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Abstract. We consider the contact process with infection rate λ on T
d
n, the d-ary

tree of height n. We study the extinction time τTd
n
, that is, the random time it

takes for the infection to disappear when the process is started from full occupancy.
We prove two conjectures of Stacey regarding τTd

n
. Let λ2 denote the upper critical

value for the contact process on the infinite d-ary tree. First, if λ < λ2, then
τTd

n
divided by the height of the tree converges in probability, as n → ∞, to a

positive constant. Second, if λ > λ2, then logE[τTd
n
] divided by the volume of the

tree converges in probability to a positive constant, and τTd
n
/E[τTd

n
] converges in

distribution to the exponential distribution of mean 1.

1. Introduction

Let G = (V,E) be a graph of bounded degree and λ > 0. The contact process
on G with infection rate λ is the Markov process with state space {0, 1}V and infin-
itesimal generator L defined, for a real function f that depends on the restriction
of ξ to a finite subset of V , by

Lf(ξ) =
∑

x∈V

[f(ξ0→x)− f(ξ)] + λ
∑

{x,y}∈E:
ξ(y)=1

[f(ξ1→x)− f(ξ)],

where ξi→x(z) =

{

i if z = x;
ξ(z) if z 6= x.
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In the usual interpretation, vertices are individuals in a population, and individuals
in state 0 and 1 are healthy and infected, respectively. The dynamics given by the
above generator then means that infected individuals heal at rate 1 and transmit
the infection at rate λ to each neighbour. In this Introduction, we will briefly review
some properties of the contact process, and refer the reader to Liggett (1999) for a
thorough exposition.

For a subset A ⊆ V , we will write (ξAt )t≥0 to denote the contact process onG with
initial configuration ξA0 = IA, where I is the indicator function. If A = {x}, we write
(ξxt ) instead of

(

ξ
{x}
t

)

. When the superscript is omitted, the initial configuration

of the process will be either clear from the context or unimportant. As is usual, we
will abuse notation and sometimes treat ξ ∈ {0, 1}V as the set {x ∈ V : ξ(x) = 1}.

The configuration in which all vertices are in state 0, denoted ∅, is absorbing
for the contact process. For A ⊆ G, we define the extinction time for the contact
process on G with initial infected set A by

τA = inf{t : ξAt = ∅}.
The contact process with rate λ on G is said to die out if P[τ{x} < ∞] = 1, and

to survive otherwise. In case it survives, it is said to survive weakly (or globally

but not locally) if P

[

lim sup
t→∞

ξxt (x) = 1

]

= 0, and to survive strongly (or locally)

if this probability is positive. These definitions do not depend on the choice of x
provided that G is connected. Let

λ1=λ1(G)=sup{λ : the contact process with parameter λ on G dies out};
λ2=λ2(G)=inf{λ : the contact process with parameter λ on G survives locally}.

It is known that for G = Z
d, the d dimensional integer lattice, 0 < λ1 = λ2 < ∞

and the process dies out at the critical point. For G = T
d, the infinite tree in which

all vertices have degree d+1 (where d ≥ 2), 0 < λ1 < λ2 < ∞ and the process dies
out at λ1 and survives globally, but not locally, at λ2.

An important and interesting question about the contact process is as follows.
Suppose G is an infinite graph, (Gn) is a sequence of finite graphs with Gn ր G, (ξ)
is the contact process on G and (ξn) is the contact process on Gn. If n is large, does
the behaviour of (ξn) in any way resemble the behaviour of (ξ)? In particular, if (ξ)
has a phase transition with respect to the parameter λ, can this phase transition be
identified in (ξn) as well? Of course, since the contact process dies out on any finite
graph for any value of λ, the different regimes corresponding to different values of λ
cannot be defined for (ξn) the same way they are defined for (ξ). With this in mind,
one considers the extinction time τGn and tries to determine if, asymptotically as
n → ∞, the law of τGn has different aspects depending on the value of λ.

For the case in which G = Z
d and Gn is a box of Zd with side length n, this

has been thoroughly studied. Put briefly, it is known that if λ < λ1(Z
d), then

τGn grows logarithmically with the volume of Gn, whereas if λ > λ1(Z
d), then

τGn grows exponentially with the volume of Gn. These results are contained in
Cassandro et al. (1984); Schonmann (1985); Durrett and Liu (1988); Chen (1994);
Durrett and Schonmann (1988); Mountford (1993, 1999); see Section I.3 of Liggett
(1999) for an overview.

This paper is concerned with the corresponding study for G = T
d, which was

initiated in Stacey (2001). Stacey’s choice of finite subgraph Gn was the tree T
d
n,
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the rooted tree of height n in which all non-leaf vertices have d descendants (more
precisely: T

d
n has a distinguished vertex, called the root and denoted by o, with

degree d; all vertices at graph distance between 1 and n − 1 from o have degree
d+ 1, and vertices at distance n from o have degree 1). Stacey proved

Theorem 1.1. (Stacey, 2001) If λ < λ2, then there exist c, C ∈ (0,∞) such that

lim
n→∞

P
[

cn < τTd
n
< Cn

]

= 1.

In other words, with high probability as n → ∞, the extinction time is between
fixed multiples of the logarithm of the volume of the tree. Stacey also conjectured
that this result could be improved to the statement that, if λ < λ2, then τTd

n
/n

converges in probability to a constant. In this paper we confirm this conjecture:

Theorem 1.2. If λ < λ2, then there exists c ∈ (0,∞) such that

τTd
n

n

(prob.)−−−−→
n→∞

c.

In fact, we show that for any value of λ, τTd
n
/n converges in probability to some

c ∈ [0,∞]. Our proof of this fact is self-contained and quite short. Together with
Theorem 1.1 (whose proof is very short), it implies Theorem 1.2.

It should be noted that Theorem 1.2 does not allow us to distinguish between
the two regimes delimited by the critical value λ1.

Stacey also studied the case λ > λ2. Relying on earlier results in Salzano and
Schonmann (1998), he proved:

Theorem 1.3. (Stacey, 2001) If λ > λ2, then for any β < 1,

lim
n→∞

P

[

τTd
n
> e|T

d
n|β
]

= 1.

Here and below, |Td
n| denotes the number of vertices, or volume, of Td

n. This
means that the extinction time grows at least as fast as any stretched exponential
function of the volume. Stacey conjectured that this could be improved to expo-
nential growth, a conjecture which was partially confirmed by the following recent
result.

Theorem 1.4. (Mountford et al., 2013) For each λ > λ1(Z) and k > 0, there
exists c > 0 such that the following holds. Assume Tn is a sequence of trees
with degree bounded by k and |Tn| → ∞. Let τTn

denote extinction time for the
contact process with parameter λ on Tn, started from all vertices infected. Then,

lim
n→∞

P

[

τTn > ec|Tn|
]

= 1.

The reason this settled Stacey’s conjecture only partially is of course the hypoth-
esis that λ > λ1(Z) (the critical value for the contact process on Z), since we expect
that λ2(T

d) < λ1(Z) for every d ≥ 2. For d ≥ 3, this inequality is a consequence

of the facts that λ1(Z) ≥ 1.539 and that λ2(T
d) ≤ (

√
d − 1)−1 (see Liggett (1985,

p. 289) and Liggett (1999, Theorem 4.65)). Here, we prove the following stronger
version of the conjecture.

Theorem 1.5. If λ > λ2 (= λ2(T
d)), then

(a) there exists c ∈ (0,∞) such that lim
n→∞

logE[τTd
n
]

|Td
n|

= c.
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(b) as n → ∞, τTd
n
/E[τTd

n
] converges in distribution to the exponential distri-

bution with parameter 1, that is, for any α > 0,

lim
n→∞

P
[

τTd
n
/E[τTd

n
] > α

]

= e−α.

Although our proof of the above theorem could be made shorter by relying on
some points in Stacey’s proof of Theorem 1.3, we have chosen to give a more self-
contained proof that only relies on the estimates of Salzano and Schonmann (1998).

Concerning the process started from different initial configurations, we show

Theorem 1.6. If λ > λ2, then there exists δ > 0 such that, for any α > 0 and any
n large enough (depending on α), the contact process on T

d
n satisfies

inf
A⊆Td

n, A 6=∅

P
[

τA/E[τTd
n
] > α

]

> δe−α.

Organization of the paper. The rest of the paper is organized as follows. The next
section recalls the classical graphical construction and duality properties of the
contact process, and fixes the notation used throughout. Section 3 is devoted to
the proof of Theorem 1.2. The proofs of Theorems 1.5 and 1.6 are contained in
Section 4. An Appendix collects some useful estimates on random walks.

The proof of Theorem 1.5 is inspired by the method developed in Section 4 of
Mountford et al. (2013). In that paper, we couple the contact process with indepen-
dent copies of a process called the Phoenix contact process. This is simply a process
that behaves as a normal contact process until extinction, but then has the ability
to recover activity after some lag. Although this method remains a useful guide for
our intuition, we propose here an important simplification for its implementation,
that ultimately bypasses the introduction of Phoenix contact processes and is much
shorter than the proof in Mountford et al. (2013).

2. Graphical construction and duality

Let us briefly describe the graphical construction of the contact process. Fix
λ > 0 and the graph G = (V,E). For each x ∈ V , let Dx be a Poisson point process
with parameter 1 on [0,∞) and, for each ordered pair (x, y) such that {x, y} ∈ E,
let D(x,y) be a Poisson point process with parameter λ on [0,∞); these processes
are taken to be independent. As a collection they are denoted by H and called
the graphical construction or Harris system. Points in the processes Dx are called
recovery marks, and points in the processes D(x,y) are called transmission arrows,
or simply transmissions. Given a realization of H, x, y ∈ V and 0 ≤ s ≤ t, we say
that (x, s) is connected to (y, t) by an infection path in H, and write (x, s) ↔ (y, t),
if there exists a function γ : [s, t] → V that is right-continuous and satisfies:

γ(s) = x, γ(t) = y and, for all r ∈ [s, t], • r /∈ Dγ(r);
• γ(r−) 6= γ(r)

implies r ∈ D(γ(r−),γ(r)).

Such a function is called an infection path. In words, an infection path is a path in
V that does not touch recovery marks and only jumps by traversing arrows.

Let A,B,C ⊆ V . We write (x, s) ↔ B×{t} if (x, s) ↔ (y, t) for some y ∈ B, and
similarly we write A×{s} ↔ (y, t) and A×{s} ↔ B×{t}. We write (x, s) ↔ (y, t)
inside C if the infection path satisfies the additional requirement that γ(r) ∈ C for
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all r ∈ [s, t]. Similarly we write (x, s) ↔ B × {t} inside C, A× {s} ↔ (y, t) inside
C and A× {s} ↔ B × {t} inside C.

We set, for any x ∈ V and t ≥ 0,

ξxt = {y ∈ V : (x, 0) ↔ (y, t)}. (2.1)

Then, (ξxt )t≥0 is a version of the contact process, that is, it has the same distribu-
tion as that of the process whose generator we have given in the beginning of the
Introduction, and initial configuration I{x}. By setting ξAt = ∪x∈A ξxt , we get a
version of the contact process with initial configuration IA. This construction has
the advantage that, if A ⊆ B, then we get ξAt ⊆ ξBt for every t. The fact that
the contact process admits a construction satisfying this property is referred to as
attractiveness.

Given x ∈ V, t > 0 and a realization of the graphical construction H, define the

dual process (ξ̂
(x,t)
s )0≤s≤t by

ξ̂(x,t)s = {y : (y, t− s) ↔ (x, t)},

and for A ⊆ V , define ξ̂
(A,t)
s = ∪x∈A ξ̂

(x,t)
s . Given A,B ⊆ V , we then have

{ξAt ∩B 6= ∅} = {ξ̂B,t
t ∩A 6= ∅},

since both events are equal to {(x, 0) ↔ (y, t) for some x ∈ A, y ∈ B}. This is
called the duality relation for the contact process. By the time reversibility of the

Poisson process, it is easy to see that for any A, the law of (ξ̂
(A,t)
s )0≤s≤t is the same

as that of (ξAs )0≤s≤t, that is, (ξ̂
(A,t)
s )0≤s≤t is a contact process started from IA and

ran up to time t. Due to this fact, the contact process is said to be self-dual.
Finally, we will need to use the FKG inequality for the contact process, so let

us briefly present it. We define a partial order in the set of Harris systems as follows.
ForH={{Dx}x∈V , {D(x,y)}x,y:{x,y}∈E} and H̃ = {{D̃x}x∈V , {D̃(x,y)}x,y:{x,y}∈E},
we say that H � H̃ if

Dx ⊇ D̃x for all x, D(x,y) ⊆ D̃(x,y) for all (x, y)

or, in other words, if H has less transmissions and more recovery marks than H̃. A
real-valued function f on Harris systems is called increasing if f(H) ≤ f(H̃) when

H � H̃, and an event A on Harris systems is increasing if its indicator function is
increasing. The FKG inequality is then, for any bounded and increasing f, g,

E[f(H) · g(H)] ≥ E[f(H)] · E[g(H)].

In particular, for increasing events A and B,

P[A ∩B] ≥ P[A] · P[B].

This inequality is well-known in the context of discrete models defined from prod-
uct measures (see, for example, Lemma 4 in Chapter 2 of Bollobás and Riordan
(2006)). It is also standard in the literature to extend it to continuous models
based on Poisson processes, such as the contact process or continuum percolation.
An example of such an extension can be found in page 277 of Bollobás and Rior-
dan (2006); although this reference deals with a different model (namely, random
Voronoi percolation), the approach described there is simple and applies equally
well to our context, so we omit further details.
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Summary of notation. We denote the cardinality of a set A by |A|, and the indicator
function of A by IA.

The graph distance is denoted by dist, and B(x, r) = {y : dist(x, y) ≤ r}. We
will write x ∼ y when dist(x, y) = 1.

A positive integer d ≥ 2 is fixed throughout. We will thus omit the superscript
d of the trees Td and T

d
n defined above and write T and Tn instead.

Recall that we write o for the root of Tn. If x ∼ y ∈ Tn and dist(o, y) =
dist(o, x) + 1, we say that x is the parent of y, y is a child of x and we write
x = p(y) = p1(y). For i ≥ 1, if pi(y) 6= o, we define pi+1(y) = p(pi(y)). If x = pi(y)
for some i, we say that x is an ancestor of y and y is a descendant of x.

For x ∈ Tn, Tn(x) denotes the subtree of Tn which includes x and its de-
scendants. We also write Tn(x, k) = Tn(x) ∩ B(x, k). For 0 ≤ m ≤ n, we
write Ln(m) = {x ∈ Tn : dist(o, x) = m}. For x ∈ Tn, 0 ≤ m ≤ n, we write
Ln(x,m) = {y ∈ Tn(x) : dist(x, y) = m}.

For a, b ∈ R with a < b, we denote by Dn[a, b] the set of functions f : [a, b] →
{0, 1}Tn that are right-continuous with left limits.

We will use the notation explained above for the contact process on a graph
G = (V,E): for x ∈ V , ξxt is the process started from ξ0 = I{x} and for A ⊆ V ,

ξAt is the process started from IA. For the process started from full occupancy, we

write ξ
1
t rather than ξVt . In order not to make the notation too heavy, we do not

include in this notation the graph in which the process is being considered, so this
will always be clear from the context.

3. Subcritical and intermediate regimes

In this section we assume that λ < λ2(T).

Let b∗ = sup

{

b : lim sup
n→∞

P[τTn > bn] > 0

}

. By Theorem 1.1, b∗ ∈ (0,∞).

Lemma 3.1. For any b < b∗, there exist infinitely many values of N ∈ N such that
the contact process ξ on TN satisfies the following. There exist 0 ≤ i ≤ j ≤ N such
that, for any x ∈ LN (i),

P [ξxbN ∩ LN (j) 6= ∅] > (N3di)−1.

Proof : Fix b < b∗. Using the definition of b∗, we see that there exists δ > 0 such
that, for infinitely many values of N , P [τTN

> bN ] > δ. Since

P [τTN > bN ] ≤
∑

0≤i,j≤N

P

[

ξ
LN (i)
bN ∩ LN (j) 6= ∅

]

,

there exist i, j such that P
[

ξ
LN (i)
bN ∩ LN (j) 6= ∅

]

> δ/N2. Since, by duality,

P

[

ξ
LN (i)
bN ∩ Ln(j) 6= ∅

]

= P

[

ξ
LN (j)
bN ∩ LN (i) 6= ∅

]

,

we may assume that i ≤ j. We now have

δ/N2 < P

[

ξ
LN (i)
bN ∩ LN (j) 6= ∅

]

≤
∑

x∈LN (i)

P [ ξxbN ∩ LN (j) 6= ∅ ]

and the probability inside the sum does not depend on x ∈ LN (i). With the obser-
vation that |LN (i)| = di and the added requirement that N > 1/δ, the inequality
of the lemma then holds.
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Proof of Theorem 1.2. Fix ǫ > 0. We will show that, for n large enough,

P [τTn > (b∗ − ǫ)n] > 1− ǫ.

Together with the definition of b∗, this will imply that
τTn

n converges to b∗ in
probability.

We let b = b∗ − ǫ/2 and choose N, i, j corresponding to b in the above lemma.
We assume N is large enough that

N
9 logN
log d +N

(b∗ − ǫ/2) > b∗ − ǫ. (3.1)

Now fix n much larger than N and define

M =
⌊8 logN

log d

⌋

, k =
⌊ n

M +N

⌋

− 1, n1 = k(M + i).

Note that

n1 + (k − 1)(j − i) +N ≤ kM + (k − 1)j + i+N ≤ kM + (k − 1)N +N +N

≤ (k + 1)(M +N) ≤ n,

so

if 0 ≤ h ≤ n1 + (k − 1)(j − i) and y ∈ Ln(h), then Tn(y,N) is a tree of height N.
(3.2)

For each x ∈ Ln(n1), we will define a nested sequence of events

A(x, k) ⊆ A(x, k − 1) ⊆ · · · ⊆ A(x, 1)

such that
∪

x∈Ln(n1)

A(x, k) ⊆ {τTn > bkN}

and

lim
n→∞

P





∪

x∈Ln(n1)

A(x, k)



 = 1.

Starting with an x ∈ Ln(n1), let y0(x) = x and let z0(x) be an arbitrary vertex
in Ln(x, i). Define the event

A(x, 1) = { (z0(x), 0) ↔ Ln(x, j)× {bN} inside Tn(x,N) }.
On A(x, 1), define z1(x) as a vertex of Ln(x, j) such that (z0(x), 0) ↔ (z1(x), bN)
inside Tn(x,N).

Remark 3.2. In the above and in the rest of the paper, when we say we choose an
“arbitrary vertex” satisfying certain requirements, we mean that, among all vertices
satisfying these requirements, a vertex is chosen following some fixed deterministic
rule. For example, we might imagine that the tree is embedded in the plane in such
a way that no two vertices are vertically aligned, and then among all allowable
vertices we choose the leftmost. In any case the specific rule we follow will be
immaterial.

Also let y1(x) = pi(z1(x)); note that y1(x) ∈ Ln(y0(x), j − i). Then define the
event A(x, 2) ⊆ A(x, 1) by

A(x, 2) = A(x, 1) ∩ { (z1(x), bN) ↔ Ln(y1(x), j)× {2bN} inside Tn(y1(x), N) }.
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On this event, let z2(x) be a vertex of Ln(y1(x), j) such that (z1(x), bN) ↔
(z2(x), 2bN) inside Tn(y1(x), N). Then let y2(x) = pi(z2(x)). Note that y2(x) ∈
Ln(y1(x), j − i). Using (3.2), we then repeat this definition until we have obtained
A(x, k), zk(x). Figure 3.1 may clarify these definitions.

Figure 3.1. The sequences y1(x), . . . , yk(x), z1(x), . . . , zk(x).

We have, for any x ∈ Ln(n1),

P[A(x, 1)] ≥ (N3di)−1, P[A(x, ℓ+ 1) | A(x, ℓ)] ≥ (N3di)−1, 1 ≤ ℓ < k,

so that P[A(x, k)] ≥ (N3di)−k. The sequences of events (A(x, 1), . . . , A(x, k)) are
independent (in the variable x), since (A(x, 1), . . . , A(x, k)) only depends on the
graphical construction inside Tn(x), and the sets Tn(x) for x ∈ Ln(n1) are disjoint.
Thus,

P





∪

x∈Ln(n1)

A(x, k)



 ≥ P
[

Bin
(

|Ln(n1)|, (N3di)−k
)

> 0
]

. (3.3)

The expectation of the above Binomial is

dn1(N3 · di)−k = (N−3 · dM )k ≥ (N−3 · d 4 log N
log d )k = Nk,

so, as n → ∞ (and thus k → ∞), the right-hand side of (3.3) converges to 1.
If A(x, k) occurs for some x, then (x, 0) ↔ (zk(x), bkN), so τTn

> bkN . Finally,
note that

bkN = (b∗ − ǫ/2)

(

⌊ n

N + ⌊8 logN/ log d⌋
⌋

− 1

)

N

> (b∗ − ǫ/2)
nN

N + (9 logN/ log d)
> (b∗ − ǫ)n,

where the last inequality follows from (3.1). This completes the proof.

4. Supercritical regime

In this section we prove Theorems 1.5 and 1.6. We start with an outline of our
approach.

We follow a recursive scheme based on the following elementary observations.
Assume given a graphical construction H for the contact process (ξAt ) on Tn, and
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let m ≤ n. For each x ∈ Ln(m), we can use the restriction of H to the subtree

Tn(x) to define a contact process (ξ
A∩Tn(x)
Tn(x),t

)t≥0 on this subtree by setting

ξ
A∩Tn(x)
Tn(x),t

(y) = I{A ∩ Tn(x)× {0} ↔ (y, t) inside Tn(x)}, y ∈ Tn(x), t ≥ 0.

The processes {(ξA∩Tn(x)
Tn(x),t

) : x ∈ Ln(m)} are evidently all defined in the same

probability space. Moreover, they are independent and satisfy, for any x ∈ Ln(m),

y ∈ Tn(x) and t ≥ 0, ξAt (y) ≥ ξ
A∩Tn(x)
Tn(x),t

(y).

Our proof is divided into levels, which are numbered from 1 to 4. In each level
k ∈ {1, 2, 3, 4}, we obtain a lower bound on the probability of some good event
involving the contact process on Tn (for any large enough n) within some time

scale t
(k)
n . The treatment of each level after the first appeals to the previous level,

according to the following scheme. In level k ≥ 2, we decompose the height n of Tn,

writing n = M
(k)
n +N

(k)
n (this notation will only be used in this outline). We apply

the result of level k−1 to the dM
(k)
n contact processes {(ξTn(x),t)t≥0 : x ∈ Ln(M

(k)
n )}.

Since the subtrees in which these processes occur have height N
(k)
n , the time scale

t
(k)
n is chosen larger than t

(k−1)

N
(k)
n

, so that the processes can satisfy the pertinent

event of level k − 1. We then argue that the good event of level k follows from the
occurrence of sufficiently many good events of level k − 1, which in turn has high
probability.

It should be mentioned that Stacey’s proof of Theorem 1.3 also follows a similar
recursive strategy. We believe the key point that allowed us to improve his result
is the use we make of a certain coupling result (Corollary 4.10, obtained in level 3)
in level 4.

Before starting on level 1, we state a general result about the contact process
that will be quite useful. Let G = (V,E) be a locally finite graph and assume
given a graphical construction for the contact process with rate λ > 0 on G. Given
A,A ⊆ V and 0 < t0 < t, define

NA
A ,t0(t) = max

{

k : there exist 0 ≤ s1 < s2 < · · · < sk < t− t0
such that si+1 − si ≥ t0 and ξAsi ∩ A 6= ∅ for all i

}

. (4.1)

In words, NA
A ,t0

(t) is the maximal number of disjoint subintervals of length t0 that

we can extract from [0, t] with the restriction that at the starting point of each
subinterval, at least one vertex of A must be infected by ξA.

Lemma 4.1. Assume that, for numbers t0 and ǫ0 and sets A ⊆ V and E ⊆
{0, 1}V , we have

P
[

∃t ≤ t0 : ξBt ∈ E
]

> ǫ0 for all B with B ∩ A 6= ∅. (4.2)

Let κA = inf{t : ξAt ∈ E}. Then, for any N > 0, t > t0 and A ∈ {0, 1}V we have

P
[

κA > t, NA
A ,t0(t) ≥ N

]

≤ (1− ǫ0)
N
. (4.3)

Since this is a simple consequence of the Markov property, we omit the proof.
The idea is that in each of the intervals of length t0 that appear in the definition of
NA

A ,t0
(t), the process has probability ǫ0 of reaching E, so the probability of making

N attempts and failing at them all is less than (1− ǫ0)
N .

In the rest of this section, we always assume that λ > λ2(T).
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4.1. Level 1: the Salzano - Schonmann estimates. For our starting level, we simply
gather some estimates of Salzano and Schonmann (1998); the most important of
them is Lemma 4.2(i) below. It implies the extinction time τTn is at least linear
in n with non-vanishing probability, but more importantly, that there are some
deterministic times in which the root of the tree has non-vanishing probability of
being infected.

Lemma 4.2. (Salzano and Schonmann, 1998) There exist σ > 0, K,S > 0 such
that, for n large enough and the contact process on Tn,

(i.) P [ξoiS(o) = 1] > σ for i = 0, 1, . . . , ⌊n/K⌋;

(ii.) P
[

∣

∣ξoSn/(2K) ∩ Ln(n)
∣

∣ > ( 23d)
n
]

> σ.

Lemma 4.3. (Salzano and Schonmann, 1998) For any θ < 1 there exists c̄, ℓ > 0
such that, for any n and any x, y ∈ Tn, the contact process on Tn satisfies

P

[

ξxℓ·dist(x,y)(y) = 1
]

> c̄ · θdist(x,y).

Putting these two lemmas together, we get

Corollary 4.4. Assume that n1 ≤ n and A ⊆ Tn is such that A ∩ B(o, n1) 6= ∅.
Then,

P
[

|ξAt ∩ Ln(n1)| ≥ (2d/3)n1 for some t ≤ (ℓ+ S/(2K))n1

]

≥ c̄θn1 · σ.

Indeed, given x ∈ A with dist(o, x) ≤ n1, with probability larger than c̄θdist(o,x) ≥
c̄θn1 , we have (x, 0) ↔ (o, s) for some s ≤ ℓ · n1. Conditioned on this event, with
probability larger than σ the resulting infection present at o at time s further prop-
agates, reaching (2d/3)n1 vertices of Ln(n1) at time s+ n1 · S/(2K).

Summary of constants. From now on, we denote d̄ = 2
3d. Once and for all, we

fix θ < 1, together with constants v0 < v1 chosen so that

1 < 1/θ < v
1/6
i < v

1/2
i < d̄, i = 0, 1. (4.4)

For this value of θ, we fix the constants c and ℓ as given by Lemma 4.3. The
constants σ, K and S from Lemma 4.2 will also be kept fixed throughout.

4.2. Level 2: a set of configurations with high return probability. For n ∈ N large
enough, we can choose n1 ∈ N and un ∈ [v0, v1] such that

n = n1 + n2, where n2 = (un)
n1 . (4.5)

In this section we perform our first recursion; let us give a rough sketch of what
this will be. Using Lemma 4.2(i.), we will argue that, if many of the roots of the
subtrees {Tn(x) : x ∈ Ln(n1)} are infected at time t, then for an amount of time
that is linear in n2 (hence of order (un)

n1), in every S time units some of these
roots will again be infected. Every time one of them is infected, the infection gets
an attempt of travelling down to the root of Tn, and from there propagating back
up to many other subtrees rooted in Ln(n1). By Corollary 4.4, the probability that
an attempt is successful is c̄θn1 · σ. Comparing θ to un, it will be easy to see that
with high probability we will have a successful attempt.
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Using these ideas, we will obtain a set Gn ⊆ {0, 1}Tn (not containing the empty
configuration) with the property that, if ξt ∈ Gn, then with probability larger than

1− e−n1/3

, ξt+
√
n is also in Gn.

We say that a set G ⊆ {0, 1}Tn is increasing if, whenever ξ ∈ G and ξ′ ⊇ ξ, we
have ξ′ ∈ G .

Proposition 4.5. For n large enough, there exists an increasing set Gn ⊆ {0, 1}Tn

such that, if A ∈ Gn and t ∈ [n1/2/4, n1/2],

P

[

ξAt ∈ Gn and ∃t′ ≤ n1/2/8 : ξAt′ (o) = 1
]

> 1− e−n1/3

. (4.6)

Additionally, for all t ∈ [5n1/2/16, n1/2],

P [ξot ∈ Gn] > σ(1− en
−1/3

). (4.7)

Finally, if A,A′ ∈ Gn and t ∈ [n1/2/2, n1/2],

P
[

ξAt ∩A′ 6= ∅
]

> n−1. (4.8)

Proof : We fix n large enough that the decomposition (4.5) is possible; we also as-
sume that n is large enough that the trees of height n1 and n2 satisfy the properties
stated in Lemma 4.2.

Define

F =

{

f ∈ Dn([a, b]) : 0 ≤ a < b; for every interval J ⊆ [a, b]
with |J | = S, there exists s ∈ J such that f(s) ∩ Ln(n1) 6= ∅

}

.

Let us show that

if |A ∩ Ln(n1)| > d̄n1 , then P
[

(ξAt )0≤t≤2n1/2 ∈ F
]

> 1− e−n1/2

. (4.9)

Indeed, if |A ∩ Ln(n1)| > d̄n1 , then, by applying Lemma 4.2 to the trees Tn(x) for
x ∈ A ∩ Ln(n1), we see that for i = 0, 1, . . . , ⌊n2/K⌋, |ξAiS ∩ Ln(n1)| stochastically
dominates a Binomial(d̄n1 , σ) random variable. The probability that ξAiS ∩ Ln(n1)
is empty for some i ∈ {0, 1, . . . , ⌊n2/K⌋} is thus smaller than

n2

K
· (1− σ)d̄

n1 ≤ n2

K
· e−σ·d̄n1 ≤ (un)

n1 · e−σ·d̄n1 ≤ (v1)
n1 · e−σ·d̄n1

< e−(σ/2)·d̄n1

(4.10)
if n (and hence n1) is large enough. Also, recalling that (un)

1/2 < d̄, if n1 is large

enough we have (d̄/
√
un)

n1 > 2
√
2/σ and then

n1/2 = (n1 + (un)
n1)1/2 < (2(un)

n1)1/2 =
√
2((un)

1/2)n1 <
σ

2
· d̄n1 ,

so the rightmost term in (4.10) is smaller than e−n1/2

. We have thus shown that,

outside of probability e−n1/2

, the desired property of Ln(n1) never being empty for
more than S time units is satisfied up to time ⌊n2/K⌋ > 2n1/2. This proves (4.9).

For A ⊆ Tn, let

φ(A) = P
[

(ξAt )0≤t≤n1/2 ∈ F
]

and Gn =
{

A ⊆ Tn : φ(A) > 1− e−
1
2n

1/2
}

.

The fact that Gn is increasing follows from attractiveness. Note that (4.9) implies
that

{A : |A ∩ Ln(n1)| > d̄n1} ⊆ Gn. (4.11)
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We are now ready to start our proof of (4.6). Fix A ∈ Gn and t ∈ [n1/2/4, n1/2].
Define

κ = inf{s ≥ 0 : |ξAs ∩ Ln(n1)| > d̄n1}.
We have

P
[

ξAt /∈ Gn

]

≤ P
[

(ξAs )0≤s≤t /∈ F
]

+ P
[

(ξAs )0≤s≤t ∈ F, κ > t
]

+ P
[

ξAt /∈ Gn, κ ≤ t
]

.
(4.12)

The first term on the right-hand side is less than e−
1
2n

1/2

by the definition of Gn.
Let us bound the second and third terms, starting with the third term. Note that

E
[(

1− φ(ξAt )
)

· I{κ≤t}
]

=
∑

B⊆Tn

P
[

κ ≤ t, ξAt = B
]

· P
[

(ξBs )0≤s≤n1/2 /∈ F
]

= P
[

κ ≤ t, (ξAs )t≤s≤t+n1/2 /∈ F
]

< e−n1/2

by (4.9). Then, by Markov’s inequality,

P
[

ξAt /∈ Gn, κ ≤ t
]

= P

[

(

1− φ(ξAt )
)

· I{κ≤t} ≥ e−
1
2n

1/2
]

≤ e−n1/2

e−
1
2n

1/2
= e−

1
2n

1/2

.

We will now bound P
[

(ξAs )0≤s≤t ∈ F, κ > t
]

. Let r0 =
(

ℓ+ S
2K

)

n1. We first

note that, since S ≪ r0 when n1 is large, on
{

(ξAs )0≤s≤t ∈ F
}

we can find t1 <

t2 < · · · < t⌊t/(2r0)⌋ such that t− t⌊t/(2r0)⌋ > r0, ti+1− ti > r0 and ξAti ∩Ln(n1) 6= ∅

for each i. This implies that
{

(ξAs )0≤s≤t ∈ F
}

⊆
{

NA
Ln(n1),r0

(t) ≥ ⌊t/(2r0)⌋
}

,

where NA
Ln(n1),r0

(t) is as in (4.1). Therefore,

P
[

(ξAs )0≤s≤t ∈ F, κ > t
]

≤ P

[

NA
Ln(n1),r0

(t) ≥ ⌊t/(2r0)⌋, κ > t
]

. (4.13)

We now bound the right-hand side with Lemma 4.1. We set the parameters of
Lemma 4.1 as follows:

A = Ln(n1), t0 = r0, E = {B ⊆ Tn : |B ∩ Ln(n1)| > d̄n1}, ǫ0 = c̄σθn1 .

Note that (4.2) follows from Corollary 4.4. The right-hand side of (4.13) is then
less than

exp

(

−c̄σθn1 ·
⌊

t

2r0

⌋)

≤ exp

(

− c̄σ

16
(

ℓ+ S
2K

) · 1

n1
· θn1 · (n1 + un1

n )1/2

)

<
1

4
e−n1/3

if n is large enough, since θu
1/2
n > u

1/3
n by (4.4).

Going back to (4.12), we have proved that

P
[

ξAt ∈ Gn

]

≥ 1− e−
1
2n

1/2 − e−
1
2n

1/2 − 1

4
e−n1/3

> 1− 1

2
e−n1/3

.

By a simpler application of Lemma 4.1 than the one explained above, we also get

P

[

∃t′ ≤ n1/2/8 : ξAt′ (o) = 1
]

≥ 1− 1

2
e−n1/3

.

This completes the proof of (4.6).
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(4.7) follows from (4.11), (4.6), Lemma 4.2(ii.):

P [ξot ∈ Gn] ≥ P

[

ξot ∈ Gn

∣

∣

∣
|ξo(S/2K)n1

∩ Ln(n1)| ≥ d̄n1

]

· P
[

|ξo(S/2K)n1
∩ Ln(n1)| ≥ d̄n1

]

> σ(1− e−n1/3

)

(note that (S/2K)n1 < n1/2/16, so t ∈
[

5n1/2/16, n1/2
]

implies t − (S/2K)n1 ∈
[

n1/2/4, n1/2
]

, so (4.6) can indeed be applied).
Let us now prove (4.8). Define the events

B1 = {∃s∗ ∈ [t− 2S − 2ℓn1, t− S − 2ℓn1], x
∗ ∈ Ln(n1) : A× {0} ↔ (x∗, s∗)} ;

B2 = {∃s∗∗ ∈ [t− S, t], x∗∗ ∈ Ln(n1) : (x
∗∗, s∗∗) ↔ A′ × {t}} .

We have P[B1] ≥ P
[

(ξAs )0≤s≤t ∈ F
]

≥ 1 − e−n1/3

and, by the same consideration

for the dual process, P[B2] ≥ 1− e−n1/3

. Also,

P
[

ξAt ∩A′ 6= ∅ | B1 ∩B2

]

≥ P [(x∗, s∗) ↔ (o, s∗ + ℓn1) ↔ (o, s∗∗ − ℓn1) ↔ (x∗∗, s∗∗) | B1 ∩B2]

≥ c2θ2n1 · e−2S ,

by Lemma 4.3 and the fact that s∗∗ − s∗ ∈ [2ℓn1, 2ℓn1 +2S]. We have thus shown
that

P
[

ξAt ∩A′ 6= ∅
]

≥ (1− 2e−n1/3

) · c̄2θ2n1 · e−2S > 1/n

for n large, since θ2 > 1/un.

4.3. Level 3: survival and coupling for time exp
(

dn
1/5)

. Define

n = m1 +m2, where m1 = ⌊n1/4⌋.
Given ξ ∈ {0, 1}Tn and x ∈ Ln(m1), we will say that ξ ∩ Tn(x) ∈ Gm2 if ξ ∩ Tn(x),
when seen as a configuration for a tree of height m2, is in the set Gm2 defined in
the previous subsection. For A ⊆ Tn, define

Γ(A) = |{x ∈ Ln(m1) : A ∩ Tn(x) ∈ Gm2}| .
Suppose that we have Γ(ξ0) = a ∈ (0, dm1) ∩ Z and that t ∈ [(1/2)m

1/2
2 ,m

1/2
2 ].

Applying the results of level 2, it will be easy to prove that with high probability,
for all x ∈ Ln(m1) such that ξ0 ∩Tn(x) ∈ Gm2 , we will also have ξt ∩Tn(x) ∈ Gm2 .
In other words, with high probability Γ(ξt) ≥ Γ(ξ0). Additionally, from time 0
to time t, the infection gets an attempt to reach a subtree T̄ ∈ {Tn(x) : x ∈
Ln(m1), ξ0∩Tn(x) /∈ Gm2} and spread sufficiently inside it that we get ξt∩T̄ ∈ Gm2 .
If such an attempt is successful, we have Γ(ξt) > Γ(ξ0).

With this in mind, we will argue that, if 0 = t0 < t1 < . . . is a sequence of times

with 1
2m

1/2
2 ≤ ti+1− ti ≤ m

1/2
2 for each i and (ξt) is the contact process on Tn with

an arbitrary initial configuration, then (Γ(ξt0), Γ(ξt1), . . .) is stochastically larger
than a certain Markov chain Z(n) with state space (−∞, dm1 ] ∩ Z that tends to
move much more to the right than to the left.

It will be convenient to write

hk(n) = d⌊n
1/k⌋, for k ∈ N.
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Note that |Ln(m1)| = dm1 = d⌊n
1/4⌋ = h4(n).

Let us now define the transition kernel P (·, ·) of Z(n). Let p(n) be the probability
mass function for the Binomial

(

h4(n), exp(−n1/3)
)

distribution. Define

for 1 ≤ k < h4(n) :

P (k, k + 1) = p(n)(0) · c̄σ
2 θ2m1 ;

P (k, k) = p(n)(0) ·
(

1− c̄σ
2 θ2m1

)

;
P (k, k − a) = p(n)(a), a > 0;

for k = h4(n) :

P (k, k − a) = p(n)(a), a ≥ 0;

for k ≤ 0 :
P (k, k) = 1

(4.14)
(obviously, P (k, ℓ) = 0 for all values of ℓ for which we have not explicitly defined
it).

Lemma 4.6. For n large enough and the contact process (ξt) on Tn, the following

holds. If 0 = t0 < t1 < . . . are such that 1
2m

1/2
2 ≤ ti+1 − ti ≤ m

1/2
2 for each i and

Γ(ξ0) = a, then (Γ(ξti))i≥0 stochastically dominates the Markov chain (Z
(n)
i )i≥0

with initial state Z
(n)
0 = a.

Proof : Fix an initial configuration ξ0 and t ∈ [m
1/2
2 /2, m

1/2
2 ]. Let a = Γ(ξ0); we

will for now assume that 1 ≤ a < h4(n). Define, for x ∈ Ln(m1) and s ≥ 0,

η[x]s = {y ∈ Tn(x) : ξ0 ∩ Tn(x)× {0} ↔ (y, s) inside Tn(x)} .
Obviously, η[x]s is simply a contact process on Tn(x) with initial configuration
ξ0 ∩ Tn(x). As usual, we will abuse notation and treat η[x]s as an element of
{0, 1}Tn(x).

Let

V = |{x ∈ Ln(m1) : ξ0 ∩ Tn(x) ∈ Gm2 and η[x]t ∈ Gm2}| .
Using (4.6) and the fact that the processes {(η[x]s)0≤s≤t : x ∈ Ln(m1)} are inde-

pendent, we see that V is stochastically larger than a Binomial(a, 1− exp(−n1/3))
random variable. This implies that V is stochastically larger than a−X, where X

is a random variable with Binomial(h4(n), e
−n1/3

) distribution.
Fix arbitrary x∗, y∗ ∈ Ln(m1) with ξ0 ∩ Tn(x

∗) ∈ Gm2 and ξ0 ∩ Tn(y
∗) /∈ Gm2 .

Define the event

E = {ξt ∩ Tn(y
∗) ∈ Gm2} .

We will now give a lower bound for the probability of E. To this end, we introduce
the stopping times

S1 = inf{s : ξs(x∗) = 1}, S2 = inf{s ≥ S1 : ξs(y
∗) = 1}.

Since ξ0 ∩ Tn(x
∗) ∈ Gm2 , (4.6) implies

P

[

S1 ≤ m
1/2
2 /8

]

≥ 1− e−n1/3

, (4.15)

and Lemma 4.3 gives

P [S2 ≤ S1 + ℓ · dist(x∗, y∗) | S1 < ∞] ≥ c̄θdist(x
∗,y∗) ≥ c̄θ2m1 . (4.16)

Since ℓ · dist(x∗, y∗) ≤ ℓ · 2m1 ≤ m
1/2
2 /16 when n is large enough, (4.15) and (4.16)

imply

P

[

S2 ≤ 3m
1/2
2 /16

]

≥ (1− e−n1/3

) · c̄θ2m1 . (4.17)
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Now, since m
1/2
2 /2 ≤ t ≤ m

1/2
2 , if 0 ≤ S2 ≤ 3m1/2/16 we have 5m

1/2
2 /16 ≤ t−S2 ≤

15m
1/2
2 /16, so we can apply (4.7) to get

P [E] ≥ P

[

E
∣

∣

∣
S2 ≤ 3m1/2/16

]

· P
[

S2 ≤ 3m1/2/16
]

≥ σ(1− e−n1/3

) · (1− e−n1/3

) · c̄θ2m1 ≥ c̄σ

2
θ2m1 (4.18)

when n is large.
Now, the fact that Gm2 is increasing readily implies that the events {V = a} and

E are increasing with respect to the partial order in Harris systems introduced in
Section 2. Thus, the FKG inequality gives

P [E | V = a] ≥ c̄σ

2
θ2m1 .

Since Γ(ξt) ≥ V + IE , this completes the proof in the case 1 ≤ a < h4(n). The case
a = h4(n) is the same, except that we only use Γ(ξt) ≥ V , and the case a ≤ 0 is
trivial, so the proof is complete.

Lemma 4.7. If n is large enough, then

P

[

Z
(n)
i ≤ (3/4)h4(n)

∣

∣

∣
Z

(n)
0 = h4(n)

]

≤ e−h4(n) ∀i ∈ [0, eh5(n)]; (4.19)

P

[

Z
(n)
i ≤ (3/4)h4(n)

∣

∣

∣
Z

(n)
0 = a

]

≤ 3e−a ∀a ∈ {1, . . . , h4(n)},

i ∈ [eh10(n), eh5(n)].
(4.20)

The proof of this lemma is deferred to the appendix.
Now let us define Hn = {A ⊆ Tn : Γ(A) > (3/4)dm1}.

Lemma 4.8. For n large enough,

P
[

ξAt ∈ Hn

]

≥ 1− e−
3
4h4(n) ∀A ∈ Hn, t ∈ [m

1/2
2 , eh5(n)]; (4.21)

P
[

ξAt 6= ∅, ξAt /∈ Hn

]

≤ e−h5(n), ∀A ⊆ Tn, t ∈ [eh9(n), eh5(n)]; (4.22)

P

[

ξA
m

1/2
2

∩A′ = ∅

]

≤ e−h4(n)/4n, ∀A,A′ ∈ Hn. (4.23)

Proof : For (4.21), let i0 be the largest integer such that i0 ·m1/2
2 /2 ≤ t−m

1/2
2 /2. By

Lemma 4.6,

(

Γ
(

ξ
1
0

)

, Γ

(

ξ
1

m
1/2
2 /2

)

, . . . , Γ

(

ξ
1

i0·m1/2
2 /2

)

, Γ
(

ξ
1
t

)

)

is stochastically

larger than
(

Z
(n)
0 , . . . , Z

(n)
i0+1

)

with Z
(n)
0 ≥ 3

4h4(n). Since i0+1 ≤
⌊

exp(h5(n))

m
1/2
2 /2

⌋

+1 ≤
exp(h5(n)), the result follows from (4.19).

The same argument using (4.20) gives

P
[

ξAt ∈ Hn

]

> 1− 3e−a ∀A with Γ(A) = a, t ∈ [eh9(n), eh5(n)]. (4.24)

For (4.22), we will need (4.24) and

P

[

∃s ≤ ℓn+
Sm1

2K
+m

1/2
2 : Γ

(

ξAs
)

>
σ

4
d̄m1

]

>
c̄σ

2
θn, ∀A ⊆ Tn, A 6= ∅.

(4.25)
Let us prove (4.25). Choose x ∈ A; by Lemma 4.3, with probability larger than c̄θn,
we have (x, 0) ↔ (o, s1) for some s1 ≤ ℓn. Conditioned on this event, by Lemma
4.2(ii.), with probability larger than σ we have |ξAs1+(S/2K)m1

∩ Ln(m1)| > d̄m1 .
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Also conditioning on this event, by (4.7), the number of y ∈ Ln(m1) such that
ξA
s1+

Sm1
2K +m

1/2
2

∩ Tn(y) ∈ Gm2 stochastically dominates a Binomial(d̄m1 , σ/2) ran-

dom variable. If n is large enough, such a random variable is larger than (σ/4)d̄m1

with probability larger than 1/2. This proves (4.25).
We now turn to (4.22). Let κ = inf

{

s : Γ(ξAs ) >
σ
4 d̄

m1
}

. For t ∈ [eh8(n), eh5(n)]
we have

P
[

ξAt 6= ∅, ξAt /∈ Hn

]

≤ P

[

ξAeh9(n) 6= ∅, κ > eh9(n)
]

+ P
[

ξAt /∈ Hn | κ ≤ eh9(n)
]

.

(4.26)

The second term on the right-hand side is less than 3 exp
(

−σ
4 d̄

m1
)

< 1
2 e−h5(n)

by (4.24). Let us show that the first term on the right-hand side of (4.26) is also
smaller than 1

2 e−h5(n). We use Lemma 4.1 with the following choice of parameters:

A = Tn, t0 = ℓn+
S

2K
m1 +m

1/2
2 , E =

{

A : Γ(A) >
σ

4
d̄m1

}

, ǫ0 =
c̄σ

2
θn.

With this choice, (4.2) is exactly (4.25), and {ξs 6= ∅} ⊆ {NTn,t0(s) ≥ ⌊s/t0⌋ − 1}
for any s. We then have, by (4.3),

P

[

ξeh9(n) 6= ∅, κ > eh9(n)
]

≤ P

[

NTn,t0(e
h9(n)) ≥ ⌊eh9(n)/t0⌋ − 1, κ > eh9(n)

]

≤ exp

(

− c̄σ

2
· θn ·

(⌊

exp(h9(n))

t0

⌋

− 1

))

,

which is of course much smaller than e−h5(n)/2. We have thus proved that the
right-hand side of (4.26) is smaller than e−h5(n).

Finally, let us prove (4.23). By the definition of Γ, the hypothesis gives

|{x ∈ Ln(m1) : A ∩ Tn(x) ∈ Gm2 , A
′ ∩ Tn(x) ∈ Gm2}| ≥ h4(n)/4.

The result then follows from (4.8).

Corollary 4.9. For n large enough, P
[

ξ
1
exp(h5(n))

= ∅

]

≤ e−h5(n).

Proof : The fully infected configuration is in Hn (since Hn is non-empty and in-
creasing), so the statement follows directly from (4.21).

Corollary 4.10. For n large enough,

P

[

∃x ∈ Tn : ξxexp(h6(n))
6= ∅, ξxexp(h6(n))

6= ξ
1
exp(h6(n))

]

≤ e−d(n2)

.

Proof : We first prove that, for any A ⊆ Tn,

P

[

ξAexp(h7(n))
6= ∅, ξAexp(h7(n))

6= ξ
1
exp(h7(n))

]

≤ e−h7(n). (4.27)

To this end, write rn = exp(h7(n)), r′n = rn/2, r′′n = r′n −m
1/2
2 . Fix y ∈ Tn; we

have

P
[

ξArn 6= ∅, ξArn(y) 6= ξ1rn(y)
]

≤P

[

ξAr′′n 6= ∅, ξAr′′n /∈ Hn

]

+ P

[

ξ̂
(y,rn)
r′n

6= ∅, ξ̂
(y,rn)
r′n

/∈ Hn

]

+ P

[

ξAr′n ∩ ξ̂
(y,rn)
r′n

= ∅

∣

∣

∣
ξAr′′n , ξ̂

(y,rn)
r′n

∈ Hn

]
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The first and second terms are less than e−h5(n) by (4.22). The third term is less
than e−h4(n)/4n by (4.23). Summing over all choices of y, we conclude that the
probability in (4.27) is less than dn+1 · (2e−h5(n) + e−h4(n)/4n) < e−h7(n).

Now, the probability in the statement of the corollary is less than
∑

x∈Tn

∑

B⊆Tn:B 6=∅

P

[

ξxeh6(n)−eh7(n) = B 6= ξ
1

eh6(n)−eh7(n)

]

· P
[

ξBeh7(n) 6= ∅, ξBeh7(n) 6= ξ
1

eh7(n)

]

≤ e−h7(n) ·
∑

x∈Tn

P

[

ξxeh6(n)−eh7(n) 6= ∅, ξxeh6(n)−eh7(n) 6= ξ
1

eh6(n)−eh7(n)

]

.

Iterating, this shows that

P

[

∃x ∈ Tn : ξxexp(h6(n))
6= ∅, ξxexp(h6(n))

6= ξ
1
exp(h6(n))

]

≤ |Tn| · (e−h7(n))e
h6(n)/eh7(n)

< e−d(n2)

when n is large enough.

Corollary 4.11. For n large enough,

P

[

ξoexp(h5(n))
6= ∅

]

>
σ

4
.

Proof : As explained in the proof of (4.25), we have

P

[

∃t : Γ(ξot ) >
σ

4
d̄m1

]

>
σ

2
.

If Γ(ξot ) > σ
4 d̄

m1 for some t, then (4.24) guarantees that, with probability larger

than 1− e−(σ/4)d̄m1
, we have ξo

t+eh5(n) ∈ Hn, so in particular, ξo
eh5(n) 6= ∅.

4.4. Level 4: survival for time ecd
n

. We start stating a simple result about the
extinction time of the contact process. We refer the reader to Mountford et al.
(2013, Lemma 4.5) for the proof.

Lemma 4.12. For every s > 0, we have

P [τTn ≤ s] ≤ s

E[τTn ]
,

Moreover, there exists a constant C such that for every n, E[τTn ] ≤ eC|Tn|.

We will write (ξA,s
t )t≥s for the contact process started at time s with A infected,

that is,

ξA,s
t = {y : A× {s} ↔ (y, t)}, t ≥ s.

Similarly we write ξx,st and ξ
1,s
t . We of course assume these processes are defined

with the same graphical construction as the one used for the definition of the
original contact process (ξt)t≥0 on Tn, so that we can consider them all in the same
probability space.

Let tk = k · eh6(n), k = 0, 1, . . . and define the events

Ek =
{

ξ
1,tk−1

tk+1
6= ∅

}

,

Fk =
{

for all x ∈ Tn, either ξ
x,tk−1

tk
= ∅ or ξ

x,tk−1

tk
= ξ

1,tk−1

tk

}

, k ≥ 1.
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Lemma 4.13. On ∩k
ℓ=1(Eℓ ∩ Fℓ), we have ξ

1
tk+1

6= ∅.

Proof : It is enough to prove that, for any k,
{

ξ
1
tk

6= ∅

}

∩ Ek ∩ Fk ⊆
{

ξ
1
tk+1

6= ∅

}

(4.28)

For k = 0, this follows directly from the definition of E0. Assume k ≥ 1. Writing

ξ
1
tk

=
∪

x∈ξ
1
tk−1

ξ
x,tk−1

tk
, ξ

1,tk−1

tk+1
=
∪

y∈Tn

ξ
y,tk−1

tk+1
,

we see that the occurrence of {ξ1tk 6= ∅} and Ek = {ξ1,tk−1

tk+1
6= ∅} imply that there

exist x ∈ ξ
1
tk−1

, y ∈ Tn such that ξ
x,tk−1

tk
, ξ

y,tk−1

tk
, ξ

y,tk−1

tk+1
are all non-empty. Since

Fk occurs, ξ
x,tk−1

tk
, ξ

y,tk−1

tk
being non-empty implies that they are equal (as both

are equal to ξ
1,tk−1

tk
), hence we also have

∅ 6= ξ
y,tk−1

tk+1
= ξ

x,tk−1

tk+1
≤ ξ

1
tk+1

.

Our final (Level 4) recursion will be very simple. Our subtrees will be the d trees
that are rooted at the neighbours of the root; we write x1, . . . , xd to denote these
neighbours.

Proposition 4.14. For n large enough, we have

E[τTn ] ≥
(

E[τTn−1 ]

eh6(n)

)d

.

Proof : By the above lemma,

P [τTn ≤ t] ≤
⌊t/eh6(n)⌋
∑

k=0

(P[Ec
k] + P[F c

k ]) . (4.29)

We have

P[Ec
k] ≤

d
∏

i=1

P[Tn(xi)× {tk−1} = Tn(xi)× {tk+1} inside Tn(xi)] ≤
(

2eh6(n)

E[τTn−1 ]

)d

,

(4.30)
where the second inequality follows from Lemma 4.12. We also have, by the defi-
nition of Fk and Corollary 4.10,

P[F c
k ] ≤ e−d(n2)

. (4.31)

Using (4.30) and (4.31) in (4.29) with t = 2
(

E[τTn ]

eh6(n)

)d

we get:

P

[

τTn ≤ 2

(

E[τTn−1 ]

eh6(n)

)d
]

≤ 2

(

E[τTn−1 ]

eh6(n)

)d

· 1

eh6(n)
·
(

(

2eh6(n)

E[τTn−1 ]

)d

+ e−d(n2)

)

≤ 1

2

when n is large. This finishes the proof.
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Proof of Theorem 1.5. From Proposition 4.14, we know that

logE[τTn ]

dn
+

h6(n)

dn−1
≥ logE[τTn−1 ]

dn−1
.

Corollary 4.9 ensures that for n sufficiently large,

logE[τTn ] ≥ h5(n)/2.

Writing

un =
logE[τTn ]

dn
,

we thus get that for n sufficiently large,

un

(

1 +
1

n2

)

≥ un−1.

Letting ρn =
∏n

i=1(1 + 1/i2), we can rewrite this as un ρn ≥ un−1 ρn−1, for n
sufficiently large. In other words, the sequence uρ is ultimately increasing. It thus
converges to some constant c ∈ R ∪ {+∞}. Clearly, un ρn is positive if n is large
enough, so c > 0. Since the sequence ρ converges to a finite constant, it follows from
Lemma 4.12 that c is finite. We have thus shown that the sequence uρ converges
to c ∈ (0,+∞), and this implies part (a) of the theorem. Part (b) now follows from
Proposition A.1 in Mountford et al. (2013).

4.5. Other initial configurations. In this subsection we will prove Theorem 1.6. We
start proving that the theorem follows from:

Proposition 4.15. There exists δ > 0 such that, for large enough n,

inf
A⊆Tn, A 6=∅

P [τA > exp(h5(n))] > δ.

Proof of Theorem 1.6. Since, for any A,

{τA > αE[τTn ]} ⊇
{

ξAeh5(n) = ξ
1

eh5(n) 6= ∅, ξ
1
αE[τTn ] = ξ

1,eh5(n)

αE[τTn ] 6= ∅

}

,

we get

P

[

ξA
αE[τTn ] 6= ∅

]

≥ P
[

ξAeh5(n) 6= ∅
]

· P
[

ξ
1,eh5(n)

αE[τTn ] 6= ∅

]

− P

[

ξAeh5(n) 6= ∅, ξAeh5(n) 6= ξ
1

eh5(n)

]

− P

[

ξ
1
αE[τTn ] 6= ξ

1,eh5(n)

αE[τTn ]

]

.

Now note that, by Theorem 1.5,

lim
n→∞

P

[

ξ
1,eh5(n)

αE[τTn ] = ∅

]

= lim
n→∞

P

[

τTn > αE[τTn ]− eh5(n)
]

= e−α

and, by Corollary 4.10,

lim
n→∞

P

[

ξAeh5(n) 6= ∅, ξAeh5(n) 6= ξ
1

eh5(n)

]

= lim
n→∞

P

[

ξ
1
αE[τTn ] 6= ξ

1,eh5(n)

αE[τTn ]

]

= 0,

so the desired statement follows.

We now turn to the proof of Proposition 4.15. We will need the following pre-
liminary result.

Lemma 4.16. If n is large enough, x ∈ Tn and t ≥ exp(h6(n)),

P
[

τ{x} ∈ [exp(h6(n)), t]
]

≤ e−d(n2)

+
t

E[τTn ]
.
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Proof : The left-hand side is bounded by

P

[

ξxeh6(n) 6= ∅, ξxeh6(n) 6= ξ
1

eh6(n)

]

+ P

[

ξ
1
t = ∅

]

.

The first term is less than e−d(n2)

by Corollary 4.10 and the second term is less
than t

E[τTn ] by Lemma 4.12.

Proof of Proposition 4.15. We choose N large enough that

(1) h5(n− 1) > h6(n) ∀n ≥ N ;
(2) the conclusion of Corollary 4.11 holds for all n ≥ N ;

(3) δ := min(σ/4, e−h5(N))−
∞
∑

j=N

e−dj/2

> 0.

Now fix n ≥ N and let A ⊆ Tn be non-empty. Fix x ∈ A. If Tn(x) has height at
least N (or, in other words, of dist(o, x) ≤ n−N), then let y0 = x. Otherwise, let
y0 be the point in the path from x to o which is at distance n−N from o. Then let
y1 ∼ y2 ∼ . . . ∼ yk = o be the vertices in the path from y0 to o, so that yi+1 = p(yi)
for each i and k = dist(o, y0). For each i, let ji be the height of Tn(yi), that is,
ji = n− dist(o, yi).

As before, we assume given a Harris system H for the contact process on Tn.
For each i, we write

ξxi,t(z) = I{(x, 0) ↔ (z, t) inside Tn(yi)}, z ∈ Tn(yi), t ≥ 0.

Simply put, (ξxi,t)t≥0 is the contact process on Tn(yi), started from only x infected,
and constructed using the restriction of H to Tn(yi). Then define, for each i, the
times

κi = sup{t : ξxi,t 6= ∅}.
Also define the events

E0 =
{

κ0 > eh5(j0)
}

;

Ei =
{

κi /∈ [eh6(ji), eh5(ji)]
}

, 1 ≤ i ≤ k

(obviously, if x = y0 = o and thus k = 0, the second line should be ignored).
We now claim that

E0 ∩ · · · ∩ Ek ⊆ {ξxexp(h5(n))
6= ∅} ⊆ {ξAexp(h5(n))

6= ∅}. (4.32)

Indeed, the second inclusion is evident and the first one is verified using the fact
that κi+1 ≥ κi for each i, together with item (1) in the choice of N :

E0 ∩ E1 ∩ · · · ∩ Ek =
{

κ0 > eh5(j0)
}

∩
{

κ1 /∈ [eh6(j1), eh5(j1)]
}

∩ E2 ∩ · · · ∩ Ek

⊆
{

κ1 > eh5(j1)
}

∩ E2 ∩ · · · ∩ Ek

and iterate.
We will thus be finished if we show that

P [E0 ∩ · · · ∩ Ek] > δ. (4.33)

First note that
P[E0] ≥ min(σ/4, e−h5(N)).

Indeed, if j0 > N , then P [E0] > σ/4 by Corollary 4.11 and if j0 = N , then
P [E0] > e−h5(N) simply by the fact that this is the probability that x does not
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recover from time 0 to time eh5(N). Second, note that for each i ≥ 1, by Lemma
4.16 and Theorem 1.5,

P[Ei] ≥ 1− e−d(ji)
2

− eh5(ji)

E[τTji
]
> 1− e−dji/2

.

(4.33) now follows from item (3) in the choice of N .

Appendix A. Appendix – Random walk estimates

The purpose of this appendix is to prove Lemma 4.7, which is a statement
concerning the Markov chain Z(n) with transition probabilities defined in (4.14).
We begin with a statement concerning hitting times.

Lemma A.1. For the chain Z(n) with transition probabilities defined in (4.14), let
H0 denote the hitting time of Z− = Z ∩ (−∞, 0] and H1 denote the hitting time of
h4(n). For every n large enough and every a ≤ h4(n),

P

[

H0 < H1 | Z(n)
0 = a

]

≤ e−an2/7

. (A.1)

Let H3/4 be the hitting time of Z∩ (−∞, (3/4)h4(n)]. For every n large enough and
every a ≤ h4(n),

P

[

H3/4 < H1 | Z(n)
0 = a

]

≤ e−(a−(3/4)h4(n))n
2/7

. (A.2)

Proof : Recall that the transition probabilities of Z(n) in (4.14) are defined in terms

of p(n), the probability mass function of a Binomial(h4(n), e
−n1/3

). Clearly, a
Bernoulli random variable with parameter p is stochastically dominated by a Pois-

son random variable with parameter − log(1−p). Hence, a Binomial(h4(n), e
−n1/3

)
is stochastically dominated by a Poisson random variable with parameter

−h4(n) log(1− e−n1/3

) ≤ e−2n2/7

=: λn,

provided n is sufficiently large. Let p(n) be the probability mass function of a

Poisson random variable with parameter λn, and consider the Markov chain Z
(n)

whose transition probabilities are defined by

for k < h4(n) :

P (k, k + 1) = θ4m1 ;

P (k, k) = p(n)(0)− θ4m1 ;

P (k, k − a) = p(n)(a), a > 0;

for k = h4(n) :

P (k, k − a) = p(n)(a), a ≥ 0;

Compared with the definition of Z(n), we replaced p(n) by p(n) for the jumps to the
left, decreased the probability to jump to the right (for n sufficiently large), and
changed the definition of the Markov chain over Z− for convenience. Clearly, Z(n)

stochatically dominates Z
(n)

until reaching Z−, so it suffices to prove Lemma A.1

with Z
(n)

in place of Z(n).

Let us write L for the generator of the Markov chain Z
(n)

, that is,

Lf(x) = θ4m1(f(x+ 1)− f(x)) + e−λn

+∞
∑

a=1

λan

a!
(f(x− a)− f(x)) (x < h4(n)).
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Let f(a) be the left-hand side of (A.1), and f̃(a) = e−an2/7

. For a ∈ Z∩ (0, h4(n)),
we have Lf(a) = 0. On the other hand, for such a, we have

Lf̃(x) = θ4m1(e−n2/7 − 1)f̃(x) + e−λn

+∞
∑

a=1

λan

a!
(ean

2/7 − 1)f̃(x).

Recalling that λn = e−2n2/7

, we get

e−λn

+∞
∑

a=1

λan

a!
(ean

2/7 − 1) ≤
+∞
∑

a=1

e−an2/7

a!
= exp

(

e−n2/7
)

− 1,

so that

Lf̃(x) ≤
[

θ4⌊n
1/4⌋

(

e−n2/7 − 1
)

+ exp
(

e−n2/7
)

− 1
]

f̃(x).

The square brackets above behave like −θ4⌊n
1/4⌋ to leading order. In particular,

Lf̃(x) ≤ 0 for all large enough n. As a consequence, L(f − f̃) ≥ 0 on Z∩ (0, h4(n)).
By the maximum principle,

max
Z∩(0,h4(n))

(f − f̃) ≤ max
Z−∪{h4(n)}

(f − f̃) = 0,

and this proves (A.1). The proof of (A.2) is identical.

Proof of Lemma 4.7. We will actually show the stronger statements that

P

[

inf
i∈[0, eh5(n)]

Z
(n)
i ≤ (3/4)h4(n)

∣

∣

∣
Z

(n)
0 = h4(n)

]

≤ e−h4(n) (A.3)

P

[

inf
i∈[eh10(n), eh5(n)]

Z
(n)
i ≤ (3/4)h4(n)

∣

∣

∣
Z

(n)
0 = a

]

≤ 3e−a ∀a ∈ {1, . . . , h4(n)}.
(A.4)

Let us consider (A.3) first. We can decompose the trajectory into a sequence of
excursions from h4(n). Until time eh5(n), there can happen no more than eh5(n)

excursions. Among eh5(n) excursions, the probability that at least one excursion
starts with a jump to a point below (7/8)h4(n) is smaller than

eh5(n)
+∞
∑

a=(1/8)h4(n)

p(n)(a).

This is smaller than the same quantity with p(n) replaced by p(n), where p(n) was
introduced in the proof of Lemma A.1, that is,

eh5(n)e−λn

+∞
∑

a=(1/8)h4(n)

λan

a!
≤ eh5(n)−λnλ(1/8)h4(n)

n

+∞
∑

a=0

λan

a!
= eh5(n)λ(1/8)h4(n)

n .

Using the fact that h4(n) is much larger than h5(n) while λn tends to 0, we get
that the quantity above is much smaller than

λ(1/16)h4(n)
n ≤ e−2h4(n)

for n sufficiently large.
Outside of this event of very small probability, we know that each of the first

eh5(n) excursions starts with a jump to a point above (7/8)h4(n). By (A.2), we
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know that starting from such a point, the probability to reach (3/4)h4(n) before

h4(n) is smaller than e−(1/8)h4(n)n
2/7

. Since

eh5(n)e−(1/8)h4(n)n
2/7 ≤ e−2h4(n),

we have completed the proof of (A.3).
For the proof of (A.4), it suffices to argue that uniformly over a,

P

[

Z(n) hits {h4(n)} ∪ Z− before time eh10(n) | Z(n)(0) = a
]

≥ 1− e−h4(n). (A.5)

Indeed, by (A.1), the probability to reach Z− before reaching h4(n) is bounded by

e−an2/7

, so we infer from (A.5) that

P

[

Z(n) hits {h4(n)} before time eh10(n) | Z(n)(0) = a
]

≥ 1− 2e−a.

On the event that h4(n) is reached before time eh10(n), we can use the Markov
property and (A.3), from which (A.4) follows.

There remains to justify (A.5). We observe that, given that Z(n)(0) = a with
1 ≤ a < h4(n),

P

[

Z(n) jumps at least once to the left within time θ−5m1

]

≤ θ−5m1(1− p(n)(0))

≤ e−n2/7

2
,

while

P

[

Z(n) never jumps to the right within time θ−5m1

]

≤ (1− θ4m1)θ
−5m1 ≤ e−n2/7

2
,

so that

P

[

Z(n) jumps at least once to the right but never to the left within time θ−5m1

]

≥ 1− e−n2/7

.

Hence, given that Z(n)(0) = a with 1 ≤ a < h4(n),

P

[

Z(n) reaches {h4(n)} within time h4(n)θ
−5m1

]

≥ 1− h4(n)e
−n2/7 ≥ 1

2
.

Obviously, the same estimate holds for the hitting of {h4(n)}∩Z− instead of {h4(n)}
only. By the Markov property, one can then show inductively that for every k ∈ N,

P

[

Z(n) hits {h4(n)} ∩ Z− within time kh4(n)θ
−5m1

]

≥ 1− 1

2k
,

and this implies (A.5).
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