, θ, σ), then

(10.27) G(Ω, λ) = G(Ω, 0) + D6G(Ω, 0) · λ + R(Ω, λ) · λ · λ.

Differentiating (10.27) twice with respect to λ of and applying (5.18),
we find R(x, 0, 0, θ, σ, λ) = 0. Applying the argument above to D6G and
R, and to G(Ω, 0) but using (5.19) and u instead of (5.18) and (u, v),
(5.20) follows.
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The proof of (b) is similar. We first use (5.22) and (5.23) to conclude

(10.28) Ĝ = G(w, v, u, σ, 0) ≤ C|u|2.
The derivative of Ĝ(ζ) is

DĜ(ζ) = DjĜ · Dxj ,

and with (w, F, v) = (y1, y2, y3)

|DjĜ| ≤ C|u|2, j ∈ {1, 2, 4}
|D3Ĝ| ≤ C|u|,
Dσ = D1σ · DF + D2σ · Dw, hence |Dσ| ≤ C|Dy|.

Thus

(10.29) |DĜ(ζ)|2 ≤ C
(
|u|4|Dy|2 + |u|3|Du||Dy|+ |u|2|Du|2

)
.

The second derivative of Ĝ(ζ) is

D2Ĝ(ζ) = DiDjĜ · Dxi · Dxj + DjĜ · D2xj .

We have

|DiDjĜ| ≤ C|u|2, i, j ∈ {1, 2, 4}
|DiD3Ĝ| ≤ C|u|, i ∈ {1, 2, 4},
|D2

3Ĝ| ≤ C.

This implies

|D2Ĝ(ζ)|2 ≤ C
(
|u|4(|Dy|4 + |Dy|2|D2y| + |D2y|2)

(10.30)

+ |u|3(|Du||Dy|3 + |Du||Dy||D2y|) + |u|2|Du|2|Dy|2

+ |u|2|Du|4 + |Du||Dy||D2y| + |D2u||D2y| + |u|2|D2u|2
)
.

In the same way as above, we derive from (10.28), (10.29), and (10.30)
the estimate

(10.31) ‖Ĝ(ζ)‖2,ε ≤ C‖u‖2
2,ε.

The proof of (b) can now be completed as follows. Write Ω = (x, ξ, η, σ)
then

G(Ω, λ) = G(Ω, 0) + D5G(Ω, 0) ·λ + D2
5G(Ω, 0) ·λ ·λ + R(Ω, λ) ·λ ·λ ·λ,

and differentiation gives R(x, 0, 0, σ, λ) = 0. For G(Ω, 0), we use (10.31).
The term D5Ĝ(ζ) can be estimated as in (a) by C‖u‖2,ε. The two
remaining terms are also estimated as in (a) by C(‖u‖2,ε + ‖v‖2,ε).

q.e.d.
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